WO2016190025A1 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
WO2016190025A1
WO2016190025A1 PCT/JP2016/063009 JP2016063009W WO2016190025A1 WO 2016190025 A1 WO2016190025 A1 WO 2016190025A1 JP 2016063009 W JP2016063009 W JP 2016063009W WO 2016190025 A1 WO2016190025 A1 WO 2016190025A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
refrigerant
liquid
liquid receiver
communication
Prior art date
Application number
PCT/JP2016/063009
Other languages
French (fr)
Japanese (ja)
Inventor
壽久 内藤
沖ノ谷 剛
真一郎 滝瀬
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2017520575A priority Critical patent/JP6460233B2/en
Publication of WO2016190025A1 publication Critical patent/WO2016190025A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Definitions

  • the present disclosure relates to a condenser including a liquid receiver.
  • the condenser disclosed in Patent Document 1 has a configuration in which the liquid receivers are connected to each other via the internal space of the header tank so that the vertically placed liquid receiver and the horizontally placed liquid receiver communicate with each other. It has become.
  • the condenser disclosed in Patent Document 1 has a supercooling portion disposed below the condensing portion, and the liquid refrigerant inside the vertically placed receiver is excessively passed from the bottom side of the vertically placed receiver. It is the structure led out to the cooling unit side.
  • the cooling performance of the supercooling section arranged on the lower side of the condenser is lowered.
  • a decrease in the cooling performance of the supercooling section is not preferable because it causes a decrease in the degree of supercooling of the liquid-phase refrigerant.
  • This disclosure is intended to provide a condenser capable of suppressing a decrease in cooling performance of a supercooling section due to entrainment of high-temperature air while achieving downsizing as a whole.
  • a condenser that condenses the refrigerant by exchanging heat between the refrigerant and the external fluid is: A core portion that is configured by stacking a plurality of tubes through which refrigerant flows up and down, and that dissipates the refrigerant by heat exchange with an external fluid that flows outside the tubes; A first header tank extending along the tube stacking direction and connected to one end side of the tube in the longitudinal direction of the core; A second header tank extending along the tube stacking direction and connected to the other end side of the tube in the longitudinal direction in the core portion; A first liquid receiver that extends along the stacking direction of the tubes, is disposed adjacent to the second header tank, and communicates with the interior of the second header tank; A refrigerant introduction part for guiding the refrigerant present in the second header tank to the inside of the first liquid receiver; A second liquid receiver disposed on the upper side of the core portion, extending along the longitudinal direction of the tube, and connected to the first liquid receiver so as to communicate with
  • the core unit condenses the refrigerant by heat exchange with the external fluid, and the liquid phase refrigerant disposed above the condensing unit and stored in the first receiver by heat exchange with the external fluid. It has a supercooling section for supercooling.
  • the first liquid receiver and the second liquid receiver are configured to separate the gas-phase refrigerant and the liquid-phase refrigerant and store the separated liquid-phase refrigerant, respectively.
  • the inside and the inside of the second liquid receiver are communicated with each other via the liquid receiving side communication portion.
  • the condensing unit and the supercooling unit are connected to the supercooling side for guiding the liquid refrigerant stored in the second header tank, the refrigerant introducing unit, the first liquid receiver, and the first liquid receiver to the supercooling unit. It communicates through the part.
  • the second liquid receiver that extends in the longitudinal direction of the tube is used, so the liquid receiver can be received without increasing the size of the liquid receiver. It is possible to secure a sufficient volume for storing the refrigerant in the entire vessel. As a result, the overall condenser can be reduced in size.
  • the supercooling part is arranged above the condensing part. According to this, even if the phenomenon that the high temperature air is caught in the condenser again via the lower side of the condenser occurs, the supercooling part is hardly exposed to the high temperature air, so that the cooling performance in the supercooling part is ensured. be able to.
  • the condenser having the condensing part and the supercooling part in the core part it is possible to suppress a reduction in the cooling performance of the supercooling part due to entrainment of high-temperature air while reducing the overall size.
  • the condenser is configured such that the liquid receiving side communication portion and the supercooling side communication portion are separate refrigerant flow paths.
  • the liquid receiving side communication part and the supercooling side communication part are configured as separate refrigerant flow paths, the gas phase refrigerant inside each liquid receiver is introduced to the supercooling side communication part. Can be suppressed.
  • FIG. 3 is an enlarged view of a part III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a VV cross-sectional view of FIG. 3.
  • FIG. 4 is an arrow view in the direction of arrow VI in FIG. 3.
  • It is a schematic diagram which shows the condenser with which the single liquid receiver was provided in the side of the core part. It is a schematic diagram which shows the condenser which concerns on 1st Embodiment.
  • FIG. 17 is a cross-sectional view taken along the line XVIII-XVIII in FIG.
  • FIG. 20 is a sectional view taken along line XX-XX in FIG.
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 22.
  • FIG. 23 is a sectional view taken along line XXIV-XXIV in FIG.
  • the condenser 1 is a heat exchanger that constitutes a vapor compression refrigeration cycle applied to a vehicle air conditioner.
  • the refrigeration cycle is configured as a closed circuit in which a compressor, a condenser 1, a pressure reducing mechanism, an evaporator, and the like are sequentially connected by piping.
  • the refrigeration cycle of this embodiment employs an engine-driven compressor that is driven by power from the engine as a compressor.
  • the compressor may be an electric compressor that is driven by power from an electric motor.
  • the condenser 1 condenses the high-temperature and high-pressure gas-phase refrigerant discharged from a compressor (not shown) by exchanging heat with outside air as an external fluid.
  • the condenser 1 leads the refrigerant condensed inside to an evaporator (not shown) that evaporates the refrigerant through a decompression mechanism (not shown).
  • the condenser 1 is disposed in an engine room in which an internal combustion engine (for example, an engine) that drives a vehicle is installed.
  • the condenser 1 is arrange
  • the condenser 1 of the present embodiment will be described with reference to FIG.
  • the arrows indicating up, down, left, and right in FIG. 1 indicate the up and down direction, the left and right direction, and the front and rear direction in the vehicle mounted state. The same applies to the drawings other than FIG.
  • the condenser 1 of the present embodiment includes, as main components, a core portion 2, a side plate 4, a pair of header tanks 5, 6, a pair of connectors 7, 8, and a pair of liquid receivers (that is, modulators) 11, 12 is provided.
  • the main members constituting the condenser 1 are made of an aluminum metal material such as aluminum or an aluminum alloy.
  • the condenser 1 is brazed and joined with a brazing material provided in advance at a necessary portion of each member in a state where the members made of a metal material are assembled.
  • the core part 2 is a laminated body in which a plurality of tubes 2a through which a refrigerant flows are laminated vertically.
  • the core part 2 constitutes a heat exchanging part that exchanges heat with the air that is an external fluid that flows outside the tube 2a to dissipate heat.
  • the core portion 2 is provided with fins 2b that promote heat exchange between the refrigerant and air between adjacent tubes 2a.
  • the fin 2b of this embodiment is comprised with the corrugated fin bent in the waveform.
  • the fins 2b are not limited to corrugated fins, and may be configured with plate fins or the like.
  • Each tube 2a of the present embodiment is constituted by a single-hole or multi-hole tube having a flat cross section.
  • the tubes 2a are arranged at predetermined intervals so that their flat surfaces are arranged in parallel.
  • the core unit 2 of the present embodiment includes a condensing unit 21 that condenses the refrigerant and a supercooling unit (that is, a subcooler) 22 that cools the liquid phase refrigerant that has flowed out of the first receiver 11.
  • the core part 2 of this embodiment has a configuration in which the supercooling part 22 is positioned above the condensing part 21.
  • the portion of the core portion 2 that is located below the thick two-dot chain line DL in FIG. 1 constitutes the condensing unit 21, and the portion that is located above the thick two-dot chain line in FIG. Constitutes the supercooling section 22.
  • the side plate 4 is a reinforcing member that reinforces the core portion 2.
  • the side plate 4 of the present embodiment is disposed at the lower end of the core 2 in the stacking direction of the tubes 2a (that is, the vertical direction in FIG. 1).
  • the side plate 4 is joined to the fin 2b located at the lower end of the core portion 2.
  • the pair of header tanks 5 and 6 function as tanks that collect and distribute the refrigerant flowing through the tubes 2a.
  • the pair of header tanks 5 and 6 are connected to both ends in the longitudinal direction of the tube 2a. That is, the first header tank 5 shown on the left side of FIG. 1 extends along the stacking direction of the tubes 2 a and is connected to one end side of the tube 2 a in the longitudinal direction in the core portion 2. Further, the second header tank 6 shown on the right side of FIG. 1 extends along the stacking direction of the tubes 2 a and is connected to the other end side in the longitudinal direction of the tubes 2 a in the core portion 2.
  • Each of the header tanks 5 and 6 is composed of a cylindrical hollow member extending along the stacking direction of the tubes 2a.
  • Each header tank 5, 6 has an internal space communicating with the inside of each tube 2 a.
  • the pair of connectors 7 and 8 function as a refrigerant inlet / outlet in the condenser 1.
  • the pair of connectors 7 and 8 are joined to the first header tank 5.
  • the inlet-side connector 7 constituting the refrigerant inlet is joined at a position close to the center side of the first header tank 5.
  • An external pipe through which the refrigerant discharged from the compressor flows is connected to the inlet side connector 7.
  • the outlet side connector 8 constituting the refrigerant outlet is joined to a portion of the first header tank 5 above the inlet side connector 7.
  • the outlet-side connector 8 is connected to an external pipe that guides the refrigerant that has passed through the condenser 1 to the decompression mechanism side.
  • the first liquid receiver 11 and the second liquid receiver 12 configured in a pair separate the refrigerant flowing out from the condensing unit 21 of the core unit 2 into a liquid phase refrigerant and a gas phase refrigerant, and temporarily store the liquid phase refrigerant.
  • This tank is stored in A refrigerant storage space for storing a liquid-phase refrigerant is formed in each of the first liquid receiver 11 and the second liquid receiver 12.
  • Each of the first liquid receiver 11 and the second liquid receiver 12 plays a role of adjusting the circulation amount of the refrigerant circulating in the cycle according to the load fluctuation of the refrigeration cycle.
  • the first liquid receiver 11 and the second liquid receiver 12 are disposed adjacent to the second header tank 6.
  • the second liquid receiver 12 is disposed on the upper side of the core portion 2.
  • a cylindrical space is formed inside each of the first liquid receiver 11 and the second liquid receiver 12.
  • Each of the first liquid receiver 11 and the second liquid receiver 12 desirably has a circular cross-sectional shape of the inner wall in consideration of pressure resistance.
  • the 1st liquid receiver 11 adjacent to the 2nd header tank 6 is comprised with the hollow member extended along the lamination direction (namely, up-down direction) of the tube 2a.
  • the 1st liquid receiver 11 of this embodiment is connected to the 2nd header tank 6 so that the refrigerant
  • arranged above the core part 2 is comprised with the hollow member extended along the longitudinal direction (namely, left-right direction) of the tube 2a.
  • the second liquid receiver 12 of the present embodiment is connected to the first liquid receiver 11 via the second header tank 6 so as to communicate with the inside of the first liquid receiver 11.
  • FIG. 2 is a schematic cross-sectional view of the condenser 1.
  • FIG. 3 is an enlarged view of an essential part of FIG.
  • illustration of the tube 2a and the fin 2b constituting the core portion 2 is omitted in FIGS.
  • FIG. 2 illustrates a state in which some components such as the connectors 7 and 8 appear on the front side rather than in a cross section. The same applies to the following drawings.
  • the first header tank 5 of the present embodiment is provided with three separators 5a to 5c as partition members for partitioning the internal space up and down.
  • the inside of the first header tank 5 is divided into four internal spaces 51a to 51c and 52a by three separators 5a to 5c.
  • the internal spaces 51a to 51c and 52a constitute a communication space communicating with the core portion 2.
  • the upper internal space 51 a communicates with the supercooling unit 22 and is a space for collecting the refrigerant that has passed through the supercooling unit 22.
  • the central internal space 51 b is a space that communicates with the condensing unit 21 and distributes the refrigerant to the condensing unit 21.
  • the lower internal space 51 c is a space that communicates with the condensing unit 21 and changes the flow direction of the refrigerant in the condensing unit 21.
  • the outlet connector 8 is connected to the first header tank 5 at a site forming the upper internal space 51a. Further, the first header tank 5 is connected to the inlet side connector 7 at a portion forming the central internal space 51b.
  • the uppermost internal space 52a constitutes a non-communication space in which communication with the core portion 2 is blocked on the upper side of the core portion 2.
  • the internal space 52a in the first header tank 5 may hereinafter be referred to as a first non-communication space 52a.
  • first header tank 5 is formed with a through-hole 53a that allows the inside of the second liquid receiver 12 and the first non-communication space 52a to communicate with each other at a portion where the first non-communication space 52a is formed.
  • the end of the second liquid receiver 12 on the first header tank 5 side is connected to the through hole 53a.
  • each separator 6a to 6c is provided as partition members that partition the internal space up and down.
  • Each of the separators 6a to 6c is set so that the flow of the refrigerant in the condensing part 21 of the core part 2 becomes a meandering flow in an S shape.
  • the separator 6a of the second header tank 6 is disposed at a position corresponding to the separator 5a of the first header tank 5 in the vertical direction.
  • the separator 6b of the second header tank 6 is disposed at a position corresponding to the separator 5b of the first header tank 5 in the vertical direction.
  • the separator 6c of the second header tank 6 is disposed below the separator 5c of the first header tank 5 in the vertical direction.
  • the inside of the second header tank 6 is divided into four internal spaces 61a to 61c and 62a by three separators 6a to 6c.
  • the internal spaces 61a to 61c and 62a constitute a communication space communicating with the core portion 2.
  • the upper internal space 61 a is a space that communicates with the supercooling unit 22 and distributes the refrigerant to the supercooling unit 22.
  • the upper internal space 61 a communicates with the internal space 51 a above the first header tank 5 through the tube 2 a constituting the supercooling unit 22.
  • the upper internal space 61a communicates with the inside of the first liquid receiver 11 via a refrigerant outlet portion 111b of the first liquid receiver 11 described later. For this reason, the liquid-phase refrigerant inside the first liquid receiver 11 is introduced into the supercooling unit 22 via a refrigerant outlet unit 111b, an upper internal space 61a, and the like which will be described later.
  • the central internal space 61b is a space that changes the flow direction of the refrigerant in the condensing unit 21.
  • the central internal space 61b communicates with the central internal space 51b of the first header tank 5 and the lower internal space 51c via the tube 2a constituting the condensing unit 21.
  • the lower internal space 61 c is a space for collecting the refrigerant that has passed through the condensing unit 21.
  • the lower internal space 61 c communicates with the lower internal space 51 c of the first header tank 5 through the tube 2 a constituting the condensing unit 21.
  • the lower internal space 61 c communicates with the refrigerant storage space of the first liquid receiver 11 via the refrigerant introduction part 111 a in the first liquid receiver 11. For this reason, the refrigerant that has passed through the condensing unit 21 is introduced into the internal space of the first receiver 11 through the lower internal space 61c and the refrigerant introducing unit 111a.
  • the uppermost internal space 62a constitutes a non-communication space where communication with the core portion 2 is blocked on the upper side of the core portion 2.
  • the internal space 62a in the second header tank 6 may be referred to as a second non-communication space 62a.
  • the second header tank 6 has a through-hole that communicates the inside of the first liquid receiver 11 and the lower internal space 61c through a refrigerant introduction part 111a described later at a portion forming the lower internal space 61c.
  • a hole 63a is formed.
  • the second header tank 6 has a through hole 63b that communicates the inside of the first liquid receiver 11 and the upper internal space 61a via a refrigerant outlet portion 111b, which will be described later, at a portion that forms the upper internal space 61a. Is formed.
  • the second header tank 6 is formed with a through hole 63c that allows the inside of the first liquid receiver 11 and the second non-communication space 62a to communicate with each other at a portion where the second non-communication space 62a is formed.
  • the second header tank 6 is formed with a through hole 63d at a portion where the second non-communication space 62a is formed to communicate the inside of the second liquid receiver 12 and the second non-communication space 62a.
  • the end of the second liquid receiver 12 on the second header tank 6 side is connected to the through hole 63d.
  • the first liquid receiver 11 of the present embodiment includes a cylindrical tubular portion 111, a cylindrical support portion 112 that reinforces the upper end portion of the tubular portion 111, and a screw-type tank that closes the upper end portion of the support portion 112.
  • a cap 113 and a lid portion 114 for closing the lower end side of the cylindrical portion 111 are provided.
  • the cylindrical part 111 is disposed opposite to the part connected to the core part 2 in the second header tank 6 in the left-right direction.
  • the cylindrical portion 111 has an outer diameter that is approximately the same as the dimension of the second header tank 6 in the front-rear direction.
  • a refrigerant introduction portion 111 a that introduces a refrigerant from the internal space 61 c of the second header tank 6 to the internal space of the first liquid receiver 11 at a portion corresponding to the through hole 63 a of the second header tank 6.
  • the refrigerant introduction part 111 a is joined to a part that forms the internal space 61 c below the second header tank 6.
  • the cylindrical portion 111 is provided with a refrigerant outlet portion 111b that leads the refrigerant from the inner space of the first liquid receiver 11 to the inner space 61a at a portion corresponding to the through hole 63b of the second header tank 6. Yes.
  • the refrigerant outlet portion 111b is joined to a portion forming the upper internal space 61a in the second header tank 6.
  • the support part 112 is disposed opposite to the part connected to the supercooling part 22 in the second header tank 6 in the left-right direction.
  • the support portion 112 is provided with a through hole 112 a that connects the refrigerant outlet portion 111 b and the internal space of the first liquid receiver 11 at a portion corresponding to the refrigerant outlet portion 111 b of the cylindrical portion 111.
  • the support portion 112 is provided with an upper communication portion 112b that communicates the second non-communication space 62a with the inside of the first liquid receiver 11 at a portion corresponding to the through hole 63c of the second header tank 6. ing.
  • the upper communication part 112b is joined to a part of the second header tank 6 that forms the second non-communication space 62a.
  • the upper end portion of the support portion 112 is closed with a tank cap 113.
  • the tank cap 113 includes a lid portion 113 a that closes the upper end portion of the support portion 112, a first partition portion 113 b, and a second partition portion 113 c.
  • the lid portion 113a constitutes the upper end portion of the tank cap 113.
  • a screw thread corresponding to a spiral groove formed on the inner peripheral side of the support portion 112 is formed on the outer periphery of the lid portion 113a so that the tank cap 113 can be attached and detached.
  • the first partition 113b constitutes the lower end of the tank cap 113.
  • the first partition 113b is a partition that partitions the interior of the first liquid receiver 11 into a lower space 11a and an upper space 11b.
  • a sealing member 11f is provided on the outer peripheral side in order to ensure airtightness between the lower space 11a and the second space 11d of the upper space 11b. .
  • the second partition 113c is disposed between the lid 113a and the first partition 113b.
  • the second partition 113c is a partition that partitions the upper space 11b of the first receiver 11 into an upper first space 11c and a lower second space 11d.
  • the second partition 113c of the present embodiment is set so that the first space 11c and the upper communication part 112b communicate with each other, and the second space 11d and the refrigerant outlet part 111b communicate with each other.
  • the second partition 113c is provided with a seal member 11e on the outer peripheral side thereof in order to ensure airtightness between the first space 11c and the second space 11d.
  • each partition part 113b and 113c the communication pipe 161 which connects the upper side in the lower side space 11a of the 1st liquid receiver 11 and the 1st space 11c is provided.
  • Each partition 113b, 113c is connected via the communication pipe 161.
  • the first liquid receiver 11 of the present embodiment includes a communication pipe 161, a first space 11 c of the first liquid receiver 11, an upper communication part 112 b, and a second header tank 6.
  • the second liquid receiver 12 communicates with the second non-communication space 62a.
  • the communication pipe 161, the first space 11 c of the first liquid receiver 11, the upper communication part 112 b, and the second non-communication space 62 a of the second header tank 6 are included in the first liquid receiver 11.
  • the liquid receiving side communication part 16 which makes the inside of this and the inside of the 2nd liquid receiver 12 communicate is comprised.
  • the upper communication portion 112b constitutes a first communication portion that communicates the first space 11c with the inside of the second liquid receiver 12.
  • a suction pipe 171 for sucking up the liquid refrigerant from the position close to the bottom of the lower space 11a of the first receiver 11 to the second space 11d is connected to the second partition 113c.
  • the suction pipe 171 is arranged inside the first liquid receiver 11 so that the bottom side of the lower space 11a of the first liquid receiver 11 and the second space 11d of the first liquid receiver 11 communicate with each other. ing.
  • the first liquid receiver 11 of the present embodiment includes a supercooling unit via the suction pipe 171, the second space 11 d of the first liquid receiver 11, and the refrigerant outlet part 111 b. 22 communicates. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is transferred to the supercooling section 22 via the suction pipe 171, the second space 11d of the first liquid receiver 11 and the refrigerant outlet section 111b. Derived.
  • the suction pipe 171, the second space 11 d of the first receiver 11, and the refrigerant derivation unit 111 b remove the liquid refrigerant stored in the first receiver 11 from the supercooling unit 22.
  • the supercooling side communication part 17 led to is constructed.
  • the refrigerant derivation unit 111b constitutes a second communication unit that allows the second space 11d and the supercooling unit 22 to communicate with each other.
  • the second space 11d constituting the supercooling side communication portion 17 is composed of the lower space 11a and the liquid receiving side communication portion by the seal member 11f of the first partition 113b and the seal member 11e of the second partition 113c. 16 is hermetically sealed with respect to the first space 11 c constituting the 16. For this reason, in the structure of this embodiment, it can suppress that the gaseous-phase refrigerant
  • the desiccant 14 is arranged in the lower space 11a of the first liquid receiver 11 of the present embodiment.
  • the desiccant 14 is a member that adsorbs water mixed in the refrigeration cycle.
  • the desiccant 14 of the present embodiment is arranged in the lower space 11a of the first liquid receiver 11 so that at least a part thereof is below the liquid level of the refrigerant.
  • the desiccant 14 is configured by containing a granular desiccant inside a bag-like member through which a refrigerant can pass.
  • granular desiccant for example, silica gel or zeolite excellent in adsorption performance can be employed even in a situation where the moisture concentration in the refrigerant is low.
  • a filter 15 is disposed in the second space 11d of the first receiver 11 of the present embodiment as shown in FIGS.
  • the filter 15 is a member that captures foreign matter in the refrigeration cycle.
  • the filter 15 is composed of a semi-cylindrical mesh disposed in the second space 11d.
  • the second liquid receiver 12 has a cylindrical cylindrical portion 121 extending along the longitudinal direction of the tube 2 a on the upper side of the core portion 2.
  • the cylindrical portion 121 has one end connected to the through hole 53 a of the first header tank 5 and the other end connected to the through hole 63 d of the second header tank 6.
  • the second liquid receiver 12 of this embodiment is disposed in contact with the upper part of the supercooling unit 22. Specifically, the 2nd liquid receiver 12 is joined with the site
  • FIG. 1 A site
  • the compressor When the air conditioner operation switch is turned on and the operation of the air conditioner is started during the operation of the engine, the compressor is driven by the power from the engine. Thereby, a compressor compresses and discharges a refrigerant. Then, the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor flows into the central internal space 51 b of the first header tank 5 through the inlet-side connector 7.
  • the refrigerant flowing into the internal space 61b is distributed to the tube 2a on the middle stage side in the condensing unit 21 and is cooled by exchanging heat with air when passing through the tube 2a, and then below the first header tank 5. It flows into the internal space 51c.
  • the refrigerant flowing into the internal space 51c is distributed to the lower tube 2a in the condenser 1 and is cooled by exchanging heat with air when passing through the tube 2a. It flows into the internal space 61c.
