WO2016186046A1 - Substrate destaticizing mechanism and vacuum treatment apparatus using same - Google Patents

Substrate destaticizing mechanism and vacuum treatment apparatus using same Download PDF

Info

Publication number
WO2016186046A1
WO2016186046A1 PCT/JP2016/064361 JP2016064361W WO2016186046A1 WO 2016186046 A1 WO2016186046 A1 WO 2016186046A1 JP 2016064361 W JP2016064361 W JP 2016064361W WO 2016186046 A1 WO2016186046 A1 WO 2016186046A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
substrate
film
processing
static elimination
Prior art date
Application number
PCT/JP2016/064361
Other languages
French (fr)
Japanese (ja)
Inventor
貴啓 廣野
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2017519188A priority Critical patent/JP6526186B2/en
Priority to KR1020177032992A priority patent/KR102062442B1/en
Priority to CN201680028123.3A priority patent/CN107532291B/en
Publication of WO2016186046A1 publication Critical patent/WO2016186046A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Definitions

  • the present invention relates to a technique for discharging a substrate in a vacuum, and more particularly, to a technique for discharging a film-like processing substrate.
  • a guide section having a circular cross section having a larger outer diameter than the roller main body is provided on a roller main body of a guide roller having a circular cross section so that both edges of the film are placed.
  • Two guide portions having a circular cross section having a larger outer diameter than the roller body are provided on the roller body of the auxiliary roller having a rotation axis parallel to the rotation axis of the guide roller.
  • the static elimination unit when transporting and forming a film using such a traveling mechanism, the static elimination is performed by plasma generated uniformly in the width direction of the film, so that the charge amount is large. If the charge cannot be sufficiently removed from the portion, and if it is attempted to remove electricity sufficiently from the portion with a large amount of charge by strengthening the plasma due to discharge, the film formation area on the film may be affected. There is a problem that the amount of power consumption and power consumption increases, and further, if the number of static elimination units is increased, the device configuration becomes complicated and large.
  • the present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to affect the processing area in an apparatus for performing a film forming process on a film-like substrate in a vacuum. It is an object of the present invention to provide a technique capable of efficiently performing static elimination with a simple configuration without giving.
  • the present invention made in order to solve the above-mentioned problems is a substrate neutralization mechanism for performing neutralization by magnetron discharge on a processing substrate transported in a vacuum, a discharge container into which a discharge gas is introduced, and the discharge A linear discharge electrode to which a predetermined voltage is applied and a magnet disposed in the vicinity of the discharge electrode, the magnet being disposed in the vicinity of the discharge electrode.
  • the magnet is disposed so as to generate a discharge according to the distribution of the charge amount.
  • the present invention is also effective when the magnet is arranged so as to partially generate a discharge in the longitudinal direction of the discharge electrode.
  • the present invention is also effective when the magnet is arranged so as to generate discharge at portions corresponding to both edges of the processing substrate of the discharge electrode.
  • the present invention is also effective when a plurality of magnets having different lengths in the longitudinal direction are arranged so as to generate a strong plasma portion due to discharge and a weak plasma portion due to discharge in the longitudinal direction of the discharge electrode. Is.
  • the present invention is also effective when the processing substrate is a film.
  • the present invention includes a vacuum chamber, a processing source disposed in the vacuum chamber, and a processing substrate that is transported through the predetermined transport path in the vacuum chamber and processed by the processing source. In the vacuum processing apparatus, any one of the above-described substrate static elimination mechanisms is disposed in the vicinity of the transfer path.
  • a guide travel mechanism that guides and travels in a state where the processing substrate is sandwiched is provided, and discharge is generated in a portion of the discharge electrode corresponding to a portion where the processing substrate is sandwiched by the guide travel mechanism.
  • the magnet is arranged.
  • the present invention is also effective when the processing source is a film forming source.
  • the present invention is also effective when the magnet is disposed so as to generate a discharge in a portion corresponding to a non-film formation region of the processing substrate.
  • the substrate static elimination mechanism of the present invention has a linear discharge electrode that is arranged so as to intersect the substrate transport direction in the discharge container, and is charged on, for example, a film-shaped processing substrate. Since magnets are arranged so as to generate magnetron discharge according to the distribution of the amount, for example, the film is deposited on the processing substrate in a vacuum by strengthening the discharge to a portion with a large charge amount of the processing substrate. In the apparatus that performs the above process, it is possible to perform the charge removal efficiently without affecting the processing region. In addition, according to the present invention, it is not necessary to increase the intensity of plasma due to discharge more than necessary, so that the power applied to the discharge electrode can be suppressed, thereby reducing the consumption amount and power consumption of the discharge electrode. Can do.
  • the magnet when the magnet is disposed so as to cause partial discharge in the longitudinal direction of the discharge electrode (for example, portions corresponding to both edges of the discharge electrode processing substrate), the charge amount of the processing substrate Since the discharge can be generated only for the large portion, it is possible to simplify and improve the efficiency of the static elimination mechanism.
  • a plurality of magnets having different lengths in the longitudinal direction are arranged so as to generate a strong portion of plasma due to discharge and a weak portion of plasma due to discharge with respect to the longitudinal direction of the discharge electrode, As a result, it is possible to reliably remove electricity from a portion having a large charge amount, so that it is possible to optimize the electricity removal for the processing substrate.
  • a vacuum chamber a processing source (for example, a film forming source) disposed in the vacuum chamber, and a film that is transported through the predetermined transport path in the vacuum chamber and processed by the processing source.
  • a processing source for example, a film forming source
  • a film that is transported through the predetermined transport path in the vacuum chamber and processed by the processing source According to the vacuum processing apparatus in which any one of the above-described substrate static elimination mechanisms is disposed in the vicinity of the transfer path, for example, it is efficient with a simple configuration without affecting the film formation region. It is possible to provide a film formation apparatus that can perform static elimination.
  • a magnet has a guide travel mechanism that guides and travels with the processing substrate sandwiched, and generates a discharge in a portion of the discharge electrode of the static elimination mechanism that corresponds to the portion of the processing substrate that is sandwiched by the guide travel mechanism. Is disposed, for example, in a film forming apparatus that can be stably transported without damaging the thin film formed on the film-like processing substrate
  • FIG. 3A shows an example of a conventional static elimination mechanism
  • FIG. 3A is a front view showing the internal configuration
  • FIG. 3B is a side view showing the internal configuration
  • FIG. 4A shows an example of the static elimination mechanism of the present embodiment
  • FIG. 4A is a front view showing the internal configuration
  • FIG. 4B is a side view showing the internal configuration.
  • FIG. 6A shows another example of the static elimination mechanism of the present embodiment
  • FIG. 6A is a front view showing the internal configuration
  • FIG. 6B is a side view showing the internal configuration.
  • (A) (b): Schematic diagram showing the action of the static elimination mechanism of this example
  • FIG. 8A shows a main part of another example of the static elimination mechanism of the present embodiment.
  • FIG. 8A is a schematic configuration diagram showing the internal configuration of the film forming film and the electrode unit of the static elimination mechanism
  • FIG. I is a schematic diagram showing the operation of the static elimination mechanism of this example
  • FIG. 1 is a schematic configuration diagram showing an example of a winding film forming apparatus according to an embodiment of the present invention.
  • the vertical relationship between members will be described by taking the case shown in FIG. 1 as an example.
  • a winding film forming apparatus (vacuum processing apparatus) 1 includes a vacuum chamber 2, and a feeding / winding chamber provided in the upper portion of the vacuum chamber 2. 2A and a film forming chamber 2B provided in the lower part of the vacuum chamber 2. The feeding / winding chamber 2A and the film forming chamber 2B are each connected to a vacuum exhaust system (not shown).
  • a roller 6 is provided.
  • Guide rollers 11 and 12 and a cooling roller 13 are provided on the downstream side in the film conveying direction of the film forming film roll 3 in the feeding / winding chamber 2A.
  • the cooling roller 13 is provided so as to straddle the feeding / winding chamber 2A and the film forming chamber 2B, and the evaporation source disposed in the film forming chamber 2B in a state where the film 10 for film formation is stretched over. (Film forming source) 20 is arranged so as to face.
  • a guide travel mechanism 4 described later is provided in the vicinity of the cooling roller 13 in the feeding / winding chamber 2A, and a static elimination mechanism (substrate neutralization mechanism) 5 is provided downstream of the guide travel mechanism 4 in the film transport direction. Is provided. Further, a guide roller 14 is provided between the neutralization mechanism 5 and the winding roller 6 on the downstream side in the film conveyance direction.
  • the film forming film 10 fed out from the film forming film roll 3 in the feeding / winding chamber 2A is passed over the cooling roller 13 via the guide rollers 11 and 12 described above, and is formed.
  • the film is taken up by the take-up roller 6 through the guide travel mechanism 4, the charge removal mechanism 5, and the guide roller 14 in the feeding / winding chamber 2A. It has become.
  • FIGS. 2A and 2B are partial cross-sectional views showing examples of the guide travel mechanism in the present embodiment.
  • the guide travel mechanism 4 (4A) shown in FIG. 2A is composed of a guide roller 40A and a pressing roller 41.
  • the guide roller 40A has a roller main body 42 having a circular cross section, and the guide body 43 made of, for example, silicone rubber and having a circular outer cross section having a larger outer diameter than the roller main body 42 is provided on the roller main body 42.
  • the film forming film 10 is provided with a predetermined interval so that both edge portions, which are non-film forming regions other than the film forming region, are placed.
  • the pressing roller 41 has two circular guide sections 45 having a circular outer section and a larger outer diameter than the roller main body 44, and the guide roller 45 having a circular section and a rotation axis parallel to the rotation axis of the guide roller 40 ⁇ / b> A. It is provided with an interval equivalent to the guide portion 43 of 40A.
