WO2016187883A1 - 电机驱动装置、方法及电机 - Google Patents

电机驱动装置、方法及电机 Download PDF

Info

Publication number
WO2016187883A1
WO2016187883A1 PCT/CN2015/080115 CN2015080115W WO2016187883A1 WO 2016187883 A1 WO2016187883 A1 WO 2016187883A1 CN 2015080115 W CN2015080115 W CN 2015080115W WO 2016187883 A1 WO2016187883 A1 WO 2016187883A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
current
direct
component
cross
Prior art date
Application number
PCT/CN2015/080115
Other languages
English (en)
French (fr)
Inventor
王超
赵小安
龚黎明
陈金涛
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to KR1020177037460A priority Critical patent/KR101996979B1/ko
Priority to PCT/CN2015/080115 priority patent/WO2016187883A1/zh
Priority to JP2018513702A priority patent/JP6481083B2/ja
Publication of WO2016187883A1 publication Critical patent/WO2016187883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to the field of motor control technologies, and in particular, to a motor driving device, method and motor.
  • the brushless motor mainly adopts the classic vector control scheme.
  • the motor drive device includes a host computer control module and a lower computer control module, wherein the upper computer control module realizes the speed closed loop control, and the lower computer control module The speed control function is realized.
  • the position calculation module 11 outputs a position feedback signal
  • the speed calculation module 12 outputs the rotor electrical angular velocity according to the position feedback signal
  • the speed controller 1 outputs an adjustment command to the cross shaft current according to the rotor electrical angular velocity.
  • the calculation module 3, the direct-axis current calculation module 2 outputs the specified direct-axis current
  • the current controller 4 outputs the direct-axis voltage component and the cross-axis voltage component
  • the voltage limiter 5 outputs the direct-axis voltage and the cross-axis voltage
  • the PWM controller 6 performs coordinates. After the conversion, a three-phase AC voltage is output to the inverter drive module 9 to drive the motor 10.
  • the speed command module 14 converts into a motor speed command
  • the speed controller receives the motor speed command and the speed feedback command of the speed calculation module 12 to generate an axis command of the motor
  • the current controller 4 outputs the same.
  • Straight-axis voltage component and cross-axis voltage component are different from FIG. 1 in that the speed command module 14 converts into a motor speed command, and the speed controller receives the motor speed command and the speed feedback command of the speed calculation module 12 to generate an axis command of the motor, and the current controller 4 outputs the same.
  • FIG. 1 has the advantages of high vector control efficiency, low energy consumption, simple structure, and easy implementation, but the lower computer control module cannot implement no-load speed regulation, even when the upper computer control module is used, due to the upper computer control Module adjustment accuracy and correspondingly insufficient, no-load speed regulation is also more difficult.
  • the technical solution in FIG. 2 has the advantages of the technical solution in FIG. 1 , and the lower computer control module can also perform the speed regulation when the adjustment command is given separately, but the lower position machine control module uses the rotation speed command, which leads to adopting the Huo.
  • the speed of the sensor and the position sensorless speed is difficult to adjust at low speeds.
  • the prior art proposes a solution that generates an adjustment command outputted by the speed controller 1 after passing through the voltage command generation module 17.
  • the voltage command, the PWM controller drives the inverter module 9 according to the voltage command to drive the motor.
  • the prior art motor drive device has a problem that the torque ripple is large and the current output to the motor is uncontrollable.
  • An object of the present invention is to provide a motor driving device and a motor, which are directed to solving the problem that the motor driving device of the prior art has a large torque ripple and the current output to the motor is uncontrollable.
  • the present invention is achieved in a first aspect, the first aspect of the invention provides a motor driving device, the motor driving device comprising:
  • the CLARK converter is used for outputting a quadrature current component and a direct axis current component in a stationary coordinate system after the coordinate transformation of the stator current;
  • a PARK converter for converting an AC current component and a DC current component in the stationary coordinate system into an AC current component and a DC current component in a rotating coordinate system
  • a position calculator for detecting a position of the motor rotor and outputting a position feedback signal according to the position of the motor rotor
  • a speed calculation module configured to output a rotor electrical angular velocity according to the position feedback signal
  • a speed controller for outputting a speed controller output signal according to the rotor electrical angular velocity
  • the motor driving device further includes:
  • a direct current generating module for generating a preset direct current
  • a first subtracter configured to subtract the straight-axis current component in the rotating coordinate system from the preset direct-axis current to obtain a direct-axis current difference
  • a back-EMF detection module for detecting a quadrature current component, a direct-axis current component in a stationary coordinate system, A quadrature voltage component and a direct-axis voltage component, and obtaining a current back EMF according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system;
  • a back EMF generating module configured to generate a preset back EMF according to the speed controller output signal
  • a second subtracter configured to subtract the current back EMF from the preset back EMF to obtain a back EMF difference
  • a back EMF controller configured to output a preset cross-axis current value according to the back EMF difference
  • a third subtracter configured to subtract the cross-axis current component of the preset cross-axis current and the rotating coordinate system to obtain a cross-axis current difference
  • a current controller which outputs a direct-axis voltage component and a cross-axis voltage component according to the direct-axis current difference and the cross-axis current difference;
  • a voltage limiter that performs coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the position feedback signal, and outputs a direct-axis voltage and a cross-axis voltage in a stationary coordinate system
  • a PWM controller converts the direct axis voltage and the quadrature axis voltage into a three-phase alternating current voltage.
  • the back EMF detection module is configured according to an AC current component, a direct axis current component, a cross axis voltage component, and a direct axis voltage component in the stationary coordinate system.
  • the current process of back EMF is specifically:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • a second aspect of the present invention provides a motor driving method, the motor driving method comprising the following steps:
  • the straight axis voltage component obtains the current back EMF
  • the straight axis voltage and the quadrature axis voltage are converted into a three-phase alternating voltage.
  • the obtaining the current back electromotive force according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system The steps are specifically as follows:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • a third aspect of the invention provides a motor driving device, the motor driving device comprising:
  • a CLARK converter for outputting the stator current through a coordinate transformation and outputting a quadrature current component and a direct axis current component in a stationary coordinate system
  • a PARK converter for converting an AC current component and a DC current component in the stationary coordinate system into an AC current component and a DC current component in a rotating coordinate system
  • a position calculator for detecting a position of the motor rotor and outputting a position feedback signal according to the position of the motor rotor
  • a speed calculation module configured to output a rotor electrical angular velocity according to the position feedback signal
  • a speed controller for outputting a speed controller output signal according to the rotor electrical angular velocity
  • the motor driving device further includes:
  • a direct current generating module for generating a preset direct current
  • a first subtracter configured to subtract the straight-axis current component in the rotating coordinate system from the preset direct-axis current to obtain a direct-axis current difference
  • a back-EMF detection module for detecting an AC current component, a direct-axis current component, a cross-axis voltage component, and a direct-axis voltage component in a stationary coordinate system, and according to the cross-axis current component and the direct-axis current in the stationary coordinate system
  • the component, the cross-axis voltage component, and the direct-axis voltage component acquire the current back EMF
  • a back EMF generating module configured to generate a preset back EMF according to the speed controller output signal
  • Anti-speed saturation module for generating a back EMF adjustment value
  • a second subtracter configured to subtract the current back EMF from the preset back EMF and the back EMF adjustment value to obtain a back EMF difference
  • a back EMF controller configured to output a preset AC current value according to the back potential difference, and output the preset AC current value to the anti-speed saturation module to drive the anti-speed saturation module to generate the anti-speed Potential adjustment value;
  • a third subtracter configured to subtract the cross-axis current component of the preset cross-axis current and the rotating coordinate system to obtain a cross-axis current difference
  • a current controller which outputs a direct-axis voltage component and a cross-axis voltage component according to the direct-axis current difference and the cross-axis current difference;
  • a voltage limiter that performs coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the position feedback signal, and outputs a direct-axis voltage and a cross-axis voltage in a stationary coordinate system
  • a PWM controller converts the direct axis voltage and the quadrature axis voltage into a three-phase alternating current voltage.
  • the back EMF detection module obtains the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system.
  • the current process of back EMF is specifically:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • a fourth aspect of the present invention provides a motor including an inverter module and a motor module, wherein the motor further includes the motor drive device of the first aspect and the third aspect.
  • a fifth aspect of the present invention provides a motor driving method, characterized in that the motor driving method comprises the following steps:
  • the straight axis voltage component obtains the current back EMF
  • the straight axis voltage and the quadrature axis voltage are converted into a three-phase alternating voltage.
  • the acquiring the current back electromotive force according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system The steps are specifically as follows:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • the motor driving device, method and motor provided by the invention obtain the current back EMF according to the AC current component, the direct axis current component, the cross shaft voltage component and the direct axis voltage component in the stationary coordinate system, and then the current back EMF and the preset The back EMF is calculated and output to the back EMF controller to obtain the preset cross shaft current.
  • the feedback to the back EMF is used to form a closed loop control loop to drive the motor current to control the motor and solve the individual torque control.
  • the speed regulation problem solves the problem of the anti-interference ability of the single speed control load and the problem that the single rotation speed control start torque is small and the startup speed response is slow.
  • FIG. 1 is a schematic structural view of a motor driving device provided in the prior art
  • FIG. 2 is a schematic structural view of another motor driving device provided in the prior art
  • FIG. 3 is a schematic structural view of another motor driving device provided in the prior art
  • FIG. 4 is a schematic structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a motor driving method according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a motor driving method according to another embodiment of the present invention.
  • An embodiment of the present invention provides a motor driving device. As shown in FIG. 4, the motor driving device includes:
  • the CLARK converter 17 is configured to output the stator current through the coordinate transformation and output the quadrature current component and the direct axis current component in the stationary coordinate system.
  • the PARKer 18 is configured to convert the quadrature current component and the direct axis current component in the stationary coordinate system into a quadrature current component and a direct axis current component in a rotating coordinate system.
  • the position calculator 11 is for detecting the position of the rotor of the motor and outputting a position feedback signal according to the position of the rotor of the motor.
  • the speed calculation module 12 is configured to output a rotor electrical angular velocity according to the position feedback signal.
  • the speed controller 1 is configured to output a speed controller output signal according to the rotor electrical angular velocity.
  • the motor drive device also includes:
  • the direct axis current generating module 2 is configured to generate a preset direct current.
  • the first subtractor 21 is configured to obtain a direct-axis current difference by subtracting the preset direct-axis current from the direct-axis current component in the rotating coordinate system.
