WO2016189707A1 - 前照灯用光軸制御装置 - Google Patents

前照灯用光軸制御装置 Download PDF

Info

Publication number
WO2016189707A1
WO2016189707A1 PCT/JP2015/065292 JP2015065292W WO2016189707A1 WO 2016189707 A1 WO2016189707 A1 WO 2016189707A1 JP 2015065292 W JP2015065292 W JP 2015065292W WO 2016189707 A1 WO2016189707 A1 WO 2016189707A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
optical axis
angle
control device
Prior art date
Application number
PCT/JP2015/065292
Other languages
English (en)
French (fr)
Inventor
大澤 孝
亘 辻田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017518279A priority Critical patent/JP6180690B2/ja
Priority to PCT/JP2015/065292 priority patent/WO2016189707A1/ja
Priority to US15/561,604 priority patent/US10513217B2/en
Priority to CN201580080377.5A priority patent/CN107614323B/zh
Priority to DE112015006569.5T priority patent/DE112015006569B4/de
Publication of WO2016189707A1 publication Critical patent/WO2016189707A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/112Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/114Vehicle acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/13Attitude of the vehicle body
    • B60Q2300/132Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/32Road surface or travel path

Definitions

  • the present invention relates to an optical axis control device for a headlamp that controls an optical axis of an in-vehicle headlamp using an acceleration signal measured by an acceleration sensor.
  • the headlight illumination direction is tilted upward, the headlight illumination should be performed so as not to dazzle the driver who drives the oncoming vehicle and to avoid discomfort for pedestrians facing the headlight. It is necessary to keep the optical axis relative to the road surface constant by lowering the direction, that is, the optical axis of the headlamp.
  • the headlight irradiation direction is lowered. Therefore, it is essential to install an optical axis control device for headlamps that returns the irradiation direction before the change.
  • the rider's boarding or loading of the luggage is performed when the vehicle is stopped, and the optical axis control when the vehicle is stopped is the main optical axis control device for the headlamp. It becomes control.
  • the optical axis control of the headlamp cancels the change in the inclination angle of the vehicle with respect to the road surface in order to return the irradiation direction of the headlamp to the original direction when the vehicle tilts in the front-rear direction as described above.
  • the optical axis since the optical axis is operated up and down, first, it is necessary to measure the inclination angle of the vehicle with respect to the road surface.
  • the inclination angle of the vehicle with respect to the road surface is referred to as “vehicle angle”.
  • the stroke sensors attached to the front and rear suspensions (suspension devices) of the vehicle are used to measure the amount of contraction of the front and rear suspensions, that is, the amount of subsidence of the front and rear axles. And the vehicle angle was calculated based on the length of the wheelbase.
  • the optical axis control device of the above-mentioned Patent Document 1 uses a two-axis acceleration sensor in the front-rear direction and the vertical direction of the vehicle to improve the accuracy of the vehicle angle and to perform a suitable optical axis control of the headlamp. In addition to the optical axis control when the vehicle is stopped, the optical axis control is performed by measuring the acceleration when the vehicle is running. The optical axis control device of Patent Document 1 uses the acceleration measured when the vehicle is running to obtain the acceleration change direction for each time, or the acceleration change direction from two accelerations having different measurement timings. Thus, the vehicle angle is calculated, and the optical axis is controlled based on the change in the vehicle angle.
  • the present invention has been made to solve the above-described problems, and is capable of calculating a highly accurate vehicle angle that does not include an inclination angle error caused by acceleration / deceleration of the vehicle, and the vehicle angle.
  • the purpose is to reduce the memory capacity and calculation load required for the calculation.
  • An optical axis control device for a headlamp calculates a vehicle angle that is an inclination angle of a vehicle with respect to a road surface, using acceleration signals in the vertical direction and the front-rear direction measured by an acceleration sensor mounted on the vehicle.
  • An optical axis control device for a headlamp that includes a control unit that generates a signal for operating the optical axis of the headlamp, the control unit at the first two points in time when the vehicle is traveling.
  • the first vehicle angle is calculated from the ratio of the difference between the acceleration signal in the vertical direction measured at the first two time points to the difference between the measured acceleration signals in the front-rear direction, and the first vehicle angle is different from the first two time points.
  • the second vehicle angle is calculated from the ratio of the difference between the acceleration signals in the vertical direction measured at the second two time points to the difference between the acceleration signals in the front-rear direction measured at the two time points in FIG. Used to calculate angle and first vehicle angle
  • the difference between the acceleration signals in the front and rear direction becomes zero using the difference between the acceleration signals in the rear direction and the difference between the second vehicle angle and the acceleration signal in the front and rear direction used for calculating the second vehicle angle.
  • Calculate a third vehicle angle calculate a plurality of third vehicle angles, calculate a representative value of the third vehicle angle based on the distribution, and operate the optical axis of the headlamp based on the representative value
  • the signal to be generated is generated.
  • the difference between the longitudinal acceleration signals used for calculating the first vehicle angle and the first vehicle angle, and the longitudinal direction used for calculating the second vehicle angle and the second vehicle angle are calculated.
  • the difference between the acceleration signals is used to calculate a third vehicle angle when the difference between the acceleration signals in the front-rear direction becomes zero, a plurality of third vehicle angles are calculated, and the third vehicle is calculated based on the distribution. Since the representative value of the angle is calculated and a signal for operating the optical axis of the headlamp is generated based on the representative value, the memory capacity and calculation load required for calculating the representative value are reduced. be able to.
  • FIG. 3 is a diagram for explaining a relationship between acceleration and a vehicle angle in the first embodiment.
  • FIG. 3 is a diagram illustrating vehicle inclination that changes due to acceleration / deceleration in the first embodiment.
  • it is a graph for explaining the relationship between the difference between acceleration signals in the longitudinal direction of the vehicle and the vehicle angle.
  • FIG. 6 is a graph for explaining processing for calculating a representative vehicle angle by the optical axis control device for headlamps according to the first embodiment.
  • 3 is a flowchart showing an operation of the optical axis control device for headlamps according to the first embodiment.
  • 4 is a flowchart showing a method for calculating a representative vehicle angle of the optical axis control device for headlamps according to the first embodiment.
  • FIG. 8B is a continuation of the flowchart shown in FIG. 8A.
  • 3 is a graph illustrating an example of a use range of differential acceleration in the first embodiment.
  • 5 is a flowchart showing an initial setting method of the optical axis control device for headlamps according to the first embodiment.
  • FIG. 4 is a flowchart showing a method for setting the mounting angle of the optical axis control device for headlamps according to the first embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a headlamp optical axis control device 10 according to Embodiment 1 of the present invention.
  • the headlamp optical axis control device 10 according to Embodiment 1 includes a power supply unit 11, an acceleration signal input unit 12, a speed signal input unit 13, a vehicle information input unit 14, and a control unit 15.
  • the control unit 15 includes a CPU (Central Processing Unit) 16, a storage unit 17 composed of a semiconductor memory or the like, and an optical axis operation signal output unit 18.
  • CPU Central Processing Unit
  • FIG. 2 is a diagram showing an example in which the headlamp optical axis control device 10 is mounted on the vehicle 7.
  • the vehicle 7 includes a left headlight 5L and a right headlight 5R provided with optical axis operation devices 6L and 6R that adjust the direction of the optical axis, an acceleration sensor 2, a vehicle speed sensor 3, and a headlamp.
  • An optical axis control device 10 is installed.
  • the acceleration sensor 2 measures the longitudinal acceleration applied to the vehicle 7 and the vertical acceleration applied to the vehicle 7 and outputs them as an acceleration signal.
  • the vehicle speed sensor 3 measures the vehicle speed of the vehicle 7 and outputs it as a speed signal.
  • the optical-axis control apparatus 10 for headlamps and the acceleration sensor 2 are comprised separately.
  • the acceleration sensor 2 is accommodated in the optical axis control device 10 for headlamps, and is configured integrally.
  • the headlight optical axis control device 10 configured integrally with the acceleration sensor 2 is housed inside another vehicle-mounted electrical component 8.
  • the power supply unit 11 when the headlamp optical axis control device 10 is housed in the in-vehicle electrical component 8, the power supply unit 11, the acceleration signal input unit 12, the speed signal input unit 13, the vehicle Some or all of the functions of the information input unit 14 or the optical axis operation signal output unit 18 may be included in the headlamp optical axis control device 10 or the vehicle-mounted electrical component 8.
  • the optical axis control device 10 for headlamps keeps the optical axis in the vertical direction of the left and right headlamps 5L and 5R illuminating the front of the vehicle 7 constant.
  • the power supply unit 11 is a power supply device that supplies the power of the in-vehicle battery 1 to the control unit 15.
  • the acceleration signal input unit 12, the speed signal input unit 13, and the vehicle information input unit 14 are communication devices, and vehicle-side devices such as the acceleration sensor 2, the vehicle speed sensor 3, and the switch 4 through a vehicle communication network such as a CAN (Controller Area Network). Communicate with.
  • the switch 4 is an ignition switch, a lighting switch, a dimmer switch, or the like.
  • the acceleration signal input unit 12 inputs the longitudinal and vertical acceleration signals output from the acceleration sensor 2 to the CPU 16.
  • the speed signal input unit 13 inputs the speed signal output from the vehicle speed sensor 3 to the CPU 16.
  • the vehicle information input unit 14 inputs vehicle information indicating operation details performed by the driver to the switch 4 of the vehicle 7 to the CPU 16.
  • the CPU 16 calculates the tilt angle of the vehicle 7 with respect to the road surface using the longitudinal and vertical acceleration signals and the velocity signal, and generates an optical axis operation signal for canceling the change in the tilt angle of the vehicle 7 with respect to the road surface.
  • the optical axis operation signal output unit 18 is a communication device that outputs the optical axis operation signal calculated by the CPU 16 to the optical axis operation devices 6L and 6R.
  • vehicle angle the inclination angle of the vehicle 7 with respect to the road surface is referred to as “vehicle angle”.
  • the optical axis operation devices 6L, 6R operate the angle of the optical axis of the headlamps 5L, 5R according to the optical axis operation signal input from the optical axis control device 10 for headlamps.
  • Optical axis control is performed so as to cancel changes in the vehicle angle. Thereby, even if the vehicle angle of the vehicle 7 changes, the optical axes of the headlamps 5L and 5R with respect to the road surface are kept constant.
  • FIG. 3 is a diagram for explaining the relationship between the acceleration and the vehicle angle.
  • an acceleration measurement system is used in which the vertical direction of the vehicle 7 is the Z axis and the longitudinal direction of the vehicle 7 is the X axis, and as shown in FIG.
  • the direction and magnitude of acceleration applied to the vehicle 7 as a system is expressed by the position of a weight suspended by a spring. Note that if a flat quadrilateral having four vertices at the center points of the front, rear, left, and right wheels touching the road surface is considered as a virtual carriage, the surface of the virtual carriage is parallel to the road surface.
  • the angle ⁇ between the virtual carriage and the vehicle body supported by the suspension (suspension device) is the inclination angle of the vehicle 7 with respect to the road surface, that is, the vehicle angle.
  • the acceleration applied to the virtual bogie of the vehicle 7, that is, the acceleration measuring system equivalent to that seen from the road side is represented as the behavior of a weight suspended by a spring.
  • the vertical direction of the virtual carriage is defined as the Zi axis
  • the longitudinal direction is defined as the Xi axis.
  • the weight moves in parallel with the road surface on both a horizontal road and a slope. If the view is changed, the weight is the Xi axis of the virtual carriage. Move in the direction. That is, the change in acceleration due to traveling is parallel to the road surface, that is, as indicated by the arrow 100 in the Xi-axis direction of the virtual carriage.
  • FIG. 3A when the acceleration applied to the vehicle 7 is viewed from the acceleration measurement system installed on the vehicle body supported by the suspension, the weight is similar to the above by the acceleration of the vehicle 7. It moves in the Xi-axis direction of the virtual carriage regardless of the X-axis direction in the longitudinal direction of the acceleration measurement system.
  • the angle ⁇ formed by the X axis in the front-rear direction of the acceleration measurement system and the Xi axis of the virtual carriage that is, the vehicle angle that is the inclination angle of the vehicle 7 with respect to the road surface, is determined. 7 can be detected as an angle ⁇ formed by the moving direction (arrow 100) of the weight due to acceleration of 7.
  • the movement amount of the weight (arrow 100) that moves parallel to the road surface at the two time points km and kn that is, the difference between the vertical acceleration and the front and rear If the difference in acceleration in the direction is observed, the vehicle angle can be calculated regardless of the up / down gradient of the running road.
  • FIG. 4 (b) shows an example of the vehicle 7 that is stopped and the vehicle body is stationary
  • FIG. 4 (a) shows an example of the vehicle 7 during deceleration
  • FIG. 4 (c) shows an acceleration.
  • An example of a vehicle 7 at the time is shown.
  • the vehicle 7 accelerates as shown in FIG. 4C
  • the rear side is called “squat”.
  • the vehicle angle since the vehicle angle includes an inclination that changes as the vehicle 7 accelerates or decelerates, that is, an error in the pitch angle, it is determined from the acceleration at two unspecified time points indicating an aspect like squat or nose dive. The accuracy of the obtained vehicle angle is low. Therefore, it is not appropriate to directly use the vehicle angle obtained from the acceleration at two unspecified time points for the optical axis control of the headlamp.
  • the pitching angle has a correlation with the acceleration, and the pitching angle increases in accordance with the magnitude of the acceleration. Therefore, as shown in the graph of FIG. 5, the difference between the acceleration signals in the front-rear direction of the vehicle 7, that is, the vehicle angle ⁇ with respect to the difference acceleration ⁇ X in the front-rear direction is plotted, and a representative straight line passing through the plotted many vehicle angles ⁇ . 110 is drawn, and if the vehicle angle at which the differential acceleration ⁇ X in the front-rear direction is zero is obtained, the vehicle 7 is stopped or travels at a constant speed, excluding the influence of pitching when the vehicle 7 is accelerated or decelerated. It is possible to obtain a vehicle angle corresponding to the state of being.
  • the differential acceleration ⁇ X in the front-rear direction is the difference between the front-rear acceleration signal at a certain time point measured by the acceleration sensor 2 and the front-rear acceleration signal at another time point, that is, the difference between the front-rear acceleration signals at two time points.
  • the acceleration signal measured in a state where the vehicle 7 is stopped or traveling at a constant speed is used as the acceleration signal at the km point, and the difference from the acceleration signal at the kn point is used as the differential acceleration ⁇ X. Is set on the horizontal axis.
  • the calculation process of the representative vehicle angle ⁇ S as shown in FIG. 5 is simplified to the process as shown in FIG.
  • the vehicle angle ⁇ calculated using the signal difference is plotted as an asterisk. It is assumed that each vehicle angle ⁇ is calculated at a different timing.
  • the CPU 16 draws a straight line 111 passing through two stars indicating the first vehicle angle ⁇ and the second vehicle angle ⁇ , and sets a vehicle angle at which the differential acceleration ⁇ X in the front-rear direction is zero on the straight line 111 to the third vehicle angle ⁇ .
  • Vehicle angle ⁇ s In FIG. 6, the third vehicle angle ⁇ s is indicated by a white circle. The third vehicle angle ⁇ s corresponds to the vehicle angle when the vehicle 7 is stopped or traveling at a constant speed.
