WO2016190013A1 - 移動体端末 - Google Patents

移動体端末 Download PDF

Info

Publication number
WO2016190013A1
WO2016190013A1 PCT/JP2016/062592 JP2016062592W WO2016190013A1 WO 2016190013 A1 WO2016190013 A1 WO 2016190013A1 JP 2016062592 W JP2016062592 W JP 2016062592W WO 2016190013 A1 WO2016190013 A1 WO 2016190013A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
terminal
antenna
reception level
counterpart
Prior art date
Application number
PCT/JP2016/062592
Other languages
English (en)
French (fr)
Inventor
佑介 高木
秀一 竹花
俊平 布施
重人 鈴木
俊明 亀野
二寛 青木
文代 佐藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017520297A priority Critical patent/JP6448783B2/ja
Priority to US15/576,489 priority patent/US20180167835A1/en
Publication of WO2016190013A1 publication Critical patent/WO2016190013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a mobile terminal that can communicate with a base station.
  • various communication terminals such as smartphones display a pictogram (hereinafter, also referred to as “antenna pict”) that visually represents the reception level of radio waves from an antenna on the display of the communication terminal.
  • a pict a pictogram
  • Patent Document 1 discloses an in-vehicle information terminal as a communication terminal capable of displaying the antenna picture.
  • This in-vehicle information terminal can be connected to a base station via a mobile phone.
  • the in-vehicle information terminal acquires the communication sensitivity between the mobile phone and the base station from the mobile phone.
  • the in-vehicle information terminal detects the wireless communication sensitivity between the in-vehicle information terminal and the mobile phone.
  • the in-vehicle information terminal generates an icon according to the communication sensitivity between the mobile phone and the base station, and selects a display color according to the radio communication sensitivity between the in-vehicle information terminal and the mobile phone. Two types of communication sensitivities are displayed in a common area with icons and display colors.
  • terminal-to-terminal (D2D: device-to-device) communication is known in which terminals (terminals: User Equipment) communicate with each other without going through a base station (eNB: evolved NodeB). Inter-terminal communication is also called D2D Proximity Services (ProSe). Proximity Services is standardized in Release 12 of 3GPP (3rd Generation Partnership Project).
  • the user of the mobile terminal capable of the above-described communication between terminals can immediately confirm the reception level of radio waves in communication with the base station by antenna pictogram, the user immediately confirms the reception level of radio waves in communication between terminals. It is not possible.
  • the vehicle-mounted information apparatus of patent document 1 is not the structure which communicates directly with a base station.
  • the present invention has been made in view of the above problems, and is capable of immediately confirming not only the reception level of radio waves in communication with a base station but also the reception level of radio waves in communication between terminals. To provide a terminal.
  • the mobile terminal can perform inter-terminal communication.
  • the mobile terminal includes a control unit and a display unit.
  • the control unit includes a first antenna pictogram based on a reception level of a radio wave transmitted by a base station, and a second antenna pictogram based on a reception level of a radio wave transmitted by a first counterpart terminal in inter-terminal communication. Display on the display.
  • the user of the mobile terminal can immediately confirm not only the radio wave reception level in communication with the base station but also the radio wave reception level in inter-terminal communication.
  • FIG. 1 is a diagram for explaining a first aspect in a communication system 10;
  • FIG. It is a figure for demonstrating the antenna pic of UE1 and UE2 in the state of FIG. It is a figure for demonstrating the antenna picture displayed on UE1 in the 1st situation shown in FIG. It is a figure for demonstrating the antenna picture of UE1.
  • 3 is a diagram for explaining a second aspect in the communication system 10.
  • FIG. It is a figure for demonstrating the antenna pic of UE1 in the state of FIG. 3 is a diagram for explaining a third aspect of the communication system 10.
  • FIG. It is a figure for demonstrating the antenna picture of UE1 in the state of FIG.
  • a mobile terminal (hereinafter referred to as “UE”) that constitutes a communication system will be described below.
  • UE mobile terminal
  • the same reference numerals are assigned to the same members. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  • examples of the UE include various communication terminals such as a smartphone, a tablet terminal, and a fablet terminal.
  • the UE is limited to these configurations as long as it can perform communication with a base station (hereinafter referred to as “eNB”) and communication between terminals (hereinafter referred to as “D2D communication”). It is not a thing.
  • eNB base station
  • D2D communication communication between terminals
  • FIG. 1 is a diagram for explaining a first aspect of the communication system 10.
  • communication system 10 includes base station eNB 9, UE 1 that is a mobile station located within the communication range of eNB 9, and a D2D communication counterpart terminal of UE 1. It is comprised by UE2 which is.
  • Each of UE1 and UE2 is a terminal capable of D2D communication.
  • UE1 is located in a cell 900 configured by eNB9 (that is, in an in-coverage state). Therefore, UE1 can perform LTE (Long Term Evolution) communication with eNB9.
  • UE2 is not located in cell 900 (that is, in an out-of-coverage state). Therefore, UE2 cannot perform LTE communication with eNB9. Further, UE1 and UE2 have started D2D communication with each other.
  • each of UE1 and UE2 displays an antenna picture on the display part 300.
  • FIG. 2 is a diagram for explaining antenna picts of UE1 and UE2 in the state of FIG.
  • FIG. 2A is a diagram for explaining an antenna picture displayed in UE1.
  • FIG. 2B is a diagram for explaining the antenna picture displayed in UE2.
  • UE1 is the 1st antenna pict 319 (henceforth, based on the battery pict 311 showing a battery remaining charge, and the reception level (that is, radio wave strength) of the radio wave transmitted by eNB9. , Also referred to as “LTE antenna pict 319”) and a second antenna pict 312 (hereinafter referred to as “D2D antenna pict 312”) based on the reception level of the radio wave transmitted by the counterpart terminal (UE2 in this case) in D2D communication. Is also displayed on the display unit 300. Specifically, the UE 1 displays the battery pic 311, the D2D antenna pic 312, and the LTE antenna pic 319 on the status bar 310 displayed on the display unit 300.
  • the UE1 is located in eNB9 as described above. Therefore, the LTE antenna picture 319 is in a display mode indicating that the radio wave can be received from the eNB 9. Moreover, UE1 is performing D2D communication with UE2. Therefore, the D2D antenna pict 312 is in a display mode indicating that radio waves can be received from a partner terminal of D2D communication.
  • the LTE antenna pict 319 includes identification information for clearly indicating that the pict is for LTE communication.
  • UE1 displays the character string “LTE” in the vicinity of a plurality of antenna bars.
  • the D2D antenna pict 312 includes identification information for clearly indicating that the pict is for D2D communication.
  • UE1 displays the character string “D2D” in the vicinity of a plurality of antenna bars.
  • UE 2 displays battery pic 311, LTE antenna pic 319, and D2D antenna pic 312 on display unit 300. Specifically, the UE 2 displays the battery pic 311, the D2D antenna pic 312, and the LTE antenna pic 319 on the status bar 310 in the same manner as the UE 1.
  • the LTE antenna picture 319 has a display form indicating that it is in a state where it cannot receive radio waves from the eNB 9 (out of service area).
  • the UE 2 sets the color of the four bars included in the LTE antenna picture 319 to be white (that is, each of the four bars is displayed in white).
  • the D2D antenna picture 312 has a display mode indicating that it can receive radio waves from a partner terminal of D2D communication, like the UE1.
  • each of UE1 and UE2 can display LTE antenna picture 319 and D2D antenna picture 312 on display unit 300. Therefore, each user of UE1 and UE2 can immediately confirm not only the reception level of radio waves in communication with eNB 9, but also the reception level of radio waves in D2D communication.
  • a UE that is in the eNB 9 and is performing D2D communication with another UE that is not in the eNB 9 is also referred to as an “owner UE”.
  • owner UE a UE that is in the eNB 9 and is performing D2D communication with another UE that is not in the eNB 9
  • UE1 corresponds to the owner UE.
  • UE2 corresponds to the 1st other party terminal which is a D2D communication other party of UE1.
  • Mode 1 that is the first operation mode is an operation mode in which radio resources allocated by the eNB are used to communicate with the counterpart UE.
  • Mode 2 that is the second operation mode is an operation mode in which radio resources allocated by the owner UE itself are used to communicate with the counterpart UE.
  • the owner UE allocates radio resources in a predetermined radio resource pool to D2D communication between the owner UE and the UE of the communication partner.
  • the owner UE When the UE of the communication partner is in the cell where the owner UE is located, the owner UE operates in Mode1. In this case, the communication partner UE also operates in Mode1. On the other hand, when the communication partner UE is not located in the cell where the owner UE is located, the owner UE operates in Mode2. In this case, the communication partner UE also operates in Mode2.
  • the owner UE is UE1.
  • UE2 as the communication partner is not located in the cell 900 where UE1 is located. Therefore, each of UE1 and UE2 operates in Mode2. If UE2 is located in cell 900 where UE1 is located, each of UE1 and UE2 operates in Mode1.
  • FIG. 3 is a diagram for explaining an antenna picture displayed on the UE 1 in the first aspect shown in FIG.
  • UE1 displays battery pic 311, LTE antenna pic 319, and D2D antenna pic 312 ⁇ / b> A on display unit 300.
  • UE1 displays D2D antenna picto 312A on status bar 310 instead of D2D antenna picto 312 (see FIG. 2A).
