WO2016186941A1 - Catalyst reactor basket - Google Patents

Catalyst reactor basket Download PDF

Info

Publication number
WO2016186941A1
WO2016186941A1 PCT/US2016/031987 US2016031987W WO2016186941A1 WO 2016186941 A1 WO2016186941 A1 WO 2016186941A1 US 2016031987 W US2016031987 W US 2016031987W WO 2016186941 A1 WO2016186941 A1 WO 2016186941A1
Authority
WO
WIPO (PCT)
Prior art keywords
basket
catalyst
side wall
compartment
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/031987
Other languages
English (en)
French (fr)
Inventor
Omer Refa Koseoglu
Salman J. AL-KHALDI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Aramco Services Co
Original Assignee
Saudi Arabian Oil Co
Aramco Services Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co, Aramco Services Co filed Critical Saudi Arabian Oil Co
Priority to KR1020177035926A priority Critical patent/KR20180008618A/ko
Priority to EP16730931.9A priority patent/EP3297754B1/en
Priority to CN201680028397.2A priority patent/CN107635654B/zh
Priority to SG11201708669WA priority patent/SG11201708669WA/en
Priority to JP2017558696A priority patent/JP6661875B2/ja
Priority to EP19155981.4A priority patent/EP3501634A1/en
Publication of WO2016186941A1 publication Critical patent/WO2016186941A1/en
Priority to SA517390232A priority patent/SA517390232B1/ar
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • B01J2208/00814Details of the particulate material the particulate material being provides in prefilled containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to catalyst reactor baskets.
  • Catalyst reactor systems having differing designs are known in various documents, including, among others, U.S. Design Patent No. D257,281 entitled “Fossil Fuel Catalyst Generator” and U.S. Pat. Pub. No. 2004/0018124 entitled “Comprises cylindrical basket suitable for containing predetermined amount of catalyst; improved materials handling.”
  • the specific designs and features of the catalyst baskets described in these documents can best be appreciated by a review of their respective disclosures.
  • Fig. 1A is a top perspective view of the catalyst reactor basket with a cover attached according to an embodiment of the invention.
  • Fig. IB is an exploded, top perspective view of the catalyst reactor basket
  • Fig. 2 is a side perspective view of the catalyst reactor basket with the cover removed;
  • Fig. 3 is a top perspective view close up of the aperture of the catalyst basket.
  • Fig. 4 is a top perspective view of the catalyst reactor basket according to another aspect of the invention.
  • a catalyst reactor basket includes an outer side wall extending along the outer circumferential periphery of the basket and extending in an axial direction to define a generally cylindrical inner volume of the basket. At least a portion of the outer side wall is fluid permeable.
  • the catalyst basket includes an inner side wall disposed within the outer side wall. The inner side wall extends circumferential and axially to define an aperture that defines a inner boundary of the volume of the basket. The aperture is sized and shaped to allow a fluid to flow axially with respect to the basket. At least a portion of the inner side wall is fluid permeable.
  • First and second covers are disposed on opposite ends of the outer side wall and inner side wall.
  • the first and second covers define respective ends of the inner volume of the basket, at least a portion of the first and second covers being fluid permeable.
  • a dividing wall is disposed between the first and second covers. The dividing wall defines a first and second chamber within the inner volume of the basket. At least a portion of the dividing wall is fluid permeable.
  • a plurality of partitions are disposed within the first and second chambers. Each partition extends radially between the outer side wall and the inner side wall and extends axially between the dividing wall and a respective cover. The plurality of partitions define a plurality of compartments within the first and second chambers, each compartment being sized and shaped to receive a catalyst.
  • a first compartment in the first chamber is aligned with a second compartment in the second chamber along an axis of the basket such that any fluid can flow through the first compartment and subsequently flow through the second compartment.
  • the first compartment is sized to receive a first catalyst and the second compartment is sized to receive a second catalyst such that the fluid first contacts the first catalyst and subsequently contacts a second catalyst along an axial flow path of the fluid.
  • the first catalyst has properties that are different from the second catalyst.
  • the partitions provide a fluid barrier between adjacent compartments.
  • At least one compartment is sized to receive a first catalyst that has different properties than a second catalyst in an adjacent compartment.
  • the catalyst basket includes a support frame wherein the outer wall, inner wall, and dividing wall are supported by the frame.
  • the catalyst reactor basket includes clips that removablely secure the covers to respective ends of the basket.
  • hooks are coupled to the basket, the hooks being sized and shaped to support the basket such that the basket hangs from the hooks.
  • At least a portion of the inner side wall is fluid permeable.
  • At least a portion of the outer wall is fluid permeable.
  • a catalyst reactor basket 10 is shown.
  • the basket is generally cylindrical in shape and has a generally circular aperture 12 that extends axially through the basket.
  • a cover 14 is provided at the top end of the basket.
  • a cover is also provided at the bottom end the basket.
  • the cover includes an outer rim 16 and an inner rim 18.