  • the CPU 16 obtains a representative vehicle angle ⁇ S that is a representative value of the third vehicle angle ⁇ s based on the distribution state of the plurality of third vehicle angles ⁇ s obtained from the plurality of straight lines 111.
  • the representative vehicle angle ⁇ S is indicated by a black circle.
  • the CPU 16 calculates the differential acceleration ⁇ X by the equation (1) using the longitudinal acceleration signals Xkm and Xkn measured at two time points, the km point and the kn point. Further, the CPU 16 calculates the differential acceleration ⁇ Z by the equation (2) using the vertical acceleration signals Zkm and Zkn measured at the same two points of the km point and the kn point. Subsequently, the CPU 16 calculates the vehicle angle ⁇ from the ratio of the differential acceleration ⁇ Z to the differential acceleration ⁇ X according to the equation (3). This vehicle angle ⁇ is referred to as a first vehicle angle ⁇ , and the differential acceleration ⁇ X in the front-rear direction used for calculating the first vehicle angle ⁇ is referred to as a first differential acceleration ⁇ X ⁇ . The CPU 16 stores the first vehicle angle ⁇ and the first differential acceleration ⁇ X ⁇ in the storage unit 17 as a set of data.
  • the CPU 16 uses the acceleration signals Xkm, Xkn, Zkm, Zkn measured at two time points different from the above two time points to calculate the vehicle angle ⁇ according to the equations (1) to (3).
  • This vehicle angle ⁇ is called a second vehicle angle ⁇
  • the differential acceleration ⁇ X in the front-rear direction used for calculating the second vehicle angle ⁇ is called a second differential acceleration ⁇ X ⁇ .
  • the CPU 16 stores the second vehicle angle ⁇ and the second differential acceleration ⁇ X ⁇ in the storage unit 17 as a set of data.
  • the CPU 16 uses the first vehicle angle ⁇ , the first differential acceleration ⁇ X ⁇ , the second vehicle angle ⁇ , and the second differential acceleration ⁇ X ⁇ stored in the storage unit 17 to obtain the equation (4). Then, a third vehicle angle ⁇ s at which the differential acceleration ⁇ X becomes zero on the straight line 111 passing through the first vehicle angle ⁇ and the second vehicle angle ⁇ is calculated.
  • the CPU 16 repeats the above process to calculate N (N ⁇ 2) third vehicle angles ⁇ s. Finally, the CPU 16 calculates an average value of the N third vehicle angles ⁇ s by the equation (5), and sets the calculated average value as the representative vehicle angle ⁇ S.
  • the representative vehicle angle ⁇ S may be a representative value of the N third vehicle angles ⁇ s, and may be a median value or a mode value in addition to the average value described above.
  • ⁇ X Xkn ⁇ Xkm (1)
  • ⁇ Z Zkn ⁇ Zkm (2)
  • tan ⁇ 1 ( ⁇ Z / ⁇ X) (3)
  • ⁇ s ( ⁇ ⁇ ⁇ X ⁇ ⁇ ⁇ X ⁇ ) / ( ⁇ X ⁇ X ⁇ ) (4)
  • ⁇ S ( ⁇ s1 + ⁇ s2 + ⁇ s3 +... + ⁇ sN) / N (5)
  • the calculation of the vehicle angle ⁇ uses the differential accelerations ⁇ X and ⁇ Z, which are the amounts of change in acceleration, so that there is no influence of the offset present in the output of the acceleration sensor 2, and the offset changes with time. There is no problem.
  • the CPU 16 may be configured to calculate the third vehicle angle ⁇ s each time the first vehicle angle ⁇ and the second vehicle angle ⁇ are calculated, or the calculated plural sets of vehicle angles ⁇ and the differential acceleration ⁇ X. Is stored in the storage unit 17, and at least one set of the vehicle angle ⁇ and the differential acceleration ⁇ X is used among the plurality of sets of vehicle angles ⁇ and the differential acceleration ⁇ X stored in the storage unit 17, and the third vehicle is used.
  • the configuration may be such that the angle ⁇ s is calculated.
  • ⁇ Configuration example A> When the CPU 16 newly calculates the first vehicle angle ⁇ , the CPU 16 selects one set from a plurality of sets stored in the storage unit 17, and sets the selected one set of vehicle angle ⁇ and differential acceleration ⁇ X as the first set. The third vehicle angle ⁇ s is calculated using the second vehicle angle ⁇ and the second differential acceleration ⁇ X ⁇ . In addition, when the CPU 16 selects the first set to be used as the second vehicle angle ⁇ from the plurality of sets stored in the storage unit 17 when the first vehicle angle ⁇ is newly calculated, It is preferable to select a set of data that maximizes the difference between the differential acceleration ⁇ X ⁇ and the second differential acceleration ⁇ X ⁇ .
  • the accuracy of the straight line 111 connecting the first vehicle angle ⁇ and the second vehicle angle ⁇ is improved, and the representative vehicle angle ⁇ S is more accurate. It is because it can be obtained.
  • ⁇ Configuration example B> The CPU 16 selects two sets from a plurality of sets stored in the storage unit 17 and uses the selected set of vehicle angle ⁇ and differential acceleration ⁇ X as the first vehicle angle ⁇ and the first differential acceleration ⁇ X ⁇ .
  • the third vehicle angle ⁇ s is calculated using the selected another set of vehicle angles ⁇ and differential acceleration ⁇ X as the second vehicle angle ⁇ and second differential acceleration ⁇ X ⁇ . Further, when the CPU 16 selects two sets from a plurality of sets stored in the storage unit 17, it is preferable to select two sets of data having the largest difference between the differential accelerations ⁇ X.
  • the CPU16 first acquires the acceleration signal of the up-down direction and the front-back direction input from the acceleration sensor 2 via the acceleration signal input part 12 (step ST1).
  • the measurement period of the acceleration signal is 100 ms, for example.
  • the CPU 16 determines whether the vehicle 7 is stopped or traveling based on the speed signal input from the vehicle speed sensor 3 via the speed signal input unit 13 (step ST2).
  • the optical axis control steps ST3 to ST9 when the vehicle 7 is stopped and the optical axis control (steps ST12 to ST15) when the vehicle 7 is traveling are switched. Do it.
  • step ST2 for determining whether the vehicle is stopped or traveling it is determined that the vehicle is traveling so that noise in the speed signal is not erroneously determined as a traveling signal or until the vehicle body stops after the vehicle stops. For example, it is desirable to provide a filter having a delay time of about 2 seconds.
  • step ST3 the CPU 16 calculates the inclination angle of the vehicle 7 with respect to the horizontal direction using the acceleration signal acquired in step ST1 (step ST3).
  • the inclination angle of 7 with respect to the horizontal direction is referred to as “versus-horizontal vehicle angle”. Since the calculation method of the angle with respect to the horizontal vehicle using the output of the acceleration sensor capable of detecting the gravitational acceleration may be a well-known method, the description thereof is omitted.
  • the CPU 16 determines whether or not the angle to the horizontal vehicle before the change is stored in the storage unit 17. Has a first flag indicating.
  • the CPU 16 checks whether or not the first flag is set (step ST4), and if the first flag is not set (step ST4 “YES”). ) That is, immediately after the vehicle stops, the first flag is set (step ST5), the horizontal vehicle angle calculated in step ST3 is stored in the storage unit 17 as the first horizontal vehicle angle (step ST6), and the process returns to step ST1. .
  • step ST4 “NO”) the CPU 16 reads the first-to-horizontal vehicle angle from the storage unit 17 and calculates the anti-horizontal vehicle calculated in step ST3.
  • the inclination angle difference is calculated by subtracting the angle (step ST7). If there is a difference in inclination angle (step ST8 “YES”), the inclination of the vehicle 7 and the optical axis also change due to the passenger getting on / off or loading / unloading of the luggage, so the CPU 16 determines the difference between the vehicle angle and the inclination angle difference. Are added to calculate the changed vehicle angle (step ST9). If there is no difference in tilt angle (“NO” in step ST8), the tilt angle of the vehicle 7 has not changed and the optical axis has not changed, so the process returns to step ST1.
  • Step ST10 sets an optical axis operation angle that cancels the changed angle so that the optical axis returns to the initial position when the angle of the vehicle 7 with respect to the horizontal plane changes due to passenger getting on and off or loading and unloading of luggage. This is the processing to be sought.
  • the CPU 16 changes the slope when the angle with respect to the horizontal vehicle immediately after the vehicle 7 stops (the first time after the stop) changes with respect to the horizontal vehicle angle thereafter (after the second time after the vehicle stops).
  • An optical axis operation angle for returning to the initial position after canceling the angle difference is calculated and used for optical axis control.
  • the first horizontal angle of the vehicle after stopping is the angle corresponding to the angle of the vehicle when traveling without any passenger getting on or off or loading and unloading, and the change of the inclination angle while stopping is observed. Convenient as a standard for
  • the optical axis control while the vehicle is stopped for example, the vehicle 7 is previously stopped on a horizontal road surface, and the optical axis is set to an initial position of 1% on the depression side.
  • the depression angle side of 1% is an angle at which the optical axis is lowered by 1 m in front of 100 m.
  • the change amount of the vehicle angle is canceled so that the optical axis of the headlamps 5L and 5R returns to the initial position according to the difference of the vehicle angle that changes due to the passenger getting on and off or loading and unloading of the luggage.
  • the optical axis can be manipulated in the direction.
  • the optical axis operation angle is obtained from the optical axis correction angle stored in advance in the storage unit 17, the vehicle angle reference value stored in advance in the storage unit 17, and the vehicle angle calculated in step ST8.
  • the change amount of the vehicle angle is canceled by (vehicle angle reference value ⁇ vehicle angle), and (optical axis correction angle + vehicle angle reference value) is added to this value to return the optical axis to the initial position.
  • the optical axis correction angle and the vehicle angle reference value will be described later.
  • the CPU 16 generates an optical axis operation signal from the optical axis operation angle obtained in step ST10, and outputs it to the optical axis operation devices 6L and 6R via the optical axis operation signal output unit 18 (step ST11).
  • the optical axis operation devices 6L and 6R operate the optical axes of the headlamps 5L and 5R according to the optical axis operation signal emitted from the optical axis operation signal output unit 18.
  • step ST2 “NO” when the behavior of the vehicle 7 changes from stop to running (step ST2 “NO”), the CPU 16 resets the first flag (step ST12). Subsequently, the CPU 16 calculates the representative vehicle angle ⁇ S using the acceleration signal acquired in step ST1 (step ST13). When the CPU 16 can calculate the representative vehicle angle ⁇ S (step ST14 “YES”), the CPU 16 updates the vehicle angle to the value of the representative vehicle angle ⁇ S calculated in step ST13 (step ST15). On the other hand, when the representative vehicle angle ⁇ S cannot be calculated (step ST14 “NO”), the CPU 16 returns to step ST1. Details of steps ST13 and ST14 will be described later.
  • step ST15 the CPU 16 calculates an optical axis operation angle in step ST10, generates an optical axis operation signal in step ST11, and outputs it to the optical axis operation devices 6L and 6R via the optical axis operation signal output unit 18. To do.
  • the vehicle angle at the time of stopping or traveling at a constant speed can be derived without being affected by the inclination (pitching) of 7. Further, since the differential acceleration at the two time points is used for calculating the representative vehicle angle ⁇ S, there is no influence of the offset existing in the output of the acceleration sensor 2, and there is no problem even if the offset changes with time.
  • the optical axis control (steps ST3 to ST9) using the angle with respect to the horizontal vehicle when the vehicle 7 is stopped is a method of accumulating the changed angles, there is a possibility that errors may accumulate. . Therefore, in the optical axis control using the horizontal vehicle angle, there is a possibility that the optical axis shifts with time.
  • the optical axis control using the representative vehicle angle ⁇ S step
  • step ST13-1 the CPU 16 determines the front-rear acceleration signals at the two time points and the two time point acceleration signals.
  • the differential accelerations ⁇ X and ⁇ Z are calculated using the vertical acceleration signal (step ST13-1 “YES”).
  • step ST13-1 the CPU 16 cannot calculate the differential accelerations ⁇ X and ⁇ Z (“NO” in step ST13-1), and consequently determines that the representative vehicle angle ⁇ S cannot be calculated (step ST13-19).
  • the process proceeds to step ST14 in FIG. In this case, the CPU 16 determines that the representative vehicle angle ⁇ S cannot be calculated in step ST14 (step ST14 “NO”), returns to step ST1, and acquires the acceleration signal at the second time point.
  • the CPU 16 compares the calculated differential acceleration ⁇ X in the front-rear direction with a predetermined differential acceleration usage range (step ST13-2). It is assumed that the use range of the differential acceleration is stored in the storage unit 17.
  • FIG. 9 shows an example of the use range of the differential acceleration.
  • calculation is performed using acceleration signals measured by the acceleration sensor 2 on the coordinates where the horizontal axis is the differential acceleration ⁇ X in the front-rear direction and the vertical axis is the vehicle angle ⁇ .
  • the vehicle angle ⁇ is plotted as an asterisk.
  • the use range of the differential acceleration ⁇ X is set to a range from ⁇ 0.5G to ⁇ 0.1G and a range from 0.1G to 0.5G.
  • the use range of the differential acceleration ⁇ X is set to a range from ⁇ 0.5G to 0.5G.
  • ⁇ X as the denominator of the above equation (3) for calculating the vehicle angle ⁇ is small, and the calculation result may be abnormal.
  • the use range of the differential acceleration ⁇ X when the vehicle 7 is decelerating is ⁇ 0.5 G or more and ⁇ 0.1 G or less
  • the use range of the differential acceleration ⁇ X when the vehicle 7 is accelerating is 0. 1G or more and 0.5G or less.
  • the use range is set for the differential acceleration ⁇ X in the front-rear direction, but the use range may be set for the acceleration signal in the front-rear direction.
  • step ST13-2 if the differential acceleration ⁇ X in the front-rear direction is not less than the use range on the deceleration side -0.5G or more and -0.1G or less, the CPU 16 proceeds to step ST13-3 and calculates the difference calculated in step ST13-1.
  • the vehicle angle ⁇ on the deceleration side is calculated using the accelerations ⁇ X and ⁇ Z.
  • the CPU 16 confirms whether or not the deceleration side memory of the storage unit 17 is free (step ST13-4).
  • the storage unit 17 includes two memories, a deceleration side memory and an acceleration side memory.
  • the deceleration-side memory has a capacity capable of storing 10 sets of data.
  • the acceleration side memory has a capacity capable of storing 10 sets of data.
  • a storage area of one memory may be allocated for the deceleration side memory and the acceleration side memory.
  • step ST13-4 “YES”) the CPU 16 calculates the deceleration-side vehicle angle ⁇ and the differential acceleration ⁇ X calculated in step ST13-3. Are stored in the deceleration side memory of the storage unit 17 as a set of data (step ST13-5).
  • step ST13-4 “NO”) the CPU 16 replaces the data in step ST13-6. If the absolute values of all the differential accelerations ⁇ X stored in the deceleration side memory are larger than the absolute values of the differential accelerations ⁇ X used for calculating the vehicle angle ⁇ in step ST13-3, the CPU 16 calculates in step ST13-3. The vehicle angle ⁇ on the deceleration side and the differential acceleration ⁇ X are discarded.
  • step ST13-7 the CPU 16 confirms whether there is a free space in the acceleration side memory of the storage unit 17 (step ST13-7). If the acceleration side memory is empty, that is, if the stored data is 9 sets or less (“YES” in step ST13-7), the CPU 16 determines that the representative vehicle angle ⁇ S cannot be calculated (step ST13-19). The process proceeds to step ST14 in FIG. In this case, the CPU 16 determines that the representative vehicle angle ⁇ S cannot be calculated in step ST14 (step ST14 “NO”), and returns to step ST1.
  • the CPU 16 sets one set of data in the acceleration side memory and one set in the deceleration side memory.
  • the third vehicle angle ⁇ s is calculated using the data (step ST13-8).
  • the CPU 16 may select any two sets of data to be used for calculating the third vehicle angle ⁇ s.
  • the absolute value of the differential acceleration ⁇ X is selected from 10 sets of data stored in the acceleration side memory.
  • One set of data shown as ⁇ in FIG. 9) having the largest value and one set of data (in FIG. 9) having the largest absolute value of the differential acceleration ⁇ X among the 10 sets of data stored in the deceleration side memory.
  • the angle ⁇ S can be calculated.
  • the CPU 16 deletes the two sets of data used for calculating the third vehicle angle ⁇ s in step ST13-8 from the acceleration side memory and the deceleration side memory (step ST13-9). Further, the CPU 16 increments a count value N for counting the number of third vehicle angles ⁇ s used for calculating the representative vehicle angle ⁇ S (step ST13-10).
  • the CPU 16 reads the total sum of the third vehicle angles ⁇ s calculated last time from the storage unit 17, and adds the third vehicle angle ⁇ s calculated in this step ST13-8 to the read sum, The total of the third vehicle angle ⁇ s is calculated (step ST13-11).
  • the CPU 16 stores the total sum of the third vehicle angles ⁇ s calculated this time in the storage unit 17.
  • the CPU 16 divides the total of the current third vehicle angle ⁇ s calculated in step ST13-11 by the count value N to obtain an average value of the third vehicle angle ⁇ s, and obtains this average value as the representative vehicle angle.