  • the back EMF detecting module 16 is configured to detect the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and according to the cross-axis current component and the direct-axis current component in the stationary coordinate system.
  • the cross-axis voltage component and the direct-axis voltage component acquire the current back EMF.
  • the back EMF generating module 15 is configured to generate a preset back EMF according to the speed controller output signal.
  • the second subtractor 22 is configured to subtract the current back EMF from the preset back EMF to obtain a back EMF difference.
  • the back EMF controller 19 is configured to preset a cross-axis current value according to the back EMF and the output.
  • the third subtractor 23 is configured to obtain a cross-axis current difference by subtracting the preset cross-axis current from the cross-axis current component in the rotating coordinate system.
  • the current controller 4 outputs a direct-axis voltage component and a quadrature axis according to a direct-axis current difference and a cross-axis current difference. Pressure component.
  • the voltage limiter 5 performs coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the position feedback signal, and outputs the direct-axis voltage and the cross-axis voltage in the stationary coordinate system.
  • the PWM controller 6 converts the direct-axis voltage and the cross-axis voltage into a three-phase alternating voltage.
  • the back EMF detection module 16 obtains the current back EMF according to the AC current component, the direct axis current component, the cross axis voltage component, and the direct axis voltage component in the stationary coordinate system, and performs the current back EMF with the preset back EMF. After the subtraction operation, feedback to the back EMF controller to obtain the AC current component to form a closed loop control loop to drive the motor current to control the motor.
  • the speed controller output signal is an adjustment command output by the speed controller 1, and may exist in the form of a voltage value or a voltage range value, or the speed controller output signal exists in a digital form in the software;
  • the potential is generated according to the output signal of the speed controller.
  • the output signal of the speed controller is a voltage signal, it can be proportional to the magnitude of the output signal of the speed controller, and the preset back EMF is obtained according to the proportional relationship.
  • the process of the back EMF detection module obtaining the current back EMF according to the AC current component, the direct axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system is specifically as follows:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • Another embodiment of the present invention provides a motor including an inverter module 9 and a motor module 10, the motor also being the motor drive device described above.
  • the motor driving method includes the following steps:
  • Step S101 Detecting the stator current of the motor, and outputting the stator current through the coordinate transformation to output the cross-axis current component and the direct-axis current component in the stationary coordinate system.
  • Step S102 Convert the cross-axis current component and the direct-axis current component in the stationary coordinate system into an intersecting current component and a direct-axis current component in a rotating coordinate system.
  • Step S103 Detect the position of the motor rotor and output a position feedback signal according to the position of the motor rotor.
  • Step S104 Output the rotor electrical angular velocity according to the position feedback signal, and output the speed controller output signal according to the rotor electrical angular velocity.
  • Step S105 Generate a preset direct-axis current, and subtract the straight-axis current component from the preset direct-axis current and the rotating coordinate system to obtain a direct-axis current difference.
  • Step S106 Detect the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and according to the cross-axis current component, the direct-axis current component, and the cross-axis voltage component in the stationary coordinate system. And the straight-axis voltage component obtains the current back EMF.
  • the current back EMF is obtained according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and the current back EMF and the preset back EMF are performed.
  • feedback to the back EMF controller to obtain the AC current component to form a closed loop control loop to drive the motor current to control the motor.
  • Step S107 Generate a preset back EMF according to the output signal of the speed controller, obtain a back EMF difference by subtracting the current back EMF from the preset back EMF, and output a preset AC current value according to the back EMF difference.
  • the preset back EMF is generated according to the voltage adjustment signal, for example, may be proportional to the magnitude of the output signal of the speed controller, and the preset back EMF is obtained according to the proportional relationship.
  • Step S108 Subtracting the preset cross-axis current and the cross-axis current component in the rotating coordinate system to obtain a cross-axis current difference.
  • Step S109 Output a direct-axis voltage component and a cross-axis voltage component according to the direct-axis current difference and the cross-axis current difference.
  • Step S110 Perform coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the position feedback signal, and then output the direct-axis voltage and the cross-axis voltage in the stationary coordinate system.
  • Step S111 Convert the straight-axis voltage and the cross-axis voltage into a three-phase AC voltage.
  • step S106 the step of acquiring the current back electromotive force according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system is specifically:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • the motor driving device, method and motor provided by the invention obtain the current back EMF according to the AC current component, the direct axis current component, the cross shaft voltage component and the direct axis voltage component in the stationary coordinate system, and then the current back EMF and the preset The back EMF is calculated and output to the back EMF controller to obtain the preset cross shaft current.
  • the feedback to the back EMF is used to form a closed loop control loop to drive the motor current to control the motor and solve the individual torque control. Speed control problem.
  • An embodiment of the present invention provides a motor driving device. As shown in FIG. 6, the motor driving device includes:
  • the CLARK converter 17 is configured to output the stator current through the coordinate transformation and output the quadrature current component and the direct axis current component in the stationary coordinate system.
  • the PARKer 18 is configured to convert the quadrature current component and the direct axis current component in the stationary coordinate system into a quadrature current component and a direct axis current component in a rotating coordinate system.
  • the position calculator 11 is for detecting the position of the rotor of the motor and outputting a position feedback signal according to the position of the rotor of the motor.