  • UE1 is operating in Mode2. For this reason, UE1 displays in a state where information indicating that it is operating in Mode2 is included in the D2D antenna pict 312A. That is, the D2D antenna picture 312A includes information indicating that it is operating in Mode2. Typically, UE1 displays the abbreviation of Mode2 (in the case of FIG. 3, "M2") in the vicinity of a plurality of antenna bars. In this case, since the user of UE1 can confirm from the status bar 310 that UE1 is operating in Mode2, it can be seen that UE2 is not located in the cell 900 where UE1 is located. That is, the user of UE1 knows that UE2 is in an “Out-of-coverage” state.
  • Mode2 in the case of FIG. 3, "M2”
  • UE1 displays information indicating that it is operating in Mode1 in the D2D antenna picture 312A.
  • UE1 displays the abbreviation of Mode1 (“M1” in the case of FIG. 3) in the vicinity of a plurality of antenna bars.
  • M1 the abbreviation of Mode1
  • UE2 is located in the cell 900 where UE1 is located. That is, the user of UE1 knows that UE2 is in the “In-coverage” state.
  • UE1 when UE2 is located in cell 900 configured by eNB9, UE1 communicates with UE2 using radio resources allocated by eNB9 as an operation mode when executing D2D communication. Works with. Moreover, when UE2 is not located in the cell 900 which eNB9 comprises, UE1 operate
  • antenna pictures displayed by the UE 1 in each of the case where the eNB configuring the cell where the UE 1 is located have the above function and the case where the eNB does not have the function will be described. That is, the antenna picture displayed by the UE 1 in each of the case where the eNB supports D2D communication and the case where the eNB does not support D2D communication will be described.
  • the UE1 determines whether the eNB is compatible with D2D communication based on cell information included in the broadcast information transmitted from the eNB. Also, in the following, as an example, it is assumed that UE1 is in a cell configured by the eNB, and UE1 is the owner UE.
  • FIG. 4 is a diagram for explaining the antenna pictogram of UE1.
  • FIG. 4A is a diagram for explaining the antenna picture displayed by the UE 1 when the eNB is compatible with D2D communication.
  • FIG. 4B is a diagram for explaining the antenna picture displayed by the UE 1 when the eNB does not support D2D communication.
  • UE 1 displays battery pic 311, LTE antenna pic 319, and D2D antenna pic 312 on status bar 310 as in FIG. 2 (A).
  • UE1 since UE1 represents the reception level in LTE communication, all or a part of the plurality of antenna bars constituting the LTE antenna picture 319 (in the case of FIG. 4A, four antenna bars) All) is a predetermined first color (for example, blue). In addition, since UE1 represents the reception level in D2D communication, all or part of the plurality of antenna bars constituting the D2D antenna pict 312 (in the case of FIG. 4A, of the four antenna bars) 3 antenna bars) are set to a predetermined first color (for example, blue). Note that UE1 sets the remaining one of the four antenna bars to white.
  • a predetermined first color for example, blue
  • UE 1 displays battery pic 311, LTE antenna pic 319, and D2D antenna pic 312 on status bar 310.
  • all or part of the plurality of antenna bars constituting the LTE antenna picture 319 (FIG. 4 ( In the case of A), all four antenna bars) are set to a predetermined second color (for example, red) different from the first color.
  • UE1 If the eNB 9 does not support D2D communication, the UE1 cannot start D2D communication with the UE2. For this reason, UE1 indicates that D2D communication is impossible, and therefore all of the plurality of antenna bars constituting the D2D antenna pict 312 (in the case of FIG. 4A, four antenna bars). Is white. Furthermore, UE1 includes a symbol (typically a cross) indicating that D2D communication is impossible in D2D antenna pict 312.
  • the user of UE1 who is the owner UE starts D2D communication by checking the red LTE antenna pict 319 when the LTE antenna pict 319 is red (specifically, one or more antenna bars are red). You can judge what you can't do.
  • the D2D antenna picture 312 may not be displayed. Even in this case, the user of UE1 can determine that the D2D communication cannot be started by checking the red LTE antenna picture 319.
  • FIG. 5 is a diagram for explaining a second aspect of the communication system 10.
  • communication system 10 includes eNB 9, UE 1, UE 2, and UE 3.
  • UE1 is located in the cell 900 configured by the eNB9. On the other hand, each of UE2 and UE3 is not located in cell 900. D2D communication is established between UE1 and UE2. In addition, D2D communication is established between UE2 and UE3. Specifically, UE1 is in a state where communication with UE3 is possible via UE2. That is, UE1 uses UE2 as a repeater (hereinafter referred to as “relay”) for communication with UE3.
  • relay a repeater
  • UE1 corresponds to the owner UE.
  • UE2 corresponds to a first counterpart terminal that is a D2D communication counterpart of UE1, and
  • UE3 corresponds to a second counterpart terminal that is a D2D communication counterpart of UE2.
  • FIG. 6 is a diagram for explaining the antenna picture of UE1 in the state of FIG. Referring to FIG. 6, UE1 displays battery pic 311, LTE antenna pic 319, and D2D antenna pics 312B and 313B on status bar 310.
  • the D2D antenna picture 312B is an antenna picture based on the reception level of the radio wave transmitted by the UE 2 in the D2D communication.
  • the D2D antenna pict 313B is an antenna pict about UE3.
  • the D2D antenna pict 312B includes identification information for clearly indicating that the pict is for D2D communication.
  • UE1 displays a D2D character string in the vicinity of a plurality of antenna bars.
  • the D2D antenna pict 312B includes identification information for clearly indicating that it is related to UE2.
  • UE1 displays the character string “UE2” in the vicinity of a plurality of antenna bars.
  • the D2D antenna picture 312B includes information indicating the operation mode of the UE1.
  • the D2D antenna pict 313B also includes various types of identification information, like the D2D antenna pict 312B.
  • the UE 1 calculates the reception level of the radio wave transmitted by the UE 3 using the communication with the UE 3 via the UE 2 (hereinafter also referred to as “first method”).
  • the UE 1 acquires the reception level of the radio wave transmitted by the UE 3 measured by the UE 2 from the UE 2 (hereinafter also referred to as “second method”).
  • the UE1 displays the D2D antenna picture 313B based on the calculated or acquired reception level. Details of the first method and the second method will be described later.
  • UE1 displays D2D antenna picture 313B in addition to D2D antenna picture 312B. Therefore, the user of UE1 knows that UE1 can communicate with UE3 via UE2.
  • FIG. 7 is a diagram for explaining a third aspect of the communication system 10.
  • communication system 10 includes eNB 9, UE 1, UE 2, UE 3, and UE 4.
  • UE1 is located in the cell 900 configured by the eNB9.
  • each of UE2, UE3, and UE4 is not located in cell 900.
  • D2D communication has been established between UE1 and UE2.
  • D2D communication is established between UE2 and UE3.
  • D2D communication is established between UE1 and UE4.
  • D2D communication is established between UE3 and UE4.
  • UE1 is in a state where it can communicate with UE3 via UE2. Further, UE1 is in a state in which it can communicate with UE3 via UE4. That is, UE1 uses UE2 and UE3 as relays for communication with UE3.
  • UE1 corresponds to the owner UE.
  • UE2 corresponds to a first partner terminal that is a D2D communication partner of UE1
  • UE4 corresponds to a third partner terminal that is a D2D communication partner of UE1 different from UE2
  • UE3 is a D2D communication of UE2 and UE4.
  • the second partner terminal corresponds to the partner.
  • FIG. 8 is a diagram for explaining the antenna picture of UE1 in the state of FIG. Referring to FIG. 8, UE1 displays battery pic 311, LTE antenna pic 319, and D2D antenna pics 312B, 313B, and 314 on status bar 310. That is, UE1 is different from UE1 in FIG. 6 in that D2D antenna pict 314 is displayed.
  • the D2D antenna pict 314 is an antenna pict based on the reception level of the radio wave transmitted by the UE 4 in the D2D communication.
  • the D2D antenna pict 313B is an antenna pict about the UE3.
  • UE1 uses UE2 as a relay and UE1 uses UE4 as a relay, based on the reception level calculated by the first method or acquired by the second method, based on the reception level of UE1.
  • the D2D antenna pict 313B related to UE3 is displayed on the status bar 310.
  • UE1 functions as a relay as well as UE3, which is a communication partner with which a user of UE1 desires data communication (that is, a UE described as a transmission destination in data transmitted by UE1).
  • Antenna pictograms for UE 2 and 4 are displayed on status bar 310. Therefore, the user of UE1 can also know the reception level of the UE functioning as a relay.
  • a communication partner that the user of UE1 desires to perform data communication is referred to as a “partner UE” and a UE functioning as a relay is referred to as a “relay UE”.
  • the D2D antenna pictogram may not fit in the status bar 310.
  • the owner UE (UE1 in the case of FIG. 9) hides the antenna picture relating to the relay UE. As a result, it is possible to prevent the occurrence of a situation in which the antenna picture of the counterpart UE is not displayed on the status bar.
  • FIG. 9 is a diagram showing a case where UE1, which is the owner UE, hides the antenna pictogram related to the relay UE in a certain situation.
  • UE1 which is the owner UE, hides the antenna pictogram related to the relay UE in a certain situation.
  • D2D antenna pictures 312 ⁇ / b> B and 314 are not displayed. Thereby, the user of UE1 can visually recognize the antenna picture (that is, D2D antenna picture 313B) about UE3 which is the other party UE.
  • UE2 has the following configuration.
  • UE2 functioning as a relay displays an antenna picture based on the reception level of the radio wave transmitted by UE1 in D2D communication and an antenna picture based on the reception level of the radio wave transmitted by UE3 in D2D communication on the status bar of display unit 300. It is displayed on 310.
  • the user of UE2 can visually recognize the reception level of radio waves in D2D communication between two different UEs.
  • UE4 has the same effect as UE2.
  • UE1 may display only the antenna pict having the highest reception level among the plurality of antenna picts related to the plurality of relay UEs. For example, in the case of the communication state similar to FIG. 8, UE1 may display only D2D antenna pic 312B among D2D antenna pics 312B and 314. In this case, the state of the status bar 310 in the UE 1 is the same as the state of the status bar 310 shown in FIG.