  • the film forming film 10 is pressed against the film forming film 10 inserted between the guide roller 40A and the pressing roller 41 by a pressing means (not shown) toward the guide roller 40A.
  • the vehicle is configured to guide and run in a state where ten edge portions, that is, non-deposition regions are sandwiched.
  • the guide travel mechanism 4 (4B) shown in FIG. 2B is composed of a guide roller 40B and a plurality of pressing mechanisms 46.
  • the guide roller 40B has substantially the same configuration as the guide roller 40A shown in FIG. 2A.
  • the guide body 40B has three guide portions 43 having a circular cross section having a larger outer diameter than the roller body 42. Are provided at predetermined intervals so that the central portion and both edge portions which are non-deposition regions other than the deposition region of the film for film formation 10 are placed.
  • a pressing roller 48 that is rotatable about a rotation support shaft 47 parallel to the rotation axis of the guide roller 40B described above is attached to the main body 49, and in this example, the guide roller 40B.
  • the three pressing mechanisms 46 are provided at the same interval as the guide portion 43.
  • the film forming film 10 is pressed against the film 10 for film formation inserted between the guide roller 40B and the pressing mechanism 46 by the pressing means (not shown) toward the guide roller 40B. It is configured so as to guide it across both the edge portions and the central portion, that is, the non-deposition region. According to the guide travel mechanisms 4A and 4B having the above configuration, the film forming film 10 can be stably guided and traveled in a state where the film formation region is protected.
  • FIG. 3 (a) and 3 (b) show an example of a conventional static elimination mechanism.
  • FIG. 3 (a) is a front view showing the internal configuration
  • FIG. 3 (b) is a side view showing the internal configuration. It is.
  • This static elimination mechanism 105 is a pair type, and two identical electrode units 150 are provided in a metal housing 151 into which a discharge gas 130 is introduced.
  • the two electrode units 150 are provided on both sides of the film for film formation 110, and are introduced in the form of straight bars arranged so as to be parallel to the film transport path and orthogonal to the film transport direction.
  • the electrode 152 and the linear cylindrical discharge electrode 153 provided concentrically with the introduction electrode 152 are provided.
  • each electrode unit 150 is disposed in a state where it is electrically connected to the discharge electrode 153 in the discharge electrode 153 into which a cooling medium such as water is introduced, and a plurality of, for example, permanent magnets are disposed around the introduction electrode 152 A cylindrical magnet 154 is provided.
  • the plurality of magnets 154 are provided across the entire region in the width direction of the film for film formation 110 so as to be separated from the shielding plate 155, and are configured such that the polarities of the adjacent magnets 154 are reversed.
  • a predetermined voltage is applied to the introduction electrode 152 of each electrode unit 150 with the grounded housing 151 from the DC power source 156 so that the introduction electrode 152 side becomes a negative electrode.
  • FIG. 4 (a) and 4 (b) show examples of the static elimination mechanism of the present embodiment
  • FIG. 4 (a) is a front view showing the internal configuration
  • FIG. 4 (b) is the internal configuration.
  • FIG. This static elimination mechanism (substrate static elimination mechanism) 5A is a pair type similar to the above-described conventional example, and for example, two identical ones in a metal housing (discharge vessel) 51 into which a discharge gas 30 such as argon is introduced.
  • An electrode unit 50A having a configuration is provided.
  • the two electrode units 50A are provided on both sides of the film 10 for film formation, and are introduced in the form of straight bars arranged so as to be parallel to the film transport path and orthogonal to the film transport direction.
  • the electrode 52 and the linear cylindrical discharge electrode 53 provided concentrically with the introduction electrode 52 are provided.
  • each electrode unit 50A is arranged in a state where it is electrically connected to the discharge electrode 53 in the discharge electrode 53 into which a cooling medium such as water is introduced.
  • a cylindrical magnet 54A is provided.
  • a plurality (two in this embodiment) of magnets 54 ⁇ / b> A are arranged so as to cause partial discharge in the longitudinal direction of the discharge electrode 53.
  • the magnet 54A either an integral type or a plurality of small pieces can be used. Further, as the two magnets 54A, either one in which the same magnetic circuit is formed or one in which different magnetic circuits are formed can be used.
  • These two magnets 54A are provided at an interval equivalent to the guide portion 43 of the guide travel mechanism 4A shown in FIG. 2A, that is, at an interval equivalent to the width of the film 10 for film formation.
  • the polarity is reversed.
  • a predetermined voltage is applied to the introduction electrode 52 of each electrode unit 50 ⁇ / b> A by the DC power source 56 so that the introduction electrode 52 side becomes a negative electrode with the grounded housing 51.
  • FIGS. 5A and 5B are schematic views showing the operation of the static elimination mechanism of this example.
  • the two magnets 54A are provided at an interval equivalent to the guide portion 43 of the guide travel mechanism 4A, that is, an interval equivalent to the width of the film 10 for film formation. ing.
  • the plasma 15 is generated only in the vicinity of the two magnets 54A as shown in FIG. Only the non-deposition regions at both edges of the film for film 10 are exposed to the plasma 15 and the charge removal is performed.
  • FIG. 6 (a) and 6 (b) show other examples of the static elimination mechanism of the present embodiment.
  • FIG. 6 (a) is a front view showing its internal configuration
  • FIG. 6 (b) is its internal view. It is a side view which shows a structure.
  • the same reference numerals are given to portions corresponding to the above example, and detailed description thereof will be omitted.
  • the static elimination mechanism (substrate static elimination mechanism) 5 ⁇ / b> B of this example is provided with two electrode units 50 ⁇ / b> B having the same configuration in a housing 51.
  • the static elimination mechanism 5B has the same basic configuration as the static elimination mechanism 5A described above, and is different from the static elimination mechanism 5A in the number and arrangement position of the magnets 54B.
  • each electrode unit 50B has the introduction electrode 52 disposed in the discharge electrode 53 described above, Are provided with three cylindrical magnets 54B made of, for example, permanent magnets.
  • the magnet 54B either an integral type or a plurality of small pieces can be used. Further, as the three magnets 54B, either one in which the same magnetic circuit is formed or one in which different magnetic circuits are formed can be used.
  • These three magnets 54B are provided at portions corresponding to the central portion and both edge portions of the film 10 for film formation at intervals equivalent to the adjacent guide portions 43 of the guide travel mechanism 4B shown in FIG. The polarity of the adjacent magnet 54B is reversed.
  • a predetermined voltage is applied to the introduction electrode 52 of each electrode unit 50B from the DC power source 56 so that the introduction electrode 52 side becomes a negative electrode with respect to the grounded housing 51.
  • FIGS. 7A and 7B are schematic views showing the operation of the static elimination mechanism of this example.
  • the three magnets 54B are provided at the same interval as the adjacent guide portions 43 of the guide travel mechanism 4B.
  • the plasma 15 is generated only in the vicinity of the three magnets 54B.
  • the central portion and both edge portions of the film for film 10 are formed. Only the non-film-forming region is exposed to the plasma 15 and the charge removal is performed.
  • the static elimination mechanisms 5A and 5B of the present embodiment it is possible to eliminate static electricity only in the non-deposition region of the film 10 for film formation, so that the neutralization can be performed efficiently without affecting the deposition region.
  • the static elimination mechanisms 5A and 5B having a simple configuration as compared with the prior art shown in FIGS. 3 (a) and 3 (b).
  • the present embodiment since it is not necessary to increase the intensity of plasma due to the discharge more than necessary, it is possible to suppress the power applied to the introduction electrode 52, and thereby the consumption of the introduction electrode 52 and the discharge electrode 53. The amount and power consumption can be reduced.
  • FIGS. 8A and 8B show the main part of another example of the static elimination mechanism of the present embodiment.
  • FIG. 8A shows the internal configuration of the film forming film and the electrode unit of the static elimination mechanism.
  • FIG. 8B is a schematic diagram illustrating the operation of the static elimination mechanism of the present example.
  • the same reference numerals are given to portions corresponding to the above example, and detailed description thereof will be omitted.
  • film formation may be performed on the film for film formation 10 through a mask 10a (see FIG. 8A).
  • a region between adjacent masks 10a on the film 10 for film formation becomes a film formation region, and a region on the mask 10a becomes a non-film formation region.
  • the charge amount of the portion of the mask 10a that is a non-deposition region may be larger than the charge amount of the deposition region.
  • static elimination is performed using the following electrode unit 50C. Yes.
  • the electrode unit 50 ⁇ / b> C of this example is provided with a plurality of magnets 54 ⁇ / b> C and 54 c across the entire area in the width direction of the film for film 10 with a shielding plate 55 interposed therebetween.
  • a plurality of magnets 54C and 54c having different lengths with respect to the longitudinal direction of the introduction electrode 52 (discharge electrode 53) are arranged.
  • a magnet 54C having a long length is disposed in a portion corresponding to the mask 10a of the film 10 for film formation of the introduction electrode 52, and a portion corresponding to the film formation region of the film 10 for film formation of the introduction electrode 52.
  • a magnet 54c having a shorter length than the magnet 54C is disposed.
  • the adjacent magnets 54C and 54c are configured so that the polarities are reversed.
  • the magnets 54C and 54c either an integral type or a plurality of small pieces can be used.
  • the strength of the plasma 16 caused by the discharge in the portion where the long magnet 54C is disposed is short. It becomes stronger than the strength of the plasma 17 due to the discharge of the portion where the magnet 54c is disposed.
  • the present invention is not limited to the above-described embodiment, and various changes can be made.
  • the pair-type substrate neutralization mechanism has been described as an example.
  • the present invention is not limited to this, and may be applied to a single-type substrate neutralization mechanism or a two-pair type substrate neutralization mechanism. it can.
  • an electromagnet can also be used other than a permanent magnet.
  • the present invention can be applied not only to an apparatus for forming a film by vapor deposition but also to various vacuum processing apparatuses such as a sputtering apparatus and an etching apparatus.
  • a series of long films have been described as examples of the processing substrate.
  • the present invention is not limited to this, and a cut film, for example, may be used as long as the substrate can be transported in a vacuum. It can also be applied to those made of flat glass.
  • magnets having different lengths are used in order to vary the plasma strength caused by the discharge.
  • a magnet made of neodymium or the like having a strong magnetic force is used. It is also possible to vary the intensity of the plasma.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
  • Advancing Webs (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

