JP2007185635A - Device for discharging treating gas and surface treatment apparatus with the same - Google Patents

Device for discharging treating gas and surface treatment apparatus with the same Download PDF

Info

Publication number
JP2007185635A
JP2007185635A JP2006007576A JP2006007576A JP2007185635A JP 2007185635 A JP2007185635 A JP 2007185635A JP 2006007576 A JP2006007576 A JP 2006007576A JP 2006007576 A JP2006007576 A JP 2006007576A JP 2007185635 A JP2007185635 A JP 2007185635A
Authority
JP
Japan
Prior art keywords
dielectric
external
processing gas
internal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006007576A
Other languages
Japanese (ja)
Inventor
Nobuhide Katayama
信英 片山
Tatsuo Kikuchi
辰男 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2006007576A priority Critical patent/JP2007185635A/en
Publication of JP2007185635A publication Critical patent/JP2007185635A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for discharging treating gas in which the concentration of a line of electric force is moderated to restrain the convergence of an electric discharge. <P>SOLUTION: The device 20 for discharging the treating gas is provided with: a tubular external dielectric 22 having a supply hole 23 in the upper part of the outer circumferential surface thereof and a discharge hole 24 in the lower part of the outer circumferential surface thereof; an external electrode which is arranged on the outer circumferential surface of the external dielectric 22 and grounded; a tubular internal dielectric 35 arranged in a tube of the external dielectric 22 and coaxially therewith while leaving a constant space between them; an internal electrode 37 arranged in a tube of the internal dielectric 35; a high-frequency power source 39 for applying high-frequency voltage between the internal electrode 37 and the external electrode; trumpet-shaped electrically conductive members 29 which are arranged at both ends of the external electrode in the axial direction of the external dielectric 22 and coaxially with the external dielectric 22, is connected to the external electrode and surrounds the external dielectric 22 while leaving a space between them; and a gas supplying mechanism 50 for supplying the treating gas from the supply hole 23 to the space between the external dielectric 22 and the internal dielectric 35. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、処理ガスをプラズマ化して吐出する処理ガス吐出装置、及びこの処理ガス吐出装置を備え、当該処理ガス吐出装置から吐出された処理ガスによって処理対象物の表面を処理する表面処理装置に関する。   The present invention relates to a processing gas discharge device that converts a processing gas into plasma and discharges it, and a surface processing device that includes the processing gas discharge device and processes the surface of a processing object with the processing gas discharged from the processing gas discharge device. .

前記表面処理装置として、従来、例えば、特開2001−35835号公報に開示されたものが知られており、この表面処理装置は、適宜支持されたシート状の処理対象物の上方に配設され、当該処理対象物に向け、処理ガスをプラズマ化して吐出する吐出機構と、この吐出機構に処理ガスを供給するガス供給機構とからなる処理ガス吐出装置などを備える。   Conventionally, as the surface treatment apparatus, for example, one disclosed in Japanese Patent Application Laid-Open No. 2001-35835 is known, and this surface treatment apparatus is disposed above a sheet-like treatment object that is appropriately supported. And a processing gas discharge device including a discharge mechanism that discharges the processing gas into plasma toward the processing object and a gas supply mechanism that supplies the processing gas to the discharge mechanism.

前記吐出機構は、管状に形成され、処理対象物の上方に配置される外部誘電体と、外部誘電体の外周面に設けられ、接地された外部電極と、管状に形成され、外部誘電体の管内に、当該外部誘電体と一定間隔を隔てるように且つ当該外部誘電体と同軸に設けられる内部電極と、内部電極と外部電極との間に高周波電圧を印加する高周波電源と、前記内部電極の管内部に冷却液を流通,循環させる冷却液循環機構とを備える。   The discharge mechanism is formed in a tubular shape, and is provided with an external dielectric disposed above the object to be processed, an external electrode provided on the outer peripheral surface of the external dielectric and grounded, and formed in a tubular shape. An internal electrode provided in the tube so as to be spaced apart from the external dielectric and coaxially with the external dielectric, a high-frequency power source for applying a high-frequency voltage between the internal electrode and the external electrode, and the internal electrode A coolant circulation mechanism for circulating and circulating the coolant inside the pipe is provided.

前記外部誘電体は、上部外周面に開口し、処理ガスが供給される供給穴と、下部外周面に開口し、前記供給された処理ガスを処理対象物に向けて吐出する吐出穴とを備え、この供給穴及び吐出穴は、長手方向が外部誘電体の軸線と平行なスリット状にそれぞれ形成される。   The external dielectric includes a supply hole that opens to the upper outer peripheral surface and supplies a processing gas, and a discharge hole that opens to the lower outer peripheral surface and discharges the supplied processing gas toward a processing object. The supply hole and the discharge hole are each formed in a slit shape whose longitudinal direction is parallel to the axis of the external dielectric.

前記ガス供給機構は、外部誘電体の供給穴に接続したガス導入部を備え、当該ガス導入部を介してこの供給穴から外部誘電体と内部電極との間に処理ガスを供給する。   The gas supply mechanism includes a gas introduction portion connected to a supply hole of the external dielectric, and supplies a processing gas from the supply hole to the external dielectric and the internal electrode via the gas introduction portion.

この表面処理装置によれば、ガス供給機構によりガス導入部を介して供給穴から外部誘電体と内部電極との間に処理ガスが供給されるとともに、高周波電源により内部電極と外部電極との間に高周波電圧が印加され、当該内部電極と外部電極とによって高周波電界が形成される。   According to this surface treatment apparatus, the process gas is supplied between the external dielectric and the internal electrode from the supply hole through the gas introduction portion by the gas supply mechanism, and between the internal electrode and the external electrode by the high frequency power source. A high frequency voltage is applied to the first electrode, and a high frequency electric field is formed by the internal electrode and the external electrode.

外部誘電体と内部電極との間に供給された処理ガスは、当該外部誘電体と内部電極との間を吐出穴側に向けて流動するとともに、前記高周波電界によって内部電極と外部電極(外部誘電体)との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされ、吐出穴からその下方の処理対象物に向けて吐出される。そして、処理対象物は、このようにして吐出された、プラズマ化された処理ガスにより処理される。   The processing gas supplied between the external dielectric and the internal electrode flows between the external dielectric and the internal electrode toward the discharge hole side, and the internal and external electrodes (external dielectric) by the high-frequency electric field. Is generated into the plasma containing radical atoms and ions, and is discharged from the discharge hole toward the processing object below the discharge hole. Then, the processing object is processed by the plasma-ized processing gas discharged in this manner.