  • the speed calculation module 12 is configured to output a rotor electrical angular velocity according to the position feedback signal.
  • the speed controller 1 is configured to output a speed controller output signal according to the rotor electrical angular velocity.
  • the motor drive device also includes:
  • the direct axis current generating module 2 is configured to generate a preset direct current.
  • the first subtractor 21 is configured to obtain a direct-axis current difference by subtracting the preset direct-axis current from the direct-axis current component in the rotating coordinate system.
  • the back EMF detecting module 16 is configured to detect the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and according to the cross-axis current component and the direct-axis current component in the stationary coordinate system.
  • the cross-axis voltage component and the direct-axis voltage component acquire the current back EMF.
  • the back EMF generating module 15 is configured to generate a preset back EMF according to the speed controller output signal.
  • the anti-speed saturation module 24 is configured to generate a back EMF adjustment value.
  • the second subtractor 22 is configured to subtract the current back EMF from the preset back EMF and the back EMF adjustment value to obtain a back EMF difference.
  • the back EMF controller 19 is configured to preset a cross current current value according to the back EMF and the output, and output the preset AC current value to the anti-speed saturation module 24 to drive the anti-speed saturation module to generate a back EMF adjustment value.
  • the third subtractor 23 is configured to obtain a cross-axis current difference by subtracting the preset cross-axis current from the cross-axis current component in the rotating coordinate system.
  • the current controller 4 outputs a direct-axis voltage component and a cross-axis voltage component according to the direct-axis current difference and the cross-axis current difference.
  • the voltage limiter 5 performs coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the position feedback signal, and outputs the direct-axis voltage and the cross-axis voltage in the stationary coordinate system.
  • the PWM controller 6 converts the direct-axis voltage and the cross-axis voltage into a three-phase alternating voltage.
  • the module anti-speed saturation module 24 wherein the output back-potential adjustment value of the anti-speed saturation module 4 is Iq*Ks, where Iq is a preset cross-axis current value, and Ks is positive. Real number, typical value takes the motor phase resistance Rs.
  • This embodiment adds the anti-speed saturation module 24 to the above embodiment to solve the problem of saturation of the back EMF controller.
  • the process of the back EMF detection module obtaining the current back EMF according to the AC current component, the direct axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system is specifically as follows:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.
  • the motor driving method includes the following steps:
  • Step S201 Detecting the stator current of the motor, and outputting the stator current through the coordinate transformation to output the cross-axis current component and the direct-axis current component in the stationary coordinate system.
  • Step S202 Convert the quadrature axis current component and the direct axis current component in the stationary coordinate system into a cross-axis current component and a direct-axis current component in a rotating coordinate system.
  • Step S203 Detecting the position of the motor rotor and outputting a position feedback signal according to the position of the motor rotor.
  • Step S204 Output the rotor electrical angular velocity according to the position feedback signal, and output the speed controller output signal according to the rotor electrical angular velocity.
  • Step S205 generating a preset direct-axis current, and subtracting the preset direct-axis current from the direct-axis current component in the rotating coordinate system to obtain a direct-axis current difference.
  • Step S206 Detect the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and according to the cross-axis current component, the direct-axis current component, and the cross-axis voltage component in the stationary coordinate system. And the straight-axis voltage component obtains the current back EMF.
  • the current back EMF is obtained according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system, and the current back EMF and the preset back EMF are performed.
  • feedback to the back EMF controller to obtain the AC current component to form a closed loop control loop to drive the motor current to control the motor.
  • Step S207 Generate a preset back EMF according to the output signal of the speed controller, and generate a back EMF adjustment value, and subtract the current back EMF from the preset back EMF and the back EMF adjustment value to obtain a back EMF difference, and output the pre-potential difference according to the back EMF difference.
  • the preset back EMF is generated according to the voltage adjustment signal, for example, may be proportional to the magnitude of the output signal of the speed controller, and the preset back EMF is obtained according to the proportional relationship.
  • the back EMF adjustment value is Iq*Ks, where Iq is the preset cross-axis current value, Ks is a positive real number, and the typical value is the motor phase resistance Rs.
  • This embodiment adds a back EMF adjustment value based on the above embodiment, thereby solving the problem of saturation of the back EMF controller.
  • Step S208 Subtracting the preset cross-axis current and the cross-axis current component in the rotating coordinate system to obtain a cross-axis current difference.
  • Step S209 Output a straight-axis voltage component and a cross-axis voltage component according to the direct-axis current difference and the cross-axis current difference.
  • Step S210 Perform coordinate transformation on the direct-axis voltage component and the cross-axis voltage component according to the position feedback signal, and then output the direct-axis voltage and the cross-axis voltage in the stationary coordinate system.
  • Step S211 Convert the straight-axis voltage and the cross-axis voltage into a three-phase AC voltage.
  • step S106 the step of acquiring the current back electromotive force according to the cross-axis current component, the direct-axis current component, the cross-axis voltage component, and the direct-axis voltage component in the stationary coordinate system is specifically:
  • the current back EMF is output after calculation according to the following formula:
  • U ⁇ is the direct-axis voltage component in the stationary coordinate system
  • I ⁇ is the direct-axis current component in the stationary coordinate system
  • e ⁇ is the direct-axis back EMF
  • U ⁇ is the cross-axis voltage component in the stationary coordinate system
  • I ⁇ is the cross-axis current component in the stationary coordinate system
  • e ⁇ is the cross-axis back EMF
  • R S is the stator resistance
  • e s is the current back EMF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