Provided is a technique which is used for, for example, devices for forming a film on a film-like substrate in vacuum and allows efficient destaticization using a simple structure without affecting a treated region. The present invention also provides a substrate destaticizing mechanism which destaticizes, by magnetron discharge, a film formation film 10 being transported in vacuum. According to the present invention, the substrate destaticizing mechanism comprises: a housing 51 to which a discharge gas is introduced; linear discharge electrodes 53 which are disposed perpendicular to the direction of transportation of the substrate in the housing 51 and to which a predetermined voltage is applied; and magnets 54A disposed near the discharge electrodes 53. The magnets 54A are disposed so as to cause an electrical discharge according to the distribution of the charge amount in the film formation film 10.

Description

基板除電機構及びこれを用いた真空処理装置Substrate neutralization mechanism and vacuum processing apparatus using the same
 本発明は、真空中で基板を除電する技術に関し、特に、フィルム状の処理基板を除電する技術に関する。 The present invention relates to a technique for discharging a substrate in a vacuum, and more particularly, to a technique for discharging a film-like processing substrate.
 従来より、繰出しローラから連続的に繰り出した長尺のフィルム状の基板を冷却用キャンローラに巻き付けながら、当該キャンローラに対向配置される蒸発源からの蒸発物質を原料フィルム上に蒸着させ、蒸着後の原料フィルムを巻取ローラで巻き取る巻取式真空蒸着装置が知られている(例えば特許文献1参照)。 Conventionally, while winding a long film-like substrate continuously fed from a feeding roller around a cooling can roller, an evaporation substance from an evaporation source disposed opposite to the can roller is vapor-deposited on the raw film, and vapor deposition is performed. 2. Description of the Related Art A winding-type vacuum vapor deposition apparatus that winds a subsequent raw material film with a winding roller is known (see, for example, Patent Document 1).
 このような巻取式真空蒸着装置においては、フィルムに残存する電荷の影響で、巻取ローラにおけるフィルムの巻取り時に、フィルムに皺が発生し、適正に巻き取れなくなるという問題が生じていた。 In such a winding type vacuum vapor deposition apparatus, there is a problem that wrinkles are generated on the film when the film is wound on the winding roller due to the influence of the electric charge remaining on the film, and the film cannot be properly wound.
 そこで、この問題を解消するため、成膜後のフィルムをプラズマ処理によって除電する除電ユニットを設置し、フィルムの巻取り前にフィルムに帯電した電荷をこの除電ユニットによって除去する方法が提案されている(特許文献2参照)。 Therefore, in order to solve this problem, a method has been proposed in which a static elimination unit that neutralizes the film after film formation by plasma treatment is installed, and the electric charge charged on the film is removed by this static elimination unit before winding the film. (See Patent Document 2).
 その一方で、このような従来技術においては、フィルム上に薄膜を形成した後、複数のローラを介して巻取ローラまで搬送して巻き取るため、フィルムの成膜面がローラに接触して薄膜にダメージを与えるおそれがあるという問題がある。 On the other hand, in such a conventional technique, after a thin film is formed on the film, it is conveyed to a take-up roller through a plurality of rollers and wound up. There is a problem that there is a risk of damage.
 このため、従来、フィルムの走行機構として、断面円形形状のガイドローラのローラ本体に、ローラ本体より外径の大きい断面円形形状のガイド部を、フィルムの両縁部が載置されるように所定の間隔をおいて二つ設けるとともに、このガイドローラの回転軸と平行な回転軸を有する補助ローラのローラ本体に、ローラ本体より外径の大きい断面円形形状の二つのガイド部を、ガイドローラのガイド部と同程度の間隔をおいて設け、フィルムの両端部を、ガイドローラのガイド部と、補助ローラのガイド部によって挟んで搬送することにより、フィルム上に形成された薄膜に対してダメージを与えることなく、安定して搬送するようにしたものが提案されている(特許文献3参照)。 For this reason, conventionally, as a film running mechanism, a guide section having a circular cross section having a larger outer diameter than the roller main body is provided on a roller main body of a guide roller having a circular cross section so that both edges of the film are placed. Two guide portions having a circular cross section having a larger outer diameter than the roller body are provided on the roller body of the auxiliary roller having a rotation axis parallel to the rotation axis of the guide roller. Provided at the same interval as the guide part, and transported with both ends of the film sandwiched between the guide part of the guide roller and the guide part of the auxiliary roller, and damage to the thin film formed on the film There has been proposed one that is stably conveyed without giving (see Patent Document 3).
 しかし、このような走行機構を用いてフィルムを搬送する場合、ガイドローラと補助ローラによって挟まれたフィルムの両端部において静電気による帯電量が中央部分より大きくなるという問題がある。 However, when a film is transported using such a traveling mechanism, there is a problem that the charge amount due to static electricity is larger than the central portion at both ends of the film sandwiched between the guide roller and the auxiliary roller.
 このため、このような走行機構を用いてフィルムを搬送・成膜する場合に上述した除電ユニットを用いると、フィルムの幅方向に均一に発生させたプラズマによって除電を行うことから、帯電量の大きい部分を十分に除電することができず、他方、放電によるプラズマを強くして帯電量の大きい部分を十分に除電しようとすると、フィルム上の成膜領域に影響を与えるおそれがあるとともに、放電電極の消耗量や消費電力が大きくなり、更には除電ユニットを増やすと装置構成が複雑・大型化するという課題がある。 For this reason, when the above-described static elimination unit is used when transporting and forming a film using such a traveling mechanism, the static elimination is performed by plasma generated uniformly in the width direction of the film, so that the charge amount is large. If the charge cannot be sufficiently removed from the portion, and if it is attempted to remove electricity sufficiently from the portion with a large amount of charge by strengthening the plasma due to discharge, the film formation area on the film may be affected. There is a problem that the amount of power consumption and power consumption increases, and further, if the number of static elimination units is increased, the device configuration becomes complicated and large.
特許第3795518号公報Japanese Patent No. 3795518 WO2006/088024号パンフレットWO2006 / 088084 pamphlet 特許第5024972号公報Japanese Patent No. 5024972
 本発明は、上記従来技術の課題を解決するためになされたもので、その目的とするところは、真空中でフィルム状の基板等に成膜等の処理を行う装置において、処理領域に影響を与えることなく、簡素な構成で効率良く除電を行うことができる技術を提供することにある。 The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to affect the processing area in an apparatus for performing a film forming process on a film-like substrate in a vacuum. It is an object of the present invention to provide a technique capable of efficiently performing static elimination with a simple configuration without giving.
 上記課題を解決するためになされた本発明は、真空中で搬送される処理基板に対してマグネトロン放電によって除電を行う基板除電機構であって、放電ガスが導入される放電用容器と、前記放電用容器内において基板搬送方向に対して交差するように配置され、所定の電圧が印加される直線状の放電電極と、前記放電電極の近傍に配置される磁石とを有し、前記処理基板における帯電量の分布に応じて放電を発生させるように前記磁石が配置されているものである。
 本発明では、前記放電電極の長手方向に関して部分的に放電を発生させるように前記磁石が配置されている場合にも効果的である。
 本発明では、前記放電電極の前記処理基板の両縁部に対応する部分に放電を発生させるように前記磁石が配置されている場合にも効果的である。
 本発明では、前記放電電極の長手方向に関して放電によるプラズマの強い部分と放電によるプラズマの弱い部分を生成するように当該長手方向の長さが異なる複数の前記磁石が配置されている場合にも効果的である。
 本発明では、前記処理基板がフィルム状のものである場合にも効果的である。
 一方、本発明は、真空槽と、前記真空槽内に配置された処理源と、前記真空槽内において所定の搬送経路を経由して搬送され、前記処理源によって処理される処理基板とを有し、上述したいずれかの基板除電機構が前記搬送経路の近傍に配置されている真空処理装置である。
 本発明では、前記処理基板を挟んだ状態で案内して走行させる案内走行機構を有し、前記放電電極における、前記案内走行機構によって前記処理基板の挟まれる部分に対応する部分において放電を発生させるように前記磁石が配置されている場合にも効果的である。
 本発明では、前記処理源が成膜源である場合にも効果的である。
 本発明では、前記処理基板の非成膜領域に対応する部分に放電を発生させるように前記磁石が配置されている場合にも効果的である。
The present invention made in order to solve the above-mentioned problems is a substrate neutralization mechanism for performing neutralization by magnetron discharge on a processing substrate transported in a vacuum, a discharge container into which a discharge gas is introduced, and the discharge A linear discharge electrode to which a predetermined voltage is applied and a magnet disposed in the vicinity of the discharge electrode, the magnet being disposed in the vicinity of the discharge electrode. The magnet is disposed so as to generate a discharge according to the distribution of the charge amount.
The present invention is also effective when the magnet is arranged so as to partially generate a discharge in the longitudinal direction of the discharge electrode.
The present invention is also effective when the magnet is arranged so as to generate discharge at portions corresponding to both edges of the processing substrate of the discharge electrode.
The present invention is also effective when a plurality of magnets having different lengths in the longitudinal direction are arranged so as to generate a strong plasma portion due to discharge and a weak plasma portion due to discharge in the longitudinal direction of the discharge electrode. Is.
The present invention is also effective when the processing substrate is a film.
On the other hand, the present invention includes a vacuum chamber, a processing source disposed in the vacuum chamber, and a processing substrate that is transported through the predetermined transport path in the vacuum chamber and processed by the processing source. In the vacuum processing apparatus, any one of the above-described substrate static elimination mechanisms is disposed in the vicinity of the transfer path.
In the present invention, a guide travel mechanism that guides and travels in a state where the processing substrate is sandwiched is provided, and discharge is generated in a portion of the discharge electrode corresponding to a portion where the processing substrate is sandwiched by the guide travel mechanism. Thus, it is also effective when the magnet is arranged.
The present invention is also effective when the processing source is a film forming source.
The present invention is also effective when the magnet is disposed so as to generate a discharge in a portion corresponding to a non-film formation region of the processing substrate.
 本発明の基板除電機構では、放電用容器内において基板搬送方向に対して交差するように配置され、所定の電圧が印加される直線状の放電電極を有し、例えばフィルム状の処理基板における帯電量の分布に応じてマグネトロン放電を発生させるように磁石が配置されていることから、例えば処理基板の帯電量の大きい部分に対して放電を強くすることにより、真空中で処理基板に成膜等の処理を行う装置において、処理領域に影響を与えることなく、効率良く除電を行うことができる。
 また、本発明によれば、放電によるプラズマの強さを必要以上に大きくする必要はないため、放電電極に対する印加電力を抑えることができ、これにより放電電極の消耗量や消費電力を少なくすることができる。
 本発明において、放電電極の長手方向に関して部分的(例えば放電電極の処理基板の両縁部に対応する部分)に放電を発生させるように磁石が配置されている場合には、処理基板の帯電量の大きい部分のみに対して放電を発生させることができるので、除電機構の簡素化と効率化を図ることができる。
 本発明において、放電電極の長手方向に関して放電によるプラズマの強い部分と放電によるプラズマの弱い部分を生成するように当該長手方向の長さが異なる複数の磁石が配置されている場合には、処理基板を全体的に除電しつつ、帯電量の大きい部分に対して確実に除電を行うことができるので、当該処理基板に対する除電の最適化を図ることができる。
 本発明において、真空槽と、この真空槽内に配置された処理源(例えば成膜源)と、真空槽内において所定の搬送経路を経由して搬送され、当該処理源によって処理されるフィルム状の処理基板とを有し、上述したいずれかの基板除電機構が搬送経路の近傍に配置されている真空処理装置によれば、例えば成膜領域に影響を与えることなく、簡素な構成で効率良く除電を行うことができる成膜装置を提供することができる。