特開2001−35835号公報JP 2001-35835 A

ところで、上記従来の表面処理装置において、外部電極101の、外部誘電体102の軸線方向における両端部では、図10に示すように電気力線Rが集中し、この両端部近傍は電界が強くなっている。このため、上記従来の表面処理装置では、当該端部と内部電極103との間で放電が集中的に生じることとなり、この端部近傍の外部誘電体102が局所的に温度上昇して破損するという問題を生じていた。   By the way, in the above-described conventional surface treatment apparatus, the electric lines of force R are concentrated at both ends of the external electrode 101 in the axial direction of the external dielectric 102 as shown in FIG. ing. For this reason, in the conventional surface treatment apparatus, discharge is concentrated between the end portion and the internal electrode 103, and the external dielectric 102 near the end portion is locally increased in temperature and damaged. It was causing the problem.

本発明は、以上の実情に鑑みなされたものであって、電気力線の集中を緩和して放電の集中を抑制することができる処理ガス吐出装置、及び当該処理ガス吐出装置を備えた表面処理装置の提供をその目的とする。   The present invention has been made in view of the above circumstances, and is a processing gas discharge device capable of reducing the concentration of electric lines of force and suppressing the concentration of discharge, and a surface treatment including the processing gas discharge device. The purpose is to provide a device.

上記目的を達成するための本発明は、
処理ガスをプラズマ化して吐出する吐出手段と、該吐出手段に前記処理ガスを供給するガス供給手段とから構成される処理ガス吐出装置であって、
前記吐出手段は、
管状の部材からなり、前記処理ガスが供給される供給穴と、前記供給された処理ガスを吐出する吐出穴とが外周面に開口した外部誘電体と、
前記外部誘電体の外周面の、前記供給穴及び吐出穴を塞がない位置に設けられ、接地された外部電極と、
管状の部材からなり、前記外部誘電体の管内に、該外部誘電体の内周面と一定間隔を隔てるように且つ該外部誘電体と同軸に設けられる内部誘電体と、
前記内部誘電体の管内に設けられる内部電極と、
前記内部電極と外部電極との間に電圧を印加する電圧印加手段とを備え、
前記ガス供給手段は、前記供給穴から前記外部誘電体と内部誘電体との間に前記処理ガスを供給するように構成され、
前記外部誘電体と内部誘電体との間に供給された処理ガスは、前記電圧印加手段により前記内部電極と外部電極との間に電圧が印加されることによってプラズマ化された後、前記吐出穴から外部へ吐出されるように構成された処理ガス吐出装置において、
前記外部誘電体の軸線方向における、前記外部電極の両端部に配置され、且つ該外部電極にそれぞれ接続された導電部材を備え、該導電部材は、前記外部誘電体の円周方向において前記外部電極のある部分に少なくとも設けられ、該外部誘電体の外周面と間隔を隔てて円弧状に形成されるとともに、前記外部電極の両端部から該外部誘電体の軸線方向に離れるに従って内径が大きくなるように該外部誘電体の軸線に対し傾斜して形成されてなることを特徴とする処理ガス吐出装置に係る。
To achieve the above object, the present invention provides:
A processing gas discharge device comprising discharge means for converting a processing gas into plasma and discharging, and gas supply means for supplying the processing gas to the discharge means;
The discharge means is
An external dielectric made of a tubular member and having a supply hole to which the processing gas is supplied and a discharge hole for discharging the supplied processing gas opened on an outer peripheral surface;
An outer electrode provided on the outer peripheral surface of the external dielectric at a position that does not block the supply hole and the discharge hole, and is grounded;
An inner dielectric formed of a tubular member and provided in the outer dielectric tube so as to be spaced apart from the inner peripheral surface of the outer dielectric and coaxially with the outer dielectric;
An internal electrode provided in the internal dielectric tube;
Voltage application means for applying a voltage between the internal electrode and the external electrode,
The gas supply means is configured to supply the processing gas between the external dielectric and the internal dielectric from the supply hole,
The processing gas supplied between the external dielectric and the internal dielectric is turned into plasma by applying a voltage between the internal electrode and the external electrode by the voltage applying means, and then the discharge hole. In the processing gas discharge device configured to be discharged from the outside,
Conductive members disposed at both ends of the external electrode in the axial direction of the external dielectric and connected to the external electrodes, respectively, and the conductive member is connected to the external electrode in a circumferential direction of the external dielectric. The outer dielectric is formed in an arc shape at a distance from the outer peripheral surface of the external dielectric, and the inner diameter increases as the distance from the both ends of the external electrode in the axial direction of the external dielectric increases. Further, the present invention relates to a processing gas discharge device which is formed to be inclined with respect to the axis of the external dielectric.

この処理ガス吐出装置によれば、ガス供給手段によって供給穴から外部誘電体と内部誘電体との間に処理ガスが供給されると、供給された処理ガスは、当該外部誘電体と内部誘電体との間を吐出穴側に向けて流動する。   According to the processing gas discharge device, when the processing gas is supplied from the supply hole between the external dielectric and the internal dielectric by the gas supply means, the supplied processing gas is supplied to the external dielectric and the internal dielectric. Flows toward the discharge hole.

内部電極と外部電極との間には、電圧印加手段によって電圧が印加され、当該内部電極と外部電極とによって電界が形成されており、前記処理ガスは、この電界によって当該内部電極(内部誘電体)と外部電極(外部誘電体)との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされる。そして、プラズマ化された処理ガスは、吐出穴から外部に向けて吐出される。   A voltage is applied between the internal electrode and the external electrode by a voltage applying means, and an electric field is formed by the internal electrode and the external electrode, and the processing gas is separated from the internal electrode (internal dielectric) by the electric field. ) And an external electrode (external dielectric) to generate plasma containing radical atoms and ions. The plasma-ized processing gas is discharged from the discharge hole toward the outside.