  • a saturated liquid refrigerant partially including a gas-phase refrigerant or a supercooled liquid refrigerant having a certain degree of supercooling flows into the internal space 61c.
  • the refrigerant that has flowed into the internal space 61c flows into the first liquid receiver 11 through the refrigerant introduction portion 111a, and is converted into a gas phase refrigerant and a liquid phase refrigerant due to a difference in specific gravity of the refrigerant inside the first liquid receiver 11.
  • a gas phase refrigerant having a low specific gravity gathers on the upper side
  • a liquid phase refrigerant having a higher specific gravity than the gas phase refrigerant gathers on the lower side and is stored.
  • water is adsorbed by the desiccant 14 in the liquid phase refrigerant stored in the first liquid receiver 11.
  • At least a part of the liquid-phase refrigerant stored in the first liquid receiver 11 is located above the second header tank 6 via the suction pipe 171 and the second space 11d and the refrigerant outlet portion 111b. Flows into the internal space 61a.
  • the liquid-phase refrigerant that has flowed into the internal space 61a is distributed to the tube 2a that constitutes the supercooling unit 22, and after passing through the tube 2a, the liquid phase refrigerant exchanges heat with air and is supercooled. Flows into the internal space 51a. Then, the liquid-phase refrigerant having the degree of supercooling that has flowed into the internal space 51 a flows out to the decompression mechanism side via the outlet-side connector 8.
  • the first liquid receiver 11 and the second liquid receiver 12 are configured by the communication pipe 161, the first space 11c, the upper communication portion 112b, and the second non-communication space 62a. Communication is made via the liquid side communication part 16.
  • liquid-phase refrigerant stored inside the first liquid receiver 11 can move to the inside of the second liquid receiver 12 via the liquid receiver side communication part 16. For this reason, the liquid-phase refrigerant can be stored inside the second liquid receiver 12.
  • the condenser 1 of the present embodiment can store the refrigerant flowing out of the condensing unit 21 of the core unit 2 in both the first liquid receiver 11 and the second liquid receiver 12. For this reason, the volume which can store the refrigerant
  • FIG. 7 is a schematic view of a condenser CP of a comparative example in which a liquid receiver MT is provided on one side of the core part MC in the left-right direction.
  • FIG. 8 is a schematic diagram of the condenser 1 according to the present embodiment.
  • FIG. 9 is principal part sectional drawing for demonstrating the magnitude
  • FIG. 9 shows a cut surface obtained by cutting a main part including the first liquid receiver 11 in the condenser 1 in the left-right direction.
  • the receiver MT sets the diameter of the receiver MT to the second header in order to store the refrigerant amount necessary for adjusting the load fluctuation in the refrigeration cycle.
  • the tank 6 needs to be enlarged.
  • the liquid receiver MT protrudes forward and rightward by the dimensions A and B with respect to the second header tank 6. This is not preferable because it causes a wasteful space around the condenser CP.
  • the liquid phase refrigerant can be stored in the second liquid receiver 12 in addition to the first liquid receiver 11. For this reason, it becomes possible to make the diameter of the 1st liquid receiver 11 smaller than the diameter of the liquid receiver MT of a comparative example. That is, in the condenser 1 of the present embodiment, the diameter of the first liquid receiver 11 can be made closer to the front-rear dimension of the core portion 2 and the front-rear dimension of the second header tank 6.
  • FIG. 10 is a graph showing a measurement result of the degree of supercooling of the refrigerant on the outlet side of the condenser 1 when the refrigeration cycle is operated with a predetermined refrigerant charging amount.
  • the horizontal axis indicates the refrigerant charging amount
  • the vertical axis indicates the degree of refrigerant supercooling on the outlet side of the condenser 1.
  • FIG. 10 the solid line indicates the measurement result in the condenser 1 of the present embodiment. Moreover, in FIG. 10, the dashed-dotted line has shown the measurement result in the condenser CP of a comparative example. In addition, FIG. 10 is a measurement result on the conditions which set the area of the core part in each condenser, and the volume of the whole liquid receiver equally.
  • the refrigerant charging characteristic is a characteristic indicating a change in the degree of supercooling of the refrigerant flowing out from the outlet-side connector 8 of the condenser 1 when the total amount of refrigerant circulating through the entire refrigeration cycle (that is, the refrigerant charging amount) is changed. is there.
  • the charging characteristic of the refrigerant in order to stably exhibit the heat radiation performance in the condenser 1, it is desirable that a stable region where the degree of supercooling does not change even if the refrigerant charging amount fluctuates is wide. According to the knowledge of the present inventors, the region where the degree of supercooling is stable tends to expand with an increase in the volume capable of storing the refrigerant in the entire condenser 1 and narrow with a decrease in the volume. I know.
  • the refrigerant charge amount in the refrigeration cycle is increased, in the condenser 1 of this embodiment and the condenser CP of the comparative example, the refrigerant charge amount is in the range of about 480 g to 650 g, and the degree of supercooling is increased. Was stabilized at about 9 ° C. That is, the condenser 1 of the present embodiment is the same as the condenser CP of the comparative example in the region where the degree of supercooling is stable regardless of the change in the refrigerant charging amount.
  • the condenser 1 of the present embodiment has a stable heat radiation performance comparable to the condenser CP of the comparative example, although the first receiver 11 is smaller than the condenser CP of the comparative example. It turns out that it is possible to demonstrate.
  • the condenser 1 of the present embodiment described above includes the second liquid receiver 12 extending in the longitudinal direction of the tube 2a in addition to the first liquid receiver 11 extending in the stacking direction of the tubes 2a. According to this, the volume which can store the refrigerant
  • the supercooling unit 22 is disposed above the condensing unit 21 in the core unit 2. According to this, even if a phenomenon occurs in which the high temperature air is caught again in the condenser 1 via the lower side of the condenser 1, the supercooling portion 22 becomes difficult to be exposed to the high temperature air. Cooling performance can be ensured.
  • the liquid receiving side communication portion 16 and the supercooling side communication portion 17 are configured as separate refrigerant flow paths.
  • the condenser 1 of the present embodiment is configured such that the liquid receiving side communication portion 16 and the supercooling side communication portion 17 do not directly communicate with each other. According to this, it can suppress that the gaseous-phase refrigerant
  • the condenser 1 in which the core unit 2 includes the condensing unit 21 and the supercooling unit 22 it is possible to suppress a reduction in cooling performance of the supercooling unit 22 due to entrainment of high-temperature air while reducing the overall size. It becomes.
  • the upper side of the lower space 11a of the first liquid receiver 11 and the first space 11c communicating with the second liquid receiver 12 are communicated with each other via the communication pipe 161, and the suction pipe The liquid-phase refrigerant is sucked up from the bottom side of the lower space 11 a via the 171. According to this, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
  • the second receiver 12 is brought into contact with the upper part of the supercooling unit 22 and an arrangement configuration is adopted.
  • the 2nd liquid receiver 12 can be functioned also as a reinforcement member of the core part 2, and it becomes possible to aim at the improvement of the intensity
  • the present invention is not limited thereto, and the partition portions 113b and 113c are disposed in the tank. You may comprise with a member different from the cap 113. FIG.
  • the filter 15 may be arranged on the refrigerant inlet side of the suction pipe 171. That is, the filter 15 may be configured to surround the lower end portion of the suction pipe 171 and the side portion of the lower end portion. In this case, the filter 15 may be fixed to the suction pipe 171 by welding or the like.
  • the filter 15 may be arranged on the refrigerant outlet side in the suction pipe 171. That is, the filter 15 may be configured to surround the upper end portion of the suction pipe 171. Also in this case, the filter 15 may be fixed to the suction pipe 171 by welding or the like.
  • the filter 15 may be arranged only in a portion corresponding to the refrigerant derivation unit 111b in the second space 11d. In this case, the filter 15 may be fixed to the side surface of the tank cap 113 by welding or the like.
  • the interior of the first liquid receiver 11 of the present embodiment is partitioned into a lower space 11a and an upper space 11b by a partition portion 113d provided in the tank cap 113.
  • the partition portion 113d of the present embodiment is set so that the upper space 11b and the upper communication portion 112b communicate with each other. As shown in FIG. 16, the partition portion 113d is provided with a seal member 11e in order to ensure airtightness between the lower side space 11a and the upper side space 11b.
  • a communication pipe 161 that connects the upper side of the lower space 11a of the first receiver 11 and the upper space 11b is provided.
  • the lid portion 113a and the partition portion 113d are connected via a communication pipe 161.
  • the first liquid receiver 11 of this embodiment is connected via the communication pipe 161, the upper space 11 b of the first liquid receiver 11, the upper communication portion 112 b, and the second non-communication space 62 a of the second header tank 6. It communicates with the second liquid receiver 12.
  • the communication pipe 161, the upper space 11 b of the first receiver 11, the upper communication portion 112 b, and the second non-communication space 62 a of the second header tank 6 are included in the first receiver 11.
  • the liquid receiving side communication part 16 which makes the inside of this and the inside of the 2nd liquid receiver 12 communicate is comprised.
  • the upper communication portion 112b constitutes a first communication portion that communicates the first space 11c with the inside of the second liquid receiver 12.
  • the liquid receiving side junction part 115 which comprises the junction part joined to the 2nd header tank 6 in the site
  • the liquid receiving side joining portion 115 extends from the lower side to the upper side of the through hole 63b of the second header tank 6 also from the portion corresponding to the through hole 63a of the second header tank 6.
  • the liquid receiving side joining portion 115 is provided with a refrigerant introducing portion 111a at a portion corresponding to the through hole 63a of the second header tank 6.
  • the liquid receiving side joint 115 is formed with an internal communication portion 172 that connects the bottom side of the lower space 11 a of the first liquid receiver 11 and the supercooling portion 22.
  • the internal communication part 172 communicates with the supercooling part 22 via the second header tank 6 in the upper part of the liquid receiving side joining part 115.
  • the internal communication portion 172 communicates with the inside of the second header tank 6 at a portion corresponding to the through hole 63 d of the second header tank 6 in the liquid receiving side joint portion 115. ing.
  • the internal communication portion 172 is formed by the outer wall portion of the second header tank 6 at a portion other than the portion corresponding to the through hole 63 d of the second header tank 6 in the liquid receiving side joint portion 115. Communication with the inside of the second header tank 6 is blocked.
  • the internal communication portion 172 communicates with the lower space 11 a of the first liquid receiver 11 at a portion below the refrigerant introduction portion 111 a in the liquid receiving side joining portion 115. .
  • the internal communication portion 172 of the present embodiment does not communicate with the refrigerant introduction portion 111a in the portion where the refrigerant introduction portion 111a is formed in the liquid receiving side joint portion 115. It is formed on both sides of the refrigerant introduction part 111a. That is, the internal communication part 172 of the present embodiment is configured not to communicate directly with the refrigerant introduction part 111a at the liquid receiving side joining part 115.
  • the internal communication portion 172 of the present embodiment includes a through-hole 115 a formed in a portion facing the second header tank 6 in the liquid receiving side joint portion 115, a vertically extending groove 115 b, and a second header tank. 6 outer wall portions.
  • the portion that constitutes the groove 115b is formed on the outer wall portion of the second header tank 6 so that the internal communication portion 172 is formed between the liquid receiving side joint portion 115 and the outer wall of the second header tank 6. It is airtightly joined.
  • the first liquid receiver 11 of the present embodiment communicates with the supercooling section 22 through an internal communication section 172 provided at the liquid receiving side joining section 115 as shown in FIGS. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is led out to the supercooling unit 22 via the internal communication unit 172.
  • the internal communication portion 172 constitutes the supercooling side communication portion 17 that guides the liquid phase refrigerant stored in the first liquid receiver 11 to the supercooling portion 22.
  • the internal communication portion 172 allows the bottom side of the lower space 11a of the first liquid receiver 11 to communicate with the supercooling portion 22, and the liquid stored on the bottom side of the lower space 11a.
  • the 2nd communication part which guides a phase refrigerant to the supercooling part 22 is comprised.
  • a filter 15 that captures foreign matter in the refrigeration cycle is disposed.
  • the filter 15 is disposed at a position corresponding to the through hole 115 a of the liquid receiving side joint 115 that constitutes the refrigerant inlet side in the internal communication portion 172. More specifically, the filter 15 of the present embodiment has a position corresponding to the refrigerant introduction portion 111a of the liquid receiving side joint portion 115 and the penetration of the liquid receiving side joint portion 115 constituting the refrigerant inlet side in the internal communication portion 172. It arrange
  • the filter 15 of the present embodiment is configured by a cylindrical mesh.
  • the liquid refrigerant stored on the bottom side of the lower space 11 a of the first liquid receiver 11 is guided to the supercooling part 22 through the internal communication part 172 formed in the liquid receiving side joining part 115. It is configured. According to this, similarly to the first embodiment, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
  • the partition portion 113d that partitions the inside of the first liquid receiver 11 is provided in the tank cap 113 .
  • the present invention is not limited thereto, and the partition portion 113d is a separate member from the tank cap 113. You may comprise.
  • the present embodiment is different from the first embodiment in that the liquid receiving side communication portion 16 is provided in the liquid receiving side joint portion 116 which is a joint portion with the second header tank 6 in the first liquid receiver 11. Yes.
  • the first liquid receiver 11 of the present embodiment is partitioned into a lower space 11 a and an upper space 11 b by a partition portion 113 e provided in the tank cap 113. ing.
  • the partition portion 113e is provided with a seal member 11g on the outer peripheral side thereof.
  • the partition portion 113e of the present embodiment is set so that the upper space 11b and the refrigerant outlet portion 111b communicate with each other.
  • a filter 15 that captures foreign matter in the refrigeration cycle is disposed in the upper space 11 b of the first receiver 11.
  • a suction pipe 171 that sucks the liquid refrigerant from the position close to the bottom of the lower space 11a of the first receiver 11 to the upper space 11b is connected to the partition 113e of the present embodiment.
  • the suction pipe 171 is disposed inside the first liquid receiver 11 so that the bottom side of the lower space 11a of the first liquid receiver 11 and the upper space 11b of the first liquid receiver 11 communicate with each other. ing.
  • the first liquid receiver 11 of the present embodiment communicates with the supercooling unit 22 via the suction pipe 171, the upper space 11 b of the first liquid receiver 11, and the refrigerant derivation unit 111 b. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is transferred to the supercooling section 22 via the suction pipe 171, the upper space 11 b of the first liquid receiver 11, and the refrigerant outlet section 111 b. Derived.
  • the suction pipe 171, the upper space 11 b of the first receiver 11, and the refrigerant derivation unit 111 b remove the liquid refrigerant stored in the first receiver 11 from the supercooling unit 22.
  • the supercooling side communication part 17 led to is constructed.
  • the refrigerant derivation unit 111b constitutes a second communication unit that allows the second space 11d and the supercooling unit 22 to communicate with each other.
  • the upper space 11b constituting the supercooling side communication portion 17 is hermetically sealed with respect to the lower space 11a by the seal member 11g of the partition portion 113e. For this reason, in the structure of this embodiment, it can suppress that the gaseous-phase refrigerant
  • the liquid receiver 11 of the present embodiment that constitutes a joining portion that joins the portion forming the lower space 11 a and the upper space 11 b in the cylindrical portion 111 to the second header tank 6.
  • a side joint 116 is provided.
  • the liquid receiving side joining portion 116 extends from the lower side to the upper side of the through hole 63c of the second header tank 6 also from the portion corresponding to the through hole 63b of the second header tank 6.
  • the liquid receiving side joining portion 116 is provided with a refrigerant outlet portion 111b at a portion corresponding to the through hole 63b of the second header tank 6.
  • the liquid receiving side joint 116 is formed with an internal communication portion 162 that allows the upper side of the lower space 11a of the first liquid receiver 11 to communicate with the second liquid receiver 12.
  • the internal communication portion 162 communicates with the second liquid receiver 12 through the second non-communication space 62a of the second header tank 6 at the upper portion of the liquid receiving side joining portion 116. Further, the internal communication portion 162 communicates with the lower space 11a of the first liquid receiver 11 at a portion below the refrigerant outlet portion 111b in the liquid receiving side joining portion 116.
  • the internal communication portion 162 of the present embodiment is a refrigerant derivation so as not to communicate with the refrigerant derivation portion 111b at the portion where the refrigerant derivation portion 111b is formed in the liquid receiving side joining portion 116. It is formed on both sides of the portion 111b. That is, the internal communication part 162 of the present embodiment is configured not to communicate directly with the refrigerant outlet part 111b in the liquid receiving side joining part 116.
  • the 1st liquid receiver 11 of this embodiment is the 2nd header tank 6 between the downward side of the liquid receiving side junction part 116, and the upper side of the refrigerant
  • the internal communication portion 162 of the present embodiment includes a through hole 116a formed in a portion facing the second header tank 6 in the liquid receiving side joint portion 116, a vertically extending groove portion 116b, and a second header tank. 6 outer wall portions.
  • the portion that constitutes the groove portion 116b is formed on the outer wall portion of the second header tank 6 so that the internal communication portion 162 is formed between the liquid receiving side joint portion 116 and the outer wall portion of the second header tank 6. Is airtightly bonded.
  • the first liquid receiver 11 of the present embodiment has the first communication portion 162 provided in the liquid reception side joint portion 116 and the second non-communication space 62a of the second header tank 6 through the first non-communication space 62a. 2 It communicates with the liquid receiver 12.
  • the internal communication portion 162 and the second non-communication space 62a of the second header tank 6 communicate with each other on the liquid receiving side that allows the inside of the first liquid receiver 11 and the inside of the second liquid receiver 12 to communicate with each other.
  • Part 16 is configured.
  • the internal communication portion 162 constitutes a first communication portion that connects the upper side in the lower space 11 a of the first liquid receiver 11 and the inside of the second liquid receiver 12.
  • the partition portion 113e that partitions the inside of the first liquid receiver 11 is provided in the tank cap 113 .
  • the present invention is not limited thereto, and the partition portion 113e is a separate member from the tank cap 113. You may comprise.
  • the first partition 113b and the second partition 113c of the first embodiment are eliminated. That is, the first liquid receiver 11 of the present embodiment has a configuration in which the internal space is not particularly partitioned.
  • the first liquid receiver 11 of the present embodiment communicates with the second liquid receiver 12 via the upper communication portion 112b and the second non-communication space 62a of the second header tank 6. Therefore, in the present embodiment, the upper communication portion 112b and the second non-communication space 62a of the second header tank 6 receive the interior of the first liquid receiver 11 and the interior of the second liquid receiver 12.
  • the liquid side communication part 16 is comprised.
  • the liquid phase refrigerant inside the first liquid receiver 11 is guided to the supercooling section 22 in a portion that forms a lower space in the cylindrical portion 111.
  • a communication unit 173 is connected.
  • the external communication part 173 is disposed outside the first liquid receiver 11. More specifically, the external communication part 173 of the present embodiment is disposed in a space formed between the first liquid receiver 11 and the second header tank 6.
  • the outer communication part 173 has an upper end joined to a part corresponding to the through hole 63a of the second header tank 6.
  • the external communication part 173 communicates with the supercooling part 22 via the second header tank 6.
  • the lower end of the external communication portion 173 is connected to the lower portion of the first liquid receiver 11.
  • the external communication portion 173 of the present embodiment is connected to the upper side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected.
  • the external communication portion 173 communicates with the inside of the first liquid receiver 11 at its lower end.
  • the external communication portion 173 is not limited to the upper side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected, but the lower side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected. It may be connected to.
  • the first liquid receiver 11 communicates with the supercooling unit 22 via the external communication unit 173 provided outside the first liquid receiver 11. For this reason, the liquid-phase refrigerant stored in the first liquid receiver 11 is led to the supercooling unit 22 via the external communication unit 173.
  • the external communication portion 173 provided outside the first liquid receiver 11 causes the supercooling side that guides the liquid-phase refrigerant stored inside the first liquid receiver 11 to the supercooling portion 22.
  • the communication part 17 is comprised.
  • a filter 15 that captures foreign matters in the refrigeration cycle is disposed. More specifically, the filter 15 of the present embodiment is disposed so as to straddle the part constituting the refrigerant introduction part 111a in the first receiver 11 and the part constituting the refrigerant inlet side in the external communication part 173. Yes. As a result, the liquid refrigerant after the foreign matter is removed by the filter 15 is introduced into the external communication portion 173.
  • the filter 15 of this embodiment is comprised by the cylindrical net-like body similarly to 2nd Embodiment.
  • the liquid refrigerant stored on the lower side of the first liquid receiver 11 is guided to the supercooling section 22 via the external communication section 173 disposed outside the first liquid receiver 11. .
  • the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
  • the present invention is not limited to this.
  • a reinforcing member such as a side plate may be joined to the upper part of the supercooling unit 22.
  • the 1st header tank 5 side of the 2nd liquid receiver 12 is connected so that the inside of the 2nd liquid receiver 12 and the 1st non-communication space 52a of the 1st header tank 5 may connect.
  • the second liquid receiver 12 may be configured such that the inside thereof does not communicate with the first non-communication space 52 a of the first header tank 5.
  • the present invention is not limited to this.
  • the first liquid receiver 11 may be arranged on the left side of the core unit 2.
  • the example in which the refrigerant flow is directed to the left and right three rotations as the condensing unit 21 of the core unit 2 has been described, but is not limited thereto.
  • the condensing unit 21 may be configured such that the flow of the refrigerant is directed to the left and right for one or two rotations, or the refrigerant flow is turned to the left and right three times or more.
  • the present invention is not limited to this, and the fins 2b may be omitted.
  • the filter 15 that captures the foreign matter in the refrigeration cycle is arranged at various positions in the condenser 1 is described, but the present invention is not limited to this.
  • the filter 15 may be disposed at any position as long as it is a section from the refrigerant outlet side of the condenser 21 in the condenser 1 to the outlet-side connector 8.
  • the filter 15 may be provided in a portion other than the condenser 1, for example, on the refrigerant inlet side of the decompression mechanism downstream of the condenser 1 from the refrigerant flow. That is, the filter 15 is desirably disposed on a member having a space for storing the liquid-phase refrigerant, such as the condenser 1, but may be disposed other than the condenser 1.
  • the inlet side connector 7 is connected to a portion corresponding to the central internal space 51 b of the first header tank 5, and the refrigerant introduction portion 111 a is connected to the internal space below the second header tank 6.
  • part corresponding to 61c was demonstrated, it is not limited to this.
  • the inlet-side connector 7 is connected to a portion corresponding to the internal space 51 c below the first header tank 5, and the refrigerant introduction portion 111 a is connected to the central internal space 61 b of the second header tank 6. It may be a structure connected to a corresponding part.
  • first liquid receiver 11 and the second liquid receiver 12 may have a rectangular cross section on the inner wall.
  • first liquid receiver 11 and the second liquid receiver 12 may have different cross-sectional shapes.
  • the cross-sectional shape of one inner wall may be circular, and the cross-sectional shape of the other inner wall may be rectangular.
  • the liquid-receiving side communication portion 16 and the supercooling side communication portion 17 are configured as separate refrigerant flow paths, but the present invention is not limited to this.
  • the liquid-receiving side communication part 16 and The supercooling side communication part 17 may be comprised as a common refrigerant flow path.