 特に、処理基板を挟んだ状態で案内して走行させる案内走行機構を有し、除電機構の放電電極における、案内走行機構によって処理基板の挟まれる部分に対応する部分において放電を発生させるように磁石が配置されている場合には、例えばフィルム状の処理基板上に形成された薄膜に対してダメージを与えることなく、安定して搬送可能な成膜装置において、当該処理基板の帯電を効果的に除去することができる。
The substrate static elimination mechanism of the present invention has a linear discharge electrode that is arranged so as to intersect the substrate transport direction in the discharge container, and is charged on, for example, a film-shaped processing substrate. Since magnets are arranged so as to generate magnetron discharge according to the distribution of the amount, for example, the film is deposited on the processing substrate in a vacuum by strengthening the discharge to a portion with a large charge amount of the processing substrate. In the apparatus that performs the above process, it is possible to perform the charge removal efficiently without affecting the processing region.
In addition, according to the present invention, it is not necessary to increase the intensity of plasma due to discharge more than necessary, so that the power applied to the discharge electrode can be suppressed, thereby reducing the consumption amount and power consumption of the discharge electrode. Can do.
In the present invention, when the magnet is disposed so as to cause partial discharge in the longitudinal direction of the discharge electrode (for example, portions corresponding to both edges of the discharge electrode processing substrate), the charge amount of the processing substrate Since the discharge can be generated only for the large portion, it is possible to simplify and improve the efficiency of the static elimination mechanism.
In the present invention, when a plurality of magnets having different lengths in the longitudinal direction are arranged so as to generate a strong portion of plasma due to discharge and a weak portion of plasma due to discharge with respect to the longitudinal direction of the discharge electrode, As a result, it is possible to reliably remove electricity from a portion having a large charge amount, so that it is possible to optimize the electricity removal for the processing substrate.
In the present invention, a vacuum chamber, a processing source (for example, a film forming source) disposed in the vacuum chamber, and a film that is transported through the predetermined transport path in the vacuum chamber and processed by the processing source. According to the vacuum processing apparatus in which any one of the above-described substrate static elimination mechanisms is disposed in the vicinity of the transfer path, for example, it is efficient with a simple configuration without affecting the film formation region. It is possible to provide a film formation apparatus that can perform static elimination.
In particular, a magnet has a guide travel mechanism that guides and travels with the processing substrate sandwiched, and generates a discharge in a portion of the discharge electrode of the static elimination mechanism that corresponds to the portion of the processing substrate that is sandwiched by the guide travel mechanism. Is disposed, for example, in a film forming apparatus that can be stably transported without damaging the thin film formed on the film-like processing substrate, the charging of the processing substrate is effectively performed. Can be removed.
本発明の実施の形態である巻取式成膜装置の一例を示す概略構成図Schematic configuration diagram showing an example of a winding film forming apparatus according to an embodiment of the present invention (a)(b):本実施の形態における案内走行機構の例を示す部分断面図(A) (b): Partial sectional view showing an example of a guide traveling mechanism in the present embodiment 従来の除電機構の例を示すもので、図3(a)は、その内部構成を示す正面図、図3(b)は、その内部構成を示す側面図FIG. 3A shows an example of a conventional static elimination mechanism, FIG. 3A is a front view showing the internal configuration, and FIG. 3B is a side view showing the internal configuration. 本実施の形態の除電機構の例を示すもので、図4(a)は、その内部構成を示す正面図、図4(b)は、その内部構成を示す側面図FIG. 4A shows an example of the static elimination mechanism of the present embodiment, FIG. 4A is a front view showing the internal configuration, and FIG. 4B is a side view showing the internal configuration. (a)(b):本例の除電機構の作用を示す模式図(A) (b): Schematic diagram showing the action of the static elimination mechanism of this example 本実施の形態の除電機構の他の例を示すもので、図6(a)は、その内部構成を示す正面図、図6(b)は、その内部構成を示す側面図FIG. 6A shows another example of the static elimination mechanism of the present embodiment, FIG. 6A is a front view showing the internal configuration, and FIG. 6B is a side view showing the internal configuration. (a)(b):本例の除電機構の作用を示す模式図(A) (b): Schematic diagram showing the action of the static elimination mechanism of this example 本実施の形態の除電機構の他の例の要部を示すもので、図8(a)は、成膜用フィルムと除電機構の電極ユニットの内部構成を示す概略構成図、図8(b)は、本例の除電機構の作用を示す模式図FIG. 8A shows a main part of another example of the static elimination mechanism of the present embodiment. FIG. 8A is a schematic configuration diagram showing the internal configuration of the film forming film and the electrode unit of the static elimination mechanism, and FIG. Is a schematic diagram showing the operation of the static elimination mechanism of this example
 以下、本発明の実施の形態を図面を参照して説明する。
 図1は、本発明の実施の形態である巻取式成膜装置の一例を示す概略構成図である。
 以下、図1に示す場合を例にとって部材間の上下関係を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a winding film forming apparatus according to an embodiment of the present invention.
Hereinafter, the vertical relationship between members will be described by taking the case shown in FIG. 1 as an example.
 図1に示すように、本実施の形態の巻取式成膜装置(真空処理装置)1は、真空槽2を備えており、この真空槽2内の上部に設けられた繰出・巻取室2Aと、真空槽2内の下部に設けられた成膜室2Bとを有している。
 これら繰出・巻取室2A及び成膜室2Bは、それぞれ図示しない真空排気系に接続されている。
As shown in FIG. 1, a winding film forming apparatus (vacuum processing apparatus) 1 according to the present embodiment includes a vacuum chamber 2, and a feeding / winding chamber provided in the upper portion of the vacuum chamber 2. 2A and a film forming chamber 2B provided in the lower part of the vacuum chamber 2.
The feeding / winding chamber 2A and the film forming chamber 2B are each connected to a vacuum exhaust system (not shown).
 繰出・巻取室2A内の例えば上部には、成膜用フィルム(処理基板)10が巻き付けられた成膜用フィルムロール3と、成膜された成膜用フィルム10を巻き取るための巻取ローラ6が設けられている。 For example, a film forming film roll 3 around which a film forming film (processing substrate) 10 is wound, and a winding for winding the film forming film 10 formed on the upper part of the feeding / winding chamber 2A. A roller 6 is provided.
 繰出・巻取室2A内の成膜用フィルムロール3のフィルム搬送方向下流側には、ガイドローラ11、12と冷却ローラ13が設けられている。
 ここで、冷却ローラ13は、繰出・巻取室2Aと成膜室2Bにまたがるように設けられ、成膜用フィルム10が掛け渡された状態で、成膜室2B内に配置された蒸発源(成膜源)20と対向するように配置されている。
Guide rollers 11 and 12 and a cooling roller 13 are provided on the downstream side in the film conveying direction of the film forming film roll 3 in the feeding / winding chamber 2A.
Here, the cooling roller 13 is provided so as to straddle the feeding / winding chamber 2A and the film forming chamber 2B, and the evaporation source disposed in the film forming chamber 2B in a state where the film 10 for film formation is stretched over. (Film forming source) 20 is arranged so as to face.
 また、繰出・巻取室2A内の冷却ローラ13の近傍には、後述する案内走行機構4が設けられ、この案内走行機構4のフィルム搬送方向下流側には、除電機構(基板除電機構)5が設けられている。
 さらに、除電機構5のフィルム搬送方向下流側で巻取ローラ6との間には、ガイドローラ14が設けられている。
Further, a guide travel mechanism 4 described later is provided in the vicinity of the cooling roller 13 in the feeding / winding chamber 2A, and a static elimination mechanism (substrate neutralization mechanism) 5 is provided downstream of the guide travel mechanism 4 in the film transport direction. Is provided.
Further, a guide roller 14 is provided between the neutralization mechanism 5 and the winding roller 6 on the downstream side in the film conveyance direction.
 このような構成において、繰出・巻取室2A内の成膜用フィルムロール3から繰り出された成膜用フィルム10は、上述したガイドローラ11、12を介して冷却ローラ13に掛け渡され、成膜室2B内において、蒸発源20によって蒸着が行われた後、繰出・巻取室2A内において、案内走行機構4、除電機構5、ガイドローラ14を介して巻取ローラ6によって巻き取られるようになっている。 In such a configuration, the film forming film 10 fed out from the film forming film roll 3 in the feeding / winding chamber 2A is passed over the cooling roller 13 via the guide rollers 11 and 12 described above, and is formed. After deposition is performed by the evaporation source 20 in the film chamber 2B, the film is taken up by the take-up roller 6 through the guide travel mechanism 4, the charge removal mechanism 5, and the guide roller 14 in the feeding / winding chamber 2A. It has become.
 図2(a)(b)は、本実施の形態における案内走行機構の例を示す部分断面図である。
 図2(a)に示す案内走行機構4(4A)は、ガイドローラ40Aと、押圧ローラ41とから構成されている。
FIGS. 2A and 2B are partial cross-sectional views showing examples of the guide travel mechanism in the present embodiment.
The guide travel mechanism 4 (4A) shown in FIG. 2A is composed of a guide roller 40A and a pressing roller 41.
 ここで、ガイドローラ40Aは、断面円形形状のローラ本体42を有し、このローラ本体42に、例えばシリコーンゴムからなり、ローラ本体42より外径の大きい断面円形形状の二つのガイド部43を、成膜用フィルム10の成膜領域以外の非成膜領域である両縁部が載置されるように、所定の間隔をおいて設けたものである。 Here, the guide roller 40A has a roller main body 42 having a circular cross section, and the guide body 43 made of, for example, silicone rubber and having a circular outer cross section having a larger outer diameter than the roller main body 42 is provided on the roller main body 42. The film forming film 10 is provided with a predetermined interval so that both edge portions, which are non-film forming regions other than the film forming region, are placed.
 一方、押圧ローラ41は、断面円形形状でガイドローラ40Aの回転軸と平行な回転軸を有するローラ本体44に、ローラ本体44より外径の大きい断面円形形状の二つのガイド部45を、ガイドローラ40Aのガイド部43と同等の間隔をおいて設けたものである。 On the other hand, the pressing roller 41 has two circular guide sections 45 having a circular outer section and a larger outer diameter than the roller main body 44, and the guide roller 45 having a circular section and a rotation axis parallel to the rotation axis of the guide roller 40 </ b> A. It is provided with an interval equivalent to the guide portion 43 of 40A.
 そして、このようなガイドローラ40Aと押圧ローラ41との間に挿入された成膜用フィルム10に対し、図示しない押圧手段によって押圧ローラ41をガイドローラ40A側に押圧することにより、成膜用フィルム10の両縁部即ち非成膜領域を挟んだ状態で案内走行するように構成されている。 The film forming film 10 is pressed against the film forming film 10 inserted between the guide roller 40A and the pressing roller 41 by a pressing means (not shown) toward the guide roller 40A. The vehicle is configured to guide and run in a state where ten edge portions, that is, non-deposition regions are sandwiched.