本発明では、外部誘電体の軸線方向における外部電極の両端部に当該外部誘電体の外周面と間隔を隔てて円弧状に設けられ、外部電極の両端部から離れるに従って内径が大きくなるように外部誘電体の軸線に対して傾斜した導電部材を外部電極に接続して設けており、このような、外部誘電体の外周面から徐々に離れる導電部材を設けることで、導電部材側に電気力線を向かわせて外部電極の両端部に電気力線が集中するのを緩和することができ、上記従来の表面処理装置のように、外部電極の両端部に電気力線が集中してこの両端部近傍の電界が強くなるのを防止することができる。   In the present invention, the external electrode is provided in an arc shape at both ends of the external electrode in the axial direction with a space from the outer peripheral surface of the external dielectric, and the external diameter is increased so as to increase from the both ends of the external electrode. A conductive member inclined with respect to the axis of the dielectric is provided connected to the external electrode, and by providing such a conductive member that gradually moves away from the outer peripheral surface of the external dielectric, the lines of electric force are generated on the conductive member side. It is possible to alleviate the concentration of electric lines of force at both ends of the external electrode, and the lines of electric force are concentrated at both ends of the external electrode as in the conventional surface treatment apparatus. It is possible to prevent a nearby electric field from becoming strong.

これにより、外部電極の両端部に放電が集中するのを抑制して、放電の集中による、当該両端部近傍の外部誘電体や内部誘電体の局所的な温度上昇を防止し、当該外部誘電体や内部誘電体が破損するのを防止することができる。   As a result, the concentration of discharge at both ends of the external electrode is suppressed, and the local temperature increase of the external dielectric and the internal dielectric near the both ends due to the concentration of discharge is prevented. And damage to the internal dielectric can be prevented.

尚、前記導電部材の、前記外部誘電体の軸線に対する傾斜角度は、2°〜30°であることが好ましい。これは、傾斜角度が2°よりも小さいと、導電部材の傾斜方向上側の端部に電気力線が集中して当該端部に放電が集中し、傾斜角度が30°よりも大きいと、導電部材の傾斜方向下側の端部に電気力線が集中して当該端部に放電が集中するため、外部誘電体や内部誘電体の局所的な温度上昇を防止することができないからである。したがって、上記角度範囲内であれば、電気力線の集中を効果的に緩和して放電の集中を抑制し、外部誘電体や内部誘電体の局所的な温度上昇を防止することができる。   The inclination angle of the conductive member with respect to the axis of the external dielectric is preferably 2 ° to 30 °. This is because when the tilt angle is smaller than 2 °, the electric lines of force concentrate at the end on the upper side in the tilt direction of the conductive member, and the discharge concentrates at the end, and when the tilt angle is larger than 30 °, This is because the lines of electric force concentrate on the lower end of the member in the tilt direction and the discharge concentrates on the end, so that local temperature rise of the external dielectric and the internal dielectric cannot be prevented. Therefore, if it is within the above-mentioned angle range, it is possible to effectively alleviate the concentration of electric lines of force and suppress the concentration of discharge, and to prevent local temperature rise of the external dielectric and the internal dielectric.

また、本発明は、
処理対象物を支持する支持手段と、
上述した処理ガス吐出装置とを備え、
前記処理ガス吐出装置は、前記吐出穴が前記支持手段によって支持された処理対象物と対峙するように配置され、
前記処理ガス吐出装置から吐出された処理ガスによって前記処理対象物の表面を処理するように構成されてなることを特徴とする表面処理装置に係る。
The present invention also provides:
Support means for supporting the object to be treated;
Including the processing gas discharge device described above,
The processing gas discharge device is disposed so that the discharge hole faces the processing object supported by the support means,
According to the surface treatment apparatus, the surface of the object to be treated is treated with the treatment gas discharged from the treatment gas discharge apparatus.

この表面処理装置によれば、処理ガス吐出装置が、上述のように、外部誘電体や内部誘電体の破損を防止することができることから、メンテナンス回数を減らすことができるなどプラズマ表面処理(例えば、表面改質処理や洗浄処理、成膜処理など)を効率的に実施することができる。   According to this surface treatment apparatus, since the process gas discharge device can prevent the external dielectric and the internal dielectric from being damaged as described above, the plasma surface treatment (e.g., the number of maintenance can be reduced) Surface modification treatment, cleaning treatment, film formation treatment, etc.) can be carried out efficiently.

以上のように、本発明に係る処理ガス吐出装置によれば、放電の集中による外部誘電体や内部誘電体の局所的な温度上昇を防止してこれらが破損するのを防止することができ、また、本発明に係る表面処理装置によれば、メンテナンス回数を減らすことができるなどプラズマ表面処理を効率的に実施することができる。   As described above, according to the processing gas discharge apparatus according to the present invention, it is possible to prevent the local temperature rise of the external dielectric and the internal dielectric due to the concentration of discharge and prevent them from being damaged, In addition, according to the surface treatment apparatus of the present invention, plasma surface treatment can be efficiently performed, for example, the number of maintenance can be reduced.

以下、本発明の具体的な実施形態について、添付図面に基づき説明する。尚、図1は、本発明の一実施形態に係る表面処理装置の概略構成を示した正断面図であり、図2は、図1における矢示A−A方向の断面図であり、図3は、図1における矢示B−B方向の断面図である。また、図4は、本実施形態に係る外部誘電体の概略構成を示した平面図であり、図5は、図4に示した外部誘電体の底面図であり、図6は、本実施形態に係る内部電極の概略構成を示した説明図であり、図7は、本実施形態に係る内部電極及び冷却管などの概略構成を示した断面図であり、図8は、本実施形態に係る接続部材及び整流板の概略構成を示した底面図である。   Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a front sectional view showing a schematic configuration of a surface treatment apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view in the direction of arrows AA in FIG. These are sectional drawings of the arrow BB direction in FIG. 4 is a plan view showing the schematic configuration of the external dielectric according to the present embodiment, FIG. 5 is a bottom view of the external dielectric shown in FIG. 4, and FIG. 6 is the present embodiment. FIG. 7 is a cross-sectional view illustrating a schematic configuration of the internal electrode and the cooling pipe according to the present embodiment, and FIG. 8 illustrates the schematic configuration of the internal electrode according to the present embodiment. It is the bottom view which showed schematic structure of the connection member and the baffle plate.

図1乃至図3に示すように、本例の表面処理装置1は、処理対象物たる基板Kを水平に支持して所定の方向(図2及び図3の矢示方向)に搬送する搬送ローラ10と、この搬送ローラ10によって搬送される基板Kの上方に配設され、当該基板Kに向け処理ガスをプラズマ化して吐出する吐出機構21、及びこの吐出機構21に前記処理ガスを供給するガス供給機構50からなる処理ガス吐出装置20などを備えて構成される。   As shown in FIGS. 1 to 3, the surface treatment apparatus 1 of the present example horizontally supports a substrate K as a processing object and conveys the substrate K in a predetermined direction (the direction indicated by the arrows in FIGS. 2 and 3). 10 and a discharge mechanism 21 that is disposed above the substrate K that is transported by the transport roller 10 and that discharges the processing gas into plasma toward the substrate K, and a gas that supplies the processing gas to the discharge mechanism 21 A processing gas discharge device 20 including a supply mechanism 50 is provided.