  • the rims 16, 18 extend around the periphery of the covers and provide structural rigidity to the cover.
  • the rims can include relief cuts 16a and 18a in order to aid in forming the rims into circular rings.
  • the relief cuts can vary in size and shape.
  • a mesh 20 extends between the rims 16 and 18.
  • the mesh 20 is sized and shaped to provide holes that allow fluid to pass through the mesh during use of the catalyst basket while also preventing catalyst particles from passing through the mesh. As such, the catalyst particles are retained within the basket.
  • the mesh 20 can be attached the rims 16 and 18 by, for example, welding the mesh to the rims such as by spot welding. Other suitable attachments are possible.
  • the basket 10 includes a support frame 22.
  • the support frame 22 can be arranged in layers such that the basket 10 includes an upper support frame layer 24 and a lower support frame layer 26.
  • an intermediate support frame layer 25 (See Fig. 2) that is disposed between the upper and lower support frame layers can be included.
  • Each support frame layer includes an outer ring 28 and an inner ring 30.
  • the support frame 22 can include vertical supports 32 that can extend between the rings of the different layers of the support frame.
  • the support frame can also include radial supports 34 that extend between the outer and inner rings of a respective layer. As shown in Fig. IB, for example, four vertical supports 32 extend between the outer ring 28 of the upper layer and the outer ring of the intermediate layer.
  • each vertical supports 32 extend between the inner ring 30 of the upper layer and the inner ring of the intermediate layer.
  • the vertical supports that connect the inner rings and the outer rings of the upper and intermediate layers are preferably the same length such that the upper and intermediate layers are maintained in generally parallel planes.
  • vertical supports connect the outer and inner rings of the intermediate layer and the bottom layer.
  • radial supports 34 extend between the outer ring 28 and the inner ring 30 of the intermediate layer.
  • the arrangement shown in Fig. IB is structured such that radial supports are not required in the upper and lower layers, but they can optionally be included.
  • the support frame elements e.g., inner rings, outer rings, vertical supports and radial supports
  • the support frame elements can be connected using suitable fasteners and/or fastening methods, such as welding, for example.
  • the outer wall 36 of the basket 10 is supported by the outer rings 28 of each of the layers of the support frame.
  • the outer wall 36 of the basket extends cylindrically around the basket to define the outer circumferential periphery thereof. Accordingly, the outer wall defines the outer limit of the cylindrical volume of the catalyst basket.
  • the inner wall 38 of the basket is supported by the inner rings 28 of each of the layers of the support frame.
  • the inner wall 38 of the basket extends cylindrically to define the inner boundary of the cylindrical volume of the catalyst basket.
  • the inner wall 38 of the basket extends also defines the circumferential periphery of the aperture 12.
  • the outer wall 36 is preferably permeable such that liquids can flow through the outer wall so that fluid can be exchanged between the interior and exterior of the basket.
  • the inner wall 38 is preferably permeable such that liquids can flow through the inner wall so that fluid can be exchanged between the interior and exterior of the basket.
  • the outer and inner walls can be made from a mesh material, such as a woven steel mesh.
  • the outer, inner and dividing walls, or at least a portion thereof can alternatively be made from non-permeable steel plate to prevent liquid entering and exiting the basket.
  • the liquid flow is axial therefore no flow is expected to flow through the outer and inner walls and, therefore, surfaces, or at least portions thereof, that are parallel to the axial flow direction can be non- permeable.
  • the mesh can be steel wire cloth, woven, 14 x 14 mesh with a .020 inch wire diameter.
  • the wire mesh of the inner and outer walls can be secured to the support frame member using wire 39.
  • Other suitable attachment means and methods are also contemplated.
  • a dividing wall 40 can extend between the outer ring 28 and the inner ring 30 and can be secured to the intermediate layer 25. As can be seen in Figs. IB and 2, the dividing wall 40 divides the interior of the basket into first and second chambers 42 and 44, respectively.
  • the dividing wall 40 is fluid permeable so that fluid can flow through the dividing wall in an axial direction along the length (height) of the basket.
  • the dividing wall can be made of the same woven mesh as the inner and outer walls.
  • partitions 46 can extend radially between the inner and outer rings of the support frames. As shown in Fig. IB, four partitions 46 are provided in each of the upper and lower chambers, for example.
  • the partitions 46 define compartments 48 in the upper and lower chambers.
  • the compartments 48 can receive materials such as catalyst material.
  • the partitions 46 are preferably not fluid permeable so that effect of material in one compartment can be more readily isolated from the material in an adjacent compartment.
  • the partitions can be solid steel sheet material.
  • the partitions can define four compartments in each of the upper and lower chambers, respectively, for example. Partitions can be added or removed to increase or decrease the number of compartments. Accordingly, the partitions 46 and the dividing wall 40 define the interior of the basket such that the basket has an upper chamber with four compartments and a lower chamber with four compartments, as illustrated.