  • FIG. 10 is a diagram for describing a functional configuration of UE1.
  • UE1 includes a control unit (processor or the like) 110, a storage unit 120, a display unit (display or the like) 300, and a communication processing unit 140.
  • the control unit 110 controls the overall operation of the UE1.
  • the storage unit 120 stores an operating system, various application programs, and various data.
  • the display unit 300 displays various images (screens).
  • the communication processing unit 140 performs various processes (RF processing, baseband processing, etc.) for executing communication with an eNB such as the eNB 9 and D2D communication with another UE.
  • the control unit 110 corresponds to a processor (typically, a CPU (Central Processing Unit)). Specifically, the control unit 110 is realized by a processor executing an operating system and an application program stored in the storage unit 120.
  • the storage unit 120 corresponds to a memory.
  • the memory is typically composed of ROM (Read Only Memory), RAM (Random Access Memory), flash memory, and the like.
  • the display unit 300 corresponds to a display.
  • the communication processing unit 140 includes a transmission unit 141 and a reception unit 142.
  • the transmission unit 141 includes an LTE transmission unit 1411 and a D2D transmission unit 1412.
  • the receiving unit 142 includes an LTE receiving unit 1421 and a D2D receiving unit 1422.
  • the communication processing unit 140 is used for communication with the eNB and D2D communication with other UEs.
  • the communication processing unit 140 executes communication with other devices based on a command from the control unit 110.
  • the transmission unit 141 transmits data to the eNB and other UEs.
  • the LTE transmission unit 1411 transmits data to the eNB.
  • the D2D transmission unit 1412 transmits data to other UEs by D2D communication.
  • the receiving unit 142 receives data from the eNB and other UEs.
  • the LTE receiving unit 1421 receives data from the eNB.
  • the D2D receiving unit 1422 receives data from other UEs by D2D communication.
  • Control unit 110 includes a reception level measurement unit 111, a reception level determination unit 112, and a reception level measurement unit 113.
  • the reception level measuring unit 111 periodically measures the reception level of the radio wave transmitted by the eNB 9.
  • the reception level measurement unit 111 periodically measures the reception level of radio waves transmitted by the counterpart terminal (including the relay) in D2D communication.
  • the reception level measuring unit 111 measures the reception level of the radio wave transmitted by the eNB 9 and the reception level of the radio wave transmitted by the UE 2.
  • reception level measuring section 111 measures the reception level of radio waves transmitted by eNB 9 and the reception level of radio waves transmitted by each of UE 2 and UE 4.
  • the reception level measurement of the radio wave transmitted from the eNB is performed by the reception level measurement unit 111 of the UE 1 measuring the reception quality (RSRP or the like) from the RS (Reference Signal) signal.
  • RSRP Reference Signal
  • UE1 communicates with other UEs such as UE2 using the band of the UL (Up Link) signal of UE. Therefore, the reception level measurement in the D2D communication is performed by the reception level measurement unit 111 of the UE 1 measuring the reception quality from the RS signal in the UL signal. Specifically, the reception level measurement unit 111 measures reception quality (such as RSRP) from RS signals transmitted from other UEs.
  • reception quality such as RSRP
  • UE1 used RSRP for the measurement of reception quality, other (RSRQ etc.) may be used if it represents reception quality.
  • RSRP Reference Signal Received Power
  • the RS is transmitted without being biased in terms of frequency and time, and is not affected by the amount of traffic.
  • the RSRP is a value that is almost determined by the fixed installation conditions of the eNB such as the transmission power of the eNB, the direction and height of the antenna, and the measurement environment such as the distance from the eNB and an obstacle. Therefore, RSRP is used as a basic parameter for evaluating the reception level of radio waves from the eNB.
  • the reception level determination unit 112 is a functional block for executing the above-described first method.
  • UE1 when UE1 performs the 2nd method mentioned above instead of the said 1st method, UE1 should just be comprised so that a reception level acquisition part may be provided instead of the reception level determination part 112.
  • FIG. The reception level acquisition unit will be described later.
  • the reception level determination unit 112 determines (calculates) the reception level of the radio wave transmitted by the UE 3 using communication with the UE 3 via the UE 2. Specifically, when determining the reception level, the UE 1 executes processes (i), (ii), and (iii) using training signals as follows.
  • UE1 that is the owner UE embeds a training signal in DL (Down Link) data addressed to UE3 that is the counterpart UE, and transmits the DL data via the relay UE2 or the like.
  • UE3 inserts the training signal into the UL data as it is and transmits it. That is, UE3 loops back the training signal to UE1.
  • the reception level determination unit 112 of the UE 1 calculates the appreciation rate of the training signal of the UE 3 and determines the reception level (reception quality) based on the calculated value. Specifically, the reception level determination unit 112 calculates the error rate by comparing the transmission of the training signal transmitted from the UE1 and the training signal received from the UE3 via the UE2, and the calculated value The reception level is determined based on the above.
  • the reception level measurement unit 113 is used when the UE1 functions as a relay UE.
  • the reception level measurement unit 113 is different from the first to third aspects described above. For example, when the UE 1 is performing D2D communication with an owner UE (not shown), the reception level measurement unit 113 receives radio waves transmitted from the owner UE. Measure the reception level.
  • the reception level measurement unit 113 receives radio waves transmitted from the other relay UE. Measure the level.
  • the reception level measurement unit 113 is sent from a UE located on the opposite side of the eNB in measuring a reception level of a radio wave sent from the UE located on the eNB side in a series of relay networks. This is different from the reception level measurement unit 111 that measures the reception level of radio waves.
  • the control unit 110 displays the antenna picture for displaying the various reception levels on the display unit 300 according to the situation of the UE1. Specifically, the control unit 110 displays various antenna pictures shown in FIGS. 2A, 3, 4, 6, 8, and 9 on the display unit 300.
  • the UEs 2, 3, and 4 have the same configuration as the UE 1, the functional configurations of the UEs 2, 3, and 4 are not repeatedly described here.
  • UE1 etc. demonstrated and demonstrated the structure provided with the reception level determination part 112 as an example. That is, the configuration in which the UE 1 or the like executes the above-described first method has been described as an example.
  • etc. Demonstrates the structure which performs the 2nd method mentioned above instead of the said 1st method.
  • the second aspect see FIG. 5 will be described as an example.
  • UE1 and the like include a reception level acquisition unit (not shown) instead of the reception level determination unit 112 as described above in order to execute the second method.
  • UE2 which is a relay UE, measures the reception level of the radio wave transmitted from UE3. Furthermore, UE2 inserts the measured result (reception level) into data transmitted to UE1, and transmits the data to UE1.
  • the reception level acquisition unit of the UE1 acquires the reception level of the counterpart UE3 by demodulating the data transmitted from the UE2. That is, the reception level acquisition unit acquires the reception level of the radio wave transmitted by UE3, measured by UE2, from UE2.
  • the UE 1 can display the antenna picture relating to the UE 3 (D2D antenna picture 313B in FIG. 6) on the status bar 310.
  • FIG. 11 is a flowchart for explaining the flow of processing in UE1.
  • UE1 that is the owner UE starts preparation for D2D communication.
  • UE1 judges whether eNB9 respond
  • step S6 UE1 starts D2D communication with other UEs (for example, UE2 and UE4). If it is determined that they are not compatible (NO in step S4), in step S16, the UE 1 changes the color of the LTE antenna picture 319 from blue (first color) to red (second color).
  • step S8 UE1 determines whether or not a relay UE is necessary when communicating with the counterpart UE. For example, UE1 determines whether or not a relay UE is necessary based on whether or not it can communicate with the counterpart UE (UE3 in the second and third aspects) via D2D communication without passing through another UE. to decide.
  • step S18 the reception level of the UE that is the communication partner of the D2D communication (for example, UE2 in the first aspect) is measured.
  • step S ⁇ b> 20 the UE 1 displays the LTE antenna pict and the D2D antenna pict on the status bar 310 displayed on the display unit 300. For example, in the first aspect, UE1 performs the display shown in FIG.
  • step S10 the UE 1 determines the reception level of the counterpart UE using, for example, the first method described above. Or UE1 acquires the receiving level of the other party UE from relay UE using the 2nd method mentioned above.
  • step S12 UE1 determines whether or not all D2D antenna pictures for the counterpart UE and relay UE can be displayed on status bar 310.
  • step S14 UE1 displays the antenna pictograms of all UEs on status bar 310, for example, as shown in FIG. If it is determined that display is impossible (NO in step S12), in step S16, for example, as shown in FIG. 9, UE1 displays the antenna pictogram of only the counterpart UE for D2D communication as shown in FIG. To do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動体端末であるUE(1)は、端末間通信が可能である。UE(1)は、基地局によって送信された電波の受信レベルに基づくLTE用アンテナピクト(319)と、端末間通信においてUE(2)によって送信された電波の受信レベルに基づくD2D用アンテナピクト(312)とを、表示部(300)に表示する。UE(1)によれば、基地局との通信における電波の受信レベルのみならず、端末間通信における電波の受信レベルを即座に確認することが可能となる。