前記搬送ローラ10は、その複数が基板搬送方向に沿って所定間隔で配設され、その回転軸10aの両端部が支持部材(図示せず)によって回転自在に支持されている。また、搬送ローラ10は、その回転軸10aの一方端が駆動機構(図示せず)に接続されており、この駆動機構(図示せず)によって回転軸10aが軸中心に回転せしめられることで、基板Kを前記基板搬送方向に搬送する。   A plurality of the transport rollers 10 are arranged at predetermined intervals along the substrate transport direction, and both end portions of the rotation shaft 10a are rotatably supported by support members (not shown). Further, the conveyance roller 10 has one end of a rotary shaft 10a connected to a drive mechanism (not shown), and the drive shaft (not shown) causes the rotary shaft 10a to rotate about the axis, The substrate K is transported in the substrate transport direction.

前記吐出機構21は、石英ガラス管などからなる外部誘電体22と、外部誘電体22の外周面に設けられた外部電極26と、アルミニウムなどの金属からなり、外部電極26を介して外部誘電体22を保持する保持部材27と、ステンレスなどの金属からなり、外部誘電体22の軸線方向における保持部材27の両端部にそれぞれ設けられたラッパ状の導電部材29と、石英ガラス管などからなり、外部誘電体22の管内に、当該外部誘電体22の内周面と一定間隔を隔てるように且つ当該外部誘電体22と同軸に設けられる内部誘電体35と、内部誘電体35の管内に設けられる内部電極36と、内部電極36と外部電極26との間に高周波電圧を印加する高周波電源39と、内部電極36及び保持部材27の内部に冷却液を流通,循環させる冷却液循環機構40とを備える。   The discharge mechanism 21 includes an external dielectric 22 made of a quartz glass tube, an external electrode 26 provided on the outer peripheral surface of the external dielectric 22, and a metal such as aluminum. A holding member 27 for holding 22, a metal such as stainless steel, a trumpet-shaped conductive member 29 provided at both ends of the holding member 27 in the axial direction of the external dielectric 22, a quartz glass tube, and the like, In the tube of the external dielectric 22, an internal dielectric 35 is provided so as to be spaced apart from the inner peripheral surface of the external dielectric 22 and coaxially with the external dielectric 22, and provided in the tube of the internal dielectric 35. The coolant is circulated and circulated through the internal electrode 36, the high-frequency power source 39 that applies a high-frequency voltage between the internal electrode 36 and the external electrode 26, and the internal electrode 36 and the holding member 27. That includes a coolant circulation system 40.

前記外部誘電体22は、その軸線が基板搬送方向と直交するとともに、基板Kの全幅に渡り当該基板Kと一定間隔を隔てて対峙するように当該基板Kの上方に設けられており、上部外周面に形成された凸部22aと、両端部に形成された鍔部22bと、凸部22aの上面から内周面に貫通し、ガス供給機構50から処理ガスが供給される供給穴23と、下部外周面から内周面に貫通し、前記供給された処理ガスを基板Kに向けて吐出する吐出穴24とを備える。   The external dielectric 22 is provided above the substrate K so that its axis is orthogonal to the substrate transport direction and faces the substrate K at a predetermined interval over the entire width of the substrate K. A convex portion 22a formed on the surface, a flange portion 22b formed on both ends, a supply hole 23 penetrating from the upper surface of the convex portion 22a to the inner peripheral surface and supplied with a processing gas from the gas supply mechanism 50, A discharge hole 24 that penetrates from the lower outer peripheral surface to the inner peripheral surface and discharges the supplied processing gas toward the substrate K is provided.

前記供給穴23及び吐出穴24は、図4及び図5に示すように、外部誘電体22の軸線方向に一列に形成された複数のスリット穴からそれぞれ構成されており、当該各スリット穴は、所定長さL1,L4のスリット部23a,24aと、このスリット部23a,24aの両端に形成され、当該スリット部23a,24aのスリット幅L2,L5よりも直径D1,D2の大きい丸穴23b,24b(直径D1はスリット幅L2より大きく、直径D2はスリット幅L5より大きい)とから構成されるとともに、長手方向が外部誘電体22の軸線に沿うように且つ隣り合う端部間の距離が所定間隔L3,L6となるように形成されている。   The supply hole 23 and the discharge hole 24 are each composed of a plurality of slit holes formed in a line in the axial direction of the external dielectric 22, as shown in FIGS. Slit portions 23a and 24a having predetermined lengths L1 and L4, and round holes 23b formed at both ends of the slit portions 23a and 24a and having diameters D1 and D2 larger than the slit widths L2 and L5 of the slit portions 23a and 24a, 24b (the diameter D1 is larger than the slit width L2 and the diameter D2 is larger than the slit width L5), and the distance between adjacent ends is predetermined so that the longitudinal direction is along the axis of the external dielectric 22 They are formed so as to be spaced L3 and L6.

尚、前記スリット部23a,24aの長手方向の長さL1,L4は、300mm〜1200mmに設定され、前記スリット部23aのスリット幅L2は、0.2mm〜2.0mmに設定され、前記スリット穴の隣り合う端部間の距離L3,L6は、0.5mm〜2.0mmに設定され、前記丸穴23bの直径D1は、スリット幅L2の2倍〜6倍に設定され、前記丸穴24bの直径D2は、スリット幅L5の2倍〜6倍に設定される。   The longitudinal lengths L1 and L4 of the slit portions 23a and 24a are set to 300 mm to 1200 mm, the slit width L2 of the slit portion 23a is set to 0.2 mm to 2.0 mm, and the slit holes The distances L3 and L6 between adjacent end portions are set to 0.5 mm to 2.0 mm, the diameter D1 of the round hole 23b is set to 2 to 6 times the slit width L2, and the round hole 24b. The diameter D2 is set to 2 to 6 times the slit width L5.