  • the partitions in the upper and lower chambers are aligned so that a compartment in the lower chamber is aligned with a corresponding compartment in the upper chamber and are sized and shaped to be coextensive, without overlap.
  • the partitions in the upper and lower chambers can be arranged such that a compartment in one chamber is sized, shaped, and positioned such that there is overlap between compartments along the axial direction.
  • each chamber includes multiple compartments allows for testing several different catalysts at the same time.
  • dividing the basket into an upper chamber and a lower chamber allows for two-stage reactions in a single pass of the fluid in the axial direction along the basket.
  • a first catalyst is provided in one compartment of one chamber.
  • a second catalyst is provided in a second, corresponding compartment in the other chamber (i.e., the second compartment is axially aligned with the first compartment) a second catalyst is provided.
  • fluid can pass through two layers of catalyst having differing properties.
  • the liquid can pass through the first compartment and come into contact with the catalyst contained therein.
  • the catalyst in the first compartment can be one that hydrotreats the fluid by removing sulfur and hydrogen from the fluid.
  • the second compartment can include a different catalyst that can be used for cracking or further hydrogenation of the liquid as it comes into contact with the catalyst contained in the compartment. Two-stage reactions can thus be achieved with the catalyst basket of the present invention.
  • the design is made to simulate a once-thru hydrocracking unit with two reactors in series of a single pass of the fluid through the basket.
  • adjacent compartments can contain different catalyst materials so that different catalyst combinations can be tested simultaneously using the same reactor basket.
  • the two layer, multi-compartment design of the catalyst basket allows different combinations of catalysts to be tested using the same basket.
  • two different compartments in the first layer can contain catalysts Al and A2.
  • two different compartments in the second layer can contain catalysts Bl and B2. Accordingly, as the fluid passes through the reactor basket, the fluid is exposed to different combinations of catalysts.
  • one fluid flow path through the basket can first expose the fluid to the catalyst Al contained in one compartment in the first layer of the basket. After the fluid is exposed to the catalyst Al, it passes into the second layer of the basket whereupon it is exposed to the second catalyst B l contained in a compartment in the second layer of the basket.
  • the fluid can progress through another flow path in which the fluid is exposed to catalyst A2 in another compartment in the first layer of the basket and then is exposed to catalyst B2 in another compartment in the second layer of the basket.
  • the fluid flowing through the reactor basket and be exposed to a combination of catalysts Al and Bl and, using the same catalyst basket in the same reactor, the fluid simultaneously can be exposed to the combination of catalysts A2 and B2. Accordingly, multiple combinations of catalysts can be tested in the same chamber using the same basket simultaneously.
  • the basket design allows for efficient and effective testing of many catalysts and combinations so that more suitable and effective catalysts can be identified and employed in future reactions.
  • the covers 14 can be removed from the top and bottom ends of the basket to allow for filling the compartments with catalyst material.
  • Clips can be provided on the sides of the basket for selectively attaching the covers to the ends of the basket. For example, the clips can be detached from a first cover and the cover can be removed to expose the compartments in the first chamber. Various catalyst materials can be added to the exposed compartments and the cover can be re-secured using the clips. Then the basket can be flipped so that the second cover at the other end of the basket can be removed to expose the compartment of the second chamber. Various catalyst materials can be added to the exposed compartments of the second chamber and the second cover can be re-secured using the clips. Accordingly, the two-layer, multi-compartment catalyst reactor basket can be loaded with catalyst.
  • Hooks 50 can optionally be connected to the frame of the basket.
  • the hooks can support the basket and couple the basket to the internals of the reactor.
  • the hooks can also be used to support the basket during loading and unloading of the catalyst at the end of the reactor cycle.
  • the catalysts are usually vacuumed at the end of the cycle. By hanging the basket, the basket will be untacked during the catalyst vacuuming.
  • Fig. 4 illustrates a catalyst basket having a single layer with four chambers.
  • the four chamber can contain catalyst that allows axial flow through in a similar manner as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
PCT/US2016/031987 2015-05-18 2016-05-12 Catalyst reactor basket Ceased WO2016186941A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177035926A KR20180008618A (ko) 2015-05-18 2016-05-12 촉매 반응기 바스켓
EP16730931.9A EP3297754B1 (en) 2015-05-18 2016-05-12 Catalyst reactor basket
CN201680028397.2A CN107635654B (zh) 2015-05-18 2016-05-12 催化剂反应器篮
SG11201708669WA SG11201708669WA (en) 2015-05-18 2016-05-12 Catalyst reactor basket
JP2017558696A JP6661875B2 (ja) 2015-05-18 2016-05-12 触媒反応器バスケット
EP19155981.4A EP3501634A1 (en) 2015-05-18 2016-05-12 Catalyst reactor basket
SA517390232A SA517390232B1 (ar) 2015-05-18 2017-10-25 سلة مفاعل حفزية