Description

移動体端末
 本発明は、基地局と通信可能な移動体端末に関する。
 従来、スマートフォン等の各種の通信端末は、アンテナによる電波の受信レベルを視覚的に表すピクトグラム(以下、「アンテナピクト」とも称する)を、当該通信端末のディスプレイに表示する。
 たとえば、特開2006-332942号公報(特許文献1)には、上記アンテナピクトを表示可能な通信端末として、車載情報端末が開示されている。この車載情報端末は、携帯電話機を介して基地局に接続可能である。車載情報端末は、携帯電話機と基地局との間の通信感度を、携帯電話機から取得する。また、車載情報端末は、車載情報端末と携帯電話機との間の無線通信感度を検知する。さらに、車載情報端末は、携帯電話機と基地局との間の通信感度に応じたアイコンを生成するとともに、車載情報端末と携帯電話機との間の無線通信感度に応じた表示色を選択することにより、2種類の通信感度を共通の領域にアイコンと表示色とにより表示する。
 また、従来、基地局(eNB:evolved NodeB)を介さずに端末(端末:User Equipment)同士が通信を行なう端末間(D2D: device to device)通信が知られている。端末間通信は、D2D Proximity Services (ProSe)とも称される。Proximity Servicesは、3GPP(3rd Generation Partnership Project)のRelease 12において規格化されている。
特開2006-332942号公報
 しかしながら、上記の端末間通信が可能な移動体端末のユーザは、基地局との通信における電波の受信レベルをアンテナピクトにより即座に確認できるものの、端末間通信における電波の受信レベルを即座に確認することはできない。なお、特許文献1の車載情報装置は、基地局と直接的に通信する構成ではない。
 本願発明は、上記の問題点に鑑みなされたものであって、基地局との通信における電波の受信レベルのみならず、端末間通信における電波の受信レベルを即座に確認することが可能な移動体端末を提供することにある。
 本発明のある局面に従うと、移動体端末は、端末間通信が可能である。移動体端末は、制御部と、表示部とを備える。制御部は、基地局によって送信された電波の受信レベルに基づく第1のアンテナピクトグラムと、端末間通信において第1の相手端末によって送信された電波の受信レベルに基づく第2のアンテナピクトグラムとを、表示部に表示させる。
 本発明によれば、移動体端末のユーザは、基地局との通信における電波の受信レベルのみならず、端末間通信における電波の受信レベルを即座に確認することが可能となる。
通信システム10における第1の局面を説明するための図である。 図1の状態におけるUE1およびUE2のアンテナピクトを説明するための図である。 図1に示す第1の局面においてUE1に表示されるアンテナピクトを説明するための図である。 UE1のアンテナピクトを説明するための図である。 通信システム10における第2の局面を説明するための図である。 図5の状態におけるUE1のアンテナピクトを説明するための図である。 通信システム10における第3の局面を説明するための図である。 図7の状態におけるUE1のアンテナピクトを説明するための図である。 ある局面において、オーナーUEであるUE1が、リレーに関するアンテナピクトを非表示とした場合を表した図である。 UE1の機能的構成を説明するための図である。 UE1における処理の流れを説明するためのフローチャートである。
 以下、図面を参照しつつ、本発明の各実施の形態に係る通信システムについて説明する。特に、以下では、通信システムを構成する移動体端末(以下、「UE」と称する)について説明する。また、以下の説明では、同一の部材には同一の参照符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 なお、UEとしては、スマートフォン、タブレット端末、ファブレット端末等の各種の通信端末が挙げられる。ただし、UEは、基地局(以下、「eNB」と称する)との間の通信と、端末間通信(以下、「D2D通信」と称する)とが可能な構成であれば、これらに限定されるものではない。
 以下では、まず、3つの局面を例に挙げ、各々のシチュエーションでUEが表示するアンテナピクトを説明する。なお、「ピクト」は、「ピクトグラム」を表す。
 <A.第1の局面>
 図1は、通信システム10における第1の局面を説明するための図である。図1を参照して、第1の局面においては、通信システム10は、基地局であるeNB9と、eNB9の通信範囲内に在圏している移動局であるUE1と、UE1のD2D通信相手端末であるUE2とによって構成されている。
 UE1およびUE2の各々は、D2D通信が可能な端末である。UE1は、eNB9が構成するセル900に在圏している(つまり、In-coverageの状態にある)。それゆえ、UE1は、eNB9とLTE(Long Term Evolution)通信を行なうことができる。一方、UE2は、セル900に在圏していない(つまり、Out-of-coverageの状態にある)。それゆえ、UE2は、eNB9とLTE通信を行えない。また、UE1およびUE2は、互いにD2D通信を開始している。また、詳細については後述するが、UE1およびUE2の各々は、表示部300にアンテナピクトを表示する。
 図2は、図1の状態におけるUE1およびUE2のアンテナピクトを説明するための図である。図2(A)は、UE1において表示されるアンテナピクトを説明するための図である。図2(B)は、UE2において表示されるアンテナピクトを説明するための図である。
 図2(A)を参照して、UE1は、電池残量を表す電池ピクト311と、eNB9によって送信された電波の受信レベル(すわわち、電波強度)に基づく第1のアンテナピクト319(以下、「LTE用アンテナピクト319」とも称する)と、D2D通信において相手端末(この場合、UE2)によって送信された電波の受信レベルに基づく第2のアンテナピクト312(以下、「D2D用アンテナピクト312」とも称する)とを、表示部300に表示する。詳しくは、UE1は、電池ピクト311と、D2D用アンテナピクト312と、LTE用アンテナピクト319とを、表示部300に表示されたステータスバー310に表示する。
 UE1は、上述したようにeNB9に在圏している。それゆえ、LTE用アンテナピクト319は、eNB9から電波を受信可能な状態にあることを示す表示態様となっている。また、UE1は、UE2とD2D通信を行なっている。それゆえ、D2D用アンテナピクト312は、D2D通信の相手端末から電波を受信可能な状態にあることを示す表示態様となっている。
 LTE用アンテナピクト319は、当該ピクトがLTE通信用であることを明示するための識別情報を含む。典型的には、UE1は、“LTE”の文字列を、複数本で構成されるアンテナバーの近傍に表示する。また、D2D用アンテナピクト312は、当該ピクトがD2D通信用であること明示するための識別情報を含む。典型的には、UE1は、“D2D”の文字列を、複数本で構成されるアンテナバーの近傍に表示する。
 図2(B)を参照して、UE2は、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312とを、表示部300に表示する。詳しくは、UE2は、UE1と同様に、電池ピクト311と、D2D用アンテナピクト312と、LTE用アンテナピクト319とを、ステータスバー310に表示する。
 UE2は、上述したようにeNB9に在圏していない。それゆえ、LTE用アンテナピクト319は、eNB9から電波を受信不可能な状態(圏外の状態)にあることを示す表示態様となっている。一例として、UE2は、LTE用アンテナピクト319に含まれる4本のバーの色を、白色(つまり、4本のバーの各々を白抜き表示)とする。
 また、UE2は、UE1とD2D通信を行なっている。それゆえ、D2D用アンテナピクト312は、UE1と同様に、D2D通信の相手端末から電波を受信可能な状態にあることを示す表示態様となっている。
 以上のように、UE1およびUE2の各々は、LTE用アンテナピクト319と、D2D用アンテナピクト312とを表示部300に表示することができる。したがって、UE1およびUE2の各ユーザは、eNB9との通信における電波の受信レベルのみならず、D2D通信における電波の受信レベルを即座に確認することが可能となる。
 なお、以下では、eNB9に在圏し、かつeNB9に在圏していない他のUEとの間でD2D通信を行なっているUEを、「オーナーUE」とも称する。たとえば、図1の場合には、UE1がオーナーUEに該当する。また、UE2は、UE1のD2D通信相手である第1の相手端末に該当する。
 (第1の変形例)
 以下、D2D用アンテナピクト表示についての第1の変形例について説明する。