  • ⁇ S is set (step ST13-12). At the time of the first calculation of the third vehicle angle ⁇ s, the total sum of the third vehicle angles ⁇ s is not yet stored in the storage unit 17, so that the third vehicle angle ⁇ s calculated this time is directly used as the representative vehicle angle ⁇ S. Become.
  • step ST13-13 determines that the representative vehicle angle ⁇ S has been calculated (step ST13-13), and proceeds to step ST14 in FIG. In this case, the CPU 16 proceeds to step ST15, assuming that the representative vehicle angle ⁇ S can be calculated in step ST14 (step ST14 “YES”).
  • step ST13-2 if the differential acceleration ⁇ X in the front-rear direction is not less than 0.1G and not more than 0.5G on the acceleration side in step ST13-2, the CPU 16 proceeds to step ST13-14 and calculates in step ST13-1.
  • the vehicle angle ⁇ on the acceleration side is calculated using the differential accelerations ⁇ X and ⁇ Z.
  • the CPU 16 confirms whether or not the acceleration side memory of the storage unit 17 is empty (step ST13-15), and stores data (step ST13-16) or replaces data (step ST13-17). Since the processes in steps ST13-15, ST13-16, and ST13-17 are the same as the processes in steps ST13-4, ST13-5, and ST13-6, description thereof is omitted.
  • step ST17-18 the CPU 16 confirms whether there is a free space in the deceleration side memory of the storage unit 17 (step ST17-18). If the deceleration side memory is empty, that is, if the stored data is 9 sets or less (“YES” in step ST13-18), the CPU 16 determines that the representative vehicle angle ⁇ S cannot be calculated (step ST13-19). The process proceeds to step ST14 in FIG. In this case, the CPU 16 determines that the representative vehicle angle ⁇ S cannot be calculated in step ST14 (step ST14 “NO”), and returns to step ST1.
  • step ST13-18 the CPU 16 performs each process in steps ST13-8 to ST13-13 to represent the representative vehicle angle. ⁇ S is calculated.
  • the CPU 16 proceeds to step ST13-19 and determines that the representative vehicle angle ⁇ S cannot be calculated when the differential acceleration ⁇ X in the front-rear direction is neither the deceleration-side use range nor the acceleration-side use range in step ST13-2. Then, the process proceeds to step ST14 in FIG.
  • the representative vehicle angle ⁇ S is calculated as described above, a large number of longitudinal accelerations and vehicle angles are stored as in the process shown in FIG. There is no need to obtain, and the number of the longitudinal acceleration and the vehicle angle stored can be reduced, and a representative vehicle angle with high accuracy can be derived by a simple calculation. Therefore, compared with the memory capacity and calculation load required for calculating the representative vehicle angle shown in FIG. 5, the memory capacity and calculation load required for calculating the representative vehicle angle according to the first embodiment can be reduced.
  • the configuration of the optical axis control device 10 can be simplified and the cost can be reduced.
  • the vehicle angle ⁇ may change when the vehicle 7 starts traveling. Therefore, by resetting the representative vehicle angle ⁇ S when the vehicle 7 stops so that the influence of the vehicle angle ⁇ before the stop does not remain, the representative vehicle angle ⁇ S that has a quick response and high accuracy after the start of traveling can be obtained. Obtainable. Specifically, when the vehicle 7 stops, the CPU 16 resets data such as the representative vehicle angle ⁇ S, the vehicle angle ⁇ used for the calculation thereof, the differential acceleration ⁇ X, and the sum of the third vehicle angle ⁇ s and the like. When the vehicle 7 starts traveling, these data are collected again to calculate the representative vehicle angle ⁇ S.
  • the CPU 16 may determine whether the vehicle 7 is stopped based on, for example, speed information input from the speed signal input unit 13. Further, for example, the CPU 16 may determine that the vehicle 7 has stopped when detecting a state corresponding to the engine stop based on information of an ignition switch input from the vehicle information input unit 14. In the case of this configuration, a volatile memory or a nonvolatile memory can be used as the storage unit 17.
  • the first flag of the CPU 16 is reset after completion of the optical axis control device 10 for headlamps (step ST21).
  • the operator tilts the headlight optical axis control device 10 in which the acceleration sensor 2 is incorporated in three or more directions, and the acceleration sensor 2 measures the acceleration in the vertical direction and the front-rear direction and outputs an acceleration signal.
  • the CPU 16 estimates the offset and sensitivity of the acceleration sensor 2 based on the input acceleration signal (step ST23).
  • FIG. 11A is a diagram illustrating the acceleration measurement system and the weight viewed from the vertical direction and the horizontal direction at the time of initial setting.
  • the intersection of the X axis and the Z axis is the origin of the acceleration sensor 2
  • the intersection of the vertical axis and the horizontal axis is the measurement origin O viewed from the vehicle 7.
  • step ST22 when the headlight optical axis control device 10 incorporating the acceleration sensor 2 was rotated as shown in FIG. 11 (b), the measurement was performed by the acceleration sensor 2 as shown in FIG. 11 (a).
  • the origin which is the center of the circle drawn by the acceleration, that is, the weight suspended by the spring, is an offset with respect to the acceleration measurement system, and the size of the circle is the sensitivity of the acceleration measurement system.
  • the offset in the X-axis direction is illustrated as Xoff
  • the offset in the Z-axis direction is illustrated as Zoff.
  • ⁇ off indicates a shift in the mounting angle of the acceleration sensor 2.
  • the worker fixes the headlamp optical axis control device 10 to a horizontal surface, and sets the mounting angle of the acceleration sensor 2 with respect to the headlamp optical axis control device 10 (step ST24).
  • the optical axis control device for headlamp 10 stores the offset and sensitivity of the acceleration sensor 2 in step ST23 and the setting value of the attachment angle in step ST24 in the storage unit 17.
  • the setting signal for storing the various setting values can be substituted by inputting a specific input pattern to the vehicle information input unit 14, for example, in addition to the setting signal by communication with an external device.
  • this specific input pattern is, for example, encryption such as setting the transmission selection lever to “R”, setting the lighting switch to “ON”, and repeating the “ON” of the passing switch three times. Combination. Of course, other combinations of input pattern signals may be used.
  • Fig. 12 shows how to set the mounting angle.
  • the acceleration sensor 2 measures acceleration (step ST24-1), and the CPU 16 calculates a horizontal vehicle angle (step ST24-2).
  • the calculated horizontal vehicle angle is stored in the storage unit 17 as a vehicle angle reference value (step ST24-3).
  • the optical axis correction angle and the vehicle angle reference value are stored in the storage unit 17 and used when executing the flowchart of FIG.
  • the CPU 16 generates and outputs an optical axis operation signal from the optical axis operation angle at the time of setting the attachment angle (step ST25).
  • the operator confirms whether or not the optical axis operation signal has a correct value (step ST26).
  • steps ST27 to ST30 is performed at a vehicle manufacturing factory or maintenance factory.
  • the worker mounts the headlight optical axis control device 10 on the vehicle 7 (step ST27), and sets the mounting angle of the acceleration sensor 2 with respect to the vehicle 7 while the vehicle 7 is stopped on a horizontal road surface (step ST27).
  • ST28 mounts the headlight optical axis control device 10 on the vehicle 7
  • ST28 sets the mounting angle of the acceleration sensor 2 with respect to the vehicle 7 while the vehicle 7 is stopped on a horizontal road surface
  • step ST28 the mounting angle is set in the same procedure as in steps ST24-1 to ST24-4 in FIG.
  • the worker stops the vehicle 7 on a horizontal road surface and recognizes the optical axis control device 10 for headlamps with respect to the horizontal vehicle angle, that is, the deviation ⁇ off of the mounting angle of the acceleration sensor 2 shown in FIG.
  • the displacement of the mounting angle of the acceleration sensor 2 with respect to the vehicle 7 is corrected.
  • the operator mechanically adjusts the optical axes of the headlamps 5L and 5R using a spanner or a driver.
  • a non-volatile memory is used as the storage unit 17 for storing the offset and sensitivity of the acceleration sensor 2, the set value of the mounting angle, the vehicle angle reference value, and the optical axis correction angle.
  • the control unit 15 determines the difference in the vertical direction at the first two time points with respect to the differential acceleration ⁇ X in the front-rear direction at the first two time points.
  • the first vehicle angle ⁇ is calculated from the ratio of the acceleration ⁇ Z, and the differential acceleration ⁇ Z in the vertical direction at the second two time points with respect to the differential acceleration ⁇ X in the longitudinal direction at the second two time points different from the first two time points.
  • the second vehicle angle ⁇ is calculated from the ratio and the first vehicle angle ⁇ and its differential acceleration ⁇ X
  • the second vehicle angle ⁇ and its differential acceleration ⁇ X are used, and the differential acceleration ⁇ X in the longitudinal direction becomes zero
  • the third vehicle angle ⁇ s is calculated, a plurality of third vehicle angles ⁇ s are calculated, the representative vehicle angle ⁇ S is calculated based on the distribution, and the headlamps 5L and 5R are calculated based on the representative vehicle angle ⁇ S.
  • the optical axis control apparatus 10 for headlamps which can control the optical axis of a headlamp with high precision is realizable.
  • control unit 15 is configured to calculate the average value, the median value, or the mode value of the plurality of third vehicle angles ⁇ s as the representative vehicle angle ⁇ S.
  • the representative vehicle angle ⁇ S can be obtained without performing the calculation.
  • the control unit 15 calculates the first vehicle angle ⁇ and the second vehicle angle ⁇ by using an acceleration signal within a predetermined use range or a predetermined use range.
  • the differential acceleration ⁇ X is used so that the acceleration signal or the differential acceleration at the time of sudden acceleration, sudden stop, and traveling at extremely low speeds can be prevented from being used for calculation of the vehicle angle ⁇ .
  • the vehicle angle ⁇ S can be obtained.
  • the control unit 15 includes the storage unit 17 that stores a plurality of sets of data with the vehicle angle ⁇ and the differential acceleration ⁇ X as one set of data, and the third vehicle angle ⁇ s. Since at least one set of data is selected from a plurality of sets of data stored in the storage unit 17 for calculation, the straight line 111 can be accurately drawn from the plurality of sets of data. Possible data can be selected, and the representative vehicle angle ⁇ S with high accuracy can be obtained.
  • control unit 15 is configured to reset the representative vehicle angle ⁇ S when the vehicle 7 stops, and to calculate again when the vehicle 7 starts running.
  • the influence of the vehicle angle ⁇ before stopping does not remain in the representative vehicle angle ⁇ S after the start of traveling. Thereby, it is possible to obtain the representative vehicle angle ⁇ S that has a quick response and high accuracy.
  • the acceleration sensor 2 is configured integrally with the headlamp optical axis control device 10, so that wiring can be omitted.
  • the headlight optical axis control device 10 having the configuration can be realized.
  • the headlamp optical axis control device 10 is integrated with the vehicle-mounted electrical component 8 having a function different from that of the optical axis control. Since the headlamp optical axis control device 10 does not exist, the system configuration mounted on the vehicle 7 is simplified.
  • FIG. 1 The configuration of the optical axis control device for headlamps according to the second embodiment is the same as that of the optical axis control device for headlamps 10 shown in FIG. FIG. 1 is incorporated.
  • the CPU 16 uses a reference acceleration for either the km point acceleration signal or the kn point acceleration signal used to calculate the vehicle angle ⁇ . Is used.
  • the reference acceleration is referred to as “reference acceleration”.
  • the CPU 16 according to the second embodiment uses, for example, an acceleration signal measured by the acceleration sensor 2 when the vehicle 7 is stopped as the reference acceleration.
  • the CPU 16 of the second embodiment performs the stop acquired in step ST1.
  • the acceleration signal at that time is stored in the storage unit 17 as a reference acceleration.
  • the CPU 16 of the second embodiment acquires the reference acceleration stored in the storage unit 17, and sets the km points.
  • the vehicle angle ⁇ is calculated by the above equations (1) to (3) using the reference acceleration as the acceleration signal and using the acceleration signal at the time of traveling acquired in step ST1 as the acceleration signal at the kn point.
  • the acceleration signal measured in the stopped state as the reference acceleration, it is possible to easily detect the changing acceleration, that is, the differential acceleration, so that the vehicle angle ⁇ with high accuracy can be obtained.
  • the optical axis control apparatus 10 for headlamps which can control the optical axis of a headlamp with high precision is realizable.
  • the vehicle angle ⁇ may deviate on an up or down slope. Therefore, an acceleration signal measured in a state where the vehicle 7 is traveling at a constant speed or an average value of acceleration signals measured for a long time may be used as the reference acceleration.
  • step ST2 of the flowchart shown in FIG. 7 of the first embodiment the CPU 16 of the second embodiment stops the vehicle 7 based on the speed signal input from the vehicle speed sensor 3 via the speed signal input unit 13.
  • the CPU 16 of the second embodiment determines whether the vehicle 7 is traveling at a constant speed.
  • the CPU 16 stores the acceleration signal at the constant speed travel obtained in step ST1 in the storage unit 17 as a reference acceleration. Thereafter, when performing optical axis control (steps ST12 to ST15) while the vehicle 7 is traveling, the CPU 16 of the second embodiment uses the reference acceleration stored in the storage unit 17.
  • a vehicle angle ⁇ equivalent to the vehicle angle when the vehicle is stopped on a horizontal road surface can be obtained.
  • the CPU 16 collects acceleration signals for a time longer than the time interval between two time points of the differential acceleration used for calculating the vehicle angle ⁇ , and calculates an average value of the collected acceleration signals as a reference acceleration. If the acquisition time of the acceleration signal is lengthened, all the states of uphill, downhill, acceleration and deceleration can be included, and the accuracy of the vehicle angle ⁇ is improved.
  • the CPU 16 of the second embodiment is running the vehicle 7 based on the speed signal input from the vehicle speed sensor 3 via the speed signal input unit 13. If it is determined that the acceleration signal is the running acceleration signal acquired in step ST1, the storage unit 17 stores the acceleration signal. Then, the CPU 16 according to the second embodiment averages a plurality of running acceleration signals stored in the storage unit 17 to obtain a reference acceleration.
  • the control unit 15 is configured to use an acceleration signal corresponding to a predetermined reference acceleration as one of the acceleration signals measured at two time points. Since the differential acceleration can be easily detected by using an acceleration signal measured in a state where the vehicle 7 is stopped as the acceleration, a highly accurate vehicle angle ⁇ can be obtained. Thereby, the optical axis control apparatus 10 for headlamps which can control the optical axis of a headlamp with high precision is realizable. Further, as the reference acceleration, the acceleration signal measured in a state where the vehicle 7 is traveling at a constant speed or the time difference between two time points of the differential acceleration used to calculate the vehicle angle ⁇ is measured. By using an average value of a plurality of acceleration signals, the optical axis control device 10 for headlamps that can control the optical axis of the headlamps with high accuracy can be realized.
  • the control unit 15 uses the speed signal measured by the vehicle speed sensor 3 mounted on the vehicle 7, and the vehicle 7 is stopped or is traveling at a constant speed. Since the state is determined, the state of the vehicle 7 such as stop, constant speed driving, acceleration and deceleration is determined using the speed information of the vehicle speed sensor 3 without using the acceleration sensor 2 that easily includes noise due to vibration. can do. Since the control unit 15 can accurately extract the acceleration signal used as the reference acceleration based on the determination result, it is possible to calculate the vehicle angle ⁇ with high accuracy.
  • the optical axis control device for a headlamp can control the optical axis of the headlamp with high accuracy while using an acceleration sensor
  • the optical axis control device for a headlamp using a bright light source such as an LED can be used. It is suitable for use in an optical axis control device.
  • 1 on-board battery 2 acceleration sensor, 3 vehicle speed sensor, 4 switch, 5L left headlight, 5R right headlight, 6L, 6R optical axis operating device, 7 vehicle, 8 on-vehicle electrical components, 10 headlight optical axis Control device, 11 power supply unit, 12 acceleration signal input unit, 13 speed signal input unit, 14 vehicle information input unit, 15 control unit, 16 CPU, 17 storage unit, 18 optical axis operation signal output unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