一种电机驱动装置、方法及电机,该电机驱动装置包括:CLARK变换器(17);PARK变换器(18);第一减法器(21),用于获得直轴电流差;反电势检测模块(16),根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;反电势生成模块(15),用于根据电压调节信号生成预设反电势;第二减法器(22),获得反电势差;反电势控制器(19),用于根据反电势差输出预设交轴电流值;第三减法器(23),获得交轴电流差;电流控制器(4),输出直轴电压分量和交轴电压分量;电压限制器(5),输出静止坐标系下的直轴电压和交轴电压;PWM控制器(6),输出三相交流电压,通过对反电势的反馈以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制。

Description

电机驱动装置、方法及电机 技术领域
本发明涉及电机控制技术领域,尤其涉及一种电机驱动装置、方法及电机。
背景技术
目前,无刷电动机主要采用经典矢量控制方案,如图1和图2所示,电机驱动装置包括上位机控制模块和下位机控制模块,其中,上位机控制模块实现转速闭环控制,下位机控制模块实现调速功能,如图1所示,位置计算模块11输出位置反馈信号,速度计算模块12根据所述位置反馈信号输出转子电角速度,速度控制器1根据转子电角速度输出调节指令给交轴电流计算模块3,直轴电流计算模块2输出指定直轴电流,电流控制器4输出直轴电压分量和交轴电压分量,电压限制器5输出直轴电压和交轴电压,PWM控制器6进行坐标变换后输出三相交流电压给逆变驱动模块9以驱动电动机10。
图2与图1的不同点在于速度指令模块14转换成电机速度指令,速度控制器接收所述电机速度指令与速度计算模块12的速度反馈指令生成电机的交轴指令,电流控制器4再输出直轴电压分量和交轴电压分量。
图1中的技术方案的优点在于矢量控制效率高,能耗小,结构简单,并且易于实现,但是下位机控制模块不能实现空载调速,甚至即使带上位机控制模块时,由于上位机控制模块调节精度和相应不够,空载调速也比较困难。
图2中的技术方案除了具有图1中技术方案的优点外,其下位机控制模块在单独给定调节指令时,也能进行调速,但是由于下位机控制模块用到转速指令,导致采用霍尔传感器和无位置传感器转速在低速时调速困难。
为了解决图1和图2中技术方案的缺陷,如图3所示,现有技术提出一种解决方案,即将速度控制器1输出的调节指令经过电压指令生成模块17后生成 电压指令,PWM控制器根据电压指令驱动逆变器模块9以驱动电机,该技术方案虽然能够实现空载调速,但是电流波形较差,转矩脉动大并且输出给电机的电流不可控。
综上所述,现有技术中的电机驱动装置存在转矩脉动大并且输出给电机的电流不可控的问题。
技术问题
本发明的目的在于提供一种电机驱动装置及电机,旨在解决针对现有技术中的电机驱动装置存在转矩脉动大并且输出给电机的电流不可控的问题。
技术解决方案
本发明是这样实现的,第一方面提供一种电机驱动装置,所述电机驱动装置包括:
CLARK变换器,用于定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
PARK变换器,用于将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
速度控制器,用于根据所述转子电角速度输出速度控制器输出信号;
所述电机驱动装置还包括:
直轴电流生成模块,用于生成预设直轴电流;
第一减法器,用于将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
反电势检测模块,用于检测静止坐标系下的交轴电流分量、直轴电流分量、 交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
反电势生成模块,用于根据所述速度控制器输出信号生成预设反电势;
第二减法器,用于将所述当前反电势与所述预设反电势进行减法运算后获得反电势差;
反电势控制器,用于根据所述反电势差输出预设交轴电流值;
第三减法器,用于将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
电流控制器,根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
电压限制器,根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
PWM控制器,将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第一方面,作为第一方面的第一种实施方式,所述反电势检测模块根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000001
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明第二方面提供一种电机驱动方法,所述电机驱动方法包括以下步骤:
将所述定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度输出速度控制器输出信号;
生成预设直轴电流,并将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
根据所述速度控制器输出信号生成预设反电势,将所述当前反电势与所述预设反电势进行减法运算后获得反电势差,并根据所述反电势差输出预设交轴电流值;
将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第二方面,作为第二方面的第一种实施方式,所述根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000002
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明第三方面提供一种电机驱动装置,所述电机驱动装置包括:
CLARK变换器,用于将所述定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
PARK变换器,用于将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
速度控制器,用于根据所述转子电角速度输出速度控制器输出信号;
所述电机驱动装置还包括:
直轴电流生成模块,用于生成预设直轴电流;
第一减法器,用于将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
反电势检测模块,用于检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
反电势生成模块,用于根据所述速度控制器输出信号生成预设反电势;
抗速度饱和模块,用于生成反电势调节值;
第二减法器,用于将所述当前反电势与所述预设反电势和所述反电势调节值进行减法运算后获得反电势差;
反电势控制器,用于根据所述反电势差输出预设交轴电流值,并将所述预设交流电流值输出给所述抗速度饱和模块,以驱动所述抗速度饱和模块生成所述反电势调节值;
第三减法器,用于将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
电流控制器,根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
电压限制器,根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
PWM控制器,将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第三方面,作为第三方面的第一种实施方式,所述反电势检测模块根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000003
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明第四方面提供一种电机,其包括逆变器模块和电机模块,其特征在于,所述电机还包括上述第一方面以及上述第三方面所述的电机驱动装置。
本发明第五方面提供一种电机驱动方法,其特征在于,所述电机驱动方法包括以下步骤:
检测电机的定子电流,并将所述定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度输出速度控制器输出信号;
生成预设直轴电流,并将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
根据所述速度控制器输出信号生成预设反电势,并生成反电势调节值,将所述当前反电势与所述预设反电势和所述反电势调节值进行减法运算后获得反电势差,并根据所述反电势差输出预设交轴电流值,并根据所述预设交轴电流值生成所述反电势调节值;
将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第五方面,作为第五方面的第一种实施方式,所述根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000004
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系 下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
有益效果
本发明提供的电机驱动装置、方法及电机,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势,再将当前反电势与预设反电势进行运算后输出给反电势控制器,以获得预设交轴电流,通过对反电势的反馈以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制,解决了单独转矩控制的调速问题,同时解决了单独转速控制负载的抗干扰能力强弱的问题和单独转速控制启动转矩小和启动速度响应慢的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中提供的一种电机驱动装置的结构示意图;
图2是现有技术中提供的另一种电机驱动装置的结构示意图;
图3是现有技术中提供的另一种电机驱动装置的结构示意图;
图4是本发明一种实施例提供的电机驱动装置的结构示意图;
图5是本发明另一种实施例提供的电机驱动方法的流程图;
图6是本发明一种实施例提供的电机驱动装置的结构示意图;
图7是本发明另一种实施例提供的电机驱动方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。
为了说明本发明的技术方案,下面通过具体实施例来进行说明。
本发明一种实施例提供一种电机驱动装置,如图4所示,电机驱动装置包括:
CLARK变换器17,用于将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量。
PARK变换器18,用于将静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量。