 D2D通信の規格では、D2D通信を実行する場合の動作として、2つの動作モードが規定されている。第1の動作モードである「Mode1」は、eNBにより割り当てられた無線リソースを用いて相手のUEと通信する動作モードである。第2の動作モードである「Mode2」は、オーナーUE自身によって割り当てられた無線リソースを用いて相手のUEと通信する動作モードである。詳しくは、Mode2においては、オーナーUEは、予め定められた無線リソースプールの中の無線リソースを、オーナーUEと通信相手のUEとの間のD2D通信に割り当てる。
 オーナーUEが在圏しているセルに通信相手のUEが在圏している場合には、オーナーUEはMode1で動作する。この場合、通信相手のUEもMode1で動作する。一方、オーナーUEが在圏しているセルに通信相手のUEが在圏していない場合には、オーナーUEはMode2で動作する。この場合、通信相手のUEもMode2で動作する。
 たとえば、図1に示した第1の局面においては、オーナーUEはUE1である。また、通信相手のUE2は、UE1が在圏するセル900に在圏していない。したがって、UE1およびUE2の各々は、Mode2で動作する。仮に、UE2が、UE1が在圏するセル900に在圏している場合、UE1およびUE2の各々は、Mode1で動作する。
 図3は、図1に示した第1の局面においてUE1に表示されるアンテナピクトを説明するための図である。図3を参照して、UE1は、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312Aとを、表示部300に表示する。詳しくは、UE1は、D2D用アンテナピクト312(図2(A)参照)の代わりに、D2D用アンテナピクト312Aをステータスバー310に表示する。
 UE1は、Mode2で動作している。このため、UE1は、Mode2で動作していることを表す情報をD2D用アンテナピクト312Aに含めた状態で表示する。つまり、D2D用アンテナピクト312Aは、Mode2で動作していることを表す情報を含む。典型的には、UE1は、Mode2の略称(図3の場合、“M2”)を、複数本で構成されるアンテナバーの近傍に表示する。この場合には、UE1のユーザは、UE1がMode2で動作していることをステータスバー310にて確認できるため、UE1が在圏しているセル900にUE2が在圏していないことが分かる。つまり、UE1のユーザは、UE2が“Out-of-coverage”の状態にあることが分かる。
 なお、仮に、UE1が、Mode1で動作している場合には、UE1は、Mode1で動作していることを表す情報をD2D用アンテナピクト312Aに含めた状態で表示する。典型的には、UE1は、Mode1の略称(図3の場合、“M1”)を、複数本で構成されるアンテナバーの近傍に表示する。この場合には、UE1のユーザは、UE1がMode1で動作していることをステータスバー310にて確認できるため、UE1が在圏しているセル900にUE2が在圏していることが分かる。つまり、UE1のユーザは、UE2が“In-coverage”の状態にあることが分かる。
 以上のように、eNB9が構成するセル900にUE2が在圏する場合には、UE1は、D2D通信を実行する場合の動作モードとして、eNB9により割り当てられた無線リソースを用いてUE2と通信するMode1で動作する。また、eNB9が構成するセル900にUE2が在圏していない場合には、UE1は、上記動作モードとして、UE1によって割り当てられた無線リソースを用いてUE2と通信するMode2で動作する。UE1は、上記動作モードがMode1およびMode2のうちのいずれであるかを表す情報を、表示部300に表示する。このような構成によれば、UE1のユーザは、D2D通信の相手端末であるUE2が、UE1が在圏するセル900に在圏しているか否かを知ることができる。
 (第2の変形例)
 上記においては、図1に示したeNB9がD2D通信に対応している場合を例に挙げて説明した。つまり、eNB9が、D2D通信のために、eNB9が構成するセルに在圏するUEに無線リソースを割り当てる機能を有する場合を説明した。
 以下では、UE1が在圏するセルを構成するeNBが上記機能を有している場合と当該機能を有していない場合との各々において、UE1が表示するアンテナピクトについて説明する。つまり、eNBがD2D通信に対応している場合と対応してない場合との各々において、UE1が表示するアンテナピクトについて説明する。なお、UE1は、eNBがD2D通信に対応しているか否かを、当該eNBから送られてくる報知情報に含まれるセル情報に基づき判断する。また、以下では、一例として、eNBが構成するセルにUE1が在圏しており、UE1がオーナーUEであるとする。
 図4は、UE1のアンテナピクトを説明するための図である。図4(A)は、eNBがD2D通信に対応している場合において、UE1が表示するアンテナピクトを説明するための図である。図4(B)は、eNBがD2D通信に対応していない場合において、UE1が表示するアンテナピクトを説明するための図である。
 図4(A)を参照して、UE1は、図2(A)と同様に、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312とを、ステータスバー310に表示する。
 この際、UE1は、LTE通信における受信レベルを表すため、LTE用アンテナピクト319を構成する複数本のアンテナバーの全部または一部(図4(A)の場合には、4本のアンテナバーの全て)を、予め定められた第1の色(たとえば、青色)とする。また、UE1は、D2D通信における受信レベルを表すため、D2D用アンテナピクト312を構成する複数本のアンテナバーの全部または一部(図4(A)の場合には、4本のアンテナバーのうちの3本のアンテナバー)を、予め定められた第1の色(たとえば、青色)とする。なお、UE1は、4本のアンテナバーのうち残りの1本の色を白色とする。
 図4(B)を参照して、UE1は、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312とを、ステータスバー310に表示する。
 この際、UE1は、eNB9がD2D通信に対応していないこととLTE通信における受信レベルとを同時に表すため、LTE用アンテナピクト319を構成する複数本のアンテナバーの全部または一部(図4(A)の場合には、4本のアンテナバーの全て)を、上記第1の色とは異なる予め定められた第2の色(たとえば、赤色)とする。
 eNB9がD2D通信に対応していない場合には、UE1は、UE2との間でD2D通信を開始することができない。このため、UE1は、D2D通信が不可能であることを表すため、D2D用アンテナピクト312を構成する複数本のアンテナバーの全部(図4(A)の場合には、4本のアンテナバー)を白色とする。さらに、UE1は、D2D用アンテナピクト312に、D2D通信が不可能であることを表す記号(典型的には、バツ印)を含める。
 オーナーUEであるUE1のユーザは、LTE用アンテナピクト319が赤色(詳しくは、1つ以上のアンテナバーが赤色)である場合、赤色のLTE用アンテナピクト319を確認することにより、D2D通信を開始することはできないことを判断できる。
 なお、図4(B)においては、D2D用アンテナピクト312を非表示としてもよい。この場合であっても、UE1のユーザは、赤色のLTE用アンテナピクト319を確認することにより、D2D通信を開始することはできないことを判断できる。
 以下では、説明の便宜上、上記第1の色が「青色」であって、上記第2の色が「赤色」である場合を例に挙げて説明する。
 <B.第2の局面>
 図5は、通信システム10における第2の局面を説明するための図である。図5を参照して、第2の局面においては、通信システム10は、eNB9と、UE1と、UE2と、UE3とによって構成されている。
 UE1は、eNB9が構成するセル900に在圏している。一方、UE2およびUE3の各々は、セル900に在圏していない。UE1とUE2との間では、D2D通信が確立している。また、UE2とUE3との間でも、D2D通信が確立している。詳しくは、UE1は、UE2を介して、UE3と通信が可能な状態にある。つまり、UE1は、UE3との通信のために、UE2を中継器(以下、「リレー」と称する)として用いている。
 ここでは、UE1がオーナーUEに該当する。また、UE2はUE1のD2D通信相手である第1の相手端末に該当し、UE3はUE2のD2D通信相手である第2の相手端末に該当する。
 図6は、図5の状態におけるUE1のアンテナピクトを説明するための図である。図6を参照して、UE1は、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312B,313Bとを、ステータスバー310に表示する。
 D2D用アンテナピクト312Bは、D2D通信においてUE2によって送信された電波の受信レベルに基づくアンテナピクトである。D2D用アンテナピクト313Bは、UE3に関するアンテナピクトである。