前照灯用光軸制御装置の制御部は、車両走行中の異なるタイミングで第1の車両角度(θα)と第2の車両角度(θβ)を算出し、前後方向の加速度信号の差分(ΔX)が零になるときの第3の車両角度(θs)を算出する。制御部は、複数個の第3の車両角度(θs)の分布に基づいて代表値(θS)を算出し、代表値(θS)に基づいて前照灯の光軸を操作する信号を生成する。

Description

前照灯用光軸制御装置
 この発明は、加速度センサによって計測された加速度信号を用いて、車載用前照灯の光軸を制御する前照灯用光軸制御装置に関するものである。
 車両に搭載される前照灯において、高いデザイン性および高級感を醸し出しながら、夜間走行時の安全性を高めるために、光源として従来のハロゲン電球に代替して、明るい放電灯あるいは任意の方向を明るく照らすLED(発光ダイオード)が普及している。
 上記明るい光源を車両に搭載するにあたっては、例えば、後部座席に搭乗者が乗車、あるいは、トランクに荷物を積載して車両の後部が下がって傾いたとき、換言すれば、車両の前部が上がって前照灯の照射方向が上方に傾いたときには、対向車を運転するドライバを眩惑しないように、また、当前照灯に対峙する歩行者に不快感を与えないように、前照灯の照射方向、つまり前照灯の光軸を下げて、路面に対する光軸を一定に維持する必要がある。要するに、上記明るい光源を使用する車両には、少なくとも搭乗者の乗車あるいはトランクへの荷物の積載によって車両が傾き前照灯の照射方向が上方に変化したときに、当前照灯の照射方向を下げて、変化前の照射方向に戻す前照灯用光軸制御装置の搭載が必須となっている。
 なお、搭乗者の乗車あるいは荷物の積載は、車両が停車しているときに行われるものであり、車両が停車しているときの光軸制御が、当前照灯用光軸制御装置の主な制御となる。
 ところで、前照灯の光軸制御は、上記のように車両が前後方向に傾斜したときに前照灯の照射方向をもとの方向に戻すべく、路面に対する車両の傾斜角度の変化を相殺するように光軸を上下に操作するものであるため、まず、路面に対する車両の傾斜角度を測定する必要がある。以下では、路面に対する車両の傾斜角度を「車両角度」と呼ぶ。
 従来は、車両前後のサスペンション(懸架装置)に取り付けられたストロークセンサを使用して、前後のサスペンションの縮み量、つまり前後の車軸部の沈み込み量を計測し、当前後の沈み込み量の差分とホイールベースの長さとに基づいて、車両角度を算出していた。
 昨今においては、上記サスペンションに取り付けられたストロークセンサを使用する構成以外に、例えば特許文献1のような、重力加速度を検出できる加速度センサを使用する構成が検討されている。当加速度センサを使用する構成においては、停車中の車両の傾斜角度の変化を検出することは容易であり、初期の車両角度に対して搭乗者の乗り降り等による変化量を累積して現時点の車両角度を得ることは容易である。その一方で、当加速度センサの出力にはオフセットおよび当オフセットの経時変化が存在し、上記累積して得た車両角度には累積誤差が潜在するため、計測値および変化を累積して得た車両角度は確度が低いという問題がある。そのため、前照灯の光軸を長期間にわたって正しい角度に安定して維持するためには、加速度センサによって計測された加速度に対し、何らかの補正を加えること、あるいは車両角度の中の累積誤差を取り除くことによって確度を確保する必要がある。
 上記特許文献1の光軸制御装置は、車両の前後方向と上下方向の2軸の加速度センサを使用しながら、車両角度の確度を高め、好適な前照灯の光軸制御を行うために、車両が停車しているときの光軸制御以外に、車両が走行しているときにも加速度を計測して光軸制御を行っている。上記特許文献1の光軸制御装置は、車両が走行しているときに計測した加速度を使用して、加速度の変化方向を時間ごとに求める、あるいは計測タイミングが異なる二つの加速度から加速度の変化方向を求めることで、車両角度を算出し、当車両角度の変化に基づいて光軸を制御している。
特開2012-106719号公報
 実際の車両においては、加速するときは車両の前方が上がるか後方が下がる方向に傾斜が変化し、減速するときに車両の前方が下がるか後方が上がる方向に傾斜が変化する。そのため、加減速するときの加速度の変化方向は、直線状にはならない。
 しかしながら、上記特許文献1では、車両が加速しても減速しても、車両角度が変化しないことを前提としており、加減速するときの加速度の変化方向を、特許文献1の図4および図6のように直線近似して求めている。つまり、上記特許文献1では、車両が加減速することによって傾斜角度が変化することが考慮されておらず、確度の高い車両角度を得られないという課題があった。
 また、上記特許文献1のように、車両前後方向の加速度を第1軸に設定し車両上下方向の加速度を第2軸に設定した座標に、加速度センサの検出値を経時的にプロットする構成では、数多くの検出値を記憶する大容量のメモリが必要になると同時に、数多くの検出値から1点の角度を求める複雑な演算が必要になるという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、車両が加減速することによって生じる傾斜角度の誤差を含まない、確度の高い車両角度を算出すること、ならびに当該車両角度の算出に必要となるメモリ容量および演算負荷を軽減することを目的とする。
 この発明に係る前照灯用光軸制御装置は、車両に搭載された加速度センサによって計測された上下方向および前後方向の加速度信号を用いて、路面に対する車両の傾斜角度である車両角度を算出し、前照灯の光軸を操作する信号を生成する制御部を備えた前照灯用光軸制御装置であって、制御部は、車両が走行している状態において、第1の2時点で計測された前後方向の加速度信号の差分に対する、当該第1の2時点で計測された上下方向の加速度信号の差分の比から第1の車両角度を算出し、第1の2時点とは異なる第2の2時点で計測された前後方向の加速度信号の差分に対する、当該第2の2時点で計測された上下方向の加速度信号の差分の比から第2の車両角度を算出し、第1の車両角度および第1の車両角度の算出に使用した前後方向の加速度信号の差分と、第2の車両角度および第2の車両角度の算出に使用した前後方向の加速度信号の差分とを用いて、前後方向の加速度信号の差分が零になるときの第3の車両角度を算出し、第3の車両角度を複数個算出しその分布に基づいて第3の車両角度の代表値を算出し、当該代表値に基づいて前照灯の光軸を操作する信号を生成するものである。
 この発明によれば、第1の車両角度および第1の車両角度の算出に使用した前後方向の加速度信号の差分と、第2の車両角度および第2の車両角度の算出に使用した前後方向の加速度信号の差分とを用いて、前後方向の加速度信号の差分が零になるときの第3の車両角度を算出し、第3の車両角度を複数個算出しその分布に基づいて第3の車両角度の代表値を算出し、当該代表値に基づいて前照灯の光軸を操作する信号を生成するようにしたので、代表値を算出するために必要となるメモリ容量および演算負荷を軽減することができる。また、車両が停止あるいは等速走行している状態の車両角度に相当する代表値を得ることができるので、車両が加減速することによって生じる傾斜角度の誤差を含まない、確度の高い車両角度を用いた前照灯の光軸操作が可能である。
この発明の実施の形態1に係る前照灯用光軸制御装置の構成例を示すブロック図である。 実施の形態1に係る前照灯用光軸制御装置の車両搭載例を示す図である。 実施の形態1において加速度と車両角度の関係を説明する図である。 実施の形態1において加減速により変化する車両の傾斜を説明する図である。 実施の形態1の理解を助けるための参考例として、車両の前後方向の加速度信号の差分と車両角度の関係を説明するグラフである。 実施の形態1に係る前照灯用光軸制御装置による代表車両角度の算出処理を説明するグラフである。 実施の形態1に係る前照灯用光軸制御装置の動作を示すフローチャートである。 実施の形態1に係る前照灯用光軸制御装置の代表車両角度の算出方法を示すフローチャートである。 図8Aに示したフローチャートの続きである。 実施の形態1における差分加速度の使用範囲の一例を示すグラフである。 実施の形態1に係る前照灯用光軸制御装置の初期設定方法を示すフローチャートである。 実施の形態1に係る前照灯用光軸制御装置の初期設定方法を説明する図である。 実施の形態1に係る前照灯用光軸制御装置の取り付け角度の設定方法を示すフローチャートである。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る前照灯用光軸制御装置10の構成例を示すブロック図である。実施の形態1に係る前照灯用光軸制御装置10は、電源部11、加速度信号入力部12、速度信号入力部13、車両情報入力部14、および制御部15を含んでいる。制御部15は、CPU(Central Processing Unit)16、半導体メモリ等で構成された記憶部17、および光軸操作信号出力部18を含んでいる。
 図2は、前照灯用光軸制御装置10を車両7に搭載した例を示す図である。車両7には、光軸の方向を調整する光軸操作装置6L,6Rを備えた左側の前照灯5Lおよび右側の前照灯5Rと、加速度センサ2と、車速センサ3と、前照灯用光軸制御装置10とが設置されている。加速度センサ2は、車両7に加わる前後方向の加速度と、車両7に加わる上下方向の加速度を計測して、加速度信号として出力する。車速センサ3は、車両7の車速を計測し、速度信号として出力する。
 図2(a)の例では、前照灯用光軸制御装置10と加速度センサ2とが別体で構成されている。図2(b)の例では、前照灯用光軸制御装置10の内部に加速度センサ2が収容されて一体に構成されている。図2(c)の例では、加速度センサ2と一体に構成された前照灯用光軸制御装置10が、他の車載電装品8の内部に収容されている。
 なお、図2(c)のように前照灯用光軸制御装置10が車載電装品8の内部に収容されている場合、電源部11、加速度信号入力部12、速度信号入力部13、車両情報入力部14または光軸操作信号出力部18のうちの一部または全部の機能は、前照灯用光軸制御装置10が備えていてもよいし車載電装品8が備えていてもよい。
 前照灯用光軸制御装置10は、車両7の前方を照らす左右の前照灯5L,5Rの上下方向の光軸を一定に保つものである。
 電源部11は、車載バッテリ1の電源を制御部15へ供給する電源装置である。加速度信号入力部12、速度信号入力部13および車両情報入力部14は通信装置であり、CAN(Controller Area Network)等の車両通信網を通じて加速度センサ2、車速センサ3およびスイッチ4といった車両側の機器と通信する。スイッチ4は、イグニッションスイッチ、ライティングスイッチ、あるいはディマースイッチ等である。加速度信号入力部12は、加速度センサ2が出力した前後方向および上下方向の加速度信号をCPU16へ入力する。速度信号入力部13は、車速センサ3が出力した速度信号をCPU16へ入力する。車両情報入力部14は、車両7のスイッチ4に対してドライバが行った操作内容を示す車両情報を、CPU16へ入力する。
 CPU16は、前後方向および上下方向の加速度信号と速度信号とを用いて、路面に対する車両7の傾斜角度を算出し、路面に対する車両7の傾斜角度の変化を相殺するための光軸操作信号を生成する。光軸操作信号出力部18は、CPU16が算出した光軸操作信号を光軸操作装置6L,6Rへ出力する通信装置である。
 以下では、路面に対する車両7の傾斜角度を「車両角度」と呼ぶ。
 光軸操作装置6L,6Rは、前照灯用光軸制御装置10から入力される光軸操作信号に応じて、前照灯5L,5Rの光軸の角度を操作することによって、車両7の車両角度の変化を相殺するように光軸制御を行う。これにより、車両7の車両角度が変化しても路面に対する前照灯5L,5Rの光軸が一定に保たれる。
 図3は、加速度と車両角度の関係を説明する図である。
 本実施の形態1の説明においては、車両7の上下方向をZ軸、車両7の前後方向をX軸とした加速度の計測系を使用し、図3(a)に示すように、当加速度計測系である車両7に加わる加速度の方向と大きさを、ばねに吊り下げた錘の位置によって表現する。
 なお、路面に接地した前後左右それぞれの車輪の中心点を4個の頂点とした平面状の四角形を仮想的な台車としてみれば、当仮想的な台車の面は路面に対して平行になるため、当仮想的な台車と、サスペンション(懸架装置)で支えられた車体のなす角度θが、路面に対する車両7の傾斜角度、即ち車両角度である。上記を念頭において、図3(b)には、車両7の仮想的な台車、即ち道路側から見たものと同等の加速度計測系に加わる加速度をばねに吊り下げた錘の挙動として表す。なお、当図においては、仮想的な台車の上下方向をZi軸、前後方向をXi軸とする。
 図3(b)に示すように、車両7が加速するときには、水平な道路でも坂道でも、錘は道路面に対して平行に移動する、見方を変えれば、錘は仮想的な台車のXi軸方向に移動する。つまり、走行による加速度の変化は路面に平行、即ち、仮想的な台車のXi軸方向の矢印100のようになる。
 一方、図3(a)に示すように、サスペンションで支えられた車体に設置された加速度計測系から車両7に加わる加速度を見た場合も、車両7の加速によって、錘は、上記と同様に加速度計測系の前後方向のX軸の方向には係わらず、仮想的な台車のXi軸方向に移動する。
 上記錘の挙動により、加速度計測系の前後方向のX軸と仮想的な台車のXi軸のなす角度θ、即ち、路面に対する車両7の傾斜角度である車両角度を、前後方向のX軸と車両7の加速による錘の移動方向(矢印100)とがなす角度θとして検出することができる。