Abstract

A core part (20) of this condenser (1) is provided with: a condensing portion (21) which causes a refrigerant to condense as a result of heat exchange between the refrigerant and an external fluid; and a supercooling portion (22) which is disposed at the upper side of the condensing portion (21), and which, as a result of heat exchange between the external fluid and liquid-phase refrigerant stored in a first liquid receiver (11), supercools the liquid-phase refrigerant. Furthermore, the first liquid receiver (11) and a second liquid receiver (12) are respectively configured so as to separate gas-phase refrigerant and the liquid-phase refrigerant, and store the separated liquid-phase refrigerant. The inside of the first liquid receiver (11) and the inside of the second liquid receiver (12) communicate via a liquid-reception-side communication portion (16). Moreover, the condensing portion (21) and the supercooling portion (22) communicate via a second header tank (6), a refrigerant introduction portion (111a), the first liquid receiver (11), and a supercooling-side communication portion (17) which guides the liquid-phase refrigerant stored inside the first liquid receiver (11) to the supercooling portion (22).

Description

凝縮器Condenser 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年5月26日に出願された日本出願番号2015-106670号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-106670 filed on May 26, 2015, the contents of which are incorporated herein by reference.
 本開示は、受液器を備える凝縮器に関する。 The present disclosure relates to a condenser including a liquid receiver.
 近年、市場では、従来の凝縮器の放熱性能を維持しつつ、搭載性のよい薄型な凝縮器が求められている。このような要求に対し、凝縮器の熱交換部であるコア部の側方部に配置された縦置きの受液器に加えて、コア部の上方側に沿って横に寝かせた姿勢で配置された横置きの受液器を備える構成が提案されている(例えば、特許文献1参照)。 In recent years, there has been a demand for a thin condenser with good mountability while maintaining the heat dissipation performance of a conventional condenser. In response to such demands, in addition to the vertical receiver placed on the side of the core, which is the heat exchange part of the condenser, it is placed in a posture that lies sideways along the upper side of the core A configuration including a horizontally placed liquid receiver has been proposed (see, for example, Patent Document 1).
 特許文献1に開示された凝縮器は、縦置きの受液器と横置きの受液器とが内部で連通するように、ヘッダタンクの内部空間を介して各受液部同士を接続する構成となっている。 The condenser disclosed in Patent Document 1 has a configuration in which the liquid receivers are connected to each other via the internal space of the header tank so that the vertically placed liquid receiver and the horizontally placed liquid receiver communicate with each other. It has become.
特開2012-67939号公報JP 2012-67939 A
 ところで、特許文献1に開示された凝縮器は、過冷却部を凝縮部よりも下方に配置し、縦置きの受液器内部の液相冷媒を、縦置きの受液器における底部側から過冷却部側へ導出する構成となっている。 By the way, the condenser disclosed in Patent Document 1 has a supercooling portion disposed below the condensing portion, and the liquid refrigerant inside the vertically placed receiver is excessively passed from the bottom side of the vertically placed receiver. It is the structure led out to the cooling unit side.
 しかしながら、車両のアイドリング時のように、走行風による空気の動圧等が凝縮器に作用しない状況では、エンジン冷却用のラジエータ等を通過した高温の空気が、凝縮器の下方側を介して再び凝縮器に巻き込まれる現象が生ずることがある。このような現象は、凝縮器の前後に他の熱交換器等の別部材が配置されている場合にも生ずる。 However, in a situation where the dynamic pressure of air due to traveling wind does not act on the condenser, such as when the vehicle is idling, the high-temperature air that has passed through the radiator for cooling the engine again passes through the lower side of the condenser. The phenomenon of being caught in a condenser may occur. Such a phenomenon also occurs when other members such as other heat exchangers are arranged before and after the condenser.
 凝縮器の下方側からの高温空気の巻き込みが生ずると、凝縮器の下方側に配置された過冷却部の冷却性能が低下する。過冷却部の冷却性能の低下は、液相冷媒の過冷却度が減少する要因となることから好ましくない。 When the entrainment of high-temperature air from the lower side of the condenser occurs, the cooling performance of the supercooling section arranged on the lower side of the condenser is lowered. A decrease in the cooling performance of the supercooling section is not preferable because it causes a decrease in the degree of supercooling of the liquid-phase refrigerant.
 本開示は、全体としての小型化を図りつつ、高温空気の巻き込みによる過冷却部の冷却性能の低下を抑制可能な凝縮器を提供することを目的とする。 This disclosure is intended to provide a condenser capable of suppressing a decrease in cooling performance of a supercooling section due to entrainment of high-temperature air while achieving downsizing as a whole.
 本開示の1つの観点において、冷媒と外部流体とを熱交換させて冷媒を凝縮させる凝縮器は、
 冷媒が流通する複数のチューブを上下に積層して構成され、チューブの外側を流れる外部流体との熱交換により冷媒を放熱させるコア部と、
 チューブの積層方向に沿って延びると共にコア部におけるチューブの長手方向の一端側に接続される第1ヘッダタンクと、
 チューブの積層方向に沿って延びると共にコア部におけるチューブの長手方向の他端側に接続される第2ヘッダタンクと、
 チューブの積層方向に沿って延びると共に、第2ヘッダタンクに隣接して配置され、第2ヘッダタンクの内部に連通する第1受液器と、
 第2ヘッダタンクの内部に存する冷媒を第1受液器の内部へ導く冷媒導入部と、
 コア部の上方側に配置され、チューブの長手方向に沿って延びると共に、第1受液器の内部と連通するように第1受液器に接続される第2受液器と、を備える。
In one aspect of the present disclosure, a condenser that condenses the refrigerant by exchanging heat between the refrigerant and the external fluid is:
A core portion that is configured by stacking a plurality of tubes through which refrigerant flows up and down, and that dissipates the refrigerant by heat exchange with an external fluid that flows outside the tubes;
A first header tank extending along the tube stacking direction and connected to one end side of the tube in the longitudinal direction of the core;
A second header tank extending along the tube stacking direction and connected to the other end side of the tube in the longitudinal direction in the core portion;
A first liquid receiver that extends along the stacking direction of the tubes, is disposed adjacent to the second header tank, and communicates with the interior of the second header tank;
A refrigerant introduction part for guiding the refrigerant present in the second header tank to the inside of the first liquid receiver;
A second liquid receiver disposed on the upper side of the core portion, extending along the longitudinal direction of the tube, and connected to the first liquid receiver so as to communicate with the inside of the first liquid receiver.
 そして、コア部は、冷媒を外部流体との熱交換により凝縮させる凝縮部、および凝縮部の上方側に配置されて第1受液器に貯留された液相冷媒を外部流体との熱交換により過冷却する過冷却部を有している。また、第1受液器および第2受液器は、気相冷媒と液相冷媒とを分離して、分離した液相冷媒を貯留するようにそれぞれ構成されると共に、第1受液器の内部と第2受液器の内部とが受液側連通部を介して連通している。さらに、凝縮部および過冷却部は、第2ヘッダタンク、冷媒導入部、第1受液器、および第1受液器の内部に貯留された液相冷媒を過冷却部に導く過冷却側連通部を介して連通している。 The core unit condenses the refrigerant by heat exchange with the external fluid, and the liquid phase refrigerant disposed above the condensing unit and stored in the first receiver by heat exchange with the external fluid. It has a supercooling section for supercooling. In addition, the first liquid receiver and the second liquid receiver are configured to separate the gas-phase refrigerant and the liquid-phase refrigerant and store the separated liquid-phase refrigerant, respectively. The inside and the inside of the second liquid receiver are communicated with each other via the liquid receiving side communication portion. Furthermore, the condensing unit and the supercooling unit are connected to the supercooling side for guiding the liquid refrigerant stored in the second header tank, the refrigerant introducing unit, the first liquid receiver, and the first liquid receiver to the supercooling unit. It communicates through the part.
 これによれば、チューブの積層方向に延びる第1受液器に加えて、チューブの長手方向に延びる第2受液器を有する構成としているので、受液器を大型化することなく、受液器全体として冷媒を貯留する容積を充分に確保することができる。この結果、凝縮器全体として小型化を図ることができる。 According to this, in addition to the first liquid receiver that extends in the tube stacking direction, the second liquid receiver that extends in the longitudinal direction of the tube is used, so the liquid receiver can be received without increasing the size of the liquid receiver. It is possible to secure a sufficient volume for storing the refrigerant in the entire vessel. As a result, the overall condenser can be reduced in size.
 また、コア部において、凝縮部の上方側に過冷却部を配置する構成としている。これによれば、高温空気が凝縮器の下方側を介して再び凝縮器に巻き込まれる現象が生じても、過冷却部が高温空気に晒され難くなるので、過冷却部における冷却性能を確保することができる。 In the core part, the supercooling part is arranged above the condensing part. According to this, even if the phenomenon that the high temperature air is caught in the condenser again via the lower side of the condenser occurs, the supercooling part is hardly exposed to the high temperature air, so that the cooling performance in the supercooling part is ensured. be able to.
 従って、コア部が凝縮部および過冷却部を有する凝縮器において、全体としての小型化を図りつつ、高温空気の巻き込みによる過冷却部の冷却性能の低下を抑制することが可能となる。 Therefore, in the condenser having the condensing part and the supercooling part in the core part, it is possible to suppress a reduction in the cooling performance of the supercooling part due to entrainment of high-temperature air while reducing the overall size.
 また、本開示の別の観点において、凝縮器は、受液側連通部および過冷却側連通部が別個の冷媒流路として構成されている。このように、受液側連通部および過冷却側連通部を別箇の冷媒流路として構成すれば、過冷却側連通部に対して、各受液器の内部の気相冷媒が導入されてしまうことを抑えることができる。 Further, in another aspect of the present disclosure, the condenser is configured such that the liquid receiving side communication portion and the supercooling side communication portion are separate refrigerant flow paths. Thus, if the liquid receiving side communication part and the supercooling side communication part are configured as separate refrigerant flow paths, the gas phase refrigerant inside each liquid receiver is introduced to the supercooling side communication part. Can be suppressed.
第1実施形態に係る凝縮器の模式的な斜視図である。It is a typical perspective view of the condenser concerning a 1st embodiment. 第1実施形態に係る凝縮器の内部構成を示す模式的な断面図である。It is typical sectional drawing which shows the internal structure of the condenser which concerns on 1st Embodiment. 図2のIII部の拡大図である。FIG. 3 is an enlarged view of a part III in FIG. 2. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 3. 図3の矢印VIの方向における矢視図である。FIG. 4 is an arrow view in the direction of arrow VI in FIG. 3. コア部の側方に単一の受液器が設けられた凝縮器を示す模式図である。It is a schematic diagram which shows the condenser with which the single liquid receiver was provided in the side of the core part. 第1実施形態に係る凝縮器を示す模式図である。It is a schematic diagram which shows the condenser which concerns on 1st Embodiment. 第1実施形態に係る凝縮器の第1受液器と従来までの凝縮器の受液器との大きさの違いを説明するための要部断面図である。It is principal part sectional drawing for demonstrating the difference in the magnitude | size of the 1st liquid receiver of the condenser which concerns on 1st Embodiment, and the liquid receiver of the conventional condenser. 第1実施形態に係る凝縮器の冷媒の充填特性を説明するためのグラフである。It is a graph for demonstrating the filling characteristic of the refrigerant | coolant of the condenser which concerns on 1st Embodiment. 第1実施形態に係る凝縮器におけるフィルタの配置態様を変更した変形例1を示す模式的な要部断面図である。It is typical sectional drawing which shows the modification 1 which changed the arrangement | positioning aspect of the filter in the condenser which concerns on 1st Embodiment. 第1実施形態に係る凝縮器におけるフィルタの配置態様を変更した変形例2を示す模式的な要部断面図である。It is typical sectional drawing which shows the modification 2 which changed the arrangement | positioning aspect of the filter in the condenser which concerns on 1st Embodiment. 第1実施形態に係る凝縮器におけるフィルタの配置態様を変更した変形例3を示す模式的な要部断面図である。It is typical sectional drawing which shows the modification 3 which changed the arrangement | positioning aspect of the filter in the condenser which concerns on 1st Embodiment. 図13のXIV-XIV断面図である。It is XIV-XIV sectional drawing of FIG. 第2実施形態に係る凝縮器の内部構成を示す模式的な断面図である。It is typical sectional drawing which shows the internal structure of the condenser which concerns on 2nd Embodiment. 図15のXVI部の拡大図である。It is an enlarged view of the XVI part of FIG. 図16のXVII-XVII断面図である。It is XVII-XVII sectional drawing of FIG. 図16のXVIII-XVIII断面図である。FIG. 17 is a cross-sectional view taken along the line XVIII-XVIII in FIG. 図15のXIX部の拡大図である。It is an enlarged view of the XIX part of FIG. 図19のXX-XX断面図である。FIG. 20 is a sectional view taken along line XX-XX in FIG. 第3実施形態に係る凝縮器の内部構成を示す模式的な断面図である。It is typical sectional drawing which shows the internal structure of the condenser which concerns on 3rd Embodiment. 図21のXXI部の拡大図である。It is an enlarged view of the XXI part of FIG. 図22のXXIII-XXIII断面図である。FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 22. 図22のXXIV-XXIV断面図である。FIG. 23 is a sectional view taken along line XXIV-XXIV in FIG. 第4実施形態に係る凝縮器の内部構成を示す模式的な断面図である。It is typical sectional drawing which shows the internal structure of the condenser which concerns on 4th Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の各実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that, in each of the following embodiments, parts that are the same as or equivalent to the matters described in the preceding embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
 また、各実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。 In addition, in each embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements.
 さらに、以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Furthermore, the following embodiments can be partially combined with each other even if not specifically indicated, as long as the combination does not cause any trouble.
 (第1実施形態)
 本実施形態に係る凝縮器1は、車両用の空調装置に適用される蒸気圧縮式の冷凍サイクルを構成する熱交換器である。冷凍サイクルは、圧縮機、凝縮器1、減圧機構、蒸発器等を順次配管接続した閉回路として構成される。本実施形態の冷凍サイクルは、圧縮機として、エンジンからの動力により駆動するエンジン駆動式の圧縮機を採用している。なお、圧縮機は、電動モータからの動力により駆動する電動圧縮機を採用してもよい。
(First embodiment)
The condenser 1 according to the present embodiment is a heat exchanger that constitutes a vapor compression refrigeration cycle applied to a vehicle air conditioner. The refrigeration cycle is configured as a closed circuit in which a compressor, a condenser 1, a pressure reducing mechanism, an evaporator, and the like are sequentially connected by piping. The refrigeration cycle of this embodiment employs an engine-driven compressor that is driven by power from the engine as a compressor. The compressor may be an electric compressor that is driven by power from an electric motor.
 凝縮器1は、図示しない圧縮機から吐出された高温高圧の気相冷媒を外部流体である車室外空気と熱交換させて凝縮させる。凝縮器1は、内部で凝縮した冷媒を図示しない減圧機構を介して冷媒を蒸発させる図示しない蒸発器側へ導出する。 The condenser 1 condenses the high-temperature and high-pressure gas-phase refrigerant discharged from a compressor (not shown) by exchanging heat with outside air as an external fluid. The condenser 1 leads the refrigerant condensed inside to an evaporator (not shown) that evaporates the refrigerant through a decompression mechanism (not shown).
 凝縮器1は、車両を駆動する内燃機関(例えば、エンジン)が設置されたエンジンルーム内に配置されている。凝縮器1は、例えば、エンジンルーム内の最前部に形成された走行風の導入路に配置されている。 The condenser 1 is disposed in an engine room in which an internal combustion engine (for example, an engine) that drives a vehicle is installed. The condenser 1 is arrange | positioned at the introduction path | route of the traveling wind formed in the foremost part in an engine room, for example.
 まず、本実施形態の凝縮器1の全体構成について、図1を参照して説明する。ここで、図1の上下、左右、前後を示す各矢印は車両搭載状態における上下方向、左右方向、前後方向を示している。このことは、図1以外の図面においても同様である。 First, the overall configuration of the condenser 1 of the present embodiment will be described with reference to FIG. Here, the arrows indicating up, down, left, and right in FIG. 1 indicate the up and down direction, the left and right direction, and the front and rear direction in the vehicle mounted state. The same applies to the drawings other than FIG.
 本実施形態の凝縮器1は、主たる構成要素として、コア部2、サイドプレート4、一対のヘッダタンク5、6、一対のコネクタ7、8、および一対の受液器(すなわち、モジュレータ)11、12を備える。 The condenser 1 of the present embodiment includes, as main components, a core portion 2, a side plate 4, a pair of header tanks 5, 6, a pair of connectors 7, 8, and a pair of liquid receivers (that is, modulators) 11, 12 is provided.
 凝縮器1を構成する主な部材は、アルミニウムやアルミニウム合金等のアルミニウム製の金属材料で構成されている。凝縮器1は、金属材料で構成される各部材が組み付けられた状態で、各部材の必要な部位に予め設けられたろう材によりろう付け接合されている。 The main members constituting the condenser 1 are made of an aluminum metal material such as aluminum or an aluminum alloy. The condenser 1 is brazed and joined with a brazing material provided in advance at a necessary portion of each member in a state where the members made of a metal material are assembled.
 コア部2は、内部を冷媒が流通する複数のチューブ2aを上下に積層した積層体である。コア部2は、チューブ2aを流れる冷媒をチューブ2aの外側を流れる外部流体である空気と熱交換させて放熱させる熱交換部を構成する。 The core part 2 is a laminated body in which a plurality of tubes 2a through which a refrigerant flows are laminated vertically. The core part 2 constitutes a heat exchanging part that exchanges heat with the air that is an external fluid that flows outside the tube 2a to dissipate heat.
 コア部2は、隣接するチューブ2a間に、冷媒と空気との熱交換を促進するフィン2bが設けられている。本実施形態のフィン2bは、波状に曲折されたコルゲートフィンで構成されている。なお、フィン2bは、コルゲートフィンに限らず、プレートフィン等で構成されていてもよい。 The core portion 2 is provided with fins 2b that promote heat exchange between the refrigerant and air between adjacent tubes 2a. The fin 2b of this embodiment is comprised with the corrugated fin bent in the waveform. The fins 2b are not limited to corrugated fins, and may be configured with plate fins or the like.
 本実施形態の各チューブ2aは、扁平な断面を有する単穴あるいは多穴の管で構成されている。各チューブ2aは、その扁平面が平行に並ぶように、互いに所定間隔を設けて配列されている。 Each tube 2a of the present embodiment is constituted by a single-hole or multi-hole tube having a flat cross section. The tubes 2a are arranged at predetermined intervals so that their flat surfaces are arranged in parallel.
 本実施形態のコア部2は、冷媒を凝縮させる凝縮部21、および第1受液器11から流出した液相冷媒を冷却する過冷却部(すなわち、サブクーラ)22を有する。本実施形態のコア部2は、過冷却部22が凝縮部21の上方側に位置する構成となっている。なお、本実施形態では、コア部2における図1の太い二点鎖線DLよりも下方側に位置する部位が凝縮部21を構成し、図1の太い二点鎖線よりも上方側に位置する部位が過冷却部22を構成している。 The core unit 2 of the present embodiment includes a condensing unit 21 that condenses the refrigerant and a supercooling unit (that is, a subcooler) 22 that cools the liquid phase refrigerant that has flowed out of the first receiver 11. The core part 2 of this embodiment has a configuration in which the supercooling part 22 is positioned above the condensing part 21. In the present embodiment, the portion of the core portion 2 that is located below the thick two-dot chain line DL in FIG. 1 constitutes the condensing unit 21, and the portion that is located above the thick two-dot chain line in FIG. Constitutes the supercooling section 22.
 サイドプレート4は、コア部2を補強する補強部材である。本実施形態のサイドプレート4は、コア部2におけるチューブ2aの積層方向(すなわち、図1の上下方向)の下端部に配置されている。サイドプレート4は、コア部2における下端に位置するフィン2bに対して接合されている。 The side plate 4 is a reinforcing member that reinforces the core portion 2. The side plate 4 of the present embodiment is disposed at the lower end of the core 2 in the stacking direction of the tubes 2a (that is, the vertical direction in FIG. 1). The side plate 4 is joined to the fin 2b located at the lower end of the core portion 2.
 一対のヘッダタンク5、6は、各チューブ2aを流れる冷媒の集合・分配を行うタンクとして機能する。一対のヘッダタンク5、6は、チューブ2aの長手方向両端部に接続されている。すなわち、図1の左側に示す第1ヘッダタンク5は、チューブ2aの積層方向に沿って延びると共に、コア部2におけるチューブ2aの長手方向の一端側に接続されている。また、図1の右側に示す第2ヘッダタンク6は、チューブ2aの積層方向に沿って延びると共に、コア部2におけるチューブ2aの長手方向の他端側に接続されている。 The pair of header tanks 5 and 6 function as tanks that collect and distribute the refrigerant flowing through the tubes 2a. The pair of header tanks 5 and 6 are connected to both ends in the longitudinal direction of the tube 2a. That is, the first header tank 5 shown on the left side of FIG. 1 extends along the stacking direction of the tubes 2 a and is connected to one end side of the tube 2 a in the longitudinal direction in the core portion 2. Further, the second header tank 6 shown on the right side of FIG. 1 extends along the stacking direction of the tubes 2 a and is connected to the other end side in the longitudinal direction of the tubes 2 a in the core portion 2.
 各ヘッダタンク5、6は、チューブ2aの積層方向に沿って延びる筒状の中空部材で構成されている。各ヘッダタンク5、6は、その内部に各チューブ2aの内部と連通する内部空間が形成されている。 Each of the header tanks 5 and 6 is composed of a cylindrical hollow member extending along the stacking direction of the tubes 2a. Each header tank 5, 6 has an internal space communicating with the inside of each tube 2 a.
 一対のコネクタ7、8は、凝縮器1における冷媒の出入口として機能する。一対のコネクタ7、8は、第1ヘッダタンク5に接合されている。 The pair of connectors 7 and 8 function as a refrigerant inlet / outlet in the condenser 1. The pair of connectors 7 and 8 are joined to the first header tank 5.
 一対のコネクタ7、8のうち、冷媒の入口部を構成する入口側コネクタ7は、第1ヘッダタンク5における中央側に近接する位置に接合されている。入口側コネクタ7には、圧縮機から吐出された冷媒が流通する外部配管が接続される。 Among the pair of connectors 7 and 8, the inlet-side connector 7 constituting the refrigerant inlet is joined at a position close to the center side of the first header tank 5. An external pipe through which the refrigerant discharged from the compressor flows is connected to the inlet side connector 7.
 また、一対のコネクタ7、8のうち、冷媒の出口部を構成する出口側コネクタ8は、第1ヘッダタンク5における入口側コネクタ7よりも上方側の部位に接合されている。出口側コネクタ8は、凝縮器1を通過した冷媒を減圧機構側へ導出する外部配管が接続される。 Of the pair of connectors 7 and 8, the outlet side connector 8 constituting the refrigerant outlet is joined to a portion of the first header tank 5 above the inlet side connector 7. The outlet-side connector 8 is connected to an external pipe that guides the refrigerant that has passed through the condenser 1 to the decompression mechanism side.
 一対に構成された第1受液器11および第2受液器12は、コア部2の凝縮部21から流出した冷媒を液相冷媒と気相冷媒に分離して、液相冷媒を一時的に貯留するタンクである。第1受液器11および第2受液器12それぞれの内部には、液相冷媒を貯留する冷媒貯留空間が形成されている。第1受液器11および第2受液器12それぞれは、冷凍サイクルの負荷変動に合わせて、サイクル内を循環する冷媒の循環量を調整する役割を果たしている。 The first liquid receiver 11 and the second liquid receiver 12 configured in a pair separate the refrigerant flowing out from the condensing unit 21 of the core unit 2 into a liquid phase refrigerant and a gas phase refrigerant, and temporarily store the liquid phase refrigerant. This tank is stored in A refrigerant storage space for storing a liquid-phase refrigerant is formed in each of the first liquid receiver 11 and the second liquid receiver 12. Each of the first liquid receiver 11 and the second liquid receiver 12 plays a role of adjusting the circulation amount of the refrigerant circulating in the cycle according to the load fluctuation of the refrigeration cycle.
 第1受液器11および第2受液器12のうち、第1受液器11は、第2ヘッダタンク6に隣接して配置されている。また、第1受液器11および第2受液器12のうち、第2受液器12は、コア部2の上方側に配置されている。第1受液器11および第2受液器12それぞれの内部は、円柱状の空間が形成されている。第1受液器11および第2受液器12それぞれは、耐圧性を考慮して内壁の断面形状を円形状とすることが望ましい。 Among the first liquid receiver 11 and the second liquid receiver 12, the first liquid receiver 11 is disposed adjacent to the second header tank 6. Of the first liquid receiver 11 and the second liquid receiver 12, the second liquid receiver 12 is disposed on the upper side of the core portion 2. A cylindrical space is formed inside each of the first liquid receiver 11 and the second liquid receiver 12. Each of the first liquid receiver 11 and the second liquid receiver 12 desirably has a circular cross-sectional shape of the inner wall in consideration of pressure resistance.
 第2ヘッダタンク6に隣接する第1受液器11は、チューブ2aの積層方向(すなわち、上下方向)に沿って延びる中空部材で構成される。本実施形態の第1受液器11は、第2ヘッダタンク6から流出した冷媒が流入するように第2ヘッダタンク6に接続されている。 The 1st liquid receiver 11 adjacent to the 2nd header tank 6 is comprised with the hollow member extended along the lamination direction (namely, up-down direction) of the tube 2a. The 1st liquid receiver 11 of this embodiment is connected to the 2nd header tank 6 so that the refrigerant | coolant which flowed out from the 2nd header tank 6 may flow in.
 コア部2の上方側に配される第2受液器12は、チューブ2aの長手方向(すなわち、左右方向)に沿って延びる中空部材で構成される。本実施形態の第2受液器12は、第1受液器11の内部に連通するように、第2ヘッダタンク6を介して第1受液器11に接続されている。 The 2nd liquid receiver 12 distribute | arranged above the core part 2 is comprised with the hollow member extended along the longitudinal direction (namely, left-right direction) of the tube 2a. The second liquid receiver 12 of the present embodiment is connected to the first liquid receiver 11 via the second header tank 6 so as to communicate with the inside of the first liquid receiver 11.
 次に、本実施形態の凝縮器1の詳細について、図2~図6を参照して説明する。図2は凝縮器1の模式的な断面図である。図3は、図2の要部を拡大した拡大図である。なお、説明の便宜のため、図2、図3では、コア部2を構成するチューブ2aおよびフィン2bの図示を省略している。また、図2では、各コネクタ7、8等の一部の構成要素を断面ではなく、正面側に表れる状態を図示している。これらのことは、以降の図面においても同様である。 Next, details of the condenser 1 of the present embodiment will be described with reference to FIGS. FIG. 2 is a schematic cross-sectional view of the condenser 1. FIG. 3 is an enlarged view of an essential part of FIG. For convenience of explanation, illustration of the tube 2a and the fin 2b constituting the core portion 2 is omitted in FIGS. FIG. 2 illustrates a state in which some components such as the connectors 7 and 8 appear on the front side rather than in a cross section. The same applies to the following drawings.
 図2に示すように、本実施形態の第1ヘッダタンク5には、内部空間を上下に仕切る仕切部材として、3つのセパレータ5a~5cが設けられている。第1ヘッダタンク5の内部は、3つのセパレータ5a~5cにより、4つの内部空間51a~51c、52aに区分されている。 As shown in FIG. 2, the first header tank 5 of the present embodiment is provided with three separators 5a to 5c as partition members for partitioning the internal space up and down. The inside of the first header tank 5 is divided into four internal spaces 51a to 51c and 52a by three separators 5a to 5c.