 詳しくは、D2D用アンテナピクト312Bは、当該ピクトがD2D通信用であることを明示するための識別情報を含む。典型的には、UE1は、D2Dの文字列を、複数本で構成されるアンテナバーの近傍に表示する。また、D2D用アンテナピクト312Bは、UE2に関するものであることを明示するための識別情報を含む。典型的には、UE1は、“UE2”の文字列を、複数本で構成されるアンテナバーの近傍に表示する。さらに、D2D用アンテナピクト312Bは、UE1の上記動作モードを表す情報を含む。なお、D2D用アンテナピクト313Bも、D2D用アンテナピクト312Bと同様に、各種の識別情報を含む。
 詳しくは、UE1は、UE2を介したUE3との通信を利用して、UE3によって送信された電波の受信レベルを算出する(以下、「第1の手法」とも称する)。あるいは、UE1は、UE2によって測定された、UE3によって送信された電波の受信レベルを、UE2から取得する(以下、「第2の手法」とも称する)。UE1は、当該算出または取得された受信レベルに基づき、D2D用アンテナピクト313Bを表示する。なお、上記第1の手法および第2の手法の詳細については、後述する。
 以上のように、UE1は、D2D用アンテナピクト312Bに加えて、D2D用アンテナピクト313Bを表示する。したがって、UE1のユーザは、UE1がUE2を介してUE3と通信が可能な状態にあることが分かる。
 <C.第3の局面>
 図7は、通信システム10における第3の局面を説明するための図である。図7を参照して、第3の局面においては、通信システム10は、eNB9と、UE1と、UE2と、UE3、UE4とによって構成されている。
 UE1は、eNB9が構成するセル900に在圏している。一方、UE2、UE3、およびUE4の各々は、セル900に在圏していない。
 UE1とUE2との間では、D2D通信が確立している。また、UE2とUE3との間でも、D2D通信が確立している。さらに、UE1とUE4との間でも、D2D通信が確立している。また、UE3とUE4との間でも、D2D通信が確立している。
 詳しくは、UE1は、UE2を介して、UE3と通信が可能な状態にある。また、UE1は、UE4を介して、UE3と通信が可能な状態にある。つまり、UE1は、UE3との通信のために、UE2およびUE3をリレーとして用いている。
 ここでは、UE1がオーナーUEに該当する。また、UE2はUE1のD2D通信相手である第1の相手端末に該当し、UE4はUE2とは異なるUE1のD2D通信相手である第3の相手端末に該当し、UE3はUE2およびUE4のD2D通信相手である第2の相手端末に該当する。
 図8は、図7の状態におけるUE1のアンテナピクトを説明するための図である。図8を参照して、UE1は、電池ピクト311と、LTE用アンテナピクト319と、D2D用アンテナピクト312B,313B,314とを、ステータスバー310に表示する。つまり、UE1が、D2D用アンテナピクト314を表示する点において、図6のUE1とは異なる。
 D2D用アンテナピクト314は、D2D通信においてUE4によって送信された電波の受信レベルに基づくアンテナピクトである。D2D用アンテナピクト313Bは、上述したように、UE3に関するアンテナピクトである。UE1がUE2をリレーとして利用した場合およびUE1がUE4をリレーとして利用した場合のいずれかの通信により、上記第1の手法で算出または上記第2の手法により取得された受信レベルに基づき、UE1は、UE3に関するD2D用アンテナピクト313Bをステータスバー310に表示する。
 以上のように、UE1は、UE1のユーザがデータ通信を希望する通信相手(すなわち、UE1が送信するデータに送信先として記述されているUE)であるUE3のみならず、リレーとして機能しているUE2,4についてのアンテナピクトを、ステータスバー310に表示する。したがって、UE1のユーザは、リレーとして機能しているUEの受信レベルについても知ることができる。
 なお、以下では、区別するために、UE1のユーザがデータ通信を希望する通信相手を「相手側UE」、リレーとして機能しているUEを「リレーUE」と呼称する。
 ところで、リレーUEの数が多くなると、D2D用アンテナピクトがステータスバー310に収まらない場合も発生する。このような場合、オーナーUE(図9の場合、UE1)は、リレーUEに関するアンテナピクトを非表示とする。これにより、相手側UEのアンテナピクトがステータスバーに表示されないといった事態の発生を防ぐことができる。
 図9は、ある局面において、オーナーUEであるUE1が、リレーUEに関するアンテナピクトを非表示とした場合を表した図である。図9を参照して、たとえば、図8と比べた場合、D2D用アンテナピクト312B,314を非表示とする。これにより、UE1のユーザは、相手側UEであるUE3についてのアンテナピクト(つまり、D2D用アンテナピクト313B)を視認することができる。
 ところで、第2の局面(図5参照)および第3の局面(図7参照)において、UE1とUE3との間の通信を中継するUE2に着目すれば、UE2は以下の構成を備えると言える。
 リレーとして機能するUE2は、D2D通信においてUE1によって送信された電波の受信レベルに基づくアンテナピクトと、D2D通信においてUE3によって送信された電波の受信レベルに基づくアンテナピクトとを、表示部300のステータスバー310に表示する。
 このような構成によれば、UE2のユーザは、2つの異なるUEとの間におけるD2D通信における電波の受信レベルを視認することが可能となる。なお、UE4についても、UE2と同様な効果を奏する。
 (変形例)
 図8においては、リレーUEのアンテナピクトとして、UE1が、UE2に関するD2D用アンテナピクト312Bと、UE4に関するD2D用アンテナピクト314とを表示する構成を例に挙げて説明した。しかしながら、これに限定されるものではない。
 UE1は、複数のリレーUEに関する複数のアンテナピクトのうち、受信レベルが最も高いアンテナピクトのみを表示してもよい。たとえば、図8と同様の通信状態の場合には、UE1は、D2D用アンテナピクト312B,314のうち、D2D用アンテナピクト312Bのみを表示してもよい。なお、この場合におけるUE1におけるステータスバー310の状態は、図6に示したステータスバー310の状態と同じとなる。
 <D.機能的構成>
 図10は、UE1の機能的構成を説明するための図である。図10を参照して、UE1は、制御部(プロセッサ等)110と、記憶部120と、表示部(ディスプレイ等)300と、通信処理部140とを備えている。
 制御部110は、UE1の全体の動作を制御する。記憶部120は、オペレーティングシステム、各種のアプリケーションプログラム、各種のデータを格納している。表示部300は、各種の画像(画面)を表示する。通信処理部140は、eNB9等のeNBとの間の通信、および他のUEとの間のD2D通信等を実行するための各種の処理(RF処理、ベースバンド処理等)を行なう。
 制御部110は、プロセッサ(典型的には、CPU(Central Processing Unit))に対応する。詳しくは、制御部110は、プロセッサが記憶部120に格納されたオペレーティングシステムおよびアップリケーションプログラムを実行することにより実現される。記憶部120は、メモリに対応する。当該メモリは、典型的には、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等で構成される。表示部300は、ディスプレイに対応する。
 通信処理部140は、送信部141と、受信部142とを含む。送信部141は、LTE用送信部1411と、D2D用送信部1412とを有する。受信部142は、LTE用受信部1421と、D2D用受信部1422とを有する。
 通信処理部140は、eNBとの間の通信、および他のUEとのD2D通信に用いられる。通信処理部140は、制御部110からの指令に基づいて、他の機器との間の通信を実行する。送信部141は、eNBおよび他のUEにデータを送信する。LTE用送信部1411は、eNBに対してデータを送信する。D2D用送信部1412は、D2D通信によって他のUEに対してデータを送信する。受信部142は、eNBおよび他のUEからデータを受信する。LTE用受信部1421は、eNBからデータを受信する。D2D用受信部1422は、D2D通信によって他のUEからデータを受信する。
 (制御部110の詳細)
 制御部110は、受信レベル測定部111と、受信レベル判定部112と、受信レベル測定部113とを含む。以下、上述した第1の局面(図1)、第2の局面(図5)、および第3の局面(図7)を適宜参照して、説明する。