 従って、車両7に設置された加速度計測系においては、km点とkn点の2時点において道路面に対して平行に移動する錘の移動量(矢印100)、つまり上下方向の加速度の差分と前後方向の加速度の差分を観測すれば、走行している道路の上り下りの勾配に関係なく車両角度を算出することができる。
 ただし、実際の車両7が加速または減速するときには、車両7が前後に傾斜(ピッチング)する。ここで、図4(b)に停車中であって車体が静止した状態の車両7の例を示し、図4(a)に減速時の車両7の例を示し、図4(c)に加速時の車両7の例を示す。
 車両7が加速するときには、図4(c)に示すように車両7が矢印101で示す方向に回転角度θ1回転し、車両7の前方が上がるか後方が下がる方向に傾斜する。ちなみに、車両7の加速時に後方が下がることを「スクワット」と呼ぶ。
 車両7が減速するときには、図4(a)に示すように車両7が矢印102で示す方向に回転角度θ2回転し、車両7の前方が下がるか後方が上がる方向に傾斜する。ちなみに、車両7の減速時に前方が下がることを「ノーズダイブ」と呼ぶ。
 このように、車両角度には車両7が加減速することによって変化した傾斜、つまりピッチ角度の誤差が含まれているため、スクワットまたはノーズダイブのような様相を示す不特定な2時点の加速度から得た車両角度の確度は低い。従って、前照灯の光軸制御に、不特定な2時点の加速度から得た車両角度をそのまま使用することは適切ではない。
 ところで、ピッチング角度は、加速度と相関があり、加速度の大きさに対応してピッチング角度が大きくなる。そのため、図5に示すグラフのように、車両7の前後方向の加速度信号の差分、即ち前後方向の差分加速度ΔXに対する車両角度θをプロットし、プロットした多数の車両角度θを通る代表的な直線110を描き、前後方向の差分加速度ΔXが零となるところの車両角度を求めれば、車両7が加減速するときのピッチングの影響を排除した、車両7が停止している状態あるいは等速走行している状態に相当する車両角度を得ることができる。
 この図5においては、横軸を前後方向の差分加速度ΔXとし、縦軸を車両角度θとした座標上に、加速度センサ2により計測された加速度信号を用いて算出された車両角度θが、星印としてプロットされている。車両7が加減速するときのピッチングの影響を排除した、車両7が停止している状態あるいは等速走行している状態に相当する車両角度を、代表車両角度θSと呼ぶ。
 前後方向の差分加速度ΔXは、加速度センサ2が計測したある時点の前後方向の加速度信号と他の時点の前後方向の加速度信号との差分、即ち2時点の前後方向の加速度信号の差分である。なお、図5においては、車両7が停止している状態あるいは等速走行している状態において計測された加速度信号をkm点の加速度信号として用い、kn点の加速度信号との差分を差分加速度ΔXとして横軸に設定してある。
 図5のグラフのように、直交する座標上に、差分加速度ΔXに対する車両角度θを多数プロットして代表的な直線110を描き代表車両角度θSを算出するためには、多数の車両角度θと差分加速度ΔXとを記憶しておくための大容量のメモリが必要になると同時に、複雑な演算を処理できるCPUが必要となる。そのため、前照灯用光軸制御装置10の構成が複雑になり、コストが高くなることは否めない。
 そこで、本実施の形態1では、図5に示したような代表車両角度θSの算出処理を簡素化して、図6に示すような処理にする。
 図6においては、図5と同様に、横軸を前後方向の差分加速度ΔXとし、縦軸を車両角度θとした座標上に、加速度センサ2が計測した2時点の前後方向および上下方向の加速度信号の差分を用いて算出された車両角度θが、星印としてプロットされている。車両角度θのそれぞれは異なるタイミングで算出されたものとする。CPU16は、第1の車両角度θと第2の車両角度θを示す2個の星印を通る直線111を描き、この直線111において前後方向の差分加速度ΔXが零となる車両角度を、第3の車両角度θsとして求める。図6では第3の車両角度θsを白丸で示す。第3の車両角度θsは、車両7が停止している状態あるいは等速走行している状態の車両角度に相当する。最後に、CPU16は、複数の直線111から求めた複数個の第3の車両角度θsの分布状態を基に、第3の車両角度θsの代表値である代表車両角度θSを求める。図6では代表車両角度θSを黒丸で示す。
 より具体的には、CPU16は、km点とkn点の2時点で計測された前後方向の加速度信号Xkm,Xknを使用して、式(1)により差分加速度ΔXを算出する。また、CPU16は、同じkm点とkn点の2時点で計測された上下方向の加速度信号Zkm,Zknを使用して、式(2)により差分加速度ΔZを算出する。続いてCPU16は、式(3)により、差分加速度ΔXに対する差分加速度ΔZの比から車両角度θを算出する。
 この車両角度θを第1の車両角度θαと呼び、第1の車両角度θαの算出に使用した前後方向の差分加速度ΔXを第1の差分加速度ΔXαと呼ぶ。CPU16は、第1の車両角度θαと第1の差分加速度ΔXαを1組のデータとして、記憶部17に記憶させる。
 続いてCPU16は、上記の2時点とは異なる2時点で計測された加速度信号Xkm,Xkn,Zkm,Zknを使用して、式(1)~(3)により車両角度θを算出する。
 この車両角度θを第2の車両角度θβと呼び、第2の車両角度θβの算出に使用した前後方向の差分加速度ΔXを第2の差分加速度ΔXβと呼ぶ。CPU16は、第2の車両角度θβと第2の差分加速度ΔXβを1組のデータとして、記憶部17に記憶させる。
 続いてCPU16は、記憶部17に記憶されている第1の車両角度θα、第1の差分加速度ΔXα、第2の車両角度θβ、第2の差分加速度ΔXβを使用して、式(4)により、第1の車両角度θαと第2の車両角度θβとを通る直線111において差分加速度ΔXが零となる第3の車両角度θsを算出する。
 CPU16は、上記処理を繰り返して、N(N≧2)個の第3の車両角度θsを算出する。最後にCPU16は、式(5)により、N個の第3の車両角度θsの平均値を算出し、算出した平均値を代表車両角度θSとする。なお、代表車両角度θSは、N個の第3の車両角度θsの代表的な値であればよく、上述した平均値のほか、中央値あるいは最頻値などでもよい。
  ΔX=Xkn-Xkm   (1)
  ΔZ=Zkn-Zkm   (2)
  θ=tan-1(ΔZ/ΔX)   (3)
  θs=(θα・ΔXβ-θβ・ΔXα)/(ΔXβ-ΔXα) (4)
  θS=(θs1+θs2+θs3+・・・+θsN)/N   (5)
 ちなみに、上記のように車両角度θの算出には加速度の変化量である差分加速度ΔX,ΔZを使用するため、加速度センサ2の出力に存在するオフセットの影響がなく、当オフセットが経時的に変化しても問題ない。
 CPU16は、第1の車両角度θαと第2の車両角度θβを算出する都度、第3の車両角度θsを算出する構成であってもよいし、算出した複数組の車両角度θと差分加速度ΔXを記憶部17に記憶させておき、記憶部17が記憶している複数組の車両角度θと差分加速度ΔXの中から少なくとも1組の車両角度θと差分加速度ΔXを使用して第3の車両角度θsを算出する構成であってもよい。
 ここで、CPU16が第3の車両角度θsを算出するにあたり、記憶部17に記憶されている車両角度θと差分加速度ΔXを使用する構成例A,Bを説明する。
<構成例A>
 CPU16は、新たに第1の車両角度θαを算出した場合に、記憶部17が記憶している複数組の中から1組を選択し、選択した1組の車両角度θと差分加速度ΔXを第2の車両角度θβと第2の差分加速度ΔXβとして用いて、第3の車両角度θsを算出する。
 また、CPU16は、新たに第1の車両角度θαを算出した場合に記憶部17が記憶している複数組の中から第2の車両角度θβとして使用する1組を選択する際、第1の差分加速度ΔXαと第2の差分加速度ΔXβとの差が最も大きくなるような1組のデータを選択することが好ましい。第1の差分加速度ΔXαと第2の差分加速度ΔXβとの差が大きいほど、第1の車両角度θαと第2の車両角度θβを結ぶ直線111の精度が向上し、確度の高い代表車両角度θSを得ることができるためである。
<構成例B>
 CPU16は、記憶部17が記憶している複数組の中から2組を選択し、選択した1組の車両角度θと差分加速度ΔXを第1の車両角度θαと第1の差分加速度ΔXαとして用い、選択したもう1組の車両角度θと差分加速度ΔXを第2の車両角度θβと第2の差分加速度ΔXβとして用いて、第3の車両角度θsを算出する。
 また、CPU16は、記憶部17が記憶している複数組の中から2組を選択する際、差分加速度ΔX間の差が最も大きい2組のデータを選択することが好ましい。第1の差分加速度ΔXαと第2の差分加速度ΔXβとの差が大きいほど、第1の車両角度θαと第2の車両角度θβを結ぶ直線111の精度が向上し、確度の高い代表車両角度θSを得ることができるためである。
 以下では、構成例Bについて説明する。
 次に、図7のフローチャートを用いて、前照灯用光軸制御装置10の動作を説明する。
 CPU16は、電源が投入されて動作を開始すると、図7のフローチャートを実施する。
 CPU16は、まず、加速度信号入力部12を介して加速度センサ2から入力される上下方向および前後方向の加速度信号を取得する(ステップST1)。加速度信号の計測周期は、例えば100msとする。
 続いてCPU16は、速度信号入力部13を介して車速センサ3から入力される速度信号に基づいて、車両7が停車中か走行中かを判定する(ステップST2)。図7の動作例では、車両7が停車している状態での光軸制御(ステップST3~ST9)と、車両7が走行している状態での光軸制御(ステップST12~ST15)とを切り替えて行う。
 なお、停車中か走行中かを判定するステップST2には、速度信号中のノイズを走行信号と誤判定しないように、あるいは、上記車両が停車してから車体が静止するまでを走行中と判断するように、例えば2秒ほどの遅延時間を有するフィルタを設けることが望ましい。
 車両7が停車しているとき(ステップST2“YES”)、CPU16は、ステップST1で取得した加速度信号を使用して、水平方向に対する車両7の傾斜角度を算出する(ステップST3)。水平方向に対する7の傾斜角度を「対水平車両角度」と呼ぶ。重力加速度を検出できる加速度センサの出力を使用する対水平車両角度の算出方法は、周知の方法を用いればよいため、説明を省略する。
 CPU16は、停車中に搭乗者の乗り降り、あるいは荷物の積み下ろしによって車両7の傾斜が変化したか否かを判定するために、変化前の対水平車両角度が記憶部17に記憶されているか否かを示す1回目フラグを持つ。
 CPU16は、車両7の挙動が走行から停車に変わったときに、1回目フラグがセットされているか否かを確認し(ステップST4)、1回目フラグがセットされていない場合(ステップST4“YES”)、つまり停車直後に、1回目フラグをセットし(ステップST5)、ステップST3で算出した対水平車両角度を1回目対水平車両角度として記憶部17に記憶させ(ステップST6)、ステップST1に戻る。
 1回目フラグがセットされている場合(ステップST4“NO”)、つまり停車後2回目以降には、CPU16は、記憶部17から1回目対水平車両角度を読み出し、ステップST3で算出した対水平車両角度を減じて、傾斜角度差を算出する(ステップST7)。傾斜角度差が有る場合(ステップST8“YES”)、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって車両7の傾斜が変化し光軸も変化しているため、CPU16は車両角度と傾斜角度差とを加算して、変化後の車両角度を算出する(ステップST9)。傾斜角度差が無い場合(ステップST8“NO”)、車両7の傾斜角度は変化しておらず光軸も変化していないため、ステップST1に戻る。
 ステップST10は、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって車両7の対水平車両角度が変化したときに、光軸が初期位置に戻るように、当変化した角度を相殺する光軸操作角度を求める処理である。
 ステップST10において、CPU16は、車両7が停車した直後(停車後1回目)の対水平車両角度に対して、その後(停車後2回目以降)の対水平車両角度が変化したときに、変化した傾斜角度差を相殺した上で初期位置に戻す光軸操作角度を算出し光軸制御に使用する。ちなみに、停車後1回目の対水平車両角度は、搭乗者の乗り降り、あるいは荷物の積み下ろし等がない、走行しているときの車両角度に対応する角度であり、停車中の傾斜角度の変化を観測するための基準として好都合である。
 停車中の光軸制御においては、例えば、予め車両7を水平な路面に停車させて、光軸を俯角側1%の初期位置に設定しておく。俯角側1%は、光軸が100m前方で1m下がる角度である。設定後は、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって変化する車両角度の差分に応じて、前照灯5L,5Rの光軸が初期位置に戻るように、車両角度の変化量を相殺する方向に光軸を操作することができる。
 一例として、光軸操作角度は、予め記憶部17に記憶されている光軸補正角度と、予め記憶部17に記憶されている車両角度基準値と、ステップST8で算出した車両角度とから求まる。(車両角度基準値-車両角度)により車両角度の変化量が相殺され、この値に(光軸補正角度+車両角度基準値)が加算されることで光軸が初期位置に戻る。
 光軸補正角度および車両角度基準値は後述する。