位置计算器11,用于检测电机转子的位置,并根据电机转子的位置输出位置反馈信号。
速度计算模块12,用于根据位置反馈信号输出转子电角速度。
速度控制器1,用于根据转子电角速度输出速度控制器输出信号。
电机驱动装置还包括:
直轴电流生成模块2,用于生成预设直轴电流。
第一减法器21,用于将预设直轴电流与旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差。
反电势检测模块16,用于检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势。
反电势生成模块15,用于根据速度控制器输出信号生成预设反电势。
第二减法器22,用于将当前反电势与预设反电势进行减法运算后获得反电势差。
反电势控制器19,用于根据反电势和输出预设交轴电流值。
第三减法器23,用于将预设交轴电流与旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差。
电流控制器4,根据直轴电流差和交轴电流差输出直轴电压分量和交轴电 压分量。
电压限制器5,根据位置反馈信号对直轴电压分量和交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压。
PWM控制器6,将直轴电压和交轴电压转换成三相交流电压。
具体的,反电势检测模块16根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势,并将该当前反电势与预设反电势进行减法运算后反馈给反电势控制器,以获得交轴电流分量,以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制。
具体的,速度控制器输出信号是速度控制器1输出的调节指令,其可以以电压值或电压范围值的形式存在,或者该速度控制器输出信号在软件中以数字的形式存在;预设反电势为根据速度控制器输出信号生成,例如,速度控制器输出信号为电压信号时,可以与速度控制器输出信号的大小形成正比例关系,根据给正比关系得到预设反电势。
具体的,反电势检测模块根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000005
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明另一种实施例提供一种电机,其包括逆变器模块9和电机模块10,该电机还上述电机驱动装置。
本发明另一种实施例提供一种电机驱动方法,如图5所示,电机驱动方法包括以下步骤:
步骤S101.检测电机的定子电流,并将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量。
步骤S102.将静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量。
步骤S103.检测电机转子的位置,并根据电机转子的位置输出位置反馈信号。
步骤S104.根据位置反馈信号输出转子电角速度,并根据转子电角速度输出速度控制器输出信号。
步骤S105.生成预设直轴电流,并将预设直轴电流与旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差。
步骤S106.检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势。
在本步骤中,具体的,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势,并将该当前反电势与预设反电势进行减法运算后反馈给反电势控制器,以获得交轴电流分量,以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制。
步骤S107.根据速度控制器输出信号生成预设反电势,将当前反电势与预设反电势进行减法运算后获得反电势差,并根据反电势差输出预设交轴电流值。
在本步骤中,具体的,预设反电势为根据电压调节信号生成,例如,可以与速度控制器输出信号的大小形成正比例关系,根据给正比关系得到预设反电势。
步骤S108.将预设交轴电流与旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差。
步骤S109.根据直轴电流差和交轴电流差输出直轴电压分量和交轴电压分量。
步骤S110.根据位置反馈信号对直轴电压分量和交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压。
步骤S111.将直轴电压和交轴电压转换成三相交流电压。
进一步地,在步骤S106中,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000006
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明提供的电机驱动装置、方法及电机,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势,再将当前反电势与预设反电势进行运算后输出给反电势控制器,以获得预设交轴电流,通过对反电势的反馈以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制,解决了单独转矩控制的调速问题。
本发明一种实施例提供一种电机驱动装置,如图6所示,电机驱动装置包括:
CLARK变换器17,用于将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量。
PARK变换器18,用于将静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量。
位置计算器11,用于检测电机转子的位置,并根据电机转子的位置输出位置反馈信号。
速度计算模块12,用于根据位置反馈信号输出转子电角速度。
速度控制器1,用于根据转子电角速度输出速度控制器输出信号。
电机驱动装置还包括:
直轴电流生成模块2,用于生成预设直轴电流。
第一减法器21,用于将预设直轴电流与旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差。
反电势检测模块16,用于检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势。
反电势生成模块15,用于根据速度控制器输出信号生成预设反电势。
抗速度饱和模块24,用于生成反电势调节值。
第二减法器22,用于将当前反电势与预设反电势和反电势调节值进行减法运算后获得反电势差。
反电势控制器19,用于根据反电势和输出预设交轴电流值,并将预设交流电流值输出给抗速度饱和模块24,以驱动抗速度饱和模块生成反电势调节值。
第三减法器23,用于将预设交轴电流与旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差。
电流控制器4,根据直轴电流差和交轴电流差输出直轴电压分量和交轴电压分量。
电压限制器5,根据位置反馈信号对直轴电压分量和交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压。
PWM控制器6,将直轴电压和交轴电压转换成三相交流电压。
本实施例中与上述实施例的不同点在于:模块抗速度饱和模块24,其中抗速度饱和模块4的输出反电势调节值为Iq*Ks,其中Iq为预设交轴电流值,Ks为正实数,典型值取电机相电阻Rs。
上述实施例在反电势控制器出现饱和时,会使电机高速时出现转速调节钝化以及速度调节响应变慢的问题。
本实施例在上述实施例的基础上加入抗速度饱和模块24,从而解决反电势控制器饱和的问题。
具体的,反电势检测模块根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000007
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
本发明另一种实施例提供一种电机驱动方法,如图7所示,电机驱动方法包括以下步骤:
步骤S201.检测电机的定子电流,并将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量。
步骤S202.将静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量。
步骤S203.检测电机转子的位置,并根据电机转子的位置输出位置反馈信号。
步骤S204.根据位置反馈信号输出转子电角速度,并根据转子电角速度输出速度控制器输出信号。
步骤S205.生成预设直轴电流,并将预设直轴电流与旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差。
步骤S206.检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势。
在本步骤中,具体的,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势,并将该当前反电势与预设反电势进行减法运算后反馈给反电势控制器,以获得交轴电流分量,以形成闭环控制回路,以驱动控制电机电流,实现对电机的控制。
步骤S207.根据速度控制器输出信号生成预设反电势,并生成反电势调节值,将当前反电势与预设反电势和反电势调节值进行减法运算后获得反电势差,并根据反电势差输出预设交轴电流值,并根据预设交轴电流值生成反电势调节值。
在本步骤中,具体的,预设反电势为根据电压调节信号生成,例如,可以与速度控制器输出信号的大小形成正比例关系,根据给正比关系得到预设反电势。
具体的,反电势调节值为Iq*Ks,其中Iq为预设交轴电流值,Ks为正实数,典型值取电机相电阻Rs。
上述实施例在反电势控制器出现饱和时,会使电机高速时出现转速调节钝化以及速度调节响应变慢的问题。
本实施例在上述实施例的基础上加入反电势调节值,从而解决反电势控制器饱和的问题。
步骤S208.将预设交轴电流与旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差。
步骤S209.根据直轴电流差和交轴电流差输出直轴电压分量和交轴电压分量。
步骤S210.根据位置反馈信号对直轴电压分量和交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压。
步骤S211.将直轴电压和交轴电压转换成三相交流电压。
进一步地,在步骤S106中,根据静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
根据以下算式进行计算后输出当前反电势:
eα=Uα-IαRS
eβ=Uβ-IβRS
Figure PCTCN2015080115-appb-000008
其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (9)