 図2(b)に示す案内走行機構4(4B)は、ガイドローラ40Bと、複数の押圧機構46とから構成されている。
 ここで、ガイドローラ40Bは、図2(a)に示すガイドローラ40Aとほぼ同様の構成を有するもので、ローラ本体42に、ローラ本体42より外径の大きい断面円形形状の三つのガイド部43を、成膜用フィルム10の成膜領域以外の非成膜領域である中央部及び両縁部が載置されるように、所定の間隔をおいて設けたものである。
The guide travel mechanism 4 (4B) shown in FIG. 2B is composed of a guide roller 40B and a plurality of pressing mechanisms 46.
Here, the guide roller 40B has substantially the same configuration as the guide roller 40A shown in FIG. 2A. The guide body 40B has three guide portions 43 having a circular cross section having a larger outer diameter than the roller body 42. Are provided at predetermined intervals so that the central portion and both edge portions which are non-deposition regions other than the deposition region of the film for film formation 10 are placed.
 一方、押圧機構46は、上述したガイドローラ40Bの回転軸と平行な回転支軸47を中心として回転可能な押圧ローラ48が本体部49に取り付けられているもので、本例では、ガイドローラ40Bのガイド部43と同等の間隔をおいて三つの押圧機構46を設けて構成されている。 On the other hand, in the pressing mechanism 46, a pressing roller 48 that is rotatable about a rotation support shaft 47 parallel to the rotation axis of the guide roller 40B described above is attached to the main body 49, and in this example, the guide roller 40B. The three pressing mechanisms 46 are provided at the same interval as the guide portion 43.
 そして、このようなガイドローラ40Bと押圧機構46との間に挿入された成膜用フィルム10に対し、図示しない押圧手段によって押圧ローラ48をガイドローラ40B側に押圧することにより、成膜用フィルム10の両縁部及び中央部即ち非成膜領域を挟んで案内するように構成されている。
 そして、以上の構成を有する案内走行機構4A、4Bによれば、成膜領域を保護した状態で、成膜用フィルム10を安定して案内走行することができる。
The film forming film 10 is pressed against the film 10 for film formation inserted between the guide roller 40B and the pressing mechanism 46 by the pressing means (not shown) toward the guide roller 40B. It is configured so as to guide it across both the edge portions and the central portion, that is, the non-deposition region.
According to the guide travel mechanisms 4A and 4B having the above configuration, the film forming film 10 can be stably guided and traveled in a state where the film formation region is protected.
 図3(a)(b)は、従来の除電機構の例を示すもので、図3(a)は、その内部構成を示す正面図、図3(b)は、その内部構成を示す側面図である。
 この除電機構105は、一対型のもので、放電ガス130が導入される金属製のハウジング151内に二つの同一構成の電極ユニット150が設けられているものである。
3 (a) and 3 (b) show an example of a conventional static elimination mechanism. FIG. 3 (a) is a front view showing the internal configuration, and FIG. 3 (b) is a side view showing the internal configuration. It is.
This static elimination mechanism 105 is a pair type, and two identical electrode units 150 are provided in a metal housing 151 into which a discharge gas 130 is introduced.
 ここで、二つの電極ユニット150は、成膜用フィルム110を挟んでその両側に設けられ、フィルム搬送経路に対して平行で且つフィルム搬送方向に対して直交するように配置された直線棒状の導入電極152と、導入電極152と同心状に設けられた直線円筒状の放電電極153をそれぞれ有している。 Here, the two electrode units 150 are provided on both sides of the film for film formation 110, and are introduced in the form of straight bars arranged so as to be parallel to the film transport path and orthogonal to the film transport direction. The electrode 152 and the linear cylindrical discharge electrode 153 provided concentrically with the introduction electrode 152 are provided.
 各電極ユニット150の導入電極152は、それぞれ水等の冷却媒体が導入される放電電極153内に放電電極153に対して電気的に接続された状態で配置され、その周囲に複数の例えば永久磁石からなる円筒状の磁石154が設けられている。 The introduction electrode 152 of each electrode unit 150 is disposed in a state where it is electrically connected to the discharge electrode 153 in the discharge electrode 153 into which a cooling medium such as water is introduced, and a plurality of, for example, permanent magnets are disposed around the introduction electrode 152 A cylindrical magnet 154 is provided.
 これら複数の磁石154は、成膜用フィルム110の幅方向の全域にわたって遮蔽板155を隔てて設けられ、また、隣接する磁石154の極性が反転するように構成されている。
 そして、各電極ユニット150の導入電極152は、直流電源156により、接地されたハウジング151との間で導入電極152側が負極となるように所定の電圧が印加されるようになっている。
The plurality of magnets 154 are provided across the entire region in the width direction of the film for film formation 110 so as to be separated from the shielding plate 155, and are configured such that the polarities of the adjacent magnets 154 are reversed.
A predetermined voltage is applied to the introduction electrode 152 of each electrode unit 150 with the grounded housing 151 from the DC power source 156 so that the introduction electrode 152 side becomes a negative electrode.
 このような構成において、成膜用フィルム110を搬送して成膜しながら、除電機構105においてハウジング151と導入電極152との間に所定の電圧を印加すると、電極ユニット150の周囲において、成膜用フィルム110の幅方向全域にわたってマグネトロン放電によるプラズマが生成され、そのプラズマが成膜用フィルム110に衝突することにより、成膜用フィルム110の除電が行われる。 In such a configuration, when a predetermined voltage is applied between the housing 151 and the introduction electrode 152 in the static elimination mechanism 105 while the film for film formation 110 is conveyed to form a film, the film is formed around the electrode unit 150. Plasma by magnetron discharge is generated over the entire width direction of the film for film 110, and the plasma collides with the film for film formation 110, so that the film formation film 110 is neutralized.
 図4(a)(b)は、本実施の形態の除電機構の例を示すもので、図4(a)は、その内部構成を示す正面図、図4(b)は、その内部構成を示す側面図である。
 この除電機構(基板除電機構)5Aは、上述した従来例と同様の一対型のもので、例えばアルゴン等の放電ガス30が導入される金属製のハウジング(放電用容器)51内に二つの同一構成の電極ユニット50Aが設けられているものである。
4 (a) and 4 (b) show examples of the static elimination mechanism of the present embodiment, FIG. 4 (a) is a front view showing the internal configuration, and FIG. 4 (b) is the internal configuration. FIG.
This static elimination mechanism (substrate static elimination mechanism) 5A is a pair type similar to the above-described conventional example, and for example, two identical ones in a metal housing (discharge vessel) 51 into which a discharge gas 30 such as argon is introduced. An electrode unit 50A having a configuration is provided.
 ここで、二つの電極ユニット50Aは、成膜用フィルム10を挟んでその両側に設けられ、フィルム搬送経路に対して平行で且つフィルム搬送方向に対して直交するように配置された直線棒状の導入電極52と、導入電極52と同心状に設けられた直線円筒状の放電電極53をそれぞれ有している。 Here, the two electrode units 50A are provided on both sides of the film 10 for film formation, and are introduced in the form of straight bars arranged so as to be parallel to the film transport path and orthogonal to the film transport direction. The electrode 52 and the linear cylindrical discharge electrode 53 provided concentrically with the introduction electrode 52 are provided.
 各電極ユニット50Aの導入電極52は、それぞれ水等の冷却媒体が導入される放電電極53内に放電電極53に対して電気的に接続された状態で配置され、その周囲に二つの例えば永久磁石からなる円筒状の磁石54Aが設けられている。
 本例は、放電電極53の長手方向に関して部分的に放電を発生させるように複数(本実施の形態では二つ)の磁石54Aが配置されているものである。
The introduction electrode 52 of each electrode unit 50A is arranged in a state where it is electrically connected to the discharge electrode 53 in the discharge electrode 53 into which a cooling medium such as water is introduced. A cylindrical magnet 54A is provided.
In this example, a plurality (two in this embodiment) of magnets 54 </ b> A are arranged so as to cause partial discharge in the longitudinal direction of the discharge electrode 53.
 ここで、磁石54Aとしては、一体型のもの、複数の小片からなるもののいずれを用いることができる。また、二つの磁石54Aは、同一の磁気回路が形成されるもの又は異なる磁気回路が形成されるもののいずれを用いることができる。 Here, as the magnet 54A, either an integral type or a plurality of small pieces can be used. Further, as the two magnets 54A, either one in which the same magnetic circuit is formed or one in which different magnetic circuits are formed can be used.
 これら二つの磁石54Aは、図2(a)に示す案内走行機構4Aのガイド部43と同等の間隔即ち成膜用フィルム10の幅と同等の間隔をおいて設けられ、また、隣接する磁石54Aの極性が反転するように構成されている。
 そして、各電極ユニット50Aの導入電極52は、直流電源56により、接地されたハウジング51との間で導入電極52側が負極となるように所定の電圧が印加されるようになっている。
These two magnets 54A are provided at an interval equivalent to the guide portion 43 of the guide travel mechanism 4A shown in FIG. 2A, that is, at an interval equivalent to the width of the film 10 for film formation. The polarity is reversed.
A predetermined voltage is applied to the introduction electrode 52 of each electrode unit 50 </ b> A by the DC power source 56 so that the introduction electrode 52 side becomes a negative electrode with the grounded housing 51.
 図5(a)(b)は、本例の除電機構の作用を示す模式図である。
 図5(a)に示すように、本例においては、二つの磁石54Aは、案内走行機構4Aのガイド部43と同等の間隔即ち成膜用フィルム10の幅と同等の間隔をおいて設けられている。
FIGS. 5A and 5B are schematic views showing the operation of the static elimination mechanism of this example.
As shown in FIG. 5A, in this example, the two magnets 54A are provided at an interval equivalent to the guide portion 43 of the guide travel mechanism 4A, that is, an interval equivalent to the width of the film 10 for film formation. ing.
 したがって、本例において、電極ユニット50Aの導入電極52に電圧を印加した場合には、図5(b)に示すように、二つの磁石54Aの近傍においてのみプラズマ15が生成され、その結果、成膜用フィルム10の両縁部の非成膜領域のみがプラズマ15に曝されて除電が行われることになる。 Therefore, in this example, when a voltage is applied to the introduction electrode 52 of the electrode unit 50A, the plasma 15 is generated only in the vicinity of the two magnets 54A as shown in FIG. Only the non-deposition regions at both edges of the film for film 10 are exposed to the plasma 15 and the charge removal is performed.
 図6(a)(b)は、本実施の形態の除電機構の他の例を示すもので、図6(a)は、その内部構成を示す正面図、図6(b)は、その内部構成を示す側面図である。以下、上記例と対応する部分には同一の符合を付しその詳細な説明を省略する。 6 (a) and 6 (b) show other examples of the static elimination mechanism of the present embodiment. FIG. 6 (a) is a front view showing its internal configuration, and FIG. 6 (b) is its internal view. It is a side view which shows a structure. Hereinafter, the same reference numerals are given to portions corresponding to the above example, and detailed description thereof will be omitted.
 本例の除電機構(基板除電機構)5Bは、ハウジング51内に同一構成の二つの電極ユニット50Bが設けられているものである。
 そして、この除電機構5Bは、基本構成は上述した除電機構5Aと同一であり、磁石54Bの数及び配置位置が上記除電機構5Aと異なるものである。
The static elimination mechanism (substrate static elimination mechanism) 5 </ b> B of this example is provided with two electrode units 50 </ b> B having the same configuration in a housing 51.
The static elimination mechanism 5B has the same basic configuration as the static elimination mechanism 5A described above, and is different from the static elimination mechanism 5A in the number and arrangement position of the magnets 54B.