 (1)受信レベル測定部111は、eNB9によって送信された電波の受信レベルを、周期的に測定する。また、受信レベル測定部111は、D2D通信において相手端末(リレーを含む)によって送信された電波の受信レベルを、周期的に測定する。上記第1の局面および第2の局面においては、受信レベル測定部111は、eNB9によって送信された電波の受信レベルと、UE2によって送信された電波の受信レベルを測定する。また、第3の局面においては、受信レベル測定部111は、eNB9によって送信された電波の受信レベルと、UE2およびUE4の各々によって送信された電波の受信レベルを測定する。以下、受信レベル測定部111における測定処理の詳細について説明する。
 eNBから送信される電波の受信レベルの測定は、UE1の受信レベル測定部111が、RS(Reference Signal)信号から受信品質(RSRP等)を測定することにより行われる。
 UE1は、D2D通信では、UEのUL(Up Link)信号の帯域を使用して、UE2等の他のUEと通信する。そこで、D2D通信における受信レベルの測定は、UE1の受信レベル測定部111が、UL信号内のRS信号から受信品質を測定することにより行われる。具体的には、受信レベル測定部111は、他のUEから送信されるRS信号から受信品質(RSRP等)を測定する。なお、UE1は、受信品質の測定にRSRPを用いたが、受信品質を表すものであれば他(RSRQ等)を用いてもよい。
 ところで、RSRP(Reference Signal Received Power)は、1リソースエレメント(帯域15kHz)当たりのRS信号の受信電力である。RSは、周波数的にも時間的にも偏らずに送信されており、トラフィック量にも左右されない。RSRPは、eNBの送信電力やアンテナの向きおよび高さなどのeNBの固定的な設置条件と、eNBからの距離や障害物などの測定環境とによって、ほぼ決定する値である。それゆえ、RSRPは、eNBからの電波の受信レベルを評価する基本的なパラメータとして用いられる。
 (2)受信レベル判定部112は、上述した第1の手法を実行するための機能ブロックである。なお、UE1が上記第1の手法の代わりに上述した第2の手法を実行する場合には、受信レベル判定部112の代わりに受信レベル取得部を備えるように、UE1を構成すればよい。受信レベル取得部については、後述する。
 受信レベル判定部112は、UE2を介したUE3との通信を利用して、UE3によって送信された電波の受信レベルを判定(算出)する。具体的には、当該受信レベルの判定に際に、UE1は、以下のように、トレーニング信号を用いた処理(i),(ii),(iii)を実行する。
 (i)オーナーUEであるUE1は、相手側UEであるUE3宛のDL(Down Link)データにトレーニング信号を埋め込み、当該DLデータを、リレーUE2等を介して送信する。
 (ii)UE3は、ULデータにトレーニング信号をそのまま挿入して送信する。すなわち、UE3は、UE1宛に、トレーニング信号をループバックする。
 (iii)UE1の受信レベル判定部112は、UE3のトレーニング信号の謝り率を算出し、当該算出された値に基づき受信レベル(受信品質)を判定する。具体的には、受信レベル判定部112は、UE1から送信されたトレーニング信号の送信と、UE2を介してUE3から受信したトレーニング信号とを比較することにより誤り率を算出し、当該算出された値に基づき受信レベルを判定する。
 (3)受信レベル測定部113は、UE1がリレーUEとして機能する場合に用いられる。受信レベル測定部113は、上記第1から第3の局面とは異なり、たとえばUE1がオーナーUE(図示せず)とD2D通信をしている場合には、当該オーナーUEから送られてくる電波の受信レベルを測定する。
 また、他の局面において、UE1が、他のリレーUEを介して、オーナーUEと通信をしている場合には、受信レベル測定部113は、当該他のリレーUEから送られてくる電波の受信レベルを測定する。
 つまり、受信レベル測定部113は、一連の中継ネットワークにおいて、eNB側に位置するUEから送られてくる電波の受信レベルを測定する点において、eNBとは反対側に位置するUEから送られてくる電波の受信レベルを測定する受信レベル測定部111とは異なる。
 (4)制御部110は、表示部300に、UE1の状況に応じて、上記各種の受信レベルを表示するためのアンテナピクトを表示する。具体的には、制御部110は、図2(A)、図3、図4、図6、図8、図9に示した各種のアンテナピクトを、表示部300に表示する。
 なお、UE2,3,4もUE1と同様の構成を有するため、ここでは、UE2,3,4の機能的構成については繰り返し説明しない。
 (変形例)
 上記においては、UE1等が、受信レベル判定部112を備えた構成を例に挙げて説明した。すなわち、UE1等が、上述した第1の手法を実行する構成を例挙げて説明した。以下では、UE1等が、上記第1の手法の代わりに、上述した第2の手法を実行する構成を説明する。また、以下では、説明の便宜上、上記第2の局面(図5参照)を例に挙げて説明する。
 UE1等は、上記第2の手法を実行するために、上述したように、受信レベル判定部112の代わりに受信レベル取得部(図示せず)を備える。
 リレーUEであるUE2は、UE3から送信された電波の受信レベルを測定する。さらに、UE2は、UE1宛に送信するデータに上記測定された結果(受信レベル)を挿入し、UE1に当該データを送信する。
 UE1の受信レベル取得部は、UE2から送信されてきたデータを復調することによって、相手側UE3の受信レベルを取得する。すなわち、受信レベル取得部は、UE2によって測定された、UE3によって送信された電波の受信レベルを、UE2から取得する。
 これにより、UE1は、たとえば図6に示したように、UE3に関するアンテナピクト(図6においては、D2D用アンテナピクト313B)をステータスバー310に表示することが可能となる。
 <E.制御構造>
 図11は、UE1における処理の流れを説明するためのフローチャートである。図11を参照して、ステップS2において、オーナーUEであるUE1は、D2D通信の準備を開始する。ステップS4において、UE1は、eNB9から送られてくる報知情報に基づき、eNB9がD2D通信に対応しているか否かを判断する。
 対応していると判断された場合(ステップS4においてYES)、ステップS6において、UE1は、他のUE(たとえば、UE2,UE4)との間でD2D通信を開始する。対応していないと判断された場合(ステップS4においてNO)、ステップS16において、UE1は、LTE用アンテナピクト319の色を青色(第1の色)から赤色(第2の色)に変更する。
 ステップS8において、UE1は、相手側UEと通信するに際して、リレーUEが必要か否かを判断する。たとえば、UE1は、他のUEを介さずに、相手側UE(上記第2の局面および第3の局面においてはUE3)とD2D通信によって通信できるか否かに基づき、リレーUE必要か否かを判断する。
 必要でないと判断された場合(ステップS8においてNO)、ステップS18において、D2D通信の通信相手であるUE(たとえば上記第1の局面ではUE2)の受信レベルを測定する。ステップS20において、UE1は、LTE用アンテナピクトと、D2D用アンテナピクトとを、表示部300に表示されたステータスバー310に表示する。たとえば上記第1の局面には、UE1は、図2(A)に示した表示を行なう。
 必要であると判断された場合(ステップS8においてYES)、ステップS10において、UE1は、たとえば上述した第1の手法を用いて、相手側UEの受信レベルを判定する。あるいは、UE1は、上述した第2の手法を用いて、相手側UEの受信レベルをリレーUEから取得する。
 ステップS12において、UE1は、相手側UEおよびリレーUEについての全てのD2D用アンテナピクトを、ステータスバー310に表示可能か否かを判断する。表示可能であると判断された場合(ステップS12においてYES)、ステップS14において、UE1は、たとえば図8に示したように、全てのUEのアンテナピクトをステータスバー310に表示する。表示不可能であると判定された場合(ステップS12においてNO)、ステップS16において、UE1は、たとえば図9に示すとおり、D2D用アンテナピクトに関しては、D2D通信の相手側UEのみのアンテナピクトを表示する。
 なお、UE2,3,4についても、各々がオーナーUEとして機能する場合には、図11に示した処理と同一処理を実行するため、ここでは、UE2,3,4がオーナーUEとして機能する場合の処理の流れについては繰り返し説明しない。
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,2,3,4 UE、9 eNB、10 通信システム、110 制御部、111,113 受信レベル測定部、112 受信レベル判定部、120 記憶部、140 通信処理部、141 送信部、142 受信部、300 表示部、310 ステータスバー、311 電池ピクト、312,312A,312B,313B,313C,314 D2D用アンテナピクト、319 LTE用アンテナピクト、900 セル、1411,1412 LTE用送信部、1421,1422 D2D用受信部。