  1. 一种电机驱动装置,所述电机驱动装置包括:
    CLARK变换器,用于将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
    PARK变换器,用于将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
    位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
    速度控制器,用于根据所述转子电角速度输出速度控制器输出信号;
    其特征在于,所述电机驱动装置还包括:
    直轴电流生成模块,用于生成预设直轴电流;
    第一减法器,用于将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
    反电势检测模块,用于检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
    反电势生成模块,用于根据所述速度控制器输出信号生成预设反电势;
    第二减法器,用于将所述当前反电势与所述预设反电势进行减法运算后获得反电势差;
    反电势控制器,用于根据所述反电势差输出预设交轴电流值;
    第三减法器,用于将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
    电流控制器,根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
    电压限制器,根据所述位置反馈信号对所述直轴电压分量和所述交轴电压 分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
    PWM控制器,将所述直轴电压和所述交轴电压转换成三相交流电压。
  2. 如权利要求1所述的电机驱动装置,其特征在于,所述反电势检测模块根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
    根据以下算式进行计算后输出当前反电势:
    eα=Uα-IαRS
    eβ=Uβ-IβRS
    Figure PCTCN2015080115-appb-100001
    其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
  3. 一种电机驱动方法,其特征在于,所述电机驱动方法包括以下步骤:
    将所述定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
    将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
    检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度输出速度控制器输出信号;
    生成预设直轴电流,并将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
    检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
    根据所述速度控制器输出信号生成预设反电势,将所述当前反电势与所述 预设反电势进行减法运算后获得反电势差,并根据所述反电势差输出预设交轴电流值;
    将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
    根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
    根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
    将所述直轴电压和所述交轴电压转换成三相交流电压。
  4. 如权利要求3所述的电机驱动方法,其特征在于,所述根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
    根据以下算式进行计算后输出当前反电势:
    eα=Uα-IαRS
    eβ=Uβ-IβRS
    Figure PCTCN2015080115-appb-100002
    其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
  5. 一种电机驱动装置,所述电机驱动装置包括:
    CLARK变换器,用将定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
    PARK变换器,用于将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
    位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
    速度控制器,用于根据所述转子电角速度输出速度控制器输出信号;
    其特征在于,所述电机驱动装置还包括:
    直轴电流生成模块,用于生成预设直轴电流;
    第一减法器,用于将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
    反电势检测模块,用于检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
    反电势生成模块,用于根据所述速度控制器输出信号生成预设反电势;
    抗速度饱和模块,用于生成反电势调节值;
    第二减法器,用于将所述当前反电势与所述预设反电势和所述反电势调节值进行减法运算后获得反电势差;
    反电势控制器,用于根据所述反电势差输出预设交轴电流值,并将所述预设交流电流值输出给所述抗速度饱和模块,以驱动所述抗速度饱和模块生成所述反电势调节值;
    第三减法器,用于将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后获得交轴电流差;
    电流控制器,根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
    电压限制器,根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
    PWM控制器,将所述直轴电压和所述交轴电压转换成三相交流电压。
  6. 如权利要求5所述的电机驱动装置,其特征在于,所述反电势检测模块根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的过程具体为:
    根据以下算式进行计算后输出当前反电势:
    eα=Uα-IαRS
    eβ=Uβ-IβRS
    Figure PCTCN2015080115-appb-100003
    其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
  7. 一种电机,其包括逆变器模块和电机模块,其特征在于,所述电机还包括权利要求1或2以及权利要求5或6所述的电机驱动装置。
  8. 一种电机驱动方法,其特征在于,所述电机驱动方法包括以下步骤:
    检测电机的定子电流,并将所述定子电流经过坐标变换后输出静止坐标系下的交轴电流分量和直轴电流分量;
    将所述静止坐标系下的交轴电流分量和直轴电流分量转换为旋转坐标系下的交轴电流分量和直轴电流分量;
    检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度输出速度控制器输出信号;
    生成预设直轴电流,并将所述预设直轴电流与所述旋转坐标系下的直轴电流分量进行减法运算后获得直轴电流差;
    检测静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量,并根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势;
    根据所述速度控制器输出信号生成预设反电势,并生成反电势调节值,将所述当前反电势与所述预设反电势和所述反电势调节值进行减法运算后获得反电势差,并根据所述反电势差输出预设交轴电流值,并根据所述预设交轴电流值生成所述反电势调节值;
    将所述预设交轴电流与所述旋转坐标系下的交轴电流分量进行减法运算后 获得交轴电流差;
    根据所述直轴电流差和所述交轴电流差输出直轴电压分量和交轴电压分量;
    根据所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行坐标变换后输出静止坐标系下的直轴电压和交轴电压;
    将所述直轴电压和所述交轴电压转换成三相交流电压。
  9. 如权利要求8所述的电机驱动方法,其特征在于,所述根据所述静止坐标系下的交轴电流分量、直轴电流分量、交轴电压分量和直轴电压分量获取当前反电势的步骤具体为:
    根据以下算式进行计算后输出当前反电势:
    eα=Uα-IαRS
    eβ=Uβ-IβRS
    Figure PCTCN2015080115-appb-100004
    其中,Uα为静止坐标系下的直轴电压分量,Iα为静止坐标系下的直轴电流分量,eα为直轴反电势,Uβ为静止坐标系下的交轴电压分量,Iβ为静止坐标系下的交轴电流分量,eβ为交轴反电势,RS为定子电阻,es为当前反电势。
PCT/CN2015/080115 2015-05-28 2015-05-28 电机驱动装置、方法及电机 WO2016187883A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177037460A KR101996979B1 (ko) 2015-05-28 2015-05-28 전동기 구동 장치, 방법 및 전동기
PCT/CN2015/080115 WO2016187883A1 (zh) 2015-05-28 2015-05-28 电机驱动装置、方法及电机
JP2018513702A JP6481083B2 (ja) 2015-05-28 2015-05-28 モータ駆動装置、方法及びモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080115 WO2016187883A1 (zh) 2015-05-28 2015-05-28 电机驱动装置、方法及电机