 4つの内部空間51a~51c、52aのうち、最も上方側の内部空間52aを除く内部空間51a~51cが、コア部2に連通する連通空間を構成する。 Among the four internal spaces 51a to 51c and 52a, the internal spaces 51a to 51c excluding the uppermost internal space 52a constitute a communication space communicating with the core portion 2.
 上方の内部空間51aは、過冷却部22に連通しており、過冷却部22を通過した冷媒を集合させる空間である。中央の内部空間51bは、凝縮部21に連通しており、凝縮部21へ冷媒を分配する空間である。下方の内部空間51cは、凝縮部21に連通しており、凝縮部21における冷媒の流れ方向を転向させる空間である。 The upper internal space 51 a communicates with the supercooling unit 22 and is a space for collecting the refrigerant that has passed through the supercooling unit 22. The central internal space 51 b is a space that communicates with the condensing unit 21 and distributes the refrigerant to the condensing unit 21. The lower internal space 51 c is a space that communicates with the condensing unit 21 and changes the flow direction of the refrigerant in the condensing unit 21.
 ここで、第1ヘッダタンク5には、上方の内部空間51aを形成する部位に出口側コネクタ8が接続されている。また、第1ヘッダタンク5には、中央の内部空間51bを形成する部位に入口側コネクタ7が接続されている。 Here, the outlet connector 8 is connected to the first header tank 5 at a site forming the upper internal space 51a. Further, the first header tank 5 is connected to the inlet side connector 7 at a portion forming the central internal space 51b.
 各内部空間51a~51c、52aのうち、最も上方側の内部空間52aは、コア部2の上方側においてコア部2との連通が遮断された非連通空間を構成する。なお、説明の便宜のため、以下、第1ヘッダタンク5における内部空間52aを第1非連通空間52aと呼ぶことがある。 Among the internal spaces 51a to 51c, 52a, the uppermost internal space 52a constitutes a non-communication space in which communication with the core portion 2 is blocked on the upper side of the core portion 2. For convenience of explanation, the internal space 52a in the first header tank 5 may hereinafter be referred to as a first non-communication space 52a.
 また、第1ヘッダタンク5には、第1非連通空間52aを形成する部位に、第2受液器12の内部と第1非連通空間52aとを連通させる貫通穴53aが形成されている。貫通穴53aには、第2受液器12の第1ヘッダタンク5側の端部が接続される。 Further, the first header tank 5 is formed with a through-hole 53a that allows the inside of the second liquid receiver 12 and the first non-communication space 52a to communicate with each other at a portion where the first non-communication space 52a is formed. The end of the second liquid receiver 12 on the first header tank 5 side is connected to the through hole 53a.
 続いて、本実施形態の第2ヘッダタンク6には、内部空間を上下に仕切る仕切部材として3つのセパレータ6a~6cが設けられている。各セパレータ6a~6cは、コア部2の凝縮部21における冷媒の流れがS字状に蛇行する流れとなるように設定されている。 Subsequently, in the second header tank 6 of the present embodiment, three separators 6a to 6c are provided as partition members that partition the internal space up and down. Each of the separators 6a to 6c is set so that the flow of the refrigerant in the condensing part 21 of the core part 2 becomes a meandering flow in an S shape.
 具体的には、第2ヘッダタンク6のセパレータ6aは、上下方向において、第1ヘッダタンク5のセパレータ5aに対応する位置に配置されている。第2ヘッダタンク6のセパレータ6bは、上下方向において第1ヘッダタンク5のセパレータ5bに対応する位置に配置されている。第2ヘッダタンク6のセパレータ6cは、上下方向において第1ヘッダタンク5のセパレータ5cよりも下方側に配置されている。 Specifically, the separator 6a of the second header tank 6 is disposed at a position corresponding to the separator 5a of the first header tank 5 in the vertical direction. The separator 6b of the second header tank 6 is disposed at a position corresponding to the separator 5b of the first header tank 5 in the vertical direction. The separator 6c of the second header tank 6 is disposed below the separator 5c of the first header tank 5 in the vertical direction.
 第2ヘッダタンク6の内部には、3つのセパレータ6a~6cにより、4つの内部空間61a~61c、62aに区分されている。各内部空間61a~61c、62aのうち、最も上方側の内部空間62aを除く内部空間61a~61cが、コア部2に連通する連通空間を構成する。 The inside of the second header tank 6 is divided into four internal spaces 61a to 61c and 62a by three separators 6a to 6c. Of the internal spaces 61a to 61c and 62a, the internal spaces 61a to 61c excluding the uppermost internal space 62a constitute a communication space communicating with the core portion 2.
 上方の内部空間61aは、過冷却部22に連通しており、過冷却部22へ冷媒を分配する空間である。上方の内部空間61aは、過冷却部22を構成するチューブ2aを介して、第1ヘッダタンク5の上方の内部空間51aに連通している。 The upper internal space 61 a is a space that communicates with the supercooling unit 22 and distributes the refrigerant to the supercooling unit 22. The upper internal space 61 a communicates with the internal space 51 a above the first header tank 5 through the tube 2 a constituting the supercooling unit 22.
 また、上方の内部空間61aは、後述する第1受液器11の冷媒導出部111b等を介して第1受液器11の内部に連通している。このため、第1受液器11の内部の液相冷媒は、後述する冷媒導出部111b、上方の内部空間61a等を介して過冷却部22に導入される。 Further, the upper internal space 61a communicates with the inside of the first liquid receiver 11 via a refrigerant outlet portion 111b of the first liquid receiver 11 described later. For this reason, the liquid-phase refrigerant inside the first liquid receiver 11 is introduced into the supercooling unit 22 via a refrigerant outlet unit 111b, an upper internal space 61a, and the like which will be described later.
 中央の内部空間61bは、凝縮部21における冷媒の流れ方向を転向させる空間である。中央の内部空間61bは、凝縮部21を構成するチューブ2aを介して、第1ヘッダタンク5の中央の内部空間51b、および下方の内部空間51cに連通している。 The central internal space 61b is a space that changes the flow direction of the refrigerant in the condensing unit 21. The central internal space 61b communicates with the central internal space 51b of the first header tank 5 and the lower internal space 51c via the tube 2a constituting the condensing unit 21.
 下方の内部空間61cは、凝縮部21を通過した冷媒を集合させる空間である。下方の内部空間61cは、凝縮部21を構成するチューブ2aを介して、第1ヘッダタンク5の下方の内部空間51cに連通している。 The lower internal space 61 c is a space for collecting the refrigerant that has passed through the condensing unit 21. The lower internal space 61 c communicates with the lower internal space 51 c of the first header tank 5 through the tube 2 a constituting the condensing unit 21.
 また、下方の内部空間61cは、第1受液器11における冷媒導入部111aを介して第1受液器11の冷媒貯留空間に連通している。このため、凝縮部21を通過した冷媒は、下方の内部空間61c、および冷媒導入部111aを介して第1受液器11の内部空間に導入される。 The lower internal space 61 c communicates with the refrigerant storage space of the first liquid receiver 11 via the refrigerant introduction part 111 a in the first liquid receiver 11. For this reason, the refrigerant that has passed through the condensing unit 21 is introduced into the internal space of the first receiver 11 through the lower internal space 61c and the refrigerant introducing unit 111a.
 各内部空間61a~61c、62aのうち、最も上方側の内部空間62aは、コア部2の上方側においてコア部2との連通が遮断された非連通空間を構成する。なお、説明の便宜のため、以下、第2ヘッダタンク6における内部空間62aを第2非連通空間62aと呼ぶことがある。 Among the internal spaces 61a to 61c and 62a, the uppermost internal space 62a constitutes a non-communication space where communication with the core portion 2 is blocked on the upper side of the core portion 2. For convenience of explanation, hereinafter, the internal space 62a in the second header tank 6 may be referred to as a second non-communication space 62a.
 また、第2ヘッダタンク6には、下方の内部空間61cを形成する部位に、後述する冷媒導入部111aを介して、第1受液器11の内部と下方の内部空間61cとを連通させる貫通穴63aが形成されている。第2ヘッダタンク6には、上方の内部空間61aを形成する部位に、後述する冷媒導出部111bを介して、第1受液器11の内部と上方の内部空間61aとを連通させる貫通穴63bが形成されている。 Further, the second header tank 6 has a through-hole that communicates the inside of the first liquid receiver 11 and the lower internal space 61c through a refrigerant introduction part 111a described later at a portion forming the lower internal space 61c. A hole 63a is formed. The second header tank 6 has a through hole 63b that communicates the inside of the first liquid receiver 11 and the upper internal space 61a via a refrigerant outlet portion 111b, which will be described later, at a portion that forms the upper internal space 61a. Is formed.
 さらに、第2ヘッダタンク6には、第2非連通空間62aを形成する部位に、第1受液器11の内部と第2非連通空間62aとを連通させる貫通穴63cが形成されている。 Further, the second header tank 6 is formed with a through hole 63c that allows the inside of the first liquid receiver 11 and the second non-communication space 62a to communicate with each other at a portion where the second non-communication space 62a is formed.
 第2ヘッダタンク6には、第2非連通空間62aを形成する部位に、第2受液器12の内部と第2非連通空間62aとを連通させる貫通穴63dが形成されている。貫通穴63dには、第2受液器12の第2ヘッダタンク6側の端部が接続される。 The second header tank 6 is formed with a through hole 63d at a portion where the second non-communication space 62a is formed to communicate the inside of the second liquid receiver 12 and the second non-communication space 62a. The end of the second liquid receiver 12 on the second header tank 6 side is connected to the through hole 63d.
 次に、第1受液器11および第2受液器12について説明する。本実施形態の第1受液器11は、円筒状の筒状部111、筒状部111の上端部を補強する筒状のサポート部112、サポート部112の上端部を閉塞するネジ式のタンクキャップ113、筒状部111の下端側を閉塞する蓋部114を有する。 Next, the first liquid receiver 11 and the second liquid receiver 12 will be described. The first liquid receiver 11 of the present embodiment includes a cylindrical tubular portion 111, a cylindrical support portion 112 that reinforces the upper end portion of the tubular portion 111, and a screw-type tank that closes the upper end portion of the support portion 112. A cap 113 and a lid portion 114 for closing the lower end side of the cylindrical portion 111 are provided.
 筒状部111は、左右方向において、第2ヘッダタンク6におけるコア部2に接続される部位に対して対向配置されている。筒状部111は、外径が第2ヘッダタンク6の前後方向の寸法と同程度の大きさとなっている。 The cylindrical part 111 is disposed opposite to the part connected to the core part 2 in the second header tank 6 in the left-right direction. The cylindrical portion 111 has an outer diameter that is approximately the same as the dimension of the second header tank 6 in the front-rear direction.
 筒状部111には、第2ヘッダタンク6の貫通穴63aに対応する部位に、第2ヘッダタンク6の内部空間61cから第1受液器11の内部空間へ冷媒を導入する冷媒導入部111aが設けられている。冷媒導入部111aは、第2ヘッダタンク6の下方の内部空間61cを形成する部位に接合されている。 In the cylindrical portion 111, a refrigerant introduction portion 111 a that introduces a refrigerant from the internal space 61 c of the second header tank 6 to the internal space of the first liquid receiver 11 at a portion corresponding to the through hole 63 a of the second header tank 6. Is provided. The refrigerant introduction part 111 a is joined to a part that forms the internal space 61 c below the second header tank 6.
 また、筒状部111には、第2ヘッダタンク6の貫通穴63bに対応する部位に、第1受液器11の内部空間から内部空間61aへ冷媒を導出する冷媒導出部111bが設けられている。冷媒導出部111bは、第2ヘッダタンク6における上方の内部空間61aを形成する部位に接合されている。 In addition, the cylindrical portion 111 is provided with a refrigerant outlet portion 111b that leads the refrigerant from the inner space of the first liquid receiver 11 to the inner space 61a at a portion corresponding to the through hole 63b of the second header tank 6. Yes. The refrigerant outlet portion 111b is joined to a portion forming the upper internal space 61a in the second header tank 6.
 サポート部112は、左右方向において、第2ヘッダタンク6における過冷却部22に接続される部位に対して対向配置されている。サポート部112には、筒状部111の冷媒導出部111bに対応する部位に、冷媒導出部111bと第1受液器11の内部空間とを連通させる貫通穴112aが設けられている。 The support part 112 is disposed opposite to the part connected to the supercooling part 22 in the second header tank 6 in the left-right direction. The support portion 112 is provided with a through hole 112 a that connects the refrigerant outlet portion 111 b and the internal space of the first liquid receiver 11 at a portion corresponding to the refrigerant outlet portion 111 b of the cylindrical portion 111.
 また、サポート部112には、第2ヘッダタンク6の貫通穴63cに対応する部位に、第2非連通空間62aと第1受液器11の内部とを連通させる上方側連通部112bが設けられている。上方側連通部112bは、第2ヘッダタンク6における第2非連通空間62aを形成する部位に接合されている。 In addition, the support portion 112 is provided with an upper communication portion 112b that communicates the second non-communication space 62a with the inside of the first liquid receiver 11 at a portion corresponding to the through hole 63c of the second header tank 6. ing. The upper communication part 112b is joined to a part of the second header tank 6 that forms the second non-communication space 62a.
 サポート部112の上端部は、タンクキャップ113により閉塞されている。タンクキャップ113は、図3に示すように、サポート部112の上端部を閉塞する蓋部113a、第1仕切部113b、および第2仕切部113cを有する。 The upper end portion of the support portion 112 is closed with a tank cap 113. As shown in FIG. 3, the tank cap 113 includes a lid portion 113 a that closes the upper end portion of the support portion 112, a first partition portion 113 b, and a second partition portion 113 c.
 蓋部113aは、タンクキャップ113の上端部を構成している。蓋部113aの外周には、タンクキャップ113を着脱可能にするために、サポート部112の内周側に形成された螺旋状の溝に対応するねじ山が形成されている。 The lid portion 113a constitutes the upper end portion of the tank cap 113. A screw thread corresponding to a spiral groove formed on the inner peripheral side of the support portion 112 is formed on the outer periphery of the lid portion 113a so that the tank cap 113 can be attached and detached.
 第1仕切部113bは、タンクキャップ113の下端部を構成している。第1仕切部113bは、第1受液器11の内部を下方側空間11aと上方側空間11bとに仕切る仕切部である。本実施形態の第1仕切部113bには、下方側空間11aと上方側空間11bの第2空間11dとの間の気密性を確保するために、その外周側にシール部材11fが設けられている。 The first partition 113b constitutes the lower end of the tank cap 113. The first partition 113b is a partition that partitions the interior of the first liquid receiver 11 into a lower space 11a and an upper space 11b. In the first partition 113b of the present embodiment, a sealing member 11f is provided on the outer peripheral side in order to ensure airtightness between the lower space 11a and the second space 11d of the upper space 11b. .
 第2仕切部113cは、蓋部113aと第1仕切部113bとの間に配置されている。第2仕切部113cは、第1受液器11の上方側空間11bを上方の第1空間11cと下方の第2空間11dに仕切る仕切部である。 The second partition 113c is disposed between the lid 113a and the first partition 113b. The second partition 113c is a partition that partitions the upper space 11b of the first receiver 11 into an upper first space 11c and a lower second space 11d.
 本実施形態の第2仕切部113cは、第1空間11cと上方側連通部112bとが連通すると共に、第2空間11dと冷媒導出部111bとが連通するように設定されている。第2仕切部113cには、第1空間11cと第2空間11dとの気密性を確保するために、その外周側にシール部材11eが設けられている。 The second partition 113c of the present embodiment is set so that the first space 11c and the upper communication part 112b communicate with each other, and the second space 11d and the refrigerant outlet part 111b communicate with each other. The second partition 113c is provided with a seal member 11e on the outer peripheral side thereof in order to ensure airtightness between the first space 11c and the second space 11d.
 各仕切部113b、113cとの間には、第1受液器11の下方側空間11aにおける上方側と第1空間11cとを連通させる連通管161が設けられている。各仕切部113b、113cは、連通管161を介して接続されている。 Between each partition part 113b and 113c, the communication pipe 161 which connects the upper side in the lower side space 11a of the 1st liquid receiver 11 and the 1st space 11c is provided. Each partition 113b, 113c is connected via the communication pipe 161.
 本実施形態の第1受液器11は、図3、図4に示すように、連通管161、第1受液器11の第1空間11c、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aを介して第2受液器12に連通している。 As shown in FIGS. 3 and 4, the first liquid receiver 11 of the present embodiment includes a communication pipe 161, a first space 11 c of the first liquid receiver 11, an upper communication part 112 b, and a second header tank 6. The second liquid receiver 12 communicates with the second non-communication space 62a.
 従って、本実施形態では、連通管161、第1受液器11の第1空間11c、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aが、第1受液器11の内部と第2受液器12の内部とを連通させる受液側連通部16を構成している。なお、本実施形態では、上方側連通部112bが、第1空間11cと第2受液器12の内部とを連通させる第1連通部を構成している。 Therefore, in this embodiment, the communication pipe 161, the first space 11 c of the first liquid receiver 11, the upper communication part 112 b, and the second non-communication space 62 a of the second header tank 6 are included in the first liquid receiver 11. The liquid receiving side communication part 16 which makes the inside of this and the inside of the 2nd liquid receiver 12 communicate is comprised. In the present embodiment, the upper communication portion 112b constitutes a first communication portion that communicates the first space 11c with the inside of the second liquid receiver 12.
 また、第2仕切部113cには、第1受液器11の下方側空間11aにおける底部に近接する位置から液相冷媒を第2空間11dまで吸い上げる吸上管171が接続されている。吸上管171は、第1受液器11の下方側空間11aにおける底部側と第1受液器11の第2空間11dとが連通するように、第1受液器11の内部に配置されている。 Further, a suction pipe 171 for sucking up the liquid refrigerant from the position close to the bottom of the lower space 11a of the first receiver 11 to the second space 11d is connected to the second partition 113c. The suction pipe 171 is arranged inside the first liquid receiver 11 so that the bottom side of the lower space 11a of the first liquid receiver 11 and the second space 11d of the first liquid receiver 11 communicate with each other. ing.
 本実施形態の第1受液器11は、図5、図6に示すように、吸上管171、第1受液器11の第2空間11d、冷媒導出部111bを介して、過冷却部22に連通している。このため、第1受液器11の内部に貯留された液相冷媒は、吸上管171、第1受液器11の第2空間11d、冷媒導出部111bを介して、過冷却部22に導出される。 As shown in FIGS. 5 and 6, the first liquid receiver 11 of the present embodiment includes a supercooling unit via the suction pipe 171, the second space 11 d of the first liquid receiver 11, and the refrigerant outlet part 111 b. 22 communicates. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is transferred to the supercooling section 22 via the suction pipe 171, the second space 11d of the first liquid receiver 11 and the refrigerant outlet section 111b. Derived.
 従って、本実施形態では、吸上管171、第1受液器11の第2空間11d、冷媒導出部111bが、第1受液器11の内部に貯留された液相冷媒を過冷却部22に導く、過冷却側連通部17を構成している。なお、本実施形態では、冷媒導出部111bが、第2空間11dと過冷却部22とを連通させる第2連通部を構成している。 Therefore, in the present embodiment, the suction pipe 171, the second space 11 d of the first receiver 11, and the refrigerant derivation unit 111 b remove the liquid refrigerant stored in the first receiver 11 from the supercooling unit 22. The supercooling side communication part 17 led to is constructed. In the present embodiment, the refrigerant derivation unit 111b constitutes a second communication unit that allows the second space 11d and the supercooling unit 22 to communicate with each other.
 ここで、過冷却側連通部17を構成する第2空間11dは、第1仕切部113bのシール部材11fおよび第2仕切部113cのシール部材11eによって、下方側空間11a、および受液側連通部16を構成する第1空間11cに対して気密にシールされている。このため、本実施形態の構成では、過冷却側連通部17に対して、第1受液器11および第2受液器12の内部の気相冷媒が導入されてしまうことを抑えることができる。なお、過冷却側連通部17に対して気相冷媒が導入されることは、過冷却部22における冷媒の冷却性能の低下を招くことになるため好ましくない。 Here, the second space 11d constituting the supercooling side communication portion 17 is composed of the lower space 11a and the liquid receiving side communication portion by the seal member 11f of the first partition 113b and the seal member 11e of the second partition 113c. 16 is hermetically sealed with respect to the first space 11 c constituting the 16. For this reason, in the structure of this embodiment, it can suppress that the gaseous-phase refrigerant | coolant inside the 1st liquid receiver 11 and the 2nd liquid receiver 12 will be introduce | transduced with respect to the supercooling side communication part 17. FIG. . It is not preferable to introduce the gas-phase refrigerant to the supercooling side communication part 17 because the cooling performance of the refrigerant in the supercooling part 22 is reduced.
 図2に戻り、本実施形態の第1受液器11の下方側空間11aには、乾燥剤14が配置されている。乾燥剤14は、冷凍サイクルに混入した水を吸着する部材である。本実施形態の乾燥剤14は、第1受液器11の下方側空間11aにおいて、少なくとも一部が冷媒の液面よりも下方となるように配置されている。乾燥剤14は、冷媒が通過可能な袋状部材の内部に粒状の乾燥剤を収容して構成される。粒状の乾燥剤としては、例えば、冷媒中の水分濃度が低い状況でも吸着性能に優れるシリカゲルやゼオライトを採用することができる。 2, the desiccant 14 is arranged in the lower space 11a of the first liquid receiver 11 of the present embodiment. The desiccant 14 is a member that adsorbs water mixed in the refrigeration cycle. The desiccant 14 of the present embodiment is arranged in the lower space 11a of the first liquid receiver 11 so that at least a part thereof is below the liquid level of the refrigerant. The desiccant 14 is configured by containing a granular desiccant inside a bag-like member through which a refrigerant can pass. As the granular desiccant, for example, silica gel or zeolite excellent in adsorption performance can be employed even in a situation where the moisture concentration in the refrigerant is low.
 また、本実施形態の第1受液器11の第2空間11dには、図3、図5に示すように、フィルタ15が配置されている。フィルタ15は、冷凍サイクル内の異物を捕捉する部材である。本実施形態では、フィルタ15を、第2空間11dに配置した半円筒状の網状体で構成している。 Further, a filter 15 is disposed in the second space 11d of the first receiver 11 of the present embodiment as shown in FIGS. The filter 15 is a member that captures foreign matter in the refrigeration cycle. In the present embodiment, the filter 15 is composed of a semi-cylindrical mesh disposed in the second space 11d.
 続いて、第2受液器12は、コア部2の上方側において、チューブ2aの長手方向に沿って延びる円筒状の筒状部121を有する。筒状部121は、一端側が第1ヘッダタンク5の貫通穴53aに接続され、他端側が第2ヘッダタンク6の貫通穴63dに接続されている。 Subsequently, the second liquid receiver 12 has a cylindrical cylindrical portion 121 extending along the longitudinal direction of the tube 2 a on the upper side of the core portion 2. The cylindrical portion 121 has one end connected to the through hole 53 a of the first header tank 5 and the other end connected to the through hole 63 d of the second header tank 6.
 本実施形態の第2受液器12は、過冷却部22の上方側の部位に当接して配置されている。具体的には、第2受液器12は、過冷却部22を構成する部位のうち、最も上方側に位置する部位(例えば、フィン2b)に対して接合されている。 The second liquid receiver 12 of this embodiment is disposed in contact with the upper part of the supercooling unit 22. Specifically, the 2nd liquid receiver 12 is joined with the site | part (for example, fin 2b) located in the uppermost part among the site | parts which comprise the supercooling part 22. FIG.
 次に、上述のように構成された凝縮器1における冷媒の流れ方について説明する。エンジンの作動時に、空調の作動スイッチがオンされて、空調装置の運転が開始されると、エンジンからの動力により圧縮機が駆動する。これにより、圧縮機が冷媒を圧縮して吐出する。そして、圧縮機から吐出された高温高圧の気相冷媒が、入口側コネクタ7を介して第1ヘッダタンク5の中央の内部空間51bに流入する。 Next, how the refrigerant flows in the condenser 1 configured as described above will be described. When the air conditioner operation switch is turned on and the operation of the air conditioner is started during the operation of the engine, the compressor is driven by the power from the engine. Thereby, a compressor compresses and discharges a refrigerant. Then, the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor flows into the central internal space 51 b of the first header tank 5 through the inlet-side connector 7.
 内部空間51bに流入した冷媒は、図2の矢印に示すように、凝縮部21における上方側のチューブ2aに分配されて、当該チューブ2aを通過する際に空気と熱交換して冷却された後、第2ヘッダタンク6の中央の内部空間61bに流入する。 After the refrigerant flowing into the internal space 51b is distributed to the upper tube 2a in the condensing part 21 as shown by the arrows in FIG. , Flows into the inner space 61b in the center of the second header tank 6.
 内部空間61bに流入した冷媒は、凝縮部21における中段側のチューブ2aに分配されて、当該チューブ2aを通過する際に空気と熱交換して冷却された後、第1ヘッダタンク5の下方の内部空間51cに流入する。 The refrigerant flowing into the internal space 61b is distributed to the tube 2a on the middle stage side in the condensing unit 21 and is cooled by exchanging heat with air when passing through the tube 2a, and then below the first header tank 5. It flows into the internal space 51c.
 内部空間51cに流入した冷媒は、凝縮器1における下方側のチューブ2aに分配されて、当該チューブ2aを通過する際に空気と熱交換して冷却された後、第2ヘッダタンク6の下方の内部空間61cに流入する。内部空間61cには、気相冷媒を一部に含む飽和液冷媒またはある程度の過冷却度を有する過冷却液冷媒が流入する。 The refrigerant flowing into the internal space 51c is distributed to the lower tube 2a in the condenser 1 and is cooled by exchanging heat with air when passing through the tube 2a. It flows into the internal space 61c. A saturated liquid refrigerant partially including a gas-phase refrigerant or a supercooled liquid refrigerant having a certain degree of supercooling flows into the internal space 61c.
 内部空間61cに流入した冷媒は、冷媒導入部111aを介して第1受液器11に流入して、第1受液器11の内部で冷媒の比重差により気相冷媒と液相冷媒とに分離される。第1受液器11の内部には、比重の軽い気相冷媒が上方側に集まり、気相冷媒よりも比重の重い液相冷媒が下方側に集まって貯留される。この際、第1受液器11の内部に貯留された液相冷媒は、乾燥剤14により水分が吸着される。 The refrigerant that has flowed into the internal space 61c flows into the first liquid receiver 11 through the refrigerant introduction portion 111a, and is converted into a gas phase refrigerant and a liquid phase refrigerant due to a difference in specific gravity of the refrigerant inside the first liquid receiver 11. To be separated. In the first liquid receiver 11, a gas phase refrigerant having a low specific gravity gathers on the upper side, and a liquid phase refrigerant having a higher specific gravity than the gas phase refrigerant gathers on the lower side and is stored. At this time, water is adsorbed by the desiccant 14 in the liquid phase refrigerant stored in the first liquid receiver 11.
 第1受液器11の内部に貯留された液相冷媒は、少なくとも一部が、吸上管171を介して第2空間11d、および冷媒導出部111bを介して、第2ヘッダタンク6の上方の内部空間61aに流入する。 At least a part of the liquid-phase refrigerant stored in the first liquid receiver 11 is located above the second header tank 6 via the suction pipe 171 and the second space 11d and the refrigerant outlet portion 111b. Flows into the internal space 61a.
 内部空間61aに流入した液相冷媒は、過冷却部22を構成するチューブ2aに分配されて、当該チューブ2aを通過する際に空気と熱交換して過冷却された後、第1ヘッダタンク5の内部空間51aに流入する。そして、内部空間51aに流入した過冷却度を有する液相冷媒は、出口側コネクタ8を介して減圧機構側へ流出する。 The liquid-phase refrigerant that has flowed into the internal space 61a is distributed to the tube 2a that constitutes the supercooling unit 22, and after passing through the tube 2a, the liquid phase refrigerant exchanges heat with air and is supercooled. Flows into the internal space 51a. Then, the liquid-phase refrigerant having the degree of supercooling that has flowed into the internal space 51 a flows out to the decompression mechanism side via the outlet-side connector 8.