また、前記スリット部24aのスリット幅L5は、加工上の問題から0.2mmよりも小さくすることは難しいが、できるだけ小さいことが好ましい。これは、スリット幅L5を細くすることで、吐出穴24から吐出される処理ガスの流速を速くし、励起状態にある処理ガスを、通常の状態に戻る前に基板Kの表面に到達させることができるからである。   The slit width L5 of the slit portion 24a is difficult to be smaller than 0.2 mm due to processing problems, but is preferably as small as possible. This is because the flow width of the processing gas discharged from the discharge hole 24 is increased by narrowing the slit width L5, and the processing gas in the excited state reaches the surface of the substrate K before returning to the normal state. Because you can.

前記外部電極26は、アルミニウムなどの金属膜から構成され、外部誘電体22の左右両側の、凸部22aと吐出穴24の近傍との間の外周面に当接して設けられており、保持部材27を介して接地されている。   The external electrode 26 is made of a metal film such as aluminum, and is provided in contact with the outer peripheral surface between the convex portion 22 a and the vicinity of the discharge hole 24 on both the left and right sides of the external dielectric 22. 27 is grounded.

前記保持部材27は、冷却液を流通させるための冷却流路27aを備えた左右対称な2部材を一組として構成されており、外部電極26の外周面に当接して外部誘電体22を左右両側から挟持するとともに、外部誘電体22をその両端部が当該保持部材27及び導電部材29から突出した状態で保持する。また、左右の各保持部材27は、その上面に取り付けられた連結部材28によって連結,固定されている。   The holding member 27 is composed of a pair of two symmetrical members each having a cooling flow path 27a for allowing the coolant to flow. The holding member 27 is in contact with the outer peripheral surface of the external electrode 26 so that the external dielectric 22 is left and right. While sandwiching from both sides, the external dielectric 22 is held in a state where both ends protrude from the holding member 27 and the conductive member 29. The left and right holding members 27 are connected and fixed by a connecting member 28 attached to the upper surface thereof.

前記導電部材29は、外部誘電体22の軸線方向における保持部材27の両端部に取り付けられ(即ち、外部誘電体22の軸線方向における外部電極26の両端部に配置され)、外部誘電体22と同軸の貫通穴30aを備える平板状の取付部30と、取付部30の表面に固設され、外部誘電体22の外周面と間隔を隔てて円弧状に形成されるとともに、取付部30側から外部誘電体22の軸線方向に離れるに従って内径が大きくなるように外部誘電体22の軸線に対して傾斜角度θで傾斜し且つ外部誘電体22と同軸に形成された傾斜部31とを備える。斯くして、この導電部材29(傾斜部31)により、外部誘電体22の外周面は、その下部側部分を除いて囲まれた状態となっている。尚、導電部材29は、左右対称な2部材を一組として構成され、また、前記傾斜角度θは、2°〜30°の範囲に設定される。   The conductive member 29 is attached to both ends of the holding member 27 in the axial direction of the external dielectric 22 (that is, disposed at both ends of the external electrode 26 in the axial direction of the external dielectric 22). A flat mounting portion 30 having a coaxial through hole 30a, and fixed to the surface of the mounting portion 30, are formed in an arc shape with a distance from the outer peripheral surface of the external dielectric 22, and from the mounting portion 30 side. An inclined portion 31 that is inclined at an inclination angle θ with respect to the axis of the external dielectric 22 and is formed coaxially with the external dielectric 22 is provided so that the inner diameter increases as the distance from the axis of the external dielectric 22 increases. Thus, the outer peripheral surface of the external dielectric 22 is surrounded by the conductive member 29 (inclined portion 31) except for the lower portion thereof. The conductive member 29 is configured as a pair of two symmetrical members, and the inclination angle θ is set in a range of 2 ° to 30 °.

前記内部誘電体35は、その両端部が外部誘電体22の両端部から突出した状態で当該外部誘電体22の内部に配置されており、一端部が封止部材35aによって封止されている。また、内部誘電体35は、外部誘電体22の内周面に当該外部誘電体22の軸線方向に一定間隔で設けられる図示しないスペーサによって、外部誘電体22の内周面との間に一定の隙間を確実に形成して配置される。尚、内部誘電体35と外部誘電体22との間の隙間は、当該外部誘電体22の各鍔部22bの端面に一端側が当接して設けられる筒状の封止部材32,33によって封止されている。   The internal dielectric 35 is disposed inside the external dielectric 22 with its both ends protruding from both ends of the external dielectric 22, and one end is sealed by a sealing member 35a. The inner dielectric 35 is fixed between the inner peripheral surface of the outer dielectric 22 by a spacer (not shown) provided on the inner peripheral surface of the outer dielectric 22 at regular intervals in the axial direction of the outer dielectric 22. The gap is reliably formed and arranged. The gap between the inner dielectric 35 and the outer dielectric 22 is sealed by cylindrical sealing members 32 and 33 provided with one end abutting against the end surface of each flange 22b of the outer dielectric 22. Has been.

前記内部電極36は、図1乃至図3、図6及び図7に示すように、一端部が封止部材37aによって封止されたステンレス管などからなり、内部誘電体35の管内に当該内部誘電体35と同軸に配置される心材37と、ステンレスなどからなる、厚みが20μm〜50μmのシート状の部材から構成され、心材37の外周面に筒状に巻かれる金属箔38とを備えており、当該金属箔38は、外力が加えられることで変形し、当該外力が取り除かれることで形状が原形に回復するように構成される(即ち、スプリングバック特性を備える)とともに、形状回復作用によって金属箔38の表面が内部誘電体35の内周面に当接するように構成される。   As shown in FIGS. 1 to 3, 6, and 7, the internal electrode 36 is formed of a stainless steel tube or the like having one end sealed with a sealing member 37 a, and the internal dielectric 35 is disposed within the internal dielectric 35. A core material 37 disposed coaxially with the body 35, and a sheet-like member made of stainless steel and having a thickness of 20 μm to 50 μm, and a metal foil 38 wound around the outer peripheral surface of the core material 37 in a cylindrical shape. The metal foil 38 is configured to be deformed when an external force is applied, and to be restored to its original shape when the external force is removed (that is, to have a springback characteristic), and to recover the metal by a shape recovery action. The surface of the foil 38 is configured to contact the inner peripheral surface of the internal dielectric 35.