Claims (5)

  1.  端末間通信が可能な移動体端末であって、
     制御部と、
     表示部とを備え、
     前記制御部は、基地局によって送信された電波の受信レベルに基づく第1のアンテナピクトグラムと、前記端末間通信において第1の相手端末によって送信された電波の受信レベルに基づく第2のアンテナピクトグラムとを、前記表示部に表示させる、移動体端末。
  2.  前記基地局が構成するセルに前記第1の相手端末が在圏する場合には、前記移動体端末は、前記端末間通信を実行する場合の動作モードとして、前記基地局により割り当てられた無線リソースを用いて前記第1の相手端末と通信する第1の動作モードで動作し、
     前記基地局が構成するセルに前記第1の相手端末が在圏していない場合には、前記移動体端末は、前記動作モードとして、前記移動体端末によって割り当てられた無線リソースを用いて前記第1の相手端末と通信する第2の動作モードで動作し、
     前記制御部は、前記動作モードが前記第1の動作モードおよび前記第2の動作モードのうちのいずれであるかを表す情報を、前記表示部に表示させる、請求項1に記載の移動体端末。
  3.  前記移動体端末は、前記第1の相手端末を介して、前記第1の相手端末との間で前記端末間通信を行なう第2の相手端末と通信し、
     前記制御部は、
      前記第1の相手端末を介した前記第2の相手端末との通信を利用して、前記第2の相手端末によって送信された電波の受信レベルを判定、あるいは、前記第1の相手端末によって測定された、前記第2の相手端末によって送信された電波の受信レベルを前記第1の相手端末から取得し、
      前記判定または取得された受信レベルに基づく第3のアンテナピクトグラムを前記表示部に表示させる、請求項1または2に記載の移動体端末。
  4.  前記移動体端末は、前記第1の相手端末を介さずに、前記第2の相手端末との間で前記端末間通信を行なう第3の相手端末を介することによって、前記第2の相手端末と通信可能であって、
     前記制御部は、前記端末間通信において前記第3の相手端末によって送信された電波の受信レベルに基づく第4のアンテナピクトグラムを、前記表示部にさらに表示させる、請求項3に記載の移動体端末。
  5.  端末間通信が可能な移動体端末であって、
     制御部と、
     表示部とを備え、
     前記制御部は、前記端末間通信において第1の相手端末によって送信された電波の受信レベルに基づく第1のアンテナピクトグラムと、前記端末間通信において第2の相手端末によって送信された電波の受信レベルに基づく第2のアンテナピクトグラムとを、前記表示部に表示させ、
     前記移動体端末は、前記第1の相手端末と前記第2の相手端末との間の通信を中継する、移動体端末。
PCT/JP2016/062592 2015-05-27 2016-04-21 移動体端末 WO2016190013A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017520297A JP6448783B2 (ja) 2015-05-27 2016-04-21 移動体端末および表示方法
US15/576,489 US20180167835A1 (en) 2015-05-27 2016-04-21 Mobile Terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-107273 2015-05-27
JP2015107273 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016190013A1 true WO2016190013A1 (ja) 2016-12-01

Family

ID=57393115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062592 WO2016190013A1 (ja) 2015-05-27 2016-04-21 移動体端末

Country Status (3)

Country Link
US (1) US20180167835A1 (ja)
JP (1) JP6448783B2 (ja)
WO (1) WO2016190013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521379A (ja) * 2017-05-19 2020-07-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated 非スタンドアロンモードにおいてネットワークアイコンを提供するためのオプション
JP2021007193A (ja) * 2019-06-27 2021-01-21 本田技研工業株式会社 通信システム、プログラム、及び情報処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104536A (ja) * 2005-10-07 2007-04-19 Sony Corp 無線端末及びプログラム
JP2007150797A (ja) * 2005-11-29 2007-06-14 Matsushita Electric Ind Co Ltd 無線通信装置および情報通知方法
WO2010064716A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、携帯通信端末、通信システム、および通信装置における表示方法
JP2010226643A (ja) * 2009-03-25 2010-10-07 Hitachi Kokusai Electric Inc 無線通信端末装置
JP2012205251A (ja) * 2011-03-28 2012-10-22 Panasonic Corp 無線通信端末及び無線通信端末の制御方法
JP2015139164A (ja) * 2014-01-23 2015-07-30 キヤノン株式会社 通信装置、制御方法、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028325A (ja) * 2008-07-17 2010-02-04 Sharp Corp 多段式無線テレメータ装置
WO2012037637A1 (en) * 2010-09-23 2012-03-29 Research In Motion Limited System and method for dynamic coordination of radio resources usage in a wireless network environment
JP6216189B2 (ja) * 2013-03-22 2017-10-18 シャープ株式会社 電話システム、充電器、および方法
US9723655B2 (en) * 2014-06-13 2017-08-01 Htc Corporation Method and apparatus for handling device to device communication in a wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104536A (ja) * 2005-10-07 2007-04-19 Sony Corp 無線端末及びプログラム
JP2007150797A (ja) * 2005-11-29 2007-06-14 Matsushita Electric Ind Co Ltd 無線通信装置および情報通知方法
WO2010064716A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、携帯通信端末、通信システム、および通信装置における表示方法
JP2010226643A (ja) * 2009-03-25 2010-10-07 Hitachi Kokusai Electric Inc 無線通信端末装置
JP2012205251A (ja) * 2011-03-28 2012-10-22 Panasonic Corp 無線通信端末及び無線通信端末の制御方法
JP2015139164A (ja) * 2014-01-23 2015-07-30 キヤノン株式会社 通信装置、制御方法、及びプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521379A (ja) * 2017-05-19 2020-07-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated 非スタンドアロンモードにおいてネットワークアイコンを提供するためのオプション
US11343694B2 (en) 2017-05-19 2022-05-24 Qualcomm Incorporated Options to provide a network icon in non-standalone mode
JP7090647B2 (ja) 2017-05-19 2022-06-24 クゥアルコム・インコーポレイテッド 非スタンドアロンモードにおいてネットワークアイコンを提供するためのオプション
JP2021007193A (ja) * 2019-06-27 2021-01-21 本田技研工業株式会社 通信システム、プログラム、及び情報処理方法
JP7203695B2 (ja) 2019-06-27 2023-01-13 本田技研工業株式会社 通信システム、プログラム、及び情報処理方法

Also Published As

Publication number Publication date
US20180167835A1 (en) 2018-06-14
JPWO2016190013A1 (ja) 2018-02-01
JP6448783B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
US10028308B2 (en) Mobile communication system, user terminal, processor, and base station
US10959209B2 (en) Communication resource selection method and device
CN108650617B (zh) 无线通信设备、无线通信方法和无线通信系统
JP2020512706A (ja) 無線通信に用いられる電子装置及び無線通信方法
CN110463335A (zh) 用于网络切片之无线通信方法及系统
US11039439B2 (en) Method for selecting carrier set for device-to-device multi-carrier aggregation and related devices
CN112738821A (zh) 通信方法和通信装置
CN104221468B (zh) 无线通信系统、通信控制装置以及通信控制方法
CN113438627A (zh) 一种中继ue确定方法及设备
EP3955635A1 (en) Configuring of relay ue context information
JP6448783B2 (ja) 移動体端末および表示方法
JP2023542679A (ja) 拡張ディスカバリ手順のための方法および端末デバイス
WO2015115207A1 (ja) 電波状況報知装置、通信装置及びプログラム
CN111328443B (zh) 用于提供自主紧急援助的方法、装置、设备及介质
CN108616844A (zh) 通讯方法、装置及系统
US20160183072A1 (en) Advanced call notification
KR20190016950A (ko) 무선 통신 장치
EP3110182A1 (en) Communication system, server device, communication device, and communication method
WO2018018773A1 (zh) D2D/ProSe业务的执行方法及装置
CN103596249A (zh) 设定无线网络的系统及其方法
KR101396966B1 (ko) 이동 단말기 및 이를 위한 인디케이터 아이콘 표시 방법
CN117730593A (zh) 位置获得方法、装置、设备、介质、芯片、产品及程序
CN118591025A (zh) 一种感知方法及装置
CN118575502A (zh) 节点间信息的交互方法与装置
JP2018092461A (ja) 基地局装置、端末装置、安否確認システム、及び安否確認方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520297

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799721

Country of ref document: EP

Kind code of ref document: A1