 ここで、本実施形態では、第1受液器11と第2受液器12とが、連通管161、第1空間11c、上方側連通部112b、第2非連通空間62aで構成される受液側連通部16を介して、連通している。 Here, in the present embodiment, the first liquid receiver 11 and the second liquid receiver 12 are configured by the communication pipe 161, the first space 11c, the upper communication portion 112b, and the second non-communication space 62a. Communication is made via the liquid side communication part 16.
 このため、第1受液器11の内部に貯留された液相冷媒の一部が、受液側連通部16を介して第2受液器12の内部に移動可能となっている。このため、第2受液器12の内部にも液相冷媒が貯留可能となっている。 For this reason, a part of the liquid-phase refrigerant stored inside the first liquid receiver 11 can move to the inside of the second liquid receiver 12 via the liquid receiver side communication part 16. For this reason, the liquid-phase refrigerant can be stored inside the second liquid receiver 12.
 このように、本実施形態の凝縮器1は、コア部2の凝縮部21から流出した冷媒を、第1受液器11および第2受液器12の双方に貯留可能となっている。このため、凝縮器1全体における冷媒を貯留可能な容積を充分に確保することができる。 As described above, the condenser 1 of the present embodiment can store the refrigerant flowing out of the condensing unit 21 of the core unit 2 in both the first liquid receiver 11 and the second liquid receiver 12. For this reason, the volume which can store the refrigerant | coolant in the whole condenser 1 is fully securable.
 ここで、図7は、コア部MCの左右方向の一方に受液器MTを設けた比較例の凝縮器CPの模式図である。図8は、本実施形態に係る凝縮器1の模式図である。そして、図9は、図7に示す凝縮器CPの受液器MTと本実施形態に係る凝縮器1の第1受液器11との大きさの違いを説明するための要部断面図である。図9は、凝縮器1における第1受液器11を含む要部を左右方向に切断した切断面を示している。 Here, FIG. 7 is a schematic view of a condenser CP of a comparative example in which a liquid receiver MT is provided on one side of the core part MC in the left-right direction. FIG. 8 is a schematic diagram of the condenser 1 according to the present embodiment. And FIG. 9 is principal part sectional drawing for demonstrating the magnitude | size difference between the liquid receiver MT of the condenser CP shown in FIG. 7, and the 1st liquid receiver 11 of the condenser 1 which concerns on this embodiment. is there. FIG. 9 shows a cut surface obtained by cutting a main part including the first liquid receiver 11 in the condenser 1 in the left-right direction.
 図9に示すように、比較例の凝縮器CPの場合、受液器MTは、冷凍サイクルに負荷変動の調整に必要な冷媒量を貯留するために、受液器MTの直径を第2ヘッダタンク6に対して大きくする必要がある。このため、比較例の凝縮器CPでは、第2ヘッダタンク6に対して寸法A、Bの分だけ受液器MTが前方および右方に突き出てしまう。このことは、凝縮器CPの周囲に無駄なスペースが生ずる要因となることから、好ましくない。 As shown in FIG. 9, in the case of the condenser CP of the comparative example, the receiver MT sets the diameter of the receiver MT to the second header in order to store the refrigerant amount necessary for adjusting the load fluctuation in the refrigeration cycle. The tank 6 needs to be enlarged. For this reason, in the condenser CP of the comparative example, the liquid receiver MT protrudes forward and rightward by the dimensions A and B with respect to the second header tank 6. This is not preferable because it causes a wasteful space around the condenser CP.
 これに対して、本実施形態の凝縮器1の場合、第1受液器11に加えて第2受液器12にも液相冷媒を貯留することができる。このため、第1受液器11の直径を比較例の受液器MTの直径よりも小さくすることが可能となる。すなわち、本実施形態の凝縮器1では、第1受液器11の直径をコア部2の前後寸法や第2ヘッダタンク6の前後寸法に近づけることが可能となる。 On the other hand, in the case of the condenser 1 of the present embodiment, the liquid phase refrigerant can be stored in the second liquid receiver 12 in addition to the first liquid receiver 11. For this reason, it becomes possible to make the diameter of the 1st liquid receiver 11 smaller than the diameter of the liquid receiver MT of a comparative example. That is, in the condenser 1 of the present embodiment, the diameter of the first liquid receiver 11 can be made closer to the front-rear dimension of the core portion 2 and the front-rear dimension of the second header tank 6.
 次に、比較例の凝縮器CP、および本実施形態の凝縮器1における冷媒の充填特性について、図10を参照して説明する。 Next, the refrigerant charging characteristics in the condenser CP of the comparative example and the condenser 1 of the present embodiment will be described with reference to FIG.
 図10は、所定の冷媒充填量で冷凍サイクルを運転した際の凝縮器1の出口側における冷媒の過冷却度の計測結果を示すグラフである。なお、図10のグラフでは、横軸が冷媒充填量を示し、縦軸が凝縮器1の出口側における冷媒の過冷却度を示している。 FIG. 10 is a graph showing a measurement result of the degree of supercooling of the refrigerant on the outlet side of the condenser 1 when the refrigeration cycle is operated with a predetermined refrigerant charging amount. In the graph of FIG. 10, the horizontal axis indicates the refrigerant charging amount, and the vertical axis indicates the degree of refrigerant supercooling on the outlet side of the condenser 1.
 図10では、実線が本実施形態の凝縮器1における計測結果を示している。また、図10では、一点鎖線が比較例の凝縮器CPにおける計測結果を示している。なお、図10は、各凝縮器におけるコア部の面積、および受液器全体の容積を同等に設定した条件での計測結果である。 In FIG. 10, the solid line indicates the measurement result in the condenser 1 of the present embodiment. Moreover, in FIG. 10, the dashed-dotted line has shown the measurement result in the condenser CP of a comparative example. In addition, FIG. 10 is a measurement result on the conditions which set the area of the core part in each condenser, and the volume of the whole liquid receiver equally.
 冷媒の充填特性は、冷凍サイクル全体を循環する冷媒の総量(すなわち、冷媒充填量)を変化させた際の凝縮器1の出口側コネクタ8から流出する冷媒の過冷却度の変化を示す特性である。そして、冷媒の充填特性は、凝縮器1における放熱性能を安定して発揮させるために、冷媒充填量が変動しても過冷却度が変化しない安定した領域が広範囲となっていることが望ましい。本発明者らの知見によれば、過冷却度が安定した領域は、凝縮器1全体における冷媒を貯留可能な容積の増大に伴って拡大し、容積の縮小に伴って狭くなる傾向があることがわかっている。 The refrigerant charging characteristic is a characteristic indicating a change in the degree of supercooling of the refrigerant flowing out from the outlet-side connector 8 of the condenser 1 when the total amount of refrigerant circulating through the entire refrigeration cycle (that is, the refrigerant charging amount) is changed. is there. And as for the charging characteristic of the refrigerant, in order to stably exhibit the heat radiation performance in the condenser 1, it is desirable that a stable region where the degree of supercooling does not change even if the refrigerant charging amount fluctuates is wide. According to the knowledge of the present inventors, the region where the degree of supercooling is stable tends to expand with an increase in the volume capable of storing the refrigerant in the entire condenser 1 and narrow with a decrease in the volume. I know.
 図10に示すように、冷凍サイクルの冷媒充填量を増加させると、本実施形態の凝縮器1、および比較例の凝縮器CPでは、冷媒充填量が約480g~650gの範囲で、過冷却度が約9℃に安定する結果となった。すなわち、本実施形態の凝縮器1は、冷媒充填量の変動に関わらず過冷却度が安定した領域が、比較例の凝縮器CPと同様である。 As shown in FIG. 10, when the refrigerant charge amount in the refrigeration cycle is increased, in the condenser 1 of this embodiment and the condenser CP of the comparative example, the refrigerant charge amount is in the range of about 480 g to 650 g, and the degree of supercooling is increased. Was stabilized at about 9 ° C. That is, the condenser 1 of the present embodiment is the same as the condenser CP of the comparative example in the region where the degree of supercooling is stable regardless of the change in the refrigerant charging amount.
 この測定結果から本実施形態の凝縮器1は、比較例の凝縮器CPよりも第1受液器11が小型であるにも関わらず、比較例の凝縮器CPと遜色なく安定した放熱性能を発揮することが可能であることがわかる。 From this measurement result, the condenser 1 of the present embodiment has a stable heat radiation performance comparable to the condenser CP of the comparative example, although the first receiver 11 is smaller than the condenser CP of the comparative example. It turns out that it is possible to demonstrate.
 以上説明した本実施形態の凝縮器1は、チューブ2aの積層方向に延びる第1受液器11に加えて、チューブ2aの長手方向に延びる第2受液器12を有する。これによれば、第1受液器11を大型化することなく、凝縮器1全体における冷媒を貯留可能な容積を充分に確保することができる。この結果、凝縮器1全体として小型化を図ることができる。 The condenser 1 of the present embodiment described above includes the second liquid receiver 12 extending in the longitudinal direction of the tube 2a in addition to the first liquid receiver 11 extending in the stacking direction of the tubes 2a. According to this, the volume which can store the refrigerant | coolant in the whole condenser 1 can fully be ensured, without enlarging the 1st liquid receiver 11. FIG. As a result, the condenser 1 as a whole can be downsized.
 また、本実施形態では、コア部2において、凝縮部21の上方側に過冷却部22を配置する構成としている。これによれば、高温空気が凝縮器1の下方側を介して再び凝縮器1に巻き込まれる現象が生じても、過冷却部22が高温空気に晒されに難くなるので、過冷却部22における冷却性能を確保することができる。 Further, in the present embodiment, the supercooling unit 22 is disposed above the condensing unit 21 in the core unit 2. According to this, even if a phenomenon occurs in which the high temperature air is caught again in the condenser 1 via the lower side of the condenser 1, the supercooling portion 22 becomes difficult to be exposed to the high temperature air. Cooling performance can be ensured.
 さらに、本実施形態の凝縮器1は、受液側連通部16および過冷却側連通部17を別個の冷媒流路として構成している。換言すれば、本実施形態の凝縮器1は、受液側連通部16および過冷却側連通部17が直接的に連通しない構成となっている。これによれば、過冷却側連通部17に対して、第1受液器11および第2受液器12の内部の気相冷媒が導入されてしまうことを抑えることができる。なお、過冷却側連通部17に対して気相冷媒が導入されることは、過冷却部22における冷媒の冷却性能の低下を招くことになるため好ましくない。 Furthermore, in the condenser 1 of the present embodiment, the liquid receiving side communication portion 16 and the supercooling side communication portion 17 are configured as separate refrigerant flow paths. In other words, the condenser 1 of the present embodiment is configured such that the liquid receiving side communication portion 16 and the supercooling side communication portion 17 do not directly communicate with each other. According to this, it can suppress that the gaseous-phase refrigerant | coolant inside the 1st liquid receiver 11 and the 2nd liquid receiver 12 will be introduce | transduced with respect to the supercooling side communication part 17. FIG. It is not preferable to introduce the gas-phase refrigerant to the supercooling side communication part 17 because the cooling performance of the refrigerant in the supercooling part 22 is reduced.
 従って、コア部2が凝縮部21および過冷却部22を有する凝縮器1において、全体としての小型化を図りつつ、高温空気の巻き込みによる過冷却部22の冷却性能の低下を抑制することが可能となる。 Therefore, in the condenser 1 in which the core unit 2 includes the condensing unit 21 and the supercooling unit 22, it is possible to suppress a reduction in cooling performance of the supercooling unit 22 due to entrainment of high-temperature air while reducing the overall size. It becomes.
 また、本実施形態では、連通管161を介して第1受液器11の下方側空間11aの上方側と第2受液器12に連通する第1空間11cとを連通させると共に、吸上管171を介して下方側空間11aの底部側から液相冷媒を吸い上げる構成としている。これによれば、第1受液器11に貯留された液相冷媒を過冷却部22に適切に導くことが可能となる。 In the present embodiment, the upper side of the lower space 11a of the first liquid receiver 11 and the first space 11c communicating with the second liquid receiver 12 are communicated with each other via the communication pipe 161, and the suction pipe The liquid-phase refrigerant is sucked up from the bottom side of the lower space 11 a via the 171. According to this, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
 さらに、本実施形態では、第2受液器12を過冷却部22の上方側の部位に当接して配置構成を採用している。これによれば、第2受液器12をコア部2の補強部材としても機能させることができ、凝縮器1全体としての強度の向上を図ることが可能となる。 Furthermore, in this embodiment, the second receiver 12 is brought into contact with the upper part of the supercooling unit 22 and an arrangement configuration is adopted. According to this, the 2nd liquid receiver 12 can be functioned also as a reinforcement member of the core part 2, and it becomes possible to aim at the improvement of the intensity | strength as the condenser 1 whole.
 ここで、本実施形態では、第1受液器11の内部を仕切る各仕切部113b、113cをタンクキャップ113に設ける例について説明したが、これに限定されず、各仕切部113b、113cをタンクキャップ113とは別部材で構成してもよい。 Here, in the present embodiment, the example in which the partition portions 113b and 113c that partition the inside of the first liquid receiver 11 are provided in the tank cap 113 has been described. However, the present invention is not limited thereto, and the partition portions 113b and 113c are disposed in the tank. You may comprise with a member different from the cap 113. FIG.
 (第1実施形態の変形例)
 上述の第1実施形態では、冷媒に含まれる異物を除去するフィルタ15を第1受液器11における過冷却部22に連通する第2空間11dに配置する例について説明したが、これに限定されない。例えば、図11~図14に示すように、フィルタ15を配置してもよい。
(Modification of the first embodiment)
In the first embodiment described above, the example in which the filter 15 that removes the foreign matters contained in the refrigerant is disposed in the second space 11d communicating with the supercooling unit 22 in the first liquid receiver 11 has been described, but the present invention is not limited to this. . For example, the filter 15 may be arranged as shown in FIGS.
 (変形例1)
 図11に示すように、フィルタ15が、吸上管171における冷媒入口側に配置される構成としてもよい。すなわち、フィルタ15は、吸上管171の下端部および下端部の側部を囲むように配置される構成となっていてもよい。この場合、フィルタ15は、吸上管171に対して溶着等により固定すればよい。
(Modification 1)
As shown in FIG. 11, the filter 15 may be arranged on the refrigerant inlet side of the suction pipe 171. That is, the filter 15 may be configured to surround the lower end portion of the suction pipe 171 and the side portion of the lower end portion. In this case, the filter 15 may be fixed to the suction pipe 171 by welding or the like.
 (変形例2)
 図12に示すように、フィルタ15が、吸上管171における冷媒出口側に配置される構成としてもよい。すなわち、フィルタ15は、吸上管171の上端部を囲むように配置される構成となっていてもよい。この場合も、フィルタ15は、吸上管171に対して溶着等により固定すればよい。
(Modification 2)
As shown in FIG. 12, the filter 15 may be arranged on the refrigerant outlet side in the suction pipe 171. That is, the filter 15 may be configured to surround the upper end portion of the suction pipe 171. Also in this case, the filter 15 may be fixed to the suction pipe 171 by welding or the like.
 (変形例3)
 図13、図14に示すように、フィルタ15が、第2空間11dにおける冷媒導出部111bに対応する部位だけに配置される構成としてもよい。この場合、フィルタ15は、タンクキャップ113の側面に対して溶着等により固定すればよい。
(Modification 3)
As shown in FIGS. 13 and 14, the filter 15 may be arranged only in a portion corresponding to the refrigerant derivation unit 111b in the second space 11d. In this case, the filter 15 may be fixed to the side surface of the tank cap 113 by welding or the like.
 (第2実施形態)
 次に、第2実施形態について、図15~図20を参照して説明する。本実施形態では、第1受液器11における第2ヘッダタンク6との接合部である受液側接合部115に過冷却側連通部17を設けている点が第1実施形態と相違している。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. This embodiment is different from the first embodiment in that a supercooling side communication portion 17 is provided in a liquid receiving side joint portion 115 that is a joint portion with the second header tank 6 in the first liquid receiver 11. Yes.
 図15に示すように、本実施形態の第1受液器11は、タンクキャップ113に設けられた仕切部113dにより、その内部が下方側空間11aと上方側空間11bとに仕切られている。 As shown in FIG. 15, the interior of the first liquid receiver 11 of the present embodiment is partitioned into a lower space 11a and an upper space 11b by a partition portion 113d provided in the tank cap 113.
 本実施形態の仕切部113dは、上方側空間11bと上方側連通部112bとが連通するように設定されている。仕切部113dには、図16に示すように、下方側空間11aと上方側空間11bとの気密性を確保するために、シール部材11eが設けられている。 The partition portion 113d of the present embodiment is set so that the upper space 11b and the upper communication portion 112b communicate with each other. As shown in FIG. 16, the partition portion 113d is provided with a seal member 11e in order to ensure airtightness between the lower side space 11a and the upper side space 11b.
 本実施形態の仕切部113dには、第1受液器11の下方側空間11aにおける上方側と上方側空間11bとを連通させる連通管161が設けられている。蓋部113aと仕切部113dは、連通管161を介して接続されている。 In the partition portion 113d of the present embodiment, a communication pipe 161 that connects the upper side of the lower space 11a of the first receiver 11 and the upper space 11b is provided. The lid portion 113a and the partition portion 113d are connected via a communication pipe 161.
 本実施形態の第1受液器11は、連通管161、第1受液器11の上方側空間11b、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aを介して第2受液器12に連通している。 The first liquid receiver 11 of this embodiment is connected via the communication pipe 161, the upper space 11 b of the first liquid receiver 11, the upper communication portion 112 b, and the second non-communication space 62 a of the second header tank 6. It communicates with the second liquid receiver 12.
 従って、本実施形態では、連通管161、第1受液器11の上方側空間11b、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aが、第1受液器11の内部と第2受液器12の内部とを連通させる受液側連通部16を構成している。なお、本実施形態では、上方側連通部112bが、第1空間11cと第2受液器12の内部とを連通させる第1連通部を構成している。 Therefore, in the present embodiment, the communication pipe 161, the upper space 11 b of the first receiver 11, the upper communication portion 112 b, and the second non-communication space 62 a of the second header tank 6 are included in the first receiver 11. The liquid receiving side communication part 16 which makes the inside of this and the inside of the 2nd liquid receiver 12 communicate is comprised. In the present embodiment, the upper communication portion 112b constitutes a first communication portion that communicates the first space 11c with the inside of the second liquid receiver 12.
 また、本実施形態の第1受液器11には、筒状部111における下方側空間11aを形成する部位に、第2ヘッダタンク6に接合する接合部を構成する受液側接合部115が設けられている。 Moreover, in the 1st liquid receiver 11 of this embodiment, the liquid receiving side junction part 115 which comprises the junction part joined to the 2nd header tank 6 in the site | part which forms the lower side space 11a in the cylindrical part 111 is provided. Is provided.
 受液側接合部115は、第2ヘッダタンク6の貫通穴63aに対応する部位によりも下方側から第2ヘッダタンク6の貫通穴63bの上方側まで延びている。受液側接合部115には、第2ヘッダタンク6の貫通穴63aに対応する部位に、冷媒導入部111aが設けられている。 The liquid receiving side joining portion 115 extends from the lower side to the upper side of the through hole 63b of the second header tank 6 also from the portion corresponding to the through hole 63a of the second header tank 6. The liquid receiving side joining portion 115 is provided with a refrigerant introducing portion 111a at a portion corresponding to the through hole 63a of the second header tank 6.
 また、受液側接合部115には、第1受液器11の下方側空間11aの底部側と過冷却部22を連通させる内部連通部172が形成されている。内部連通部172は、受液側接合部115における上方側の部位において、第2ヘッダタンク6を介して過冷却部22に連通している。 In addition, the liquid receiving side joint 115 is formed with an internal communication portion 172 that connects the bottom side of the lower space 11 a of the first liquid receiver 11 and the supercooling portion 22. The internal communication part 172 communicates with the supercooling part 22 via the second header tank 6 in the upper part of the liquid receiving side joining part 115.
 具体的には、内部連通部172は、図17に示すように、受液側接合部115における第2ヘッダタンク6の貫通穴63dに対応する部位において、第2ヘッダタンク6の内部と連通している。 Specifically, as shown in FIG. 17, the internal communication portion 172 communicates with the inside of the second header tank 6 at a portion corresponding to the through hole 63 d of the second header tank 6 in the liquid receiving side joint portion 115. ing.
 一方、内部連通部172は、図18に示すように、受液側接合部115における第2ヘッダタンク6の貫通穴63dに対応する部位以外の部位において、第2ヘッダタンク6の外壁部によって、第2ヘッダタンク6の内部との連通が遮断されている。 On the other hand, as shown in FIG. 18, the internal communication portion 172 is formed by the outer wall portion of the second header tank 6 at a portion other than the portion corresponding to the through hole 63 d of the second header tank 6 in the liquid receiving side joint portion 115. Communication with the inside of the second header tank 6 is blocked.
 また、内部連通部172は、図19に示すように、受液側接合部115における冷媒導入部111aよりも下方側の部位において、第1受液器11の下方側空間11aと連通している。 Further, as shown in FIG. 19, the internal communication portion 172 communicates with the lower space 11 a of the first liquid receiver 11 at a portion below the refrigerant introduction portion 111 a in the liquid receiving side joining portion 115. .
 具体的には、本実施形態の内部連通部172は、図20に示すように、受液側接合部115における冷媒導入部111aが形成された部位において、冷媒導入部111aと連通しないように、冷媒導入部111aの両側に形成されている。つまり、本実施形態の内部連通部172は、受液側接合部115において冷媒導入部111aと直接的に連通しない構成となっている。 Specifically, as shown in FIG. 20, the internal communication portion 172 of the present embodiment does not communicate with the refrigerant introduction portion 111a in the portion where the refrigerant introduction portion 111a is formed in the liquid receiving side joint portion 115. It is formed on both sides of the refrigerant introduction part 111a. That is, the internal communication part 172 of the present embodiment is configured not to communicate directly with the refrigerant introduction part 111a at the liquid receiving side joining part 115.
 図19に戻り、本実施形態の内部連通部172は、受液側接合部115における第2ヘッダタンク6に対向する部位に形成された貫通穴115a、上下に延びる溝部115b、および第2ヘッダタンク6の外壁部で構成されている。 Returning to FIG. 19, the internal communication portion 172 of the present embodiment includes a through-hole 115 a formed in a portion facing the second header tank 6 in the liquid receiving side joint portion 115, a vertically extending groove 115 b, and a second header tank. 6 outer wall portions.
 ここで、受液側接合部115は、第2ヘッダタンク6の外壁との間に内部連通部172が形成されるように、溝部115bを構成する部位が、第2ヘッダタンク6の外壁部に対して気密に接合されている。 Here, the portion that constitutes the groove 115b is formed on the outer wall portion of the second header tank 6 so that the internal communication portion 172 is formed between the liquid receiving side joint portion 115 and the outer wall of the second header tank 6. It is airtightly joined.
 本実施形態の第1受液器11は、図15~図20に示すように、受液側接合部115に設けられた内部連通部172を介して、過冷却部22に連通している。このため、第1受液器11の内部に貯留された液相冷媒は、内部連通部172を介して、過冷却部22に導出される。 The first liquid receiver 11 of the present embodiment communicates with the supercooling section 22 through an internal communication section 172 provided at the liquid receiving side joining section 115 as shown in FIGS. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is led out to the supercooling unit 22 via the internal communication unit 172.
 従って、本実施形態では、内部連通部172が、第1受液器11の内部に貯留された液相冷媒を過冷却部22に導く過冷却側連通部17を構成している。なお、本実施形態では、内部連通部172が、第1受液器11の下方側空間11aの底部側と過冷却部22とを連通させると共に、下方側空間11aの底部側に貯留された液相冷媒を過冷却部22に導く第2連通部を構成している。 Therefore, in the present embodiment, the internal communication portion 172 constitutes the supercooling side communication portion 17 that guides the liquid phase refrigerant stored in the first liquid receiver 11 to the supercooling portion 22. In the present embodiment, the internal communication portion 172 allows the bottom side of the lower space 11a of the first liquid receiver 11 to communicate with the supercooling portion 22, and the liquid stored on the bottom side of the lower space 11a. The 2nd communication part which guides a phase refrigerant to the supercooling part 22 is comprised.
 本実施形態の第1受液器11の下方側空間11aには、冷凍サイクル内の異物を捕捉するフィルタ15が配置されている。フィルタ15は、内部連通部172における冷媒入口側を構成する受液側接合部115の貫通穴115aに対応する位置に配置されている。より具体的には、本実施形態のフィルタ15は、受液側接合部115の冷媒導入部111aに対応する位置、および内部連通部172における冷媒入口側を構成する受液側接合部115の貫通穴115aに対応する位置に跨るように配置されている。これにより、内部連通部172には、フィルタ15によって異物が除去された後の液相冷媒が導入される。本実施形態のフィルタ15は、円筒状の網状体で構成されている。 In the lower space 11a of the first receiver 11 of the present embodiment, a filter 15 that captures foreign matter in the refrigeration cycle is disposed. The filter 15 is disposed at a position corresponding to the through hole 115 a of the liquid receiving side joint 115 that constitutes the refrigerant inlet side in the internal communication portion 172. More specifically, the filter 15 of the present embodiment has a position corresponding to the refrigerant introduction portion 111a of the liquid receiving side joint portion 115 and the penetration of the liquid receiving side joint portion 115 constituting the refrigerant inlet side in the internal communication portion 172. It arrange | positions so that the position corresponding to the hole 115a may be straddled. As a result, the liquid refrigerant after the foreign matter is removed by the filter 15 is introduced into the internal communication portion 172. The filter 15 of the present embodiment is configured by a cylindrical mesh.
 その他の構成は、第1実施形態と同様である。本実施形態では、受液側接合部115に形成された内部連通部172を介して第1受液器11の下方側空間11aの底部側に貯留された液相冷媒を過冷却部22に導く構成としている。これによれば、第1実施形態と同様に、第1受液器11に貯留された液相冷媒を過冷却部22に適切に導くことができる。 Other configurations are the same as those in the first embodiment. In the present embodiment, the liquid refrigerant stored on the bottom side of the lower space 11 a of the first liquid receiver 11 is guided to the supercooling part 22 through the internal communication part 172 formed in the liquid receiving side joining part 115. It is configured. According to this, similarly to the first embodiment, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
 ここで、本実施形態では、第1受液器11の内部を仕切る仕切部113dをタンクキャップ113に設ける例について説明したが、これに限定されず、仕切部113dをタンクキャップ113とは別部材で構成してもよい。 Here, in this embodiment, the example in which the partition portion 113d that partitions the inside of the first liquid receiver 11 is provided in the tank cap 113 has been described. However, the present invention is not limited thereto, and the partition portion 113d is a separate member from the tank cap 113. You may comprise.
 (第3実施形態)
 次に、第3実施形態について、図21~図24を参照して説明する。本実施形態では、第1受液器11における第2ヘッダタンク6との接合部である受液側接合部116に受液側連通部16を設けている点が第1実施形態と相違している。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the liquid receiving side communication portion 16 is provided in the liquid receiving side joint portion 116 which is a joint portion with the second header tank 6 in the first liquid receiver 11. Yes.
 図21、図22に示すように、本実施形態の第1受液器11は、タンクキャップ113に設けられた仕切部113eにより、その内部が下方側空間11aと上方側空間11bとに仕切られている。仕切部113eには、下方側空間11aと上方側空間11bとの気密性を確保するために、その外周側にシール部材11gが設けられている。 As shown in FIGS. 21 and 22, the first liquid receiver 11 of the present embodiment is partitioned into a lower space 11 a and an upper space 11 b by a partition portion 113 e provided in the tank cap 113. ing. In order to ensure airtightness between the lower space 11a and the upper space 11b, the partition portion 113e is provided with a seal member 11g on the outer peripheral side thereof.