 CPU16は、ステップST10で求めた光軸操作角度から光軸操作信号を生成し、光軸操作信号出力部18を介して光軸操作装置6L,6Rへ出力する(ステップST11)。光軸操作装置6L,6Rは、光軸操作信号出力部18から発せられた光軸操作信号に従って前照灯5L,5Rの光軸を操作する。
 他方、車両7の挙動が停止から走行に変わったとき(ステップST2“NO”)、CPU16は、1回目フラグをリセットする(ステップST12)。続いてCPU16は、ステップST1で取得した加速度信号を使用して、代表車両角度θSを算出する(ステップST13)。CPU16は、代表車両角度θSを算出できた場合(ステップST14“YES”)、車両角度を、ステップST13で算出した代表車両角度θSの値に更新する(ステップST15)。一方、代表車両角度θSを算出できなかった場合(ステップST14“NO”)、CPU16はステップST1に戻る。ステップST13,ST14の詳細な説明は後述する。
 ステップST15の後、CPU16は、ステップST10にて光軸操作角度を算出し、ステップST11にて光軸操作信号を生成し光軸操作信号出力部18を介して光軸操作装置6L,6Rへ出力する。
 このように、車両7が走行している状態における加速度を使用して代表車両角度θSを算出することで、走行している道路の勾配による影響、ならびに車両7が加減速することにより変化する車両7の傾斜(ピッチング)の影響を受けることなく、停止時あるいは等速走行時の車両角度を導くことができる。
 また、代表車両角度θSの算出に2時点の差分加速度を使用するため、加速度センサ2の出力に存在するオフセットの影響がなく、当オフセットが経時的に変化しても問題ない。一方、車両7が停車している状態における対水平車両角度を使用する光軸制御(ステップST3~ST9)は、変化した角度を延々と蓄積する方法であるため、誤差が蓄積する可能性がある。そのため、対水平車両角度を使用する光軸制御においては、時間が経過するにつれて光軸がずれていく可能性があるが、この実施の形態1では代表車両角度θSを使用する光軸制御(ステップST12~ST15)を組み合わせることにより蓄積した誤差を排除することができ、前照灯の光軸を長期間にわたって正しい角度に安定して維持することができる。
 次に、図8Aと図8Bのフローチャートを用いて、図7に示したステップST13,ST14の処理の詳細を説明する。
 CPU16は、加速度信号入力部12を介して加速度センサ2から入力された前後方向および上下方向の加速度信号が2時点分揃っていれば、当2時点の前後方向の加速度信号と、当2時点の上下方向の加速度信号を使用して、差分加速度ΔX,ΔZを算出する(ステップST13-1“YES”)。一方、加速度信号が1時点分しかなければ、CPU16は差分加速度ΔX,ΔZを算出できない(ステップST13-1“NO”)、ひいては代表車両角度θSを算出できないと判定して(ステップST13-19)、図7のステップST14へ進む。この場合、CPU16は、ステップST14において代表車両角度θSを算出できなかったとして(ステップST14“NO”)、ステップST1へ戻り、2時点目の加速度信号を取得する。
 続いてCPU16は、算出した前後方向の差分加速度ΔXを、予め定められている差分加速度の使用範囲と比較する(ステップST13-2)。差分加速度の使用範囲は、記憶部17に記憶されているものとする。
 ここで、図9に、差分加速度の使用範囲の一例を示す。図9においては、図5および図6と同様に、横軸を前後方向の差分加速度ΔXとし、縦軸を車両角度θとした座標上に、加速度センサ2が計測した加速度信号を用いて算出された車両角度θが、星印としてプロットされている。図示では、差分加速度ΔXの使用範囲は、-0.5Gから-0.1Gまでの範囲と、0.1Gから0.5Gまでの範囲に設定されている。
 車両7が急加速あるいは急停車等して大きな加速度が計測されるときは、車両7の挙動も異常になることがある。そのため、急加速あるいは急停車等したときの加速度信号を除外するために、差分加速度ΔXの使用範囲が-0.5Gから0.5Gまでの範囲に設定されている。一方、加速度が小さなときは、車両角度θを算出する上式(3)の分母となるΔXが小さく、算出結果が異常になることがある。そのため、車両角度θの算出結果が異常になる可能性のある-0.1Gから0.1Gまでの範囲は、上記使用範囲から除外されている。結果、車両7が減速しているときの差分加速度ΔXの使用範囲は、-0.5G以上-0.1G以下となり、車両7が加速しているときの差分加速度ΔXの使用範囲は、0.1G以上0.5G以下となる。
 なお、この例では、前後方向の差分加速度ΔXについて使用範囲を設定しているが、前後方向の加速度信号について使用範囲を設定してもよい。
 ステップST13-2においてCPU16は、前後方向の差分加速度ΔXが減速側の使用範囲-0.5G以上-0.1G以下であった場合、ステップST13-3へ進み、ステップST13-1で算出した差分加速度ΔX,ΔZを使用して減速側の車両角度θを算出する。
 続いてCPU16は、記憶部17の減速側メモリに空きがあるか確認する(ステップST13-4)。ここでは、記憶部17が、減速側メモリと加速側メモリの2個のメモリを備えているものとする。車両角度θと、その車両角度θの算出に使用した前後方向の差分加速度ΔXとを1組のデータとした場合に、減速側メモリは10組分のデータを記憶可能な容量をもつ。加速側メモリも同様に、10組分のデータを記憶可能な容量をもつ。なお、1個のメモリの記憶領域を、減速側メモリ用と加速側メモリ用に割り当ててもよい。
 減速側メモリに空きがある、つまり記憶されているデータが9組以下である場合(ステップST13-4“YES”)、CPU16はステップST13-3で算出した減速側の車両角度θと差分加速度ΔXとを1組のデータとして記憶部17の減速側メモリに記憶させる(ステップST13-5)。
 一方、減速側メモリに空きがない、つまり記憶されているデータが10組ある場合(ステップST13-4“NO”)、CPU16はステップST13-6においてデータの入れ替えを行う。CPU16は、減速側メモリに記憶されているすべての差分加速度ΔXの絶対値がステップST13-3で車両角度θの算出に使用した差分加速度ΔXの絶対値より大きければ、ステップST13-3で算出した減速側の車両角度θと差分加速度ΔXを廃棄する。反対に、減速側メモリに記憶されている差分加速度ΔXの絶対値の中に、ステップST13-3で車両角度θの算出に使用した差分加速度ΔXの絶対値より小さいものがあれば、当小さい差分加速度ΔXをもつ1組のデータをステップST13-3で算出した1組のデータと入れ替える。
 続いてCPU16は、記憶部17の加速側メモリに空きがあるか確認する(ステップST13-7)。加速側メモリに空きがある、つまり記憶されているデータが9組以下である場合(ステップST13-7“YES”)、CPU16は代表車両角度θSを算出できないと判定して(ステップST13-19)、図7のステップST14へ進む。この場合、CPU16は、ステップST14において代表車両角度θSを算出できなかったとして(ステップST14“NO”)、ステップST1へ戻る。
 一方、加速側メモリに空きがない、つまり記憶されているデータが10組ある場合(ステップST13-7“NO”)、CPU16は、加速側メモリの1組のデータと減速側メモリの1組のデータを使用して第3の車両角度θsを算出する(ステップST13-8)。CPU16は第3の車両角度θsの算出に使用する2組のデータをどのように選択してもよいが、例えば、加速側メモリに記憶されている10組のデータの中から差分加速度ΔXの絶対値が最も大きい1組のデータ(図9にθαとして示す)と、減速側メモリに記憶されている10組のデータの中から差分加速度ΔXの絶対値が最も大きい1組のデータ(図9にθβとして示す)とを選択することが好ましい。第3の車両角度θsの算出に使用する2組のデータの差分加速度ΔX間の差が大きいほど、当2組のデータの車両角度θを結ぶ直線111の精度が向上し、確度の高い代表車両角度θSを算出することができる。
 続いてCPU16は、ステップST13-8で第3の車両角度θsの算出に使用した2組のデータを加速側メモリおよび減速側メモリから削除する(ステップST13-9)。また、CPU16は、代表車両角度θSの算出に使用する第3の車両角度θsの個数をカウントするカウント値Nを、インクリメントする(ステップST13-10)。
 続いてCPU16は、前回算出した第3の車両角度θsの総和を記憶部17から読み出し、当読み出した総和に、今回のステップST13-8で算出した第3の車両角度θsを加算して、今回の第3の車両角度θsの総和を算出する(ステップST13-11)。CPU16は今回算出した第3の車両角度θsの総和を記憶部17に記憶させておく。そしてCPU16は、ステップST13-11で算出した今回の第3の車両角度θsの総和を、カウント値Nで除して、第3の車両角度θsの平均値を求め、当平均値を代表車両角度θSとする(ステップST13-12)。なお、第3の車両角度θsの初回算出時は、まだ記憶部17に第3の車両角度θsの総和が記憶されていないので、今回算出した第3の車両角度θsがそのまま代表車両角度θSになる。
 最後にCPU16は、代表車両角度θSを算出できたと判定して(ステップST13-13)、図7のステップST14へ進む。この場合、CPU16は、ステップST14において代表車両角度θSを算出できたとして(ステップST14“YES”)、ステップST15へ進む。
 他方、ステップST13-2において前後方向の差分加速度ΔXが加速側の使用範囲0.1G以上0.5G以下であった場合、CPU16は続いてステップST13-14へ進み、ステップST13-1で算出した差分加速度ΔX,ΔZを使用して加速側の車両角度θを算出する。
 続いてCPU16は、記憶部17の加速側メモリに空きがあるか確認し(ステップST13-15)、データの記憶(ステップST13-16)、またはデータの入れ替え(ステップST13-17)を行う。ステップST13-15,ST13-16,ST13-17の各処理は、ステップST13-4,ST13-5,ST13-6の各処理と同様であるため、説明を省略する。
 続いてCPU16は、記憶部17の減速側メモリに空きがあるか確認する(ステップST17-18)。減速側メモリに空きがある、つまり記憶されているデータが9組以下である場合(ステップST13-18“YES”)、CPU16は代表車両角度θSを算出できないと判定して(ステップST13-19)、図7のステップST14へ進む。この場合、CPU16は、ステップST14において代表車両角度θSを算出できなかったとして(ステップST14“NO”)、ステップST1へ戻る。
 一方、減速側メモリに空きがない、つまり記憶されているデータが10組ある場合(ステップST13-18“NO”)、CPU16はステップST13-8~ST13-13の各処理を行って代表車両角度θSを算出する。
 なお、CPU16は、ステップST13-2において前後方向の差分加速度ΔXが減速側の使用範囲でもなく加速側の使用範囲でもない場合にステップST13-19へ進み、代表車両角度θSを算出できないと判定して、図7のステップST14へ進む。
 実施の形態1では以上のようにして代表車両角度θSを算出するので、図5に示した処理のように数多くの前後方向の加速度と車両角度とを記憶して複雑な演算によって代表車両角度を求める必要はなく、記憶する前後方向の加速度と車両角度の数量を減らして、簡素な演算で、確度の高い代表車両角度を導くことができる。よって、図5に示した代表車両角度算出に必要なメモリ容量および演算負荷に比べて、実施の形態1の代表車両角度算出に必要なメモリ容量および演算負荷を軽減することができ、前照灯用光軸制御装置10の構成を簡素にしてコストを下げることができる。
 ところで、搭乗者の乗り降り、あるいは荷物の積み下ろしは、車両7が停止しているときに行われるため、車両7が走行を開始したときには車両角度θが変化している可能性がある。そのため、停止する以前の車両角度θの影響が残らないように、車両7が停止したときに代表車両角度θSをリセットすることで、走行開始後に、応答が早く、確度の高い代表車両角度θSを得ることができる。
 具体的には、CPU16は、車両7が停止したときに、代表車両角度θSとその算出に使用した車両角度θ、差分加速度ΔXおよび第3の車両角度θsの総和等のデータをリセットし、車両7が走行を開始したときに改めてこれらのデータを収集して代表車両角度θSを算出する。CPU16は、例えば速度信号入力部13から入力される速度情報に基づいて車両7の停止を判断すればよい。また、CPU16は、例えば車両情報入力部14から入力されるイグニッションスイッチの情報に基づいてエンジン停止に相当する状態を検出したときに、車両7が停止したと判断してもよい。この構成の場合、記憶部17として、揮発性メモリまたは不揮発性メモリを使用可能である。
 次に、図10のフローチャートを用いて、前照灯用光軸制御装置10の初期設定の方法を説明する。ここでは、図2(b)または図2(c)に示したように、加速度センサ2が前照灯用光軸制御装置10に組み込まれた構成を例に用いる。
 製造工場において、前照灯用光軸制御装置10の完成後にCPU16の1回目フラグをリセットしておく(ステップST21)。作業者は、加速度センサ2が組み込まれた前照灯用光軸制御装置10を3方向以上に傾け、加速度センサ2がその都度の上下方向と前後方向の加速度を測定して加速度信号を出力する(ステップST22)。CPU16は、入力された加速度信号に基づいて、加速度センサ2のオフセットと感度を推定する(ステップST23)。