尚、心材37は、図6に示すように、金属箔38が、その外径が内部誘電体35の内径よりも小さくなるように巻き付けられた後、内部誘電体35の管内に挿入されるようになっており、内部誘電体35の管内に挿入されて、金属箔38に作用する外力が取り除かれると、金属箔38のスプリングバックによって外径が大きくなることから、内部誘電体35の内周面の全面にこの金属箔38を介して当接することとなる。また、心材37の一端部は、外部電極26や保持部材27、導電部材29よりも外部誘電体22の端部側に位置している。   As shown in FIG. 6, the core material 37 is inserted into the tube of the inner dielectric 35 after the metal foil 38 is wound so that the outer diameter thereof is smaller than the inner diameter of the inner dielectric 35. When the external force acting on the metal foil 38 is removed by being inserted into the tube of the internal dielectric 35, the outer diameter is increased by the spring back of the metal foil 38. The entire surface is brought into contact with the metal foil 38. One end of the core material 37 is located closer to the end of the external dielectric 22 than the external electrode 26, the holding member 27, and the conductive member 29.

前記高周波電源39は、内部電極36の心材37と外部電極26との間に高周波電圧を印加するように構成される。   The high frequency power supply 39 is configured to apply a high frequency voltage between the core material 37 of the internal electrode 36 and the external electrode 26.

前記冷却液循環機構40は、図1乃至図3、図6及び図7に示すように、心材37の管内に配置され、一端及び外周面が当該心材37の内面と間隔を隔てて設けられる冷却管41と、ステンレスワイヤなどからなり、冷却管41の外周面に螺旋状に巻かれて心材37の内周面と冷却管41の外周面との間に一定間隔を確保するための金属ワイヤ42と、心材37の他端が接続し、冷却管41の他端側が貫通して設けられる継手43と、冷却管41の他端に接続した第1接続管44と、継手43を介して心材37と冷却管41との間に接続した第2接続管45と、保持部材27の冷却流路27aの一端側に接続した第3接続管(図示せず)と、冷却流路27aの他端側に接続した第4接続管(図示せず)と、第1接続管44及び第3接続管(図示せず)から冷却液を供給するとともに、供給した冷却液を第2接続管45及び第4接続管(図示せず)から還流させる循環装置46とを備える。   As shown in FIGS. 1 to 3, 6, and 7, the coolant circulation mechanism 40 is disposed in the pipe of the core material 37, and one end and an outer peripheral surface of the coolant circulation mechanism 40 are provided at a distance from the inner surface of the core material 37. A metal wire 42 made of a pipe 41 and a stainless steel wire and spirally wound around the outer peripheral surface of the cooling tube 41 to ensure a constant interval between the inner peripheral surface of the core material 37 and the outer peripheral surface of the cooling tube 41. The other end of the core material 37 is connected, and the other end side of the cooling pipe 41 is provided therethrough, the first connection pipe 44 connected to the other end of the cooling pipe 41, and the core material 37 via the joint 43. A second connecting pipe 45 connected between the cooling pipe 41, a third connecting pipe (not shown) connected to one end side of the cooling flow path 27a of the holding member 27, and the other end side of the cooling flow path 27a. A fourth connecting pipe (not shown) connected to the first connecting pipe 44 and the third connecting pipe (see FIG. It supplies a coolant from without), and a circulating device 46 for returning the supplied cooling liquid second connecting pipe 45 and the fourth connecting pipe (not shown).

前記ガス供給機構50は、図1乃至図3及び図8に示すように、一端が封止され、当該一端部が外部誘電体22の上方に外部誘電体22の軸線と平行に配置された導入管51と、導入管51の他端が接続され、圧力スイング吸着(PSA)式窒素ガス生成装置などから構成されて窒素ガスを主成分とする処理ガスを生成する処理ガス生成装置52と、上下に開口した中空状の部材からなり、上端部が導入管51の一端側下部の外周面からその管内に接続し、下端部が外部誘電体22の凸部22aの上面に接続した接続部材53と、接続部材53の上端側内部に重ねられて設けられる平板状且つ細長の部材からなり、上下に貫通し且つ長手方向に一列に形成された複数の貫通穴54aを備える複数の整流板54とを備えており、処理ガス生成装置52から導入管51,接続部材53(整流板54),供給穴23を順次介して外部誘電体22と内部誘電体35との間に前記処理ガスを供給する。尚、接続部材53の下面には供給穴23の周囲を囲むように凹溝53aが形成されて、この凹溝53a内にシール部材55が配置されており、このシール部材55によって接続部材53と凸部22aとの接続部が気密に保たれている。   As shown in FIG. 1 to FIG. 3 and FIG. 8, the gas supply mechanism 50 is introduced such that one end is sealed and the one end is disposed above the external dielectric 22 and parallel to the axis of the external dielectric 22. A pipe 51 and a processing gas generation device 52 that is connected to the other end of the introduction pipe 51 and includes a pressure swing adsorption (PSA) type nitrogen gas generation device or the like and generates a processing gas mainly containing nitrogen gas; A connecting member 53 having a top end connected to the inside of the pipe from the outer peripheral surface of the lower end on one end side of the introduction pipe 51, and a lower end connected to the upper surface of the protrusion 22 a of the external dielectric 22. A plurality of rectifying plates 54 each including a plurality of through-holes 54a formed of a flat plate-like and elongated member provided to be overlapped with the inside of the upper end side of the connection member 53 and vertically formed and arranged in a line in the longitudinal direction. Equipped with a process gas generator Introducing tube 51 from 52, the connecting member 53 (rectifying plate 54), supplying the process gas between the outer dielectric 22 and the inner dielectric 35 sequentially through the supply holes 23. A concave groove 53a is formed on the lower surface of the connection member 53 so as to surround the periphery of the supply hole 23, and a seal member 55 is disposed in the concave groove 53a. The connection part with the convex part 22a is kept airtight.

以上のように構成された本例の表面処理装置1によれば、ガス供給機構50の処理ガス生成装置52によって生成された処理ガスが導入管51,接続部材53及び整流板54を介して供給穴23から外部誘電体22と内部誘電体35との間に供給されると、供給された処理ガスは、当該外部誘電体22と内部誘電体35との間を吐出穴24側に向けて流動する。   According to the surface treatment apparatus 1 of the present example configured as described above, the process gas generated by the process gas generation device 52 of the gas supply mechanism 50 is supplied via the introduction pipe 51, the connection member 53, and the rectifying plate 54. When supplied between the external dielectric 22 and the internal dielectric 35 from the hole 23, the supplied processing gas flows between the external dielectric 22 and the internal dielectric 35 toward the discharge hole 24 side. To do.