 すなわち、本例の除電機構5Bは、上述したハウジング51内に同一構成の二つの電極ユニット50Bが設けられ、各電極ユニット50Bは、上述した放電電極53内に導入電極52が配置され、その周囲に三つの例えば永久磁石からなる円筒状の磁石54Bが設けられている。 That is, in the static elimination mechanism 5B of this example, two electrode units 50B having the same configuration are provided in the housing 51 described above, and each electrode unit 50B has the introduction electrode 52 disposed in the discharge electrode 53 described above, Are provided with three cylindrical magnets 54B made of, for example, permanent magnets.
 ここで、磁石54Bとしては、一体型のもの、複数の小片からなるもののいずれを用いることができる。また、三つの磁石54Bは、同一の磁気回路が形成されるもの又は異なる磁気回路が形成されるもののいずれを用いることができる。 Here, as the magnet 54B, either an integral type or a plurality of small pieces can be used. Further, as the three magnets 54B, either one in which the same magnetic circuit is formed or one in which different magnetic circuits are formed can be used.
 これら三つの磁石54Bは、図2(b)に示す案内走行機構4Bの隣接するガイド部43と同等の間隔で成膜用フィルム10の中央部及び両縁部に対応する部分に設けられ、また、隣接する磁石54Bの極性が反転するように構成されている。 These three magnets 54B are provided at portions corresponding to the central portion and both edge portions of the film 10 for film formation at intervals equivalent to the adjacent guide portions 43 of the guide travel mechanism 4B shown in FIG. The polarity of the adjacent magnet 54B is reversed.
 そして、各電極ユニット50Bの導入電極52は、直流電源56により、接地されたハウジング51との間で導入電極52側が負極となるように所定の電圧が印加されるようになっている。 Then, a predetermined voltage is applied to the introduction electrode 52 of each electrode unit 50B from the DC power source 56 so that the introduction electrode 52 side becomes a negative electrode with respect to the grounded housing 51.
 図7(a)(b)は、本例の除電機構の作用を示す模式図である。
 図7(a)に示すように、本例の場合、三つの磁石54Bは、案内走行機構4Bの隣接するガイド部43と同等の間隔をおいて設けられていることから、電極ユニット50Bの導入電極52に電圧を印加した場合には、図7(b)に示すように、三つの磁石54Bの近傍においてのみプラズマ15が生成され、その結果、成膜用フィルム10の中央部及び両縁部の非成膜領域のみがプラズマ15に曝されて除電が行われることになる。
FIGS. 7A and 7B are schematic views showing the operation of the static elimination mechanism of this example.
As shown in FIG. 7A, in the case of this example, the three magnets 54B are provided at the same interval as the adjacent guide portions 43 of the guide travel mechanism 4B. When a voltage is applied to the electrode 52, as shown in FIG. 7B, the plasma 15 is generated only in the vicinity of the three magnets 54B. As a result, the central portion and both edge portions of the film for film 10 are formed. Only the non-film-forming region is exposed to the plasma 15 and the charge removal is performed.
 以上述べたように本実施の形態の除電機構5A、5Bでは、成膜用フィルム10の非成膜領域のみの除電を行うことができるので、成膜領域に影響を与えることなく、効率良く除電を行うことができるとともに、例えば図3(a)(b)に示す従来技術と比較して構成が簡素な除電機構5A、5Bを提供することができる。 As described above, in the static elimination mechanisms 5A and 5B of the present embodiment, it is possible to eliminate static electricity only in the non-deposition region of the film 10 for film formation, so that the neutralization can be performed efficiently without affecting the deposition region. In addition, for example, it is possible to provide the static elimination mechanisms 5A and 5B having a simple configuration as compared with the prior art shown in FIGS. 3 (a) and 3 (b).
 また、本実施の形態によれば、放電によるプラズマの強さを必要以上に大きくする必要はないため、導入電極52に対する印加電力を抑えることができ、これにより導入電極52及び放電電極53の消耗量や消費電力を少なくすることができる。 Further, according to the present embodiment, since it is not necessary to increase the intensity of plasma due to the discharge more than necessary, it is possible to suppress the power applied to the introduction electrode 52, and thereby the consumption of the introduction electrode 52 and the discharge electrode 53. The amount and power consumption can be reduced.
 図8(a)(b)は、本実施の形態の除電機構の他の例の要部を示すもので、図8(a)は、成膜用フィルムと除電機構の電極ユニットの内部構成を示す概略構成図、図8(b)は、本例の除電機構の作用を示す模式図である。以下、上記例と対応する部分には同一の符合を付しその詳細な説明を省略する。 FIGS. 8A and 8B show the main part of another example of the static elimination mechanism of the present embodiment. FIG. 8A shows the internal configuration of the film forming film and the electrode unit of the static elimination mechanism. FIG. 8B is a schematic diagram illustrating the operation of the static elimination mechanism of the present example. Hereinafter, the same reference numerals are given to portions corresponding to the above example, and detailed description thereof will be omitted.
 本発明が適用されるような巻取式成膜装置においては、マスク10aを介して成膜用フィルム10上に成膜を行う場合がある(図8(a)参照)。
 この場合、成膜用フィルム10上の隣接するマスク10aの間の領域が成膜領域となり、マスク10a上の領域が非成膜領域となる。
In a roll-up film forming apparatus to which the present invention is applied, film formation may be performed on the film for film formation 10 through a mask 10a (see FIG. 8A).
In this case, a region between adjacent masks 10a on the film 10 for film formation becomes a film formation region, and a region on the mask 10a becomes a non-film formation region.
 このようなマスク10aを用いて蒸着により導電材料の成膜を行う場合には、非成膜領域であるマスク10aの部分の帯電量が成膜領域の帯電量より大きくなる場合がある。
 このような場合、上述した除電機構5A、5Bを用いて非成膜領域のみ除電を行うことも可能であるが、本例では、以下のような電極ユニット50Cを用いて除電を行うようにしている。
When a conductive material is deposited by vapor deposition using such a mask 10a, the charge amount of the portion of the mask 10a that is a non-deposition region may be larger than the charge amount of the deposition region.
In such a case, it is possible to carry out static elimination only in the non-film-forming region using the above-described static elimination mechanisms 5A and 5B. However, in this example, static elimination is performed using the following electrode unit 50C. Yes.
 図8(a)に示すように、本例の電極ユニット50Cは、成膜用フィルム10の幅方向の全域にわたって遮蔽板55を隔てて複数の磁石54C、54cが設けられている。
 ここでは、導入電極52(放電電極53)の長手方向に関して長さが異なる複数の磁石54C、54cが配置されている。
As shown in FIG. 8A, the electrode unit 50 </ b> C of this example is provided with a plurality of magnets 54 </ b> C and 54 c across the entire area in the width direction of the film for film 10 with a shielding plate 55 interposed therebetween.
Here, a plurality of magnets 54C and 54c having different lengths with respect to the longitudinal direction of the introduction electrode 52 (discharge electrode 53) are arranged.
 具体的には、導入電極52の成膜用フィルム10のマスク10aに対応する部分に、長さの長い磁石54Cが配置され、導入電極52の成膜用フィルム10の成膜領域に対応する部分に、この磁石54Cより長さの短い磁石54cが配置されている。なお、隣接する磁石54C、54cは極性が反転するように構成されている。
 ここで、磁石54C、54cとしては、一体型のもの、複数の小片からなるもののいずれを用いることができる。
Specifically, a magnet 54C having a long length is disposed in a portion corresponding to the mask 10a of the film 10 for film formation of the introduction electrode 52, and a portion corresponding to the film formation region of the film 10 for film formation of the introduction electrode 52. In addition, a magnet 54c having a shorter length than the magnet 54C is disposed. The adjacent magnets 54C and 54c are configured so that the polarities are reversed.
Here, as the magnets 54C and 54c, either an integral type or a plurality of small pieces can be used.
 このような本例において導入電極52に電圧を印加すると、図8(b)に示すように、長さの長い磁石54Cが配置された部分の放電によるプラズマ16の強さが、長さの短い磁石54cが配置された部分の放電によるプラズマ17の強さより強くなる。 In this example, when a voltage is applied to the introduction electrode 52, as shown in FIG. 8B, the strength of the plasma 16 caused by the discharge in the portion where the long magnet 54C is disposed is short. It becomes stronger than the strength of the plasma 17 due to the discharge of the portion where the magnet 54c is disposed.
 そして、このような構成を有する本例によれば、成膜用フィルム10を全体的に除電をしつつ、帯電量の大きい非成膜領域に対して確実に除電を行うことができるので、成膜用フィルム10に対する除電の最適化を図ることができる。 Further, according to this example having such a configuration, it is possible to reliably perform static elimination on a non-deposition region having a large charge amount while neutralizing the film forming film 10 as a whole. It is possible to optimize the charge removal for the film 10 for a film.
 以上述べたように本実施の形態によれば、簡素な構成で効率良く除電を行うことができる巻取式成膜装置を提供することができる。 As described above, according to the present embodiment, it is possible to provide a take-up film forming apparatus that can efficiently perform static elimination with a simple configuration.
 なお、本発明は上述した実施の形態に限られず、種々の変更を行うことができる。
 例えば、上記実施の形態においては、一対型の基板除電機構を例にとって説明したが、本発明はこれに限られず、1本型の基板除電機構又は2対型の基板除電機構に適用することもできる。
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above-described embodiment, the pair-type substrate neutralization mechanism has been described as an example. However, the present invention is not limited to this, and may be applied to a single-type substrate neutralization mechanism or a two-pair type substrate neutralization mechanism. it can.
 また、マグネトロン放電に用いる磁石については、永久磁石の他、電磁石を用いることもできる。
 さらに、本発明は蒸着によって成膜を行う装置のみならず、例えばスパッタリング装置やエッチング装置等の種々の真空処理装置に適用することもできる。
Moreover, about the magnet used for magnetron discharge, an electromagnet can also be used other than a permanent magnet.
Furthermore, the present invention can be applied not only to an apparatus for forming a film by vapor deposition but also to various vacuum processing apparatuses such as a sputtering apparatus and an etching apparatus.
 さらにまた、上記実施の形態においては、処理基板として一連で長尺のフィルムを例にとって説明したが、本発明はこれに限られず、真空中で搬送可能な基板であれば、例えばカットされたフィルムや平板状のガラスからなるものに適用することもできる。 Furthermore, in the above-described embodiment, a series of long films have been described as examples of the processing substrate. However, the present invention is not limited to this, and a cut film, for example, may be used as long as the substrate can be transported in a vacuum. It can also be applied to those made of flat glass.
 一方、図8(a)(b)に示す例においては、放電によるプラズマの強さを異ならせるため長さの異なる磁石を用いたが、例えば磁力の強いネオジム等からなる磁石を用いて放電によるプラズマの強さを異ならせることも可能である。 On the other hand, in the examples shown in FIGS. 8 (a) and 8 (b), magnets having different lengths are used in order to vary the plasma strength caused by the discharge. For example, a magnet made of neodymium or the like having a strong magnetic force is used. It is also possible to vary the intensity of the plasma.
 1……巻取式成膜装置(真空処理装置)
 2……真空槽
 3……成膜用フィルムロール
 4、4A、4B……案内走行機構
 5、5A、5B……除電機構(基板除電機構)
 6……巻取ローラ
10……成膜用フィルム(処理基板)
30……放電ガス
50A、50B……電極ユニット
51……ハウジング(放電用容器)
52……導入電極
53……放電電極
54A、54B……磁石
56……直流電源 
1 ... Take-up type film forming equipment (vacuum processing equipment)
2 ... Vacuum chamber 3 ... Film roll for film formation 4, 4A, 4B ... Guide travel mechanism 5, 5A, 5B ... Static elimination mechanism (substrate static elimination mechanism)
6 ... Winding roller 10 ... Film for film formation (processing substrate)
30 …… Discharge gas 50A, 50B …… Electrode unit 51 …… Housing (discharge vessel)
52 ... Introduction electrode 53 ... Discharge electrodes 54A, 54B ... Magnet 56 ... DC power supply