 図11(a)は、初期設定時の、鉛直方向および水平方向から見た加速度計測系と錘を説明する図である。X軸とZ軸の交点が加速度センサ2の原点であり、鉛直方向の軸と水平方向の軸の交点が車両7からみた計測上の原点Oである。ステップST22において、図11(b)に示すように加速度センサ2を組み込んだ前照灯用光軸制御装置10を回転させたとき、図11(a)に示すように加速度センサ2により計測された加速度、つまりばねに吊り下げられた錘が描く円の中心となる原点Oが加速度計測系に対するオフセットであり、円の大きさが加速度計測系の感度である。ここでは、X軸方向のオフセットをXoff、Z軸方向のオフセットをZoffとして図示する。θoffは、加速度センサ2の取り付け角度のずれを示す。
 続いて作業者は、前照灯用光軸制御装置10を水平な面に固定し、前照灯用光軸制御装置10に対する加速度センサ2の取り付け角度の設定を行う(ステップST24)。前照灯用光軸制御装置10は、外部から設定用信号が入力されると、ステップST23の加速度センサ2のオフセットと感度と、ステップST24の取り付け角度の設定値を記憶部17に格納する。
 なお、上記各種設定値を格納する設定用信号としては、外部装置との通信による設定信号の他に、たとえば、車両情報入力部14に、特定の入力パターンを入力することで代用する。ちなみに、当特定な入力パターンとは、たとえば、変速機の選択レバーを「R」に設定、かつ、ライティングスイッチを「オン」に設定、かつ、パッシングスイッチの「オン」を3回繰り返す等の暗号的な組み合わせである。もちろん、入力パターン用の信号の組み合わせは上記以外でも構わない。
 図12に、取り付け角度の設定方法を示す。前照灯用光軸制御装置10が水平面上に固定された状態で、加速度センサ2が加速度を測定し(ステップST24-1)、CPU16が対水平車両角度を算出し(ステップST24-2)、算出した対水平車両角度を車両角度基準値として記憶部17に格納する(ステップST24-3)。最後に、CPU16は、光軸操作角度(例えば、0度)から車両角度基準値を減じて光軸補正角度を算出し、記憶部17に格納する(ステップST24-4)。なお、取り付け角度設定時は、加速度センサ2が水平な面上に固定されているため、光軸操作角度として中央値(=0度)を用いる。
 ステップST24-4の光軸補正角度=(取り付け角度設定時の光軸操作角度-車両角度基準値)を変形すると、取り付け角度設定時の光軸操作角度=(光軸補正角度+車両角度基準値)となる。光軸補正角度と車両角度基準値は記憶部17に格納され、図7のフローチャート実行時に使用される。
 続いてCPU16は、取り付け角度設定時の光軸操作角度から光軸操作信号を生成して出力する(ステップST25)。作業者は、この光軸操作信号が正しい値になっているか確認する(ステップST26)。
 ステップST27~ST30の処理は、車両の製造工場または整備工場において実施される。作業者は、前照灯用光軸制御装置10を車両7に搭載し(ステップST27)、車両7を水平な路面に停車した状態で車両7に対する加速度センサ2の取り付け角度の設定を行う(ステップST28)。ステップST28,ST29の処理は、ステップST24,ST25と同じである。
 ステップST28では、図12のステップST24-1~ST24-4と同様の手順で取り付け角度設定を行う。作業者は、車両7を水平な路面に停車させて対水平車両角度、即ち、図11(a)に示した加速度センサ2の取り付け角度のずれθoffを前照灯用光軸制御装置10に認識させ、車両7に対する加速度センサ2の取り付け角度のずれを補正させる。
 以上の前照灯用光軸制御装置10の電気的な設定を済ませた後で、作業者がスパナあるいはドライバを使用して前照灯5L,5Rの光軸を機械的に調整することにより、前照灯の光軸を初期位置に設定する(ステップST30)。これにより、光軸操作角度(=光軸補正角度+車両角度基準値)が0度のとき、前照灯5L,5Rの光軸が初期位置になる。
 なお、加速度センサ2のオフセットと感度、取り付け角度の設定値、車両角度基準値、および光軸補正角度を記憶する記憶部17としては、不揮発性メモリを使用する。
 以上より、実施の形態1によれば、制御部15は、車両7が走行している状態において、第1の2時点における前後方向の差分加速度ΔXに対する当該第1の2時点における上下方向の差分加速度ΔZの比から第1の車両角度θを算出し、第1の2時点とは異なる第2の2時点における前後方向の差分加速度ΔXに対する当該第2の2時点における上下方向の差分加速度ΔZの比から第2の車両角度θを算出し、第1の車両角度θとその差分加速度ΔXと第2の車両角度θとその差分加速度ΔXとを用いて前後方向の差分加速度ΔXが零になるときの第3の車両角度θsを算出し、第3の車両角度θsを複数個算出しその分布に基づいて代表車両角度θSを算出し、当該代表車両角度θSに基づいて前照灯5L,5Rの光軸を操作する信号を生成する構成にしたので、代表車両角度θSを算出するために必要となるメモリ容量および演算負荷を軽減することができる。また、車両7が停止あるいは等速走行しているときの車両角度に相当する代表車両角度θSを得ることができ、車両7が加減速することによって生じる傾斜角度の誤差を含まない、確度の高い車両角度を用いて前照灯の光軸を操作できる。さらに、加速度信号の差分を使用するようにしたので、加速度センサ2の出力に潜在するオフセットおよび当オフセットの経時変化による影響を少なくでき、長期にわたって安定した車両角度を得ることができる。これにより、前照灯の光軸を高精度に制御可能な前照灯用光軸制御装置10を実現できる。
 また、実施の形態1によれば、制御部15は、代表車両角度θSとして、複数個の第3の車両角度θsの平均値、中央値あるいは最頻値を算出する構成にしたので、複雑な演算を行うことなく代表車両角度θSを求めることができる。
 また、実施の形態1によれば、制御部15は、第1の車両角度θおよび第2の車両角度θの算出に、予め定められた使用範囲内の加速度信号、あるいは予め定められた使用範囲内の差分加速度ΔXを使用する構成にしたので、急加速時、急停止時および極低速での走行時の加速度信号あるいは差分加速度を車両角度θの算出に使用しないようにでき、確度の高い代表車両角度θSを得ることができる。
 また、実施の形態1によれば、制御部15は、車両角度θと差分加速度ΔXとを1組のデータとして、複数組のデータを記憶する記憶部17を備え、第3の車両角度θsの算出に、記憶部17が記憶している複数組のデータの中から少なくとも1組のデータを選択して使用する構成にしたので、複数組のデータの中から、直線111を精度よく描くことが可能なデータを選択できるようになり、確度の高い代表車両角度θSを得ることができる。
 また、実施の形態1によれば、制御部15は、代表車両角度θSを、車両7が停止したときにリセットし、車両7が走行を開始したときに改めて算出するように構成したので、、停止する以前の車両角度θの影響が、走行開始後の代表車両角度θSに残らない。これにより、応答が早く、確度の高い代表車両角度θSを得ることができる。
 また、実施の形態1によれば、図2(b)のように、加速度センサ2を前照灯用光軸制御装置10と一体に構成することにより、配線を省略することができ、簡素な構成の前照灯用光軸制御装置10を実現できる。
 また、実施の形態1によれば、図2(c)のように、前照灯用光軸制御装置10を光軸制御とは異なる機能の車載電装品8と一体に構成することにより、独立した前照灯用光軸制御装置10が存在しないため、車両7に搭載されるシステム構成が簡素になる。
実施の形態2.
 実施の形態2に係る前照灯用光軸制御装置の構成は、上記実施の形態1の図1に示した前照灯用光軸制御装置10と図面上では同じ構成であるため、以下では図1を援用する。
 本実施の形態2に係る前照灯用光軸制御装置10において、CPU16は、車両角度θの算出に使用するkm点の加速度信号またはkn点の加速度信号のいずれか一方に、基準となる加速度を使用する。以下では、基準となる加速度を「基準加速度」と呼ぶ。
 実施の形態2のCPU16は、基準加速度として、例えば車両7が停止している状態において加速度センサ2により計測された加速度信号を使用する。
 上記実施の形態1の図7に示したフローチャートにおいて車両7が停止している状態で光軸制御(ステップST3~ST9)を行う際に、実施の形態2のCPU16は、ステップST1で取得した停止時の加速度信号を基準加速度として記憶部17に記憶させておく。その後、車両7が走行している状態で光軸制御(ステップST12~ST15)を行う際に、実施の形態2のCPU16は、記憶部17に記憶されている基準加速度を取得し、km点の加速度信号として当基準加速度を使用し、kn点の加速度信号として今回のステップST1で取得した走行時の加速度信号を使用して、上式(1)~(3)により車両角度θを算出する。
 停止している状態において計測された加速度信号を基準加速度として使用することで、変化する加速度、つまり差分加速度を容易に検出できるため、確度の高い車両角度θを得ることができる。これにより、前照灯の光軸を高精度に制御可能な前照灯用光軸制御装置10を実現できる。
 ただし、基準加速度として、水平な路面に停車した状態で計測された加速度信号だけを使用すると、上りまたは下りの坂道で車両角度θがずれることがある。そこで、基準加速度として、車両7が等速走行をしている状態において計測された加速度信号、あるいは長時間に計測された加速度信号の平均値を使用してもよい。
 車両7は、上り下りのある坂道を走行しているときであっても、加速と減速を繰り返しながら走行しているため、当加速と減速の間には等速走行をしているタイミングがある。従って、加速と減速の間の等速走行をしている状態において計測された加速度信号を基準加速度として使用すれば、路面の勾配が一定と見なせる時間が短い坂道を走行しているときであっても、車両角度θを算出しやすい。
 上記実施の形態1の図7に示したフローチャートのステップST2において、実施の形態2のCPU16は、速度信号入力部13を介して車速センサ3から入力される速度信号に基づいて、車両7が停車中か走行中かを判定するだけでなく、車両7が等速走行中か否かも判定する。実施の形態2のCPU16は、車両7が等速走行中であると判定した場合に、今回のステップST1で取得した等速走行時の加速度信号を基準加速度として記憶部17に記憶させておく。その後、車両7が走行している状態で光軸制御(ステップST12~ST15)を行う際に、実施の形態2のCPU16は、記憶部17に記憶されている基準加速度を使用する。
 あるいは、車両7が上り坂を走行している状態、下り坂を走行している状態、加速している状態、減速している状態のすべての状態が含まれる長時間の加速度信号を平均化して基準加速度として使用すれば、水平な路面に停車した状態での車両角度と同等な車両角度θを得ることができる。CPU16は、例えば、車両角度θの算出に使用する差分加速度の2時点間の時間間隔よりも長い時間、加速度信号を収集し、収集した加速度信号の平均値を算出して基準加速度とする。加速度信号の収集時間を長くすれば、上り坂、下り坂、加速および減速のすべての状態が含まれ得るようになり、車両角度θの確度が向上する。
 上記実施の形態1の図7に示したフローチャートのステップST2において、実施の形態2のCPU16は、速度信号入力部13を介して車速センサ3から入力される速度信号に基づいて車両7が走行中であることを判定した場合に、今回のステップST1で取得した走行時の加速度信号を記憶部17に記憶させる。そして、実施の形態2のCPU16は、記憶部17に記憶されている複数個の走行時の加速度信号を平均化して、基準加速度とする。
 以上より、実施の形態2によれば、制御部15は、2時点で計測された加速度信号のいずれか一方として、予め定められた基準加速度に相当する加速度信号を用いる構成にしたので、例えば基準加速度として車両7が停止している状態において計測された加速度信号を使用することによって差分加速度を容易に検出できるため、確度の高い車両角度θを得ることができる。これにより、前照灯の光軸を高精度に制御可能な前照灯用光軸制御装置10を実現できる。また、基準加速度として、車両7が等速走行している状態において計測された加速度信号、あるいは、車両角度θの算出に使用する差分加速度の2時点間の時間間隔よりも長い時間において計測された複数個の加速度信号の平均値を使用することによっても、前照灯の光軸を高精度に制御可能な前照灯用光軸制御装置10を実現できる。
 また、実施の形態2によれば、制御部15は、車両7に搭載された車速センサ3によって計測された速度信号を用いて、車両7が停止している状態、あるいは等速走行している状態を判断する構成にしたので、振動によるノイズを含みやすい加速度センサ2を使用せずに、車速センサ3の速度情報を用いて停止、等速走行、加速および減速等の車両7の状態を判定することができる。そして制御部15は、この判定結果に基づいて、基準加速度として使用する加速度信号を的確に抽出することができるので、確度の高い車両角度θの算出が可能となる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
 この発明に係る前照灯用光軸制御装置は、加速度センサを使用しながらも高い確度で前照灯の光軸を制御できるようにしたので、LED等の明るい光源を使用した前照灯の光軸制御装置などに用いるのに適している。
 1 車載バッテリ、2 加速度センサ、3 車速センサ、4 スイッチ、5L 左側前照灯、5R 右側前照灯、6L,6R 光軸操作装置、7 車両、8 車載電装品、10 前照灯用光軸制御装置、11 電源部、12 加速度信号入力部、13 速度信号入力部、14 車両情報入力部、15 制御部、16 CPU、17 記憶部、18 光軸操作信号出力部。