 本実施形態の仕切部113eは、上方側空間11bと冷媒導出部111bとが連通するように設定されている。本実施形態では、第1受液器11の上方側空間11bに、冷凍サイクル内の異物を捕捉するフィルタ15が配置されている。 The partition portion 113e of the present embodiment is set so that the upper space 11b and the refrigerant outlet portion 111b communicate with each other. In the present embodiment, a filter 15 that captures foreign matter in the refrigeration cycle is disposed in the upper space 11 b of the first receiver 11.
 本実施形態の仕切部113eには、第1受液器11の下方側空間11aにおける底部に近接する位置から液相冷媒を上方側空間11bまで吸い上げる吸上管171が接続されている。吸上管171は、第1受液器11の下方側空間11aにおける底部側と第1受液器11の上方側空間11bとが連通するように、第1受液器11の内部に配置されている。 A suction pipe 171 that sucks the liquid refrigerant from the position close to the bottom of the lower space 11a of the first receiver 11 to the upper space 11b is connected to the partition 113e of the present embodiment. The suction pipe 171 is disposed inside the first liquid receiver 11 so that the bottom side of the lower space 11a of the first liquid receiver 11 and the upper space 11b of the first liquid receiver 11 communicate with each other. ing.
 本実施形態の第1受液器11は、吸上管171、第1受液器11の上方側空間11b、冷媒導出部111bを介して、過冷却部22に連通している。このため、第1受液器11の内部に貯留された液相冷媒は、吸上管171、第1受液器11の上方側空間11b、冷媒導出部111bを介して、過冷却部22に導出される。 The first liquid receiver 11 of the present embodiment communicates with the supercooling unit 22 via the suction pipe 171, the upper space 11 b of the first liquid receiver 11, and the refrigerant derivation unit 111 b. For this reason, the liquid-phase refrigerant stored inside the first liquid receiver 11 is transferred to the supercooling section 22 via the suction pipe 171, the upper space 11 b of the first liquid receiver 11, and the refrigerant outlet section 111 b. Derived.
 従って、本実施形態では、吸上管171、第1受液器11の上方側空間11b、冷媒導出部111bが、第1受液器11の内部に貯留された液相冷媒を過冷却部22に導く、過冷却側連通部17を構成している。なお、本実施形態では、冷媒導出部111bが、第2空間11dと過冷却部22とを連通させる第2連通部を構成している。 Therefore, in the present embodiment, the suction pipe 171, the upper space 11 b of the first receiver 11, and the refrigerant derivation unit 111 b remove the liquid refrigerant stored in the first receiver 11 from the supercooling unit 22. The supercooling side communication part 17 led to is constructed. In the present embodiment, the refrigerant derivation unit 111b constitutes a second communication unit that allows the second space 11d and the supercooling unit 22 to communicate with each other.
 ここで、過冷却側連通部17を構成する上方側空間11bは、仕切部113eのシール部材11gによって、下方側空間11aに対して気密にシールされている。このため、本実施形態の構成では、過冷却側連通部17に対して、第1受液器11および第2受液器12の内部の気相冷媒が導入されてしまうことを抑えることができる。 Here, the upper space 11b constituting the supercooling side communication portion 17 is hermetically sealed with respect to the lower space 11a by the seal member 11g of the partition portion 113e. For this reason, in the structure of this embodiment, it can suppress that the gaseous-phase refrigerant | coolant inside the 1st liquid receiver 11 and the 2nd liquid receiver 12 will be introduce | transduced with respect to the supercooling side communication part 17. FIG. .
 また、本実施形態の第1受液器11には、筒状部111における下方側空間11aおよび上方側空間11bを形成する部位を、第2ヘッダタンク6に接合する接合部を構成する受液側接合部116が設けられている。 Further, in the first liquid receiver 11 of the present embodiment, the liquid receiver that constitutes a joining portion that joins the portion forming the lower space 11 a and the upper space 11 b in the cylindrical portion 111 to the second header tank 6. A side joint 116 is provided.
 受液側接合部116は、第2ヘッダタンク6の貫通穴63bに対応する部位によりも下方側から第2ヘッダタンク6の貫通穴63cの上方側まで延びている。受液側接合部116には、第2ヘッダタンク6の貫通穴63bに対応する部位に、冷媒導出部111bが設けられている。 The liquid receiving side joining portion 116 extends from the lower side to the upper side of the through hole 63c of the second header tank 6 also from the portion corresponding to the through hole 63b of the second header tank 6. The liquid receiving side joining portion 116 is provided with a refrigerant outlet portion 111b at a portion corresponding to the through hole 63b of the second header tank 6.
 また、受液側接合部116には、第1受液器11の下方側空間11aの上方側と第2受液器12とを連通させる内部連通部162が形成されている。内部連通部162は、受液側接合部116における上方側の部位において、第2ヘッダタンク6の第2非連通空間62aを介して、第2受液器12に連通している。また、内部連通部162は、受液側接合部116における冷媒導出部111bよりも下方側の部位において、第1受液器11の下方側空間11aと連通している。 Further, the liquid receiving side joint 116 is formed with an internal communication portion 162 that allows the upper side of the lower space 11a of the first liquid receiver 11 to communicate with the second liquid receiver 12. The internal communication portion 162 communicates with the second liquid receiver 12 through the second non-communication space 62a of the second header tank 6 at the upper portion of the liquid receiving side joining portion 116. Further, the internal communication portion 162 communicates with the lower space 11a of the first liquid receiver 11 at a portion below the refrigerant outlet portion 111b in the liquid receiving side joining portion 116.
 ここで、本実施形態の内部連通部162は、図23に示すように、受液側接合部116における冷媒導出部111bが形成された部位において、冷媒導出部111bと連通しないように、冷媒導出部111bの両側に形成されている。つまり、本実施形態の内部連通部162は、受液側接合部116において冷媒導出部111bと直接的に連通しない構成となっている。なお、本実施形態の第1受液器11は、図24に示すように、受液側接合部116の下方側から冷媒導入部111aの上方側までの間において、第2ヘッダタンク6とは接しない構成となっている。 Here, as shown in FIG. 23, the internal communication portion 162 of the present embodiment is a refrigerant derivation so as not to communicate with the refrigerant derivation portion 111b at the portion where the refrigerant derivation portion 111b is formed in the liquid receiving side joining portion 116. It is formed on both sides of the portion 111b. That is, the internal communication part 162 of the present embodiment is configured not to communicate directly with the refrigerant outlet part 111b in the liquid receiving side joining part 116. In addition, as shown in FIG. 24, the 1st liquid receiver 11 of this embodiment is the 2nd header tank 6 between the downward side of the liquid receiving side junction part 116, and the upper side of the refrigerant | coolant introduction part 111a. It is configured not to touch.
 具体的には、本実施形態の内部連通部162は、受液側接合部116における第2ヘッダタンク6に対向する部位に形成された貫通穴116a、上下に延びる溝部116b、および第2ヘッダタンク6の外壁部で構成されている。 Specifically, the internal communication portion 162 of the present embodiment includes a through hole 116a formed in a portion facing the second header tank 6 in the liquid receiving side joint portion 116, a vertically extending groove portion 116b, and a second header tank. 6 outer wall portions.
 ここで、受液側接合部116は、第2ヘッダタンク6の外壁部との間に内部連通部162が形成されるように、溝部116bを構成する部位が、第2ヘッダタンク6の外壁部に対して気密に接合されている。 Here, the portion that constitutes the groove portion 116b is formed on the outer wall portion of the second header tank 6 so that the internal communication portion 162 is formed between the liquid receiving side joint portion 116 and the outer wall portion of the second header tank 6. Is airtightly bonded.
 前述のように、本実施形態の第1受液器11は、受液側接合部116に設けられた内部連通部162、および第2ヘッダタンク6の第2非連通空間62aを介して、第2受液器12に連通している。 As described above, the first liquid receiver 11 of the present embodiment has the first communication portion 162 provided in the liquid reception side joint portion 116 and the second non-communication space 62a of the second header tank 6 through the first non-communication space 62a. 2 It communicates with the liquid receiver 12.
 従って、本実施形態では、内部連通部162および第2ヘッダタンク6の第2非連通空間62aが、第1受液器11の内部と第2受液器12の内部を連通させる受液側連通部16を構成している。なお、本実施形態では、内部連通部162が、第1受液器11の下方側空間11aにおける上方側と第2受液器12の内部とを連通させる第1連通部を構成している。 Accordingly, in the present embodiment, the internal communication portion 162 and the second non-communication space 62a of the second header tank 6 communicate with each other on the liquid receiving side that allows the inside of the first liquid receiver 11 and the inside of the second liquid receiver 12 to communicate with each other. Part 16 is configured. In the present embodiment, the internal communication portion 162 constitutes a first communication portion that connects the upper side in the lower space 11 a of the first liquid receiver 11 and the inside of the second liquid receiver 12.
 その他の構成は、第1実施形態と同様である。本実施形態では、受液側接合部116に形成された内部連通部162を介して第1受液器11の下方側空間11aの上方側と第2受液器12の内部とを連通させる構成としている。また、本実施形態では、吸上管171を介して下方側空間11aの底部側から液相冷媒を吸い上げる構成としている。これによれば、第1実施形態と同様に、第1受液器11に貯留された液相冷媒を過冷却部22に適切に導くことが可能となる。 Other configurations are the same as those in the first embodiment. In the present embodiment, a configuration in which the upper side of the lower space 11 a of the first liquid receiver 11 and the inside of the second liquid receiver 12 are communicated with each other via an internal communication part 162 formed in the liquid receiving side joining part 116. It is said. In the present embodiment, the liquid-phase refrigerant is sucked up from the bottom side of the lower space 11a through the suction pipe 171. According to this, similarly to the first embodiment, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
 ここで、本実施形態では、第1受液器11の内部を仕切る仕切部113eをタンクキャップ113に設ける例について説明したが、これに限定されず、仕切部113eをタンクキャップ113とは別部材で構成してもよい。 Here, in the present embodiment, the example in which the partition portion 113e that partitions the inside of the first liquid receiver 11 is provided in the tank cap 113 has been described. However, the present invention is not limited thereto, and the partition portion 113e is a separate member from the tank cap 113. You may comprise.
 (第4実施形態)
 次に、第4実施形態について、図25を参照して説明する。本実施形態では、第1受液器11の外部に設けられた外部連通部173によって過冷却側連通部17を構成している点が第1実施形態と相違している。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. In this embodiment, the point which comprises the supercooling side communication part 17 by the external communication part 173 provided in the exterior of the 1st liquid receiver 11 is different from 1st Embodiment.
 図25に示すように、本実施形態の第1受液器11は、第1実施形態の第1仕切部113bおよび第2仕切部113cが廃止されている。すなわち、本実施形態の第1受液器11は、その内部の空間が特に仕切られていない構成となっている。 As shown in FIG. 25, in the first liquid receiver 11 of the present embodiment, the first partition 113b and the second partition 113c of the first embodiment are eliminated. That is, the first liquid receiver 11 of the present embodiment has a configuration in which the internal space is not particularly partitioned.
 本実施形態の第1受液器11は、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aを介して、第2受液器12に連通している。従って、本実施形態では、上方側連通部112b、および第2ヘッダタンク6の第2非連通空間62aが、第1受液器11の内部と第2受液器12の内部とを連通させる受液側連通部16を構成している。 The first liquid receiver 11 of the present embodiment communicates with the second liquid receiver 12 via the upper communication portion 112b and the second non-communication space 62a of the second header tank 6. Therefore, in the present embodiment, the upper communication portion 112b and the second non-communication space 62a of the second header tank 6 receive the interior of the first liquid receiver 11 and the interior of the second liquid receiver 12. The liquid side communication part 16 is comprised.
 また、本実施形態の第1受液器11には、筒状部111における下方側の空間を形成する部位に、第1受液器11の内部の液相冷媒を過冷却部22に導く外部連通部173が接続されている。 Further, in the first liquid receiver 11 of the present embodiment, the liquid phase refrigerant inside the first liquid receiver 11 is guided to the supercooling section 22 in a portion that forms a lower space in the cylindrical portion 111. A communication unit 173 is connected.
 外部連通部173は、第1受液器11の外側に配置されている。より具体的には、本実施形態の外部連通部173は、第1受液器11と第2ヘッダタンク6との間に形成される空間に配置されている。 The external communication part 173 is disposed outside the first liquid receiver 11. More specifically, the external communication part 173 of the present embodiment is disposed in a space formed between the first liquid receiver 11 and the second header tank 6.
 外部連通部173は、その上方側の端部が、第2ヘッダタンク6の貫通穴63aに対応する部位に接合されている。外部連通部173は、第2ヘッダタンク6を介して、過冷却部22に連通している。 The outer communication part 173 has an upper end joined to a part corresponding to the through hole 63a of the second header tank 6. The external communication part 173 communicates with the supercooling part 22 via the second header tank 6.
 また、外部連通部173は、その下方側の端部が、第1受液器11の下方側の部位に接続されている。具体的には、本実施形態の外部連通部173は、第1受液器11における冷媒導入部111aが接続された部位の上方側に接続されている。そして、外部連通部173は、その下方側の端部において、第1受液器11の内部と連通している。 The lower end of the external communication portion 173 is connected to the lower portion of the first liquid receiver 11. Specifically, the external communication portion 173 of the present embodiment is connected to the upper side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected. The external communication portion 173 communicates with the inside of the first liquid receiver 11 at its lower end.
 なお、外部連通部173は、第1受液器11における冷媒導入部111aが接続された部位の上方側に限らず、第1受液器11における冷媒導入部111aが接続された部位の下方側に接続されていてもよい。 The external communication portion 173 is not limited to the upper side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected, but the lower side of the portion of the first liquid receiver 11 to which the refrigerant introduction portion 111a is connected. It may be connected to.
 このように、本実施形態の第1受液器11は、第1受液器11の外側に設けられた外部連通部173を介して、過冷却部22に連通している。このため、第1受液器11の内部に貯留された液相冷媒は、外部連通部173を介して、過冷却部22に導出される。 As described above, the first liquid receiver 11 according to the present embodiment communicates with the supercooling unit 22 via the external communication unit 173 provided outside the first liquid receiver 11. For this reason, the liquid-phase refrigerant stored in the first liquid receiver 11 is led to the supercooling unit 22 via the external communication unit 173.
 従って、本実施形態では、第1受液器11の外側に設けられた外部連通部173が、第1受液器11の内部に貯留された液相冷媒を過冷却部22に導く過冷却側連通部17を構成している。 Therefore, in the present embodiment, the external communication portion 173 provided outside the first liquid receiver 11 causes the supercooling side that guides the liquid-phase refrigerant stored inside the first liquid receiver 11 to the supercooling portion 22. The communication part 17 is comprised.
 本実施形態の第1受液器11の下方側の空間には、冷凍サイクル内の異物を捕捉するフィルタ15が配置されている。より具体的には、本実施形態のフィルタ15は、第1受液器11における冷媒導入部111aを構成する部位、および外部連通部173における冷媒入口側を構成する部位に跨るように配置されている。これにより、外部連通部173には、フィルタ15によって異物が除去された後の液相冷媒が導入される。なお、本実施形態のフィルタ15は、第2実施形態と同様に、円筒状の網状体で構成されている。 In the lower space of the first receiver 11 of the present embodiment, a filter 15 that captures foreign matters in the refrigeration cycle is disposed. More specifically, the filter 15 of the present embodiment is disposed so as to straddle the part constituting the refrigerant introduction part 111a in the first receiver 11 and the part constituting the refrigerant inlet side in the external communication part 173. Yes. As a result, the liquid refrigerant after the foreign matter is removed by the filter 15 is introduced into the external communication portion 173. In addition, the filter 15 of this embodiment is comprised by the cylindrical net-like body similarly to 2nd Embodiment.
 その他の構成は、第1実施形態と同様である。本実施形態では、第1受液器11の外側に配置された外部連通部173を介して第1受液器11の下方側に貯留された液相冷媒を過冷却部22に導く構成としている。これによれば、第1実施形態と同様に、第1受液器11に貯留された液相冷媒を過冷却部22に適切に導くことができる。 Other configurations are the same as those in the first embodiment. In the present embodiment, the liquid refrigerant stored on the lower side of the first liquid receiver 11 is guided to the supercooling section 22 via the external communication section 173 disposed outside the first liquid receiver 11. . According to this, similarly to the first embodiment, the liquid-phase refrigerant stored in the first liquid receiver 11 can be appropriately guided to the supercooling unit 22.
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、適宜変更が可能である。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, and can change suitably. For example, various modifications are possible as follows.
 (1)上述の各実施形態の如く、凝縮器1全体としての強度を図るためには、第2受液器12を過冷却部22の上方側の部位に当接して配置することが望ましいが、これに限定されない。例えば、第2受液器12を過冷却部22の上方側の部位から離間して配置する構成としてもよい。この場合、サイドプレート等の補強部材を過冷却部22の上方側の部位に接合すればよい。 (1) As in the above-described embodiments, in order to increase the strength of the condenser 1 as a whole, it is desirable to place the second liquid receiver 12 in contact with the upper part of the supercooling unit 22. However, the present invention is not limited to this. For example, it is good also as a structure which arrange | positions the 2nd liquid receiver 12 spaced apart from the site | part of the upper side of the supercooling part 22. FIG. In this case, a reinforcing member such as a side plate may be joined to the upper part of the supercooling unit 22.
 (2)上述の各実施形態では、第2ヘッダタンク6の第2非連通空間62aを過冷却側連通部17として利用する例について説明したが、これに限定されない。例えば、第1受液器11と第2受液器12とを第2ヘッダタンク6を介さずに接続する構成としてもよい。 (2) In each of the above-described embodiments, the example in which the second non-communication space 62a of the second header tank 6 is used as the supercooling side communication unit 17 is described, but the present invention is not limited to this. For example, the first liquid receiver 11 and the second liquid receiver 12 may be connected without using the second header tank 6.
 また、上述の各実施形態では、第2受液器12の内部と第1ヘッダタンク5の第1非連通空間52aとが連通するように、第2受液器12の第1ヘッダタンク5側の端部を第1ヘッダタンク5に接続する例について説明したが、これに限定されない。第2受液器12は、その内部が第1ヘッダタンク5の第1非連通空間52aに対して連通していない構成となっていてもよい。 Moreover, in each above-mentioned embodiment, the 1st header tank 5 side of the 2nd liquid receiver 12 is connected so that the inside of the 2nd liquid receiver 12 and the 1st non-communication space 52a of the 1st header tank 5 may connect. Although the example which connects the edge part of this to the 1st header tank 5 was demonstrated, it is not limited to this. The second liquid receiver 12 may be configured such that the inside thereof does not communicate with the first non-communication space 52 a of the first header tank 5.
 (3)上述の各実施形態では、コア部2の右側に第1受液器11を配置する例について説明したが、これに限定されない。例えば、コア部2の左側に第1受液器11を配置する構成としてもよい。 (3) In each of the above-described embodiments, the example in which the first liquid receiver 11 is disposed on the right side of the core unit 2 has been described. However, the present invention is not limited to this. For example, the first liquid receiver 11 may be arranged on the left side of the core unit 2.
 (4)上述の各実施形態では、コア部2の凝縮部21として、冷媒の流れが左右に3回転向する例について説明したが、これに限定されない。凝縮部21は、冷媒の流れが左右に1、2回転向したり、冷媒の流れが左右に3回以上転向したりする構成としてもよい。 (4) In each of the above-described embodiments, the example in which the refrigerant flow is directed to the left and right three rotations as the condensing unit 21 of the core unit 2 has been described, but is not limited thereto. The condensing unit 21 may be configured such that the flow of the refrigerant is directed to the left and right for one or two rotations, or the refrigerant flow is turned to the left and right three times or more.
 (5)上述の各実施形態の如く、隣接するチューブ2a間にフィン2bを配置することが望ましいが、これに限定されず、フィン2bが省略されていてもよい。 (5) Although it is desirable to arrange the fins 2b between the adjacent tubes 2a as in the above embodiments, the present invention is not limited to this, and the fins 2b may be omitted.
 (6)上述の各実施形態では、冷凍サイクル内の異物を捕捉するフィルタ15を凝縮器1における様々な位置に配置する例について説明したが、これに限定されない。フィルタ15は、凝縮器1における凝縮部21の冷媒出口側から出口側コネクタ8に至る区間であれば、いずれの位置に配置されていてもよい。 (6) In each of the above-described embodiments, the example in which the filter 15 that captures the foreign matter in the refrigeration cycle is arranged at various positions in the condenser 1 is described, but the present invention is not limited to this. The filter 15 may be disposed at any position as long as it is a section from the refrigerant outlet side of the condenser 21 in the condenser 1 to the outlet-side connector 8.
 ここで、フィルタ15は、凝縮器1以外の部位、例えば、凝縮器1よりも冷媒流れ下流側の減圧機構の冷媒入口側等に設ける構成としてもよい。すなわち、フィルタ15は、凝縮器1の如く、液相冷媒を貯留する空間を有する部材に配置することが望ましいが、凝縮器1以外に配置されていてもよい。 Here, the filter 15 may be provided in a portion other than the condenser 1, for example, on the refrigerant inlet side of the decompression mechanism downstream of the condenser 1 from the refrigerant flow. That is, the filter 15 is desirably disposed on a member having a space for storing the liquid-phase refrigerant, such as the condenser 1, but may be disposed other than the condenser 1.
 (7)上述の各実施形態では、入口側コネクタ7を第1ヘッダタンク5の中央の内部空間51bに対応する部位に接続すると共に、冷媒導入部111aを第2ヘッダタンク6の下方の内部空間61cに対応する部位に接続する例を説明したが、これに限定されない。 (7) In each of the above-described embodiments, the inlet side connector 7 is connected to a portion corresponding to the central internal space 51 b of the first header tank 5, and the refrigerant introduction portion 111 a is connected to the internal space below the second header tank 6. Although the example which connects to the site | part corresponding to 61c was demonstrated, it is not limited to this.
 凝縮器1は、例えば、入口側コネクタ7が第1ヘッダタンク5の下方の内部空間51cに対応する部位に接続されると共に、冷媒導入部111aが第2ヘッダタンク6の中央の内部空間61bに対応する部位に接続される構造となっていてもよい。 In the condenser 1, for example, the inlet-side connector 7 is connected to a portion corresponding to the internal space 51 c below the first header tank 5, and the refrigerant introduction portion 111 a is connected to the central internal space 61 b of the second header tank 6. It may be a structure connected to a corresponding part.
 なお、このような構造とするためには、第1ヘッダタンク5のセパレータ5cを、上下方向において、第2ヘッダタンク6のセパレータ6cよりも下方側に配置すればよい。例えば、第1ヘッダタンク5のセパレータ5cを、図1に示す第2ヘッダタンク6のセパレータ6cに対応する位置まで下げると共に、第2ヘッダタンク6のセパレータ6cを、図1に示す第1ヘッダタンク5のセパレータ5cに対応する位置まで上げればよい。 In addition, in order to set it as such a structure, what is necessary is just to arrange | position the separator 5c of the 1st header tank 5 below the separator 6c of the 2nd header tank 6 in an up-down direction. For example, the separator 5c of the first header tank 5 is lowered to a position corresponding to the separator 6c of the second header tank 6 shown in FIG. 1, and the separator 6c of the second header tank 6 is lowered to the first header tank shown in FIG. It may be raised to a position corresponding to the separator 5c.
 (8)上述の各実施形態では、耐圧性を考慮して、第1受液器11および第2受液器12の内壁の断面形状を円形状とする例について説明したが、これに限定されない。例えば、第1受液器11および第2受液器12は、その内壁の断面形状が矩形状となっていてもよい。 (8) In each of the embodiments described above, the example in which the cross-sectional shapes of the inner walls of the first liquid receiver 11 and the second liquid receiver 12 are circular in consideration of pressure resistance has been described, but the present invention is not limited to this. . For example, the first liquid receiver 11 and the second liquid receiver 12 may have a rectangular cross section on the inner wall.
 また、第1受液器11および第2受液器12は、その断面形状が異なる形状となっていてもよい。第1受液器11および第2受液器12は、例えば、一方の内壁の断面形状が円形状となり、他方の内壁の断面形状が矩形状となっていてもよい。 Moreover, the first liquid receiver 11 and the second liquid receiver 12 may have different cross-sectional shapes. In the first liquid receiver 11 and the second liquid receiver 12, for example, the cross-sectional shape of one inner wall may be circular, and the cross-sectional shape of the other inner wall may be rectangular.
 (9)上述の各実施形態の如く、受液側連通部16および過冷却側連通部17を別々の冷媒流路として構成することが望ましいが、これに限定されない。例えば、受液側連通部16の一部が、第1受液器11にて常に液相冷媒が存在する箇所に掛かる位置にある構成であれば、当該位置において、受液側連通部16および過冷却側連通部17が共通の冷媒流路として構成されていてもよい。 (9) As in the above-described embodiments, it is desirable to configure the liquid-receiving side communication portion 16 and the supercooling side communication portion 17 as separate refrigerant flow paths, but the present invention is not limited to this. For example, if a part of the liquid-receiving side communication part 16 is in a position that is in a position where the liquid-phase refrigerant is always present in the first liquid receiver 11, the liquid-receiving side communication part 16 and The supercooling side communication part 17 may be comprised as a common refrigerant flow path.
 (10)上述の各実施形態では、本開示の凝縮器1を車両用の空調装置に適用される冷凍サイクルの凝縮器に適用する例について説明したが、これに限定されない。本開示の凝縮器1は、例えば、据置型の空調装置の凝縮器として用いることも可能である。 (10) In each of the above-described embodiments, the example in which the condenser 1 of the present disclosure is applied to a condenser of a refrigeration cycle applied to a vehicle air conditioner has been described, but the present invention is not limited to this. The condenser 1 of the present disclosure can be used as, for example, a condenser of a stationary air conditioner.
 (11)上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (11) In the above-described embodiment, the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Needless to say.
 (12)上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 (12) In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly indicated that it is essential and clearly specified in principle. It is not limited to the specific number except in a limited case.
 (13)上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 (13) In the above-described embodiment, when referring to the shape, positional relationship, etc. of the component, etc., its shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. The positional relationship is not limited.

