WO2016188503A2 - Procédé de mise en œuvre approprié pour une interface de simulation en temps réel d'une échelle à multiples temps de transitoires électromagnétiques - Google Patents

Procédé de mise en œuvre approprié pour une interface de simulation en temps réel d'une échelle à multiples temps de transitoires électromagnétiques Download PDF

Info

Publication number
WO2016188503A2
WO2016188503A2 PCT/CN2016/089823 CN2016089823W WO2016188503A2 WO 2016188503 A2 WO2016188503 A2 WO 2016188503A2 CN 2016089823 W CN2016089823 W CN 2016089823W WO 2016188503 A2 WO2016188503 A2 WO 2016188503A2
Authority
WO
WIPO (PCT)
Prior art keywords
time
time scale
real
simulation
fpga
Prior art date
Application number
PCT/CN2016/089823
Other languages
English (en)
Chinese (zh)
Other versions
WO2016188503A3 (fr
Inventor
穆清
李亚楼
张星
王祥旭
陈绪江
朱毅
王艺璇
孙丽香
胡晓波
彭红英
张彦涛
张志强
刘敏
李琨
Original Assignee
中国电力科学研究院
国家电网公司
国网山东省电力公司经济技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司, 国网山东省电力公司经济技术研究院 filed Critical 中国电力科学研究院
Publication of WO2016188503A2 publication Critical patent/WO2016188503A2/fr
Publication of WO2016188503A3 publication Critical patent/WO2016188503A3/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the invention relates to an implementation method, in particular to an implementation method suitable for an electromagnetic transient multi-time scale real-time simulation interface.
  • the real-time digital simulation system of the power system can simulate various operating conditions of the power system in real time, and has the advantages of small size, low power consumption, good versatility, high repeatability, low price dynamic simulation and low cost of digital-analog hybrid simulation device. Widely used in the testing of power automation equipment.
  • the small step simulation system is an important part of a complete electromagnetic transient simulation system. As the simulation step size becomes smaller, the simulation burden of the system also increases, which requires the use of the FPGA hardware acceleration platform to implement real-time double-precision floating-point operations of the small-step simulation system.
  • FPGA programs should implement parallelism and reduce dependencies between data.
  • FPGA should shorten the length of a single computing pipeline.
  • the LUT of the FPGA can be used both for storage and for calculation; in order to improve the computing power of the FPGA, the use of the storage space of the FPGA must be reduced.
  • the existing multi-time-scale meshing algorithm design method utilizes the natural delay characteristics of the transmission line. Among them, the equivalent calculation circuit is shown in Figure 2.
  • the current source recursion formula is:
  • the present invention provides an implementation method for an electromagnetic transient multi-time scale real-time simulation interface, which effectively solves the interconnection problem between the FPGA small step size simulation system and the server system of the power system, and solves the simulation scale.
  • the problem of limitation greatly improves the efficiency of simulation.
  • An implementation method suitable for an electromagnetic transient multi-time scale real-time simulation interface comprising the following steps:
  • determining a time scale of the sub-network according to a dynamic time constant of the system includes a minimum time scale and a non-minimum time scale.
  • the network of the minimum time scale runs on a real-time FPGA simulation platform
  • the network of a non-minimum time scale runs on a real-time server platform.
  • the network matrix initialization in the step (2) comprises: using an external interpolation method to inversely push the initial voltage and current of the electromagnetic transient simulation system, estimating the system voltage and current before the current time, and recording the time and solution.
  • the voltage and current associated with the coupling element comprises: using an external interpolation method to inversely push the initial voltage and current of the electromagnetic transient simulation system, estimating the system voltage and current before the current time, and recording the time and solution.
  • the network matrix is stored in the memory of the FPGA platform.
  • timing control is performed by the FPGA platform, the FPGA platform and the real-time server platform are synchronously started, and the network running on the FPGA system is transmitted to the real-time server platform every other non-minimum time scale.
  • Matrix data is
  • the real-time server platform when the real-time server platform receives the data transmitted by the FPGA, compares with the historical interface data on the real-time server platform, and obtains an intermediate variable of the non-minimum time scale of the FPGA platform, and Transfer to the FPGA platform on a non-minimum time scale.
  • step (3) is repeated; if not, the simulation calculation is performed using the intermediate variable of the next non-minimum time scale.
  • the present invention provides an implementation method of an electromagnetic transient multi-time scale real-time simulation interface.
  • the decoupling component is decomposed into two controlled sources with fixed internal resistance by initialization, and the pre-process on the server side is adopted.
  • the calculation incorporates the controlled source into the sub-network before the simulation begins, preventing the core network equation from being affected by changes in the controlled source calculation. This solidifies the calculation process and is beneficial to the implementation of the FPGA.
  • the splitting and design of the interface simulation calculation is proposed, which solves the problem of unbalanced computing load and excessive computational resources of FPGA in multi-scale parallel network calculation, and improves the calculation speed and simulation scale.
  • FIG. 1 is a flow chart of an implementation method of an electromagnetic transient multi-time scale real-time simulation interface provided by the present invention
  • FIG. 2 is a schematic structural diagram of an equivalent value calculation circuit provided by the background art.
  • an implementation method suitable for an electromagnetic transient multi-time scale real-time simulation interface comprising the following steps:
  • determining the time scale of the sub-network according to the dynamic time constant of the system includes a minimum time scale and a non-minimum time scale.
  • the following dynamic time constants can be selected: 1, 10, 50, 100, 1000.
  • the network of the minimum time scale runs on a real-time FPGA simulation platform, and the network of a non-minimum time scale runs on a real-time server platform.
  • the network matrix initialization includes: using an external interpolation method to initialize the initial voltage of the electromagnetic transient simulation system Reverse the current with the current, estimate the system voltage and current before the current time, and record the voltage and current associated with the decoupling component at that time;
  • the network matrix is stored in the memory (SRAM) of the FPGA platform.
  • the FPGA platform performs timing control, synchronously starts the FPGA platform and the real-time server platform, and transmits data of the network matrix running on the FPGA system to the real-time server platform every other non-minimum time scale. .
  • step (4) when the real-time server platform receives the data transmitted by the FPGA, compares with the historical interface data on the real-time server platform, and obtains an intermediate variable of the non-minimum time scale of the FPGA platform, and is at a non-minimum Transfer to the FPGA platform in time scale.
  • step (3) On a non-minimum time scale, if the FPGA receives the data of the real-time server platform, step (3) is repeated; if not, the simulation is performed using the intermediate variable of the next non-minimum time scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