Claims (12)

  1.  車両に搭載された加速度センサによって計測された上下方向および前後方向の加速度信号を用いて、路面に対する前記車両の傾斜角度である車両角度を算出し、前照灯の光軸を操作する信号を生成する制御部を備えた前照灯用光軸制御装置であって、
     前記制御部は、前記車両が走行している状態において、
     第1の2時点で計測された前後方向の加速度信号の差分に対する、当該第1の2時点で計測された上下方向の加速度信号の差分の比から第1の車両角度を算出し、
     前記第1の2時点とは異なる第2の2時点で計測された前後方向の加速度信号の差分に対する、当該第2の2時点で計測された上下方向の加速度信号の差分の比から第2の車両角度を算出し、
     前記第1の車両角度および前記第1の車両角度の算出に使用した前後方向の加速度信号の差分と、前記第2の車両角度および前記第2の車両角度の算出に使用した前後方向の加速度信号の差分とを用いて、前後方向の加速度信号の差分が零になるときの第3の車両角度を算出し、
     前記第3の車両角度を複数個算出しその分布に基づいて前記第3の車両角度の代表値を算出し、当該代表値に基づいて前記前照灯の光軸を操作する信号を生成することを特徴とする前照灯用光軸制御装置。
  2.  前記制御部は、前記代表値として、複数個の前記第3の車両角度の平均値、中央値あるいは最頻値を算出することを特徴とする請求項1記載の前照灯用光軸制御装置。
  3.  前記制御部は、前記2時点で計測された加速度信号のいずれか一方として、予め定められた基準加速度に相当する加速度信号を用いることを特徴とする請求項1記載の前照灯用光軸制御装置。
  4.  前記基準加速度は、前記車両が停止している状態において計測された加速度信号、等速走行している状態において計測された加速度信号、あるいは、前記第1の2時点間もしくは前記第2の2時点間の時間間隔より長い時間において計測された複数個の加速度信号の平均値であることを特徴とする請求項3記載の前照灯用光軸制御装置。
  5.  前記制御部は、前記車両に搭載された車速センサによって計測された速度信号を用いて、前記車両が停止している状態、あるいは等速走行している状態を判断することを特徴とする請求項4記載の前照灯用光軸制御装置。
  6.  前記制御部は、前記第1の車両角度および前記第2の車両角度の算出に、予め定められた範囲内の加速度信号、あるいは予め定められた範囲内の加速度信号の差分を使用することを特徴とする請求項1記載の前照灯用光軸制御装置。
  7.  2時点で計測された前後方向の加速度信号の差分に対する当該2時点で計測された上下方向の加速度信号の差分の比から算出された車両角度と、前記車両角度の算出に使用された前後方向の加速度信号の差分とを1組のデータとして、複数組のデータを記憶する記憶部を備え、
     前記制御部は、前記第3の車両角度の算出に、前記記憶部が記憶している複数組のデータの中から少なくとも1組のデータを選択して使用することを特徴とする請求項1記載の前照灯用光軸制御装置。
  8.  前記制御部は、前記第3の車両角度の算出に、前記記憶部が記憶している複数組のデータの中から2組のデータを選択して使用することを特徴とする請求項7記載の前照灯用光軸制御装置。
  9.  前記制御部は、前記記憶部が記憶している複数組のデータの中から、前後方向の加速度信号の差分間の差が最も大きい2組のデータを選択して、前記第3の車両角度を算出することを特徴とする請求項8記載の前照灯用光軸制御装置。
  10.  前記制御部は、前記代表値を、前記車両が停止したときにリセットし、前記車両が走行を開始したときに改めて算出することを特徴とする請求項1記載の前照灯用光軸制御装置。
  11.  前記加速度センサと一体に構成されていることを特徴とする請求項1記載の前照灯用光軸制御装置。
  12.  前記車両に搭載される車載電装品と一体に構成されていることを特徴とする請求項1記載の前照灯用光軸制御装置。
PCT/JP2015/065292 2015-05-27 2015-05-27 前照灯用光軸制御装置 WO2016189707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017518279A JP6180690B2 (ja) 2015-05-27 2015-05-27 前照灯用光軸制御装置
PCT/JP2015/065292 WO2016189707A1 (ja) 2015-05-27 2015-05-27 前照灯用光軸制御装置
US15/561,604 US10513217B2 (en) 2015-05-27 2015-05-27 Optical axis control device for headlight
CN201580080377.5A CN107614323B (zh) 2015-05-27 2015-05-27 前照灯用光轴控制装置
DE112015006569.5T DE112015006569B4 (de) 2015-05-27 2015-05-27 Optikachsensteuervorrichtung für Scheinwerfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065292 WO2016189707A1 (ja) 2015-05-27 2015-05-27 前照灯用光軸制御装置

Publications (1)

Publication Number Publication Date
WO2016189707A1 true WO2016189707A1 (ja) 2016-12-01

Family

ID=57393910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065292 WO2016189707A1 (ja) 2015-05-27 2015-05-27 前照灯用光軸制御装置

Country Status (5)

Country Link
US (1) US10513217B2 (ja)
JP (1) JP6180690B2 (ja)
CN (1) CN107614323B (ja)
DE (1) DE112015006569B4 (ja)
WO (1) WO2016189707A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097724A1 (ja) * 2017-11-20 2019-05-23 三菱電機株式会社 傾斜角度計測装置及び光軸制御装置
JP2019200196A (ja) * 2018-02-14 2019-11-21 ジョンソン エレクトリック インターナショナル アクチェンゲゼルシャフト 自動車の全体傾斜を自律的に求めるための方法及び装置
WO2020031255A1 (ja) * 2018-08-07 2020-02-13 三菱電機株式会社 前照灯用光軸制御装置
WO2020183531A1 (ja) * 2019-03-08 2020-09-17 三菱電機株式会社 光軸制御装置及び調整方法
JPWO2020183530A1 (ja) * 2019-03-08 2021-09-13 三菱電機株式会社 光軸制御装置
WO2023276137A1 (ja) * 2021-07-02 2023-01-05 三菱電機株式会社 光軸調整装置、光軸調整システム、及び光軸調整方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017005019A1 (de) * 2017-05-26 2018-11-29 Daimler Ag Beleuchtungsvorrichtung und Verfahren zu deren Betrieb
JP7037907B2 (ja) * 2017-10-17 2022-03-17 スタンレー電気株式会社 車両用灯具の制御装置および車両用灯具システム
EP4194268B1 (en) * 2019-06-14 2023-12-27 Koito Manufacturing Co., Ltd. Control device for a vehicle lamp and a vehicle lamp system
JP2023049793A (ja) * 2021-09-29 2023-04-10 株式会社Subaru 光軸調整装置
JP2023049790A (ja) * 2021-09-29 2023-04-10 株式会社Subaru 光軸調整装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104788A (ja) * 2012-11-26 2014-06-09 Koito Mfg Co Ltd 車両用灯具の制御装置
JP2014108639A (ja) * 2012-11-30 2014-06-12 Koito Mfg Co Ltd 車両用灯具の制御装置及び車両用灯具システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824052B2 (ja) 1986-12-25 1998-11-11 株式会社ブリヂストン 重荷重用ラジアルタイヤ
FR2915283B1 (fr) * 2007-04-23 2010-03-12 Valeo Vision Procede et systeme de mesure electronique de l'assiette de vehicule.
JP5787649B2 (ja) 2010-10-26 2015-09-30 株式会社小糸製作所 車両用灯具の制御装置および車両用灯具システム
DE102011017697A1 (de) * 2011-04-28 2012-10-31 Robert Bosch Gmbh Verfahren zur Leuchtweitenregulierung zumindest eines Scheinwerfers eines Fahrzeugs und Lichtsteuergerät
DE102012200040A1 (de) * 2012-01-03 2013-07-04 Robert Bosch Gmbh Verfahren und Steuergerät zum Anpassen einer oberen Scheinwerferstrahlgrenze eines Scheinwerferkegels
KR20130104801A (ko) * 2012-03-15 2013-09-25 에스엘 주식회사 헤드 램프 제어 장치 및 방법
US20140210343A1 (en) * 2014-03-31 2014-07-31 Caterpillar Global Mining Llc System and method for controlling headlamps of vehicle
JP6153493B2 (ja) * 2014-04-25 2017-06-28 ヤマハ発動機株式会社 ロール角推定装置および輸送機器
CN104175945A (zh) * 2014-09-03 2014-12-03 苏州佳世达光电有限公司 一种车灯角度调整方法及车灯角度调整系统
US10471884B2 (en) 2014-09-16 2019-11-12 Mitsubishi Electric Corporation Headlight optical-axis control device
CN107428285B (zh) * 2015-03-12 2019-12-31 三菱电机株式会社 前照灯用光轴控制装置
JP6936624B2 (ja) * 2017-05-19 2021-09-15 スタンレー電気株式会社 車両用灯具の制御装置および車両用灯具システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104788A (ja) * 2012-11-26 2014-06-09 Koito Mfg Co Ltd 車両用灯具の制御装置
JP2014108639A (ja) * 2012-11-30 2014-06-12 Koito Mfg Co Ltd 車両用灯具の制御装置及び車両用灯具システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097724A1 (ja) * 2017-11-20 2019-05-23 三菱電機株式会社 傾斜角度計測装置及び光軸制御装置
JPWO2019097724A1 (ja) * 2017-11-20 2020-04-09 三菱電機株式会社 傾斜角度計測装置及び光軸制御装置
JP2019200196A (ja) * 2018-02-14 2019-11-21 ジョンソン エレクトリック インターナショナル アクチェンゲゼルシャフト 自動車の全体傾斜を自律的に求めるための方法及び装置
JP7237632B2 (ja) 2018-02-14 2023-03-13 アーエムエル システムス 自動車の全体傾斜を自律的に求めるための方法及び装置
WO2020031255A1 (ja) * 2018-08-07 2020-02-13 三菱電機株式会社 前照灯用光軸制御装置
JPWO2020031255A1 (ja) * 2018-08-07 2020-10-22 三菱電機株式会社 前照灯用光軸制御装置
WO2020183531A1 (ja) * 2019-03-08 2020-09-17 三菱電機株式会社 光軸制御装置及び調整方法
JPWO2020183531A1 (ja) * 2019-03-08 2021-06-03 三菱電機株式会社 光軸制御装置及び調整方法
JPWO2020183530A1 (ja) * 2019-03-08 2021-09-13 三菱電機株式会社 光軸制御装置
WO2023276137A1 (ja) * 2021-07-02 2023-01-05 三菱電機株式会社 光軸調整装置、光軸調整システム、及び光軸調整方法
JP7350219B2 (ja) 2021-07-02 2023-09-25 三菱電機株式会社 光軸調整装置、光軸調整システム、及び光軸調整方法

Also Published As

Publication number Publication date
DE112015006569T5 (de) 2018-03-15
CN107614323A (zh) 2018-01-19
JP6180690B2 (ja) 2017-08-16
DE112015006569B4 (de) 2019-05-29
CN107614323B (zh) 2020-05-22
US10513217B2 (en) 2019-12-24
JPWO2016189707A1 (ja) 2017-07-06
US20180065539A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6180690B2 (ja) 前照灯用光軸制御装置
JP6073535B2 (ja) 前照灯用光軸制御装置
JP5787649B2 (ja) 車両用灯具の制御装置および車両用灯具システム
JP5996823B2 (ja) 車両用灯具の制御装置
JP5761982B2 (ja) 車両用灯具の制御装置
JP6271943B2 (ja) 車両用灯具の制御装置
JP7084514B2 (ja) 車両用灯具の制御装置
JP6129461B2 (ja) 前照灯用光軸制御装置
JP2010143424A (ja) 車両用ランプのオートレベリングシステム
JP6285260B2 (ja) 車両用灯具の制御装置
WO2020031255A1 (ja) 前照灯用光軸制御装置
JP5758738B2 (ja) 車両用灯具の制御装置
JP6916038B2 (ja) 車両用灯具の制御装置および車両用灯具システム
KR20150062323A (ko) 차량의 적응형 전방 조명 시스템
EP4194268B1 (en) Control device for a vehicle lamp and a vehicle lamp system
JP2017100549A (ja) 車両用灯具の制御装置及び車両用灯具システム
JP2015174572A (ja) 車両用前照灯の光軸制御装置、車両用前照灯システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518279

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15561604

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006569

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893341

Country of ref document: EP

Kind code of ref document: A1