Claims (9)

  1.  真空中で搬送される処理基板に対してマグネトロン放電によって除電を行う基板除電機構であって、
     放電ガスが導入される放電用容器と、
     前記放電用容器内において基板搬送方向に対して交差するように配置され、所定の電圧が印加される直線状の放電電極と、
     前記放電電極の近傍に配置される磁石とを有し、
     前記処理基板における帯電量の分布に応じて放電を発生させるように前記磁石が配置されている基板除電機構。
    A substrate static elimination mechanism that eliminates static electricity by magnetron discharge on a processing substrate conveyed in vacuum,
    A discharge vessel into which discharge gas is introduced;
    A linear discharge electrode that is arranged so as to intersect the substrate transport direction in the discharge container and to which a predetermined voltage is applied;
    A magnet disposed in the vicinity of the discharge electrode;
    A substrate static elimination mechanism in which the magnet is disposed so as to generate a discharge according to a distribution of charge amount on the processing substrate.
  2.  前記放電電極の長手方向に関して部分的に放電を発生させるように前記磁石が配置されている請求項1記載の基板除電機構。 The substrate static elimination mechanism according to claim 1, wherein the magnet is arranged so as to cause partial discharge in the longitudinal direction of the discharge electrode.
  3.  前記放電電極の前記処理基板の両縁部に対応する部分に放電を発生させるように前記磁石が配置されている請求項2記載の基板除電機構。 The substrate static elimination mechanism according to claim 2, wherein the magnet is disposed so as to generate discharge at portions corresponding to both edges of the processing substrate of the discharge electrode.
  4.  前記放電電極の長手方向に関して放電によるプラズマの強い部分と放電によるプラズマの弱い部分を生成するように当該長手方向の長さが異なる複数の前記磁石が配置されている請求項1記載の基板除電機構。 2. The substrate neutralization mechanism according to claim 1, wherein a plurality of magnets having different lengths in the longitudinal direction are arranged so as to generate a strong plasma portion caused by discharge and a weak plasma portion caused by discharge in the longitudinal direction of the discharge electrode. .
  5.  前記処理基板がフィルム状のものである請求項1乃至4のいずれか1項記載の基板除電機構。 The substrate static elimination mechanism according to any one of claims 1 to 4, wherein the processing substrate is a film.
  6.  真空槽と、
     前記真空槽内に配置された処理源と、
     前記真空槽内において所定の搬送経路を経由して搬送され、前記処理源によって処理される処理基板と、
     前記搬送経路の近傍に配置された基板除電機構とを有し、
     前記基板除電機構は、真空中で搬送される処理基板に対してマグネトロン放電によって除電を行う基板除電機構であって、放電ガスが導入される放電用容器と、前記放電用容器内において基板搬送方向に対して交差するように配置され、所定の電圧が印加される直線状の放電電極と、前記放電電極の近傍に配置される磁石とを有し、前記処理基板における帯電量の分布に応じて放電を発生させるように前記磁石が配置されている真空処理装置。
    A vacuum chamber;
    A processing source disposed in the vacuum chamber;
    A processing substrate which is transported via a predetermined transport path in the vacuum chamber and processed by the processing source;
    A substrate static elimination mechanism disposed in the vicinity of the transport path,
    The substrate neutralization mechanism is a substrate neutralization mechanism for performing neutralization by magnetron discharge on a processing substrate conveyed in a vacuum, and a discharge container into which a discharge gas is introduced, and a substrate conveyance direction in the discharge container A linear discharge electrode to which a predetermined voltage is applied and a magnet disposed in the vicinity of the discharge electrode, and depending on the distribution of charge amount on the processing substrate A vacuum processing apparatus in which the magnet is arranged to generate electric discharge.
  7.  前記処理基板を挟んだ状態で案内して走行させる案内走行機構を有し、前記放電電極における、前記案内走行機構によって前記処理基板の挟まれる部分に対応する部分において放電を発生させるように前記磁石が配置されている請求項6記載の真空処理装置。 The magnet has a guide traveling mechanism that guides and travels in a state of sandwiching the processing substrate, and generates a discharge in a portion of the discharge electrode that corresponds to a portion of the processing substrate sandwiched by the guide traveling mechanism. The vacuum processing apparatus according to claim 6, wherein
  8.  前記処理源が成膜源である請求項6又は7のいずれか1項記載の真空処理装置。 The vacuum processing apparatus according to claim 6 or 7, wherein the processing source is a film forming source.
  9.  前記処理基板の非成膜領域に対応する部分に放電を発生させるように前記磁石が配置されている請求項8記載の真空処理装置。  The vacuum processing apparatus according to claim 8, wherein the magnet is disposed so as to generate a discharge in a portion corresponding to a non-deposition region of the processing substrate.
PCT/JP2016/064361 2015-05-15 2016-05-13 Substrate destaticizing mechanism and vacuum treatment apparatus using same WO2016186046A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017519188A JP6526186B2 (en) 2015-05-15 2016-05-13 Substrate charge removing mechanism and vacuum processing apparatus using the same
KR1020177032992A KR102062442B1 (en) 2015-05-15 2016-05-13 Substrate destaticizing mechanism and vacuum treatment apparatus using same
CN201680028123.3A CN107532291B (en) 2015-05-15 2016-05-13 Substrate is except motor structure and uses its vacuum treatment installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099574 2015-05-15
JP2015-099574 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016186046A1 true WO2016186046A1 (en) 2016-11-24