La présente invention concerne un procédé de mise en œuvre approprié pour une interface de simulation d'une échelle à multiples temps de transitoires électromagnétiques, ledit procédé comprenant les étapes suivantes : selon une échelle à multiples temps de transitoires électromagnétiques, la division d'un système de simulation en une pluralité de sous-réseaux connectés via des lignes de transmission d'élément de découplage, et la détermination d'échelles de temps des sous-réseaux; via un circuit équivalent de Thévenin, la séparation d'un élément de découplage en deux sources commandées ayant des résistance internes fixes, l'incorporation dans les sous-réseaux et la réalisation d'une initialisation de matrice de réseau; la réalisation d'un calcul de simulation et la réception de données d'une plateforme FPGA; le prétraitement des données de la plateforme FPGA, l'obtention de variables intermédiaires et la poursuite du calcul de simulation.
PCT/CN2016/089823 2015-05-22 2016-07-12 Procédé de mise en œuvre approprié pour une interface de simulation en temps réel d'une échelle à multiples temps de transitoires électromagnétiques WO2016188503A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510264005.XA CN106294897B (zh) 2015-05-22 2015-05-22 一种适用于电磁暂态多时间尺度实时仿真接口的实现方法
CN201510264005.X 2015-05-22

Publications (2)

Publication Number Publication Date
WO2016188503A2 true WO2016188503A2 (fr) 2016-12-01
WO2016188503A3 WO2016188503A3 (fr) 2016-12-29

Family

ID=57393517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089823 WO2016188503A2 (fr) 2015-05-22 2016-07-12 Procédé de mise en œuvre approprié pour une interface de simulation en temps réel d'une échelle à multiples temps de transitoires électromagnétiques

Country Status (2)