内部電極36の心材37と外部電極26との間には、高周波電源39により高周波電圧が印加され、金属箔38(内部電極36)と外部電極26とによって高周波電界が形成されており、前記処理ガスは、この高周波電界によって当該金属箔38(内部誘電体35)と外部電極26(外部誘電体22)との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされる。   A high-frequency voltage is applied between the core material 37 of the internal electrode 36 and the external electrode 26 by a high-frequency power supply 39, and a high-frequency electric field is formed by the metal foil 38 (internal electrode 36) and the external electrode 26. The gas is turned into plasma containing radical atoms, ions, and the like by discharge generated between the metal foil 38 (internal dielectric 35) and the external electrode 26 (external dielectric 22) by the high-frequency electric field.

そして、プラズマ化された処理ガスは、吐出穴24から外部へ吐出され、吐出された処理ガス中のラジカル原子やイオンによって、搬送ローラ10により搬送される基板Kの表面が処理される(例えば、表面改質処理や洗浄処理、成膜処理などが行われる)。   Then, the plasma-ized processing gas is discharged to the outside from the discharge hole 24, and the surface of the substrate K transferred by the transfer roller 10 is processed by radical atoms and ions in the discharged processing gas (for example, Surface modification treatment, cleaning treatment, film formation treatment, etc. are performed).

尚、保持部材27及び外部電極26や、内部電極36の心材37及び金属箔38は、冷却液循環機構40の循環装置46から供給され、冷却流路27a内や、心材37と冷却管41との間を流通する冷却液によって冷却されており、これによって、外部誘電体22及び内部誘電体35たる石英ガラス管が破損するのが防止されている。   The holding member 27, the external electrode 26, the core material 37 of the internal electrode 36, and the metal foil 38 are supplied from the circulation device 46 of the coolant circulation mechanism 40, and the inside of the cooling channel 27 a, the core material 37, the cooling pipe 41, and the like. The quartz glass tube which is the outer dielectric 22 and the inner dielectric 35 is prevented from being broken by this.

また、供給穴23から外部誘電体22と内部誘電体35との間に供給される処理ガスの流量は、ガス供給機構50の接続部材53内に設けられた複数の整流板54によって均一となるように調整されており、これによって、外部誘電体22と内部誘電体35と間のプラズマ状態が均一とされたり、吐出穴24から吐出される処理ガスの吐出流量が均一とされている。   Further, the flow rate of the processing gas supplied from the supply hole 23 between the external dielectric 22 and the internal dielectric 35 is made uniform by the plurality of rectifying plates 54 provided in the connection member 53 of the gas supply mechanism 50. Thus, the plasma state between the outer dielectric 22 and the inner dielectric 35 is made uniform, and the discharge flow rate of the processing gas discharged from the discharge holes 24 is made uniform.

上述のように、本例の表面処理装置1における処理ガス吐出装置20では、外部誘電体22の軸線方向における保持部材27の両端部に、取付部30及び傾斜部31からなるラッパ状の導電部材29を設け、当該導電部材29により外部誘電体22をその外周面との間の間隔が徐々に広くなるように囲んでいるので、図9に示すように、導電部材29の傾斜部31側に電気力線Rを向かわせて保持部材27の両端部(取付部30の表面)に電気力線Rが集中するのを緩和することができ、上記従来の表面処理装置のように、保持部材27(外部電極26)の両端部に電気力線Rが集中してこの両端部近傍の電界が強くなるのを防止することができる。   As described above, in the processing gas discharge device 20 in the surface treatment apparatus 1 of the present example, the trumpet-shaped conductive member including the attachment portion 30 and the inclined portion 31 at both ends of the holding member 27 in the axial direction of the external dielectric 22. 29, and the outer dielectric 22 is surrounded by the conductive member 29 so that the distance between the outer dielectric 22 and the outer peripheral surface gradually increases. Therefore, as shown in FIG. It is possible to alleviate the concentration of the electric lines of force R at both ends of the holding member 27 (the surface of the mounting portion 30) so that the electric lines of force R are directed, and like the above-described conventional surface treatment apparatus, the holding member 27 can be relaxed. It is possible to prevent the lines of electric force R from concentrating at both ends of the (external electrode 26) and increasing the electric field in the vicinity of both ends.

これにより、当該両端部に放電が集中するのを抑制して、放電の集中による、当該両端近傍の外部誘電体22や内部誘電体35の局所的な温度上昇を防止し、当該外部誘電体22や内部誘電体35が破損するのを防止することができる。   Thereby, it is possible to suppress the concentration of the discharge at the both end portions, to prevent local temperature rise of the external dielectric 22 and the internal dielectric 35 near the both ends due to the concentration of the discharge, and to the external dielectric 22. It is possible to prevent the internal dielectric 35 from being damaged.

尚、傾斜部31の、外部誘電体22の軸線に対する傾斜角度θは2°〜30°の範囲に設定することが好ましく、このようにすれば、電気力線の集中を効果的に緩和して放電の集中を抑制し、外部誘電体22や内部誘電体35の局所的な温度上昇を更に効果的に防止することができる。これは、傾斜角度θが2°よりも小さいと、傾斜部31の傾斜方向上側の端部に電気力線が集中して当該端部に放電が集中し、傾斜角度θが30°よりも大きいと、傾斜部31の傾斜方向下側の端部(傾斜部31の付根部)などに電気力線が集中して当該端部に放電が集中するため、外部誘電体22や内部誘電体35の局所的な温度上昇を防止することができないからである。   Note that the inclination angle θ of the inclined portion 31 with respect to the axis of the external dielectric 22 is preferably set in the range of 2 ° to 30 °. In this way, the concentration of electric lines of force can be effectively reduced. Concentration of discharge can be suppressed, and local temperature rise of the outer dielectric 22 and the inner dielectric 35 can be more effectively prevented. This is because, when the tilt angle θ is smaller than 2 °, the lines of electric force concentrate on the upper end of the tilted portion 31 in the tilt direction, and the electric discharge concentrates on the end, and the tilt angle θ is larger than 30 °. Since the lines of electric force concentrate on the lower end of the inclined portion 31 in the inclination direction (the root portion of the inclined portion 31) and the discharge concentrates on the end, the outer dielectric 22 and the inner dielectric 35 This is because a local temperature rise cannot be prevented.