Claims (10)

  1.  冷媒と外部流体とを熱交換させて冷媒を凝縮させる凝縮器であって、
     冷媒が流通する複数のチューブ(2a)を上下に積層して構成され、前記チューブの外側を流れる前記外部流体との熱交換により冷媒を放熱させるコア部(2)と、
     前記チューブの積層方向に沿って延びると共に前記コア部における前記チューブの長手方向の一端側に接続される第1ヘッダタンク(5)と、
     前記チューブの積層方向に沿って延びると共に前記コア部における前記チューブの長手方向の他端側に接続される第2ヘッダタンク(6)と、
     前記チューブの積層方向に沿って延びると共に、前記第2ヘッダタンクに隣接して配置され、前記第2ヘッダタンクの内部に連通する第1受液器(11)と、
     前記第2ヘッダタンクの内部に存する冷媒を前記第1受液器の内部へ導く冷媒導入部(111a)と、
     前記コア部の上方側に配置され、前記チューブの長手方向に沿って延びると共に、前記第1受液器の内部と連通するように前記第1受液器に接続される前記第2受液器(12)と、を備え、
     前記コア部は、冷媒を前記外部流体との熱交換により凝縮させる凝縮部(21)、および前記凝縮部の上方側に配置されて前記第1受液器に貯留された液相冷媒を前記外部流体との熱交換により過冷却する過冷却部(22)を有しており、
     前記第1受液器および第2受液器は、気相冷媒と液相冷媒とを分離して、分離した液相冷媒を貯留するようにそれぞれ構成されると共に、前記第1受液器の内部と前記第2受液器の内部とが受液側連通部(16)を介して連通しており、
     前記凝縮部および前記過冷却部は、前記第2ヘッダタンク、前記冷媒導入部、前記第1受液器、および前記第1受液器の内部に貯留された液相冷媒を前記過冷却部に導く過冷却側連通部(17)を介して連通している凝縮器。
    A condenser that condenses the refrigerant by exchanging heat between the refrigerant and the external fluid,
    A core portion (2) configured by vertically stacking a plurality of tubes (2a) through which the refrigerant flows, and radiating the refrigerant by heat exchange with the external fluid flowing outside the tubes;
    A first header tank (5) extending along the stacking direction of the tubes and connected to one end side in the longitudinal direction of the tubes in the core portion;
    A second header tank (6) that extends along the stacking direction of the tubes and is connected to the other end side in the longitudinal direction of the tubes in the core portion;
    A first liquid receiver (11) that extends along the stacking direction of the tubes, is disposed adjacent to the second header tank, and communicates with the interior of the second header tank;
    A refrigerant introduction part (111a) for guiding the refrigerant present in the second header tank to the inside of the first liquid receiver;
    The second liquid receiver, which is disposed on the upper side of the core portion, extends along the longitudinal direction of the tube, and is connected to the first liquid receiver so as to communicate with the inside of the first liquid receiver. (12)
    The core portion condenses the refrigerant by heat exchange with the external fluid, and the liquid phase refrigerant stored in the first receiver that is disposed on the upper side of the condensing portion. A supercooling section (22) for supercooling by heat exchange with the fluid;
    The first liquid receiver and the second liquid receiver are each configured to separate a vapor-phase refrigerant and a liquid-phase refrigerant and store the separated liquid-phase refrigerant. The inside and the inside of the second liquid receiver communicate with each other via the liquid receiving side communication part (16),
    The condensing unit and the supercooling unit use the second header tank, the refrigerant introduction unit, the first liquid receiver, and the liquid phase refrigerant stored in the first liquid receiver as the supercooling unit. The condenser which is connected via the supercooling side communication part (17) which guides.
  2.  前記受液側連通部および前記過冷却側連通部は、別個の冷媒流路として構成されている請求項1に記載の凝縮器。 The condenser according to claim 1, wherein the liquid receiving side communication portion and the supercooling side communication portion are configured as separate refrigerant flow paths.
  3.  前記第1受液器には、
     前記第1受液器の内部を下方側空間(11a)と上方側空間(11b)とに仕切る第1仕切部(113b)と、
     前記上方側空間を第1空間(11c)と第2空間(11d)とに仕切る第2仕切部(113c)と、
     前記第1空間と前記第2受液器の内部とを連通させる第1連通部(112b)と、
     前記第2空間と前記過冷却部とを連通させる第2連通部(111b)と、
     前記下方側空間における上方側と前記第1空間とを連通させる連通管(161)と、
     前記下方側空間における底部に近接する位置から液相冷媒を前記第2空間まで吸い上げる吸上管(171)と、
     が設けられ、
     前記受液側連通部は、前記第1空間、前記第1連通部、および前記連通管を含んで構成されており、
     前記過冷却側連通部は、前記第2空間、前記第2連通部、および前記吸上管を含んで構成されている請求項1または2に記載の凝縮器。
    In the first liquid receiver,
    A first partition (113b) that partitions the interior of the first liquid receiver into a lower space (11a) and an upper space (11b);
    A second partition (113c) that partitions the upper space into a first space (11c) and a second space (11d);
    A first communication part (112b) for communicating the first space and the inside of the second liquid receiver;
    A second communication portion (111b) for communicating the second space and the supercooling portion;
    A communication pipe (161) for communicating the upper side in the lower side space with the first space;
    A suction pipe (171) for sucking up the liquid refrigerant from the position close to the bottom in the lower space to the second space;
    Is provided,
    The liquid receiving side communication portion includes the first space, the first communication portion, and the communication pipe.
    The condenser according to claim 1 or 2, wherein the supercooling side communication portion includes the second space, the second communication portion, and the suction pipe.
  4.  前記第1受液器には、
     前記第1受液器の内部空間を下方側空間(11a)と上方側空間(11b)とに仕切る仕切部(113d)と、
     前記第1受液器における前記下方側空間を形成する部位を前記第2ヘッダタンクに接合する接合部(115)と、
     前記上方側空間と前記第2受液器の内部とを連通させる第1連通部(112b)と、
     前記下方側空間における上方側と前記上方側空間とを連通させる連通管(161)と、
     前記接合部に設けられ、前記下方側空間における底部側と前記過冷却部とを連通させると共に、前記下方側空間における底部側に貯留された液相冷媒を前記過冷却部に導く第2連通部(172)と、
     が設けられ、
     前記受液側連通部は、前記上方側空間、前記第1連通部、および前記連通管を含んで構成されており、
     前記過冷却側連通部は、前記第2連通部を含んで構成されている請求項1または2に記載の凝縮器。
    In the first liquid receiver,
    A partition (113d) that partitions the internal space of the first receiver into a lower space (11a) and an upper space (11b);
    A joint (115) for joining a portion forming the lower space in the first liquid receiver to the second header tank;
    A first communication portion (112b) for communicating the upper space with the interior of the second liquid receiver;
    A communication pipe (161) for communicating the upper side in the lower space with the upper space;
    A second communicating portion that is provided in the joining portion and communicates the bottom side in the lower space with the supercooling portion and guides the liquid refrigerant stored on the bottom side in the lower space to the supercooling portion. (172),
    Is provided,
    The liquid receiving side communication portion includes the upper space, the first communication portion, and the communication pipe.
    The condenser according to claim 1 or 2, wherein the supercooling side communication portion includes the second communication portion.
  5.  前記第1受液器には、
     前記第1受液器の内部空間を下方側空間(11a)と上方側空間(11b)とに仕切る仕切部(113e)と、
     前記上方側空間を形成する部位および前記下方側空間を形成する部位を前記第2ヘッダタンクに接合する接合部(116)と、
     前記接合部に設けられ、前記下方側空間における上方側と前記第2受液器とを連通させる第1連通部(162)と、
     前記上方側空間と前記過冷却部とを連通させる第2連通部(111b)と、
     前記下方側空間における底部に近接する位置から液相冷媒を前記上方側空間まで吸い上げる吸上管(171)と、
     が設けられ、
     前記受液側連通部は、前記第1連通部を含んで構成されており、
     前記過冷却側連通部は、前記上方側空間、前記第2連通部、および前記吸上管を含んで構成されている請求項1または2に記載の凝縮器。
    In the first liquid receiver,
    A partition (113e) that partitions the internal space of the first receiver into a lower space (11a) and an upper space (11b);
    A joint portion (116) for joining the portion forming the upper space and the portion forming the lower space to the second header tank;
    A first communication part (162) provided in the joint part for communicating the upper side in the lower space with the second liquid receiver;
    A second communication portion (111b) for communicating the upper space with the supercooling portion;
    A suction pipe (171) for sucking the liquid refrigerant from the position close to the bottom in the lower space to the upper space;
    Is provided,
    The liquid receiving side communication part is configured to include the first communication part,
    The condenser according to claim 1 or 2, wherein the supercooling side communication portion includes the upper space, the second communication portion, and the suction pipe.
  6.  冷媒に含まれる異物を除去するフィルタ(15)を備え、
     前記フィルタは、前記吸上管の冷媒入口側および冷媒出口側の一方に配置されている請求項3または4に記載の凝縮器。
    A filter (15) for removing foreign substances contained in the refrigerant;
    The condenser according to claim 3 or 4, wherein the filter is disposed on one of a refrigerant inlet side and a refrigerant outlet side of the suction pipe.
  7.  冷媒に含まれる異物を除去するフィルタ(15)を備え、
     前記フィルタは、前記第2空間に配置されている請求項3に記載の凝縮器。
    A filter (15) for removing foreign substances contained in the refrigerant;
    The condenser according to claim 3, wherein the filter is disposed in the second space.
  8.  冷媒に含まれる異物を除去するフィルタ(15)を備え、
     前記フィルタは、前記上方側空間に配置されている請求項5に記載の凝縮器。
    A filter (15) for removing foreign substances contained in the refrigerant;
    The condenser according to claim 5, wherein the filter is disposed in the upper space.
  9.  前記第2ヘッダタンクには、前記第2受液器の前記第2ヘッダタンク側の端部と連通すると共に、前記コア部との連通が遮断された非連通空間(62a)が設けられており、
     前記受液側連通部(16)は、前記非連通空間を含んで構成されている請求項1ないし8のいずれか1つに記載の凝縮器。
    The second header tank is provided with a non-communication space (62a) that communicates with an end of the second receiver on the second header tank side and that is disconnected from the core. ,
    The condenser according to any one of claims 1 to 8, wherein the liquid receiving side communication section (16) includes the non-communication space.
  10.  前記第2受液器は、前記過冷却部の上方側の部位に当接して配置されている請求項1ないし8のいずれか1つに記載の凝縮器。 The condenser according to any one of claims 1 to 8, wherein the second liquid receiver is disposed in contact with an upper portion of the supercooling unit.
PCT/JP2016/063009 2015-05-26 2016-04-26 Condenser WO2016190025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520575A JP6460233B2 (en) 2015-05-26 2016-04-26 Condenser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106670 2015-05-26
JP2015-106670 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016190025A1 true WO2016190025A1 (en) 2016-12-01