Country Link
CN (1) CN106294897B (fr)
WO (1) WO2016188503A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777827A (zh) * 2017-01-24 2017-05-31 中国电力科学研究院 一种机电‑电磁混合仿真方法及系统
CN108984847A (zh) * 2018-06-21 2018-12-11 武汉大学 一种基于分频阻抗补偿的实时数字混合仿真接口方法
CN109002660A (zh) * 2018-09-07 2018-12-14 天津大学 基于fpga的有源配电网实时仿真解算器通用化设计方法
CN109508479A (zh) * 2018-10-19 2019-03-22 天津大学 基于fpga的有源配电网实时仿真器参数配置通用化方法
CN109783845A (zh) * 2018-12-05 2019-05-21 中国电力科学研究院有限公司 边界点分群解耦的机电-电磁混合仿真分网方法及装置
CN111695258A (zh) * 2020-06-11 2020-09-22 哈尔滨工业大学 一种电磁继电器动态特性仿真动能注入仿真方法
CN112084624A (zh) * 2020-07-31 2020-12-15 清华大学 电磁-机电混合仿真电磁暂态侧接口功率计算方法与装置
CN113033024A (zh) * 2021-04-25 2021-06-25 海南省电力学校(海南省电力技工学校) 输电网细粒度并行电磁暂态仿真方法、系统、终端及介质
CN113887052A (zh) * 2021-10-09 2022-01-04 清鸾科技(成都)有限公司 综合能源系统及其仿真计算方法、装置和计算机可读存储介质
CN116505522A (zh) * 2023-06-28 2023-07-28 国网浙江省电力有限公司宁波供电公司 一种电力系统运行仿真模拟方法、仿真平台及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628182A (zh) * 2017-03-24 2018-10-09 中国电力科学研究院 一种电磁暂态小步长仿真方法及系统
CN109190320A (zh) * 2018-11-02 2019-01-11 贵州电网有限责任公司 适用于adpss双馈风机闭环试验的并行异构仿真方法
CN109711001B (zh) * 2018-12-10 2023-03-24 三峡大学 基于柔性化子系统划分和场景属性聚类的水电站多维全数字建模方法
CN109768542B (zh) * 2018-12-14 2022-10-11 中国电力科学研究院有限公司 一种大规模电网电磁暂态自动建模的继承方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261453A (ja) * 1993-03-08 1994-09-16 Hitachi Ltd 電力系統シミュレーション装置
CN101719182B (zh) * 2009-12-11 2012-01-18 中国电力科学研究院 一种交直流电力系统分割并行电磁暂态数字仿真方法
US8397054B2 (en) * 2009-12-23 2013-03-12 L-3 Communications Integrated Systems L.P. Multi-phased computational reconfiguration
CN102184297B (zh) * 2011-05-12 2012-11-14 天津大学 适于微网暂态并行仿真的电气与控制系统解耦预测方法
CN102592003B (zh) * 2011-12-15 2013-11-13 天津大学 一种用于机电与电磁暂态混合仿真的数据交换方法
CN103793562B (zh) * 2014-01-05 2016-09-14 广东电网公司 基于fpga的有源配电网暂态实时仿真系统设计方法
CN103942372B (zh) * 2014-04-04 2017-01-04 天津大学 基于fpga的有源配电网暂态实时仿真多速率接口方法
CN104573164B (zh) * 2014-07-07 2017-10-31 贵州电力试验研究院 小步长系统等值历史电流源信息更新的硬件实现方法
CN104218600B (zh) * 2014-09-22 2016-04-20 国家电网公司 一种多时间尺度动态仿真中电池储能系统模型的构建方法
CN104361159A (zh) * 2014-10-31 2015-02-18 国家电网公司 一种大规模电力系统暂态稳定时间空间并行仿真方法
CN104376158B (zh) * 2014-11-05 2017-05-10 天津大学 一种用于矩阵指数的暂态仿真多时间尺度输出方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777827A (zh) * 2017-01-24 2017-05-31 中国电力科学研究院 一种机电‑电磁混合仿真方法及系统
CN106777827B (zh) * 2017-01-24 2023-08-15 中国电力科学研究院 一种机电-电磁混合仿真方法及系统
CN108984847A (zh) * 2018-06-21 2018-12-11 武汉大学 一种基于分频阻抗补偿的实时数字混合仿真接口方法
CN108984847B (zh) * 2018-06-21 2022-12-06 武汉大学 一种基于分频阻抗补偿的实时数字混合仿真接口方法
CN109002660B (zh) * 2018-09-07 2022-12-06 天津大学 基于fpga的有源配电网实时仿真解算器通用化设计方法
CN109002660A (zh) * 2018-09-07 2018-12-14 天津大学 基于fpga的有源配电网实时仿真解算器通用化设计方法
CN109508479A (zh) * 2018-10-19 2019-03-22 天津大学 基于fpga的有源配电网实时仿真器参数配置通用化方法
CN109508479B (zh) * 2018-10-19 2022-12-16 天津大学 基于fpga的有源配电网实时仿真器参数配置通用化方法
CN109783845A (zh) * 2018-12-05 2019-05-21 中国电力科学研究院有限公司 边界点分群解耦的机电-电磁混合仿真分网方法及装置
CN109783845B (zh) * 2018-12-05 2023-07-18 中国电力科学研究院有限公司 边界点分群解耦的机电-电磁混合仿真分网方法及装置
CN111695258B (zh) * 2020-06-11 2023-05-26 哈尔滨工业大学 一种电磁继电器动态特性仿真动能注入仿真方法
CN111695258A (zh) * 2020-06-11 2020-09-22 哈尔滨工业大学 一种电磁继电器动态特性仿真动能注入仿真方法
CN112084624A (zh) * 2020-07-31 2020-12-15 清华大学 电磁-机电混合仿真电磁暂态侧接口功率计算方法与装置
CN113033024B (zh) * 2021-04-25 2022-09-02 海南省电力学校(海南省电力技工学校) 输电网细粒度并行电磁暂态仿真方法、系统、终端及介质
CN113033024A (zh) * 2021-04-25 2021-06-25 海南省电力学校(海南省电力技工学校) 输电网细粒度并行电磁暂态仿真方法、系统、终端及介质
CN113887052A (zh) * 2021-10-09 2022-01-04 清鸾科技(成都)有限公司 综合能源系统及其仿真计算方法、装置和计算机可读存储介质
CN116505522A (zh) * 2023-06-28 2023-07-28 国网浙江省电力有限公司宁波供电公司 一种电力系统运行仿真模拟方法、仿真平台及设备
CN116505522B (zh) * 2023-06-28 2023-09-26 国网浙江省电力有限公司宁波供电公司 一种电力系统运行仿真模拟方法、仿真平台及设备