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/714,798 2015-05-18
US14/714,798 US9463427B1 (en) 2015-05-18 2015-05-18 Catalyst reactor basket

Publications (1)

Publication Number Publication Date
WO2016186941A1 true WO2016186941A1 (en) 2016-11-24

Family

ID=56148649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/031987 Ceased WO2016186941A1 (en) 2015-05-18 2016-05-12 Catalyst reactor basket

Country Status (8)

Country Link
US (2) US9463427B1 (enExample)
EP (2) EP3297754B1 (enExample)
JP (1) JP6661875B2 (enExample)
KR (1) KR20180008618A (enExample)
CN (1) CN107635654B (enExample)
SA (1) SA517390232B1 (enExample)
SG (1) SG11201708669WA (enExample)
WO (1) WO2016186941A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592453B1 (en) * 2017-03-06 2021-11-24 Spinchem AB Flow-promoting device, a reactor arrangement and the use of such flow-promoting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9463427B1 (en) * 2015-05-18 2016-10-11 Saudi Arabian Oil Company Catalyst reactor basket
USD847371S1 (en) * 2017-08-23 2019-04-30 Saudi Arabian Oil Company Tubular catalyst basket
FR3072305B1 (fr) * 2017-10-18 2022-05-06 Ifp Energies Now Panier amovible pour reacteur catalytique
CN109876747A (zh) * 2019-04-02 2019-06-14 吉林凯莱英医药化学有限公司 柱式连续反应器和柱式连续反应系统
US11071959B2 (en) 2019-11-18 2021-07-27 Saudi Arabian Oil Company Catalyst layering in commercial reactor baskets
US11571672B2 (en) 2019-11-25 2023-02-07 Saudi Arabian Oil Company Method of providing catalysts for a fluidized bed reactor
US11260356B2 (en) 2020-01-13 2022-03-01 Saudi Arabian Oil Company Catalyst testing process and apparatus
CN111569785B (zh) * 2020-03-25 2021-04-30 南京延长反应技术研究院有限公司 一种浸没式丙烯水合微界面强化反应系统及工艺
WO2021213747A1 (en) * 2020-04-20 2021-10-28 Haldor Topsøe A/S Reactor for a catalytic process
GB2637383A (en) * 2023-11-16 2025-07-23 Johnson Matthey Davy Technologies Ltd Improvements in or relating to catalyst carriers for tubular reactors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB705705A (en) * 1951-08-08 1954-03-17 Gottfried Bischoff G M B H Improvements in or relating to reaction vessels equipped with insertion baskets for containing solid material which participates in a reaction within the vessel, and to insertion baskets for such vessels
USD257281S (en) 1978-02-02 1980-10-07 Thermics Corporation Fossil fuel catalyst generator
EP0483975A1 (en) * 1990-10-03 1992-05-06 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
EP1300190A1 (en) * 2001-10-04 2003-04-09 Methanol Casale S.A. Heterogeneous catalytic reactor with modular catalytic cartridge