Family

ID=57393907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063009 WO2016190025A1 (en) 2015-05-26 2016-04-26 Condenser

Country Status (2)

Country Link
JP (1) JP6460233B2 (en)
WO (1) WO2016190025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026707A1 (en) * 2017-08-01 2019-02-07 株式会社デンソー Cylinder component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288425A (en) * 1997-04-11 1998-10-27 Zexel Corp Tank casing for receiver tank
JP2000074527A (en) * 1998-06-16 2000-03-14 Denso Corp Liquid receiver integrated refrigerant condenser
JP2008529877A (en) * 2005-06-02 2008-08-07 株式会社デンソー Air conditioner condenser
DE102010001543A1 (en) * 2010-02-03 2011-08-04 Behr GmbH & Co. KG, 70469 Heat exchanger, particularly condenser for motor vehicle air conditioning system, comprises external collecting container, which serves as reservoir for fluid flowing through heat exchanger
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
JP2013536780A (en) * 2010-08-31 2013-09-26 ベール ゲーエムベーハー ウント コー カーゲー Refrigerant condenser assembly
JP2014173831A (en) * 2013-03-13 2014-09-22 Keihin Thermal Technology Corp Condenser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925158B2 (en) * 2001-10-30 2007-06-06 株式会社デンソー Refrigerant condenser
DE102005005187A1 (en) * 2005-02-03 2006-08-10 Behr Gmbh & Co. Kg Condenser for an air conditioning system, in particular a motor vehicle
DE102007009923A1 (en) * 2007-02-27 2008-08-28 Behr Gmbh & Co. Kg Condenser for air conditioning system, has accumulator in refrigerant-connection with undercooling section via overflow hole, and downpipe communicating with another overflow hole, at inlet side via inflow chamber arranged in accumulator
JP2010139089A (en) * 2008-12-09 2010-06-24 Showa Denko Kk Heat exchanger
DE102011002984A1 (en) * 2011-01-21 2012-07-26 Behr Gmbh & Co. Kg Refrigerant condenser assembly
JP6459799B2 (en) * 2014-06-30 2019-01-30 株式会社デンソー Condenser
JP6358167B2 (en) * 2015-05-14 2018-07-18 株式会社デンソー Condenser
JP6500599B2 (en) * 2015-05-26 2019-04-17 株式会社デンソー Condenser
JP6406127B2 (en) * 2015-05-26 2018-10-17 株式会社デンソー Condenser
JP6428934B2 (en) * 2015-05-26 2018-11-28 株式会社デンソー Condenser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288425A (en) * 1997-04-11 1998-10-27 Zexel Corp Tank casing for receiver tank
JP2000074527A (en) * 1998-06-16 2000-03-14 Denso Corp Liquid receiver integrated refrigerant condenser
JP2008529877A (en) * 2005-06-02 2008-08-07 株式会社デンソー Air conditioner condenser
DE102010001543A1 (en) * 2010-02-03 2011-08-04 Behr GmbH & Co. KG, 70469 Heat exchanger, particularly condenser for motor vehicle air conditioning system, comprises external collecting container, which serves as reservoir for fluid flowing through heat exchanger
JP2013536780A (en) * 2010-08-31 2013-09-26 ベール ゲーエムベーハー ウント コー カーゲー Refrigerant condenser assembly
JP2012067939A (en) * 2010-09-21 2012-04-05 Denso Corp Condenser
JP2014173831A (en) * 2013-03-13 2014-09-22 Keihin Thermal Technology Corp Condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026707A1 (en) * 2017-08-01 2019-02-07 株式会社デンソー Cylinder component
JP2019027719A (en) * 2017-08-01 2019-02-21 株式会社デンソー Cylinder component

Also Published As

Publication number Publication date
JP6460233B2 (en) 2019-01-30
JPWO2016190025A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP5775715B2 (en) Capacitor
US20050056049A1 (en) Heat exchanger module
US9328651B2 (en) Heat exchanger
JP2012247148A (en) Condenser
JP6428934B2 (en) Condenser
JP6459799B2 (en) Condenser
JP2016090217A (en) Lamination type heat exchanger
JP2012154604A (en) Condenser
JP6358167B2 (en) Condenser
JP6460233B2 (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JPH11304301A (en) Liquid receiver, and liquid receiver integrated condenser
JP2011185562A (en) Condenser
JP6406127B2 (en) Condenser
JP5622411B2 (en) Capacitor
JP6500599B2 (en) Condenser
JP2017172866A (en) Condenser
JP6119488B2 (en) Receiver and receiver-integrated condenser
JP2012159245A (en) Condenser
JP5753694B2 (en) Capacitor
WO2020255883A1 (en) Cooling device
JP2008190770A (en) Cooling module
JP2017083023A (en) Condenser
JP2017172865A (en) Condenser
JP2018076983A (en) Condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799733

Country of ref document: EP

Kind code of ref document: A1