Also Published As

Publication number Publication date
WO2016188503A3 (fr) 2016-12-29
CN106294897B (zh) 2020-03-17
CN106294897A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016188503A2 (fr) Procédé de mise en œuvre approprié pour une interface de simulation en temps réel d'une échelle à multiples temps de transitoires électromagnétiques
WO2021000556A1 (fr) Procédé et système de prévision de la durée de vie utile restante d'un équipement industriel, et dispositif électronique
CN107480789B (zh) 一种深度学习模型的高效转换方法及装置
WO2021254538A1 (fr) Procédé et système de simulation de réseau électrique comprenant des dispositifs électroniques de puissance à grande échelle
CN115150471B (zh) 数据处理方法、装置、设备、存储介质及程序产品
CN104408073B (zh) 数据操作方法和装置
CN116227599A (zh) 一种推理模型的优化方法、装置、电子设备及存储介质
CN116670660A (zh) 片上网络的仿真模型生成方法、装置、电子设备及计算机可读存储介质
CN116070567B (zh) 一种缓存电路的验证方法、装置、设备及存储介质
CN110120959B (zh) 大数据推送方法、装置、系统、设备及可读存储介质
CN115688917A (zh) 神经网络模型的训练方法、装置、电子设备及存储介质
CN112383443B (zh) 运行于rdma通信环境的并行应用通信性能预测方法
CN108846248B (zh) 一种应用建模及性能预测方法
CN116306407B (zh) 片上网络noc的验证方法、装置、设备和存储介质
CN104951369A (zh) 消除热点资源竞争的方法和装置
CN116579914B (zh) 一种图形处理器引擎执行方法、装置、电子设备及存储介质
TWI632468B (zh) 模型建立方法與模型建立系統
CN115250251B (zh) 片上网络仿真中的传输路径规划方法、装置、电子设备及计算机可读存储介质
CN118250175A (zh) 一种分布式计算实现方法、装置、网卡芯片及介质
CN118095364A (zh) Cnn模型与加速器的联合搜索方法、装置、设备及介质
CN118278300A (zh) 一种机油压力的模拟计算方法、装置、设备以及存储介质
Boyang Research on Constructional Neural Network Accelerator Based on FPGA
Bonatto et al. Memory subsystem architecture design for multimedia applications
CN118069290A (zh) 一种模型参数值确定方法、装置、电子设备及存储介质
CN116991789A (zh) 一种系统总线互联验证方法、装置、芯片及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799390

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799390

Country of ref document: EP

Kind code of ref document: A2