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US257281A (en) 1882-05-02 Adam boens
US2332224A (en) * 1941-02-25 1943-10-19 Blaw Knox Co Gas and liquid contact apparatus
US2419249A (en) 1945-12-26 1947-04-22 Gerald G Bridges Clothes drying rack
US2596781A (en) 1945-12-29 1952-05-13 Moore Co Fan
US2915127A (en) 1956-03-29 1959-12-01 Abendroth O'farrel Fluid controlled junk basket
DE2559661B2 (de) * 1975-10-01 1978-10-26 Deggendorfer Werft Und Eisenbau Gmbh, 8360 Deggendorf Reaktionsapparat
US4052142A (en) 1976-05-17 1977-10-04 John Zink Company Air velocity burner
US4225562A (en) * 1979-05-14 1980-09-30 Uop Inc. Multi-bed catalytic reactor
US4323343A (en) 1980-02-04 1982-04-06 John Zink Company Burner assembly for smokeless combustion of low calorific value gases
JPS5823635U (ja) * 1981-08-03 1983-02-15 三菱重工業株式会社 固気接触反応装置
USD278613S (en) 1982-12-10 1985-04-30 Einsel Kenneth D Planter
US4662669A (en) * 1985-09-30 1987-05-05 Amoco Corporation Spent catalyst container
JPS6451126A (en) * 1987-08-20 1989-02-27 Mitsubishi Heavy Ind Ltd High temperature catalyst device
JPH01107844A (ja) * 1987-10-21 1989-04-25 Toshiba Corp 改質装置
USD304230S (en) 1987-10-21 1989-10-24 Tim Wang Ceramic heating element
US4799878A (en) 1987-11-16 1989-01-24 Schaeffer Thomas W Rich fume incinerator
US4946478A (en) 1989-05-15 1990-08-07 Aaxon Industrial, Inc. Particulate collection and dewatering means for airborne particulate matter
JPH03106434A (ja) * 1989-09-20 1991-05-07 Toshiba Corp 燃料改質装置
JPH0685866B2 (ja) * 1991-01-25 1994-11-02 株式会社日立製作所 触媒反応装置
USD340942S (en) 1992-02-14 1993-11-02 Mobile Music, Inc. Radial musical instrument stand spacer
USD343230S (en) 1992-09-09 1994-01-11 Royal Sovereign Corp. Portable electric heater
USD346017S (en) 1992-09-09 1994-04-12 Royal Sovereign Corp. Portable electric heater
USD341417S (en) 1993-02-01 1993-11-16 Sun Star United Corporation Blow heater
EP0940172A1 (en) * 1998-02-25 1999-09-08 Ammonia Casale S.A. Process for effecting mass transfer between a liquid phase and a gaseous phase
KR100286572B1 (ko) * 1998-11-19 2001-04-16 남창우 금속박막을 이용한 연료전지 자동차용 소형연료개질기 및 그시스템
US7566487B2 (en) * 2004-07-07 2009-07-28 Jonathan Jay Feinstein Reactor with primary and secondary channels
US7497998B2 (en) * 2006-09-06 2009-03-03 Snc-Lavalin Inc. Gas converter
US20080152551A1 (en) * 2006-12-21 2008-06-26 Senetar John J Screenless moving bed reactor
US8409521B2 (en) * 2008-08-13 2013-04-02 Air Products And Chemicals, Inc. Tubular reactor with jet impingement heat transfer
US9463427B1 (en) * 2015-05-18 2016-10-11 Saudi Arabian Oil Company Catalyst reactor basket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB705705A (en) * 1951-08-08 1954-03-17 Gottfried Bischoff G M B H Improvements in or relating to reaction vessels equipped with insertion baskets for containing solid material which participates in a reaction within the vessel, and to insertion baskets for such vessels
USD257281S (en) 1978-02-02 1980-10-07 Thermics Corporation Fossil fuel catalyst generator
EP0483975A1 (en) * 1990-10-03 1992-05-06 Nagaoka International Corporation Device and method for holding catalyst in a radial flow reactor
EP1300190A1 (en) * 2001-10-04 2003-04-09 Methanol Casale S.A. Heterogeneous catalytic reactor with modular catalytic cartridge
US20040018124A1 (en) 2001-10-04 2004-01-29 Ermanno Filippi Heterogeneous catalytic reactor with a modular catalytic cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592453B1 (en) * 2017-03-06 2021-11-24 Spinchem AB Flow-promoting device, a reactor arrangement and the use of such flow-promoting device
US11192076B2 (en) 2017-03-06 2021-12-07 Spinchem Ab Flow-promoting device, a reactor arrangement and the use of such flow-promoting device