Family

ID=57320039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064361 WO2016186046A1 (en) 2015-05-15 2016-05-13 Substrate destaticizing mechanism and vacuum treatment apparatus using same

Country Status (5)

Country Link
JP (1) JP6526186B2 (en)
KR (1) KR102062442B1 (en)
CN (1) CN107532291B (en)
TW (1) TWI673384B (en)
WO (1) WO2016186046A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124489B3 (en) * 2019-09-12 2020-11-12 VON ARDENNE Asset GmbH & Co. KG Vacuum arrangements, methods and use of an electrode in a vacuum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112024A (en) * 1996-10-08 1998-04-28 Sony Corp Production of magnetic recording medium and producing device therefor
JPH1154757A (en) * 1997-07-30 1999-02-26 Advanced Display:Kk Thin film transistor manufacturing method and device
JP2008190012A (en) * 2007-02-07 2008-08-21 Ulvac Japan Ltd Roll-up type vacuum film deposition apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024972A (en) 1973-07-04 1975-03-17
JP4516304B2 (en) * 2003-11-20 2010-08-04 株式会社アルバック Winding type vacuum deposition method and winding type vacuum deposition apparatus
US7670433B2 (en) * 2005-02-16 2010-03-02 Ulvac, Inc. Vacuum deposition apparatus of the winding type
JP3795518B2 (en) 2006-03-01 2006-07-12 株式会社アルバック Winding type vacuum deposition apparatus and winding type vacuum deposition method
US20100055311A1 (en) * 2007-05-14 2010-03-04 Ulvac, Inc Film Conveyor Apparatus and Roll-to-Roll Vacuum Deposition Method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112024A (en) * 1996-10-08 1998-04-28 Sony Corp Production of magnetic recording medium and producing device therefor
JPH1154757A (en) * 1997-07-30 1999-02-26 Advanced Display:Kk Thin film transistor manufacturing method and device
JP2008190012A (en) * 2007-02-07 2008-08-21 Ulvac Japan Ltd Roll-up type vacuum film deposition apparatus

Also Published As

Publication number Publication date
JP6526186B2 (en) 2019-06-05
TW201706437A (en) 2017-02-16
JPWO2016186046A1 (en) 2018-02-22
KR20170137875A (en) 2017-12-13
CN107532291A (en) 2018-01-02
CN107532291B (en) 2019-08-20
KR102062442B1 (en) 2020-01-03
TWI673384B (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5059597B2 (en) Winding type vacuum deposition system
KR101708938B1 (en) Film deposition method
WO2005049883A1 (en) Take-up vacuum deposition method and take-up vacuum deposition apparatus
US20100307414A1 (en) Take-Up Type Vacuum Deposition Apparatus
WO2016186046A1 (en) Substrate destaticizing mechanism and vacuum treatment apparatus using same
EP2905355A1 (en) In-line coating device, in-line coating method, and separator
JPS6411055B2 (en)
TWI724316B (en) Flat panel display manufacturing device
JP2019067733A (en) Static elimination method and apparatus
JP2018056115A (en) Static eliminator
JP4803742B2 (en) Winding type vacuum deposition system
TWI269672B (en) Method and device for processing surface of flat substrate
JP7155853B2 (en) Static elimination method and device
JPH11238595A (en) Static eliminator and static eliminating method
JP2009181938A (en) Plastic film static eliminator and heating carrier device for plastic film
JP4288696B2 (en) Surface treatment apparatus and surface treatment method
JP2006283135A (en) Film-forming apparatus and film-forming method
JP5095087B2 (en) Film forming apparatus and film forming method
KR101358252B1 (en) Method and apparatus for cleaning by separation of plasma ions
KR101123866B1 (en) Apparatus and Method for plasma surface treatment
JP4426783B2 (en) Plasma processing apparatus and processing method
JP2003154256A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same
JP7157919B2 (en) Film forming apparatus and film forming method
JP2018073553A (en) Static eliminator
JP2007185635A (en) Device for discharging treating gas and surface treatment apparatus with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519188

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177032992

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796439

Country of ref document: EP

Kind code of ref document: A1