Publications (1)

Publication Number Publication Date
WO2016187883A1 true WO2016187883A1 (zh) 2016-12-01

Family

ID=57392510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080115 WO2016187883A1 (zh) 2015-05-28 2015-05-28 电机驱动装置、方法及电机

Country Status (3)

Country Link
JP (1) JP6481083B2 (zh)
KR (1) KR101996979B1 (zh)
WO (1) WO2016187883A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896843A (zh) * 2018-04-23 2018-11-27 深圳市禾望电气股份有限公司 船用动力电站负荷试验相关装置和方法
CN114499324A (zh) * 2022-01-17 2022-05-13 北京理工大学 一种基于位置传感器的pmsm三闭环矢量控制装置及方法
CN114499324B (zh) * 2022-01-17 2024-05-28 北京理工大学 一种基于位置传感器的pmsm三闭环矢量控制装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012003B2 (en) 2019-09-10 2021-05-18 Wisconsin Alumni Research Foundation Sensorless controller for electrostatic machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025313A (zh) * 2011-01-12 2011-04-20 湘潭电机股份有限公司 基于反电势前馈控制的矢量控制方法
US20110298405A1 (en) * 2010-06-04 2011-12-08 Stmicroelectronics S.R.L. Method of controlling a three-phase permanent magnet synchronous motor for reducing acoustic noise and relative control device
CN103117703A (zh) * 2013-02-05 2013-05-22 南京工程学院 一种永磁同步电机无传感器控制方法及其控制装置
CN103401493A (zh) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 永磁同步电主轴驱动控制系统和方法
CN103532464A (zh) * 2013-10-28 2014-01-22 东南大学 永磁同步电机的无传感器矢量控制系统和控制方法
CN103997270A (zh) * 2014-06-09 2014-08-20 浙江理工大学 一种隐极式永磁同步电机的无传感器矢量控制装置及方法
CN104022708A (zh) * 2014-05-21 2014-09-03 上海电机学院 采用无速度传感器技术的电动变桨距驱动系统及方法
CN104836505A (zh) * 2015-05-28 2015-08-12 广东威灵电机制造有限公司 电机驱动装置、方法及电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296788A (ja) * 2008-06-05 2009-12-17 Denso Corp 回転機の回転角度推定装置
JP5113682B2 (ja) * 2008-09-05 2013-01-09 三菱電機株式会社 電力変換装置
KR101090510B1 (ko) * 2009-08-06 2011-12-07 창원대학교 산학협력단 영구자석 동기 전동기의 제어 및 위치 추정 오차 보정 방법
KR101115019B1 (ko) * 2010-02-16 2012-03-06 부산대학교 산학협력단 영구자석 동기전동기의 센서리스 속도 제어 방법
KR101961106B1 (ko) * 2012-03-20 2019-03-25 삼성전자 주식회사 센서리스 제어 방법 및 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110298405A1 (en) * 2010-06-04 2011-12-08 Stmicroelectronics S.R.L. Method of controlling a three-phase permanent magnet synchronous motor for reducing acoustic noise and relative control device
CN102025313A (zh) * 2011-01-12 2011-04-20 湘潭电机股份有限公司 基于反电势前馈控制的矢量控制方法
CN103117703A (zh) * 2013-02-05 2013-05-22 南京工程学院 一种永磁同步电机无传感器控制方法及其控制装置
CN103401493A (zh) * 2013-08-09 2013-11-20 固高科技(深圳)有限公司 永磁同步电主轴驱动控制系统和方法
CN103532464A (zh) * 2013-10-28 2014-01-22 东南大学 永磁同步电机的无传感器矢量控制系统和控制方法
CN104022708A (zh) * 2014-05-21 2014-09-03 上海电机学院 采用无速度传感器技术的电动变桨距驱动系统及方法
CN103997270A (zh) * 2014-06-09 2014-08-20 浙江理工大学 一种隐极式永磁同步电机的无传感器矢量控制装置及方法
CN104836505A (zh) * 2015-05-28 2015-08-12 广东威灵电机制造有限公司 电机驱动装置、方法及电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896843A (zh) * 2018-04-23 2018-11-27 深圳市禾望电气股份有限公司 船用动力电站负荷试验相关装置和方法
CN108896843B (zh) * 2018-04-23 2020-10-30 深圳市禾望电气股份有限公司 船用动力电站负荷试验相关装置和方法
CN114499324A (zh) * 2022-01-17 2022-05-13 北京理工大学 一种基于位置传感器的pmsm三闭环矢量控制装置及方法
CN114499324B (zh) * 2022-01-17 2024-05-28 北京理工大学 一种基于位置传感器的pmsm三闭环矢量控制装置及方法

Also Published As

Publication number Publication date
JP2018517391A (ja) 2018-06-28
JP6481083B2 (ja) 2019-03-13
KR20180012326A (ko) 2018-02-05
KR101996979B1 (ko) 2019-07-05

Similar Documents

Publication Publication Date Title
JP4716118B2 (ja) モータ制御装置
JP5025142B2 (ja) モータ制御装置
JP4764124B2 (ja) 永久磁石型同期モータの制御装置及びその方法
JP2003199389A (ja) モータの制御装置及びその制御方法
JP2011244655A5 (zh)
WO2014118958A1 (ja) 永久磁石同期電動機の減磁診断装置
JP6953763B2 (ja) モータ制御装置
US20140232308A1 (en) Inverter apparatus
WO2016187883A1 (zh) 电机驱动装置、方法及电机
JP2010142046A (ja) 電動機の温度推定装置
JP2008295113A (ja) センサレス突極形ブラシレスdcモータの初期磁極位置推定方法及び制御装置
JP2009195049A (ja) モータ制御装置
JP2013150498A (ja) 同期電動機の制御装置及び制御方法
CN104836505B (zh) 电机驱动装置、方法及电机
WO2016206021A1 (zh) 电机驱动装置、方法及电机
JPWO2017187533A1 (ja) モータ駆動装置、電気掃除機及びハンドドライヤー
JP2011172382A (ja) ブラシレスモータの駆動装置および駆動方法
TWI519058B (zh) Sensorless Operation Control Method for DC Brushless Motor
JP6682313B2 (ja) モータ制御装置
JP2007089336A (ja) 電動機付ターボチャージャ用回転検出装置及び電動機付ターボチャージャの回転検出方法
JP6108109B2 (ja) 永久磁石形同期電動機の制御装置
Zhang et al. Research on a sensorless SVM-DTC strategy for induction motors based on modified stator model
JP2012186911A (ja) モータ制御装置
JP2009284557A (ja) 永久磁石形同期電動機の制御装置
Huang et al. A modified sensorless method for PMSM drive with small DC-link capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018513702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037460

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15892964

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/05/2018)