Also Published As

Publication number Publication date
JP2018516745A (ja) 2018-06-28
CN107635654A (zh) 2018-01-26
EP3297754B1 (en) 2019-03-13
SA517390232B1 (ar) 2021-04-11
US9463427B1 (en) 2016-10-11
SG11201708669WA (en) 2017-12-28
US9802173B2 (en) 2017-10-31
EP3297754A1 (en) 2018-03-28
US20170021320A1 (en) 2017-01-26
EP3501634A1 (en) 2019-06-26
CN107635654B (zh) 2020-08-25
KR20180008618A (ko) 2018-01-24
JP6661875B2 (ja) 2020-03-11

Similar Documents

Publication Publication Date Title
US9463427B1 (en) Catalyst reactor basket
EP0458472B1 (en) Catalytic distillation structure
JP2018516745A5 (enExample)
US9486767B2 (en) Multi-tube radial bed reactor
JP6895461B2 (ja) フローティングトレイを含む触媒化学反応器
KR20200028848A (ko) 가요성 스크린을 포함하는 방사형 유동 흡수 용기
US8960652B2 (en) Column internal support structure
US20140047806A1 (en) Filter module and filter system comprising same
US10926212B2 (en) Radial flow adsorber vessel for gas separation
FI69253C (fi) Filter foer avskiljning av fasta foeroreningar i en vaetska spciellt faesta foeroreningar i reaktorkylvatten i kaernkra fttationer
JP2019051504A (ja) 改善された内部構造を含む、処理されるべきプロセス流の半径流を有する固定床または移動床反応器
CN106132527A (zh) 用于催化过程的反应器
US3219191A (en) Dry cleaning liquid conditioning cartridge
US11071959B2 (en) Catalyst layering in commercial reactor baskets
EP3860751A1 (en) Apparatus and method of converting hydrocarbons
US20050077224A1 (en) Cartridges
RU169758U1 (ru) Реактор радиального типа для каталитического дегидрирования углеводородов
SU446138A1 (ru) Фильтр дл очистки газов
CA3085754A1 (en) Scale collection device for downflow reactors
RU2019128967A (ru) Фильтр зернистый с адсорбентом непрерывного действия
US20160136605A1 (en) Collector pipe for a radial-bed reactor
CN111542382A (zh) 用于下流式反应器的污垢收集装置
CA3085788A1 (en) Scale collection device for downflow reactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16730931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201708669W

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017558696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177035926

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016730931

Country of ref document: EP