また、内部電極36を、心材37と、その外周面に巻き付けられる金属箔38とから構成し、当該金属箔38を、スプリングバック特性を備えるように構成するとともに、スプリングバックによって金属箔38の表面が内部誘電体35の内周面に当接するように構成したので、内部電極36(金属箔38)を内部誘電体35の内周面に、隙間を生じさせることなく完全に当接させることができる。   Further, the internal electrode 36 is constituted by a core material 37 and a metal foil 38 wound around the outer peripheral surface thereof, and the metal foil 38 is constituted so as to have spring back characteristics, and the surface of the metal foil 38 by the spring back. Is configured to abut against the inner peripheral surface of the internal dielectric 35, the internal electrode 36 (metal foil 38) can be completely brought into contact with the inner peripheral surface of the internal dielectric 35 without causing a gap. it can.

これにより、内部誘電体35と内部電極36との間で放電が生じるのを防止して無駄な電力を消費するのを防止することができ、また、心材37の管内を流通する冷却液によって内部誘電体35を効率的且つ均一に冷却し、内部誘電体35の温度上昇を防止して当該内部誘電体35が破損するのを防止することができる。   As a result, it is possible to prevent discharge from occurring between the internal dielectric 35 and the internal electrode 36 and to prevent wasteful power consumption. The dielectric 35 can be cooled efficiently and uniformly, and the temperature rise of the internal dielectric 35 can be prevented to prevent the internal dielectric 35 from being damaged.

尚、金属箔38の厚みは20μm〜50μmの範囲に設定することが好ましく、このようにすれば、製造の容易化や取り扱いの容易化を図ったり、筒状に巻き易くすることができる。これは、厚みが20μmよりも薄いと、薄過ぎて製造上の問題や取り扱い上の問題を生じ、厚みが50μmよりも厚いと、強度が高くなって筒状に巻き難くなるからである。   The thickness of the metal foil 38 is preferably set in the range of 20 μm to 50 μm. In this way, it is possible to facilitate manufacturing and handling and to make it easy to wind in a cylindrical shape. This is because if the thickness is less than 20 μm, it is too thin to cause manufacturing problems and handling problems, and if the thickness is more than 50 μm, the strength is increased and it is difficult to wind the tube.

また、心材37及び冷却管41を2重管構造に構成し、心材37及び冷却管41の他端側に第1接続管44及び第2接続管45を接続しているので、内部誘電体35の片側から効率的にメンテナンスすることができる。また、心材37の両端部にそれぞれ接続管44,45を接続したときのように、接続管の配置スペースなどを内部誘電体35の両側に設ける必要は無く、片側だけで良いので、装置構成のコンパクト化を図ることもできる。   Further, since the core material 37 and the cooling pipe 41 are configured in a double pipe structure, and the first connection pipe 44 and the second connection pipe 45 are connected to the other end side of the core material 37 and the cooling pipe 41, the internal dielectric 35 Maintenance can be efficiently performed from one side. In addition, unlike the case where the connecting pipes 44 and 45 are connected to both ends of the core member 37, it is not necessary to provide the space for arranging the connecting pipes on both sides of the internal dielectric 35, and only one side is required. It can also be made compact.

また、供給穴23を、長手方向が外部誘電体22の軸線に沿うように一列に形成された複数のスリット穴から構成したので、供給穴を一つのスリット穴から構成する場合に比べて、スリット穴一つ当たりの長手方向における長さを短くし、スリット幅L2を一定に加工し易くしたり、スリット穴(スリット部23a)の長手方向を外部誘電体22の軸線と平行に加工し易くすることができるなど、スリット穴の加工精度を向上させることができる。   In addition, since the supply hole 23 is composed of a plurality of slit holes formed in a line so that the longitudinal direction is along the axis of the external dielectric 22, the supply hole is slit compared to the case where the supply hole is composed of one slit hole. The length in the longitudinal direction per hole is shortened, the slit width L2 is easily processed to be constant, and the longitudinal direction of the slit hole (slit portion 23a) is easily processed in parallel with the axis of the external dielectric 22. The processing accuracy of the slit hole can be improved.

これにより、供給穴23から外部誘電体22と内部誘電体35との間に供給される、外部誘電体22の軸線方向における処理ガスの流量を略均一にして、吐出穴24から吐出される処理ガスの流量を略均一にすることができる。   As a result, the process gas supplied from the supply hole 23 between the external dielectric 22 and the internal dielectric 35 is made to be substantially uniform in the axial direction of the external dielectric 22 and discharged from the discharge hole 24. The gas flow rate can be made substantially uniform.

また、吐出穴24についても、供給穴23と同様、長手方向が外部誘電体22の軸線に沿うように一列に形成された複数のスリット穴から構成したので、スリット穴の加工容易化を図って加工精度を高めることができ、当該吐出穴24から外部に吐出される、外部誘電体22の軸線方向における処理ガスの流量を略均一にすることができる。   Moreover, since the discharge hole 24 is composed of a plurality of slit holes formed in a row so that the longitudinal direction thereof is along the axis of the external dielectric 22, as in the case of the supply hole 23, the slit hole can be easily processed. The processing accuracy can be improved, and the flow rate of the processing gas in the axial direction of the external dielectric 22 discharged from the discharge hole 24 to the outside can be made substantially uniform.

尚、スリット部23a,24aの長手方向の長さL1,L4は300mm〜1200mmの範囲に設定することが好ましく、このようにすれば、当該スリット部23a,24aの長さを好適なものとして、供給穴23から外部誘電体22と内部誘電体35との間に供給されたり、吐出穴24から外部に吐出される処理ガスの流量を略均一にすることができる。これは、スリット部23a,24aの長手方向の長さL1,L4が300mmよりも短いと、スリット穴一つ当たりの長さを短くして複数のスリット穴を設ける必要がなく、スリット部23a,24aの長手方向の長さL1,L4が1200mmよりも長くなると、スリット穴を精度良く加工することができないからである。   The lengths L1 and L4 in the longitudinal direction of the slit portions 23a and 24a are preferably set in the range of 300 mm to 1200 mm. In this way, the lengths of the slit portions 23a and 24a are preferable. The flow rate of the processing gas supplied from the supply hole 23 between the external dielectric 22 and the internal dielectric 35 or discharged to the outside from the discharge hole 24 can be made substantially uniform. This is because when the lengths L1 and L4 in the longitudinal direction of the slit portions 23a and 24a are shorter than 300 mm, it is not necessary to shorten the length per slit hole and provide a plurality of slit holes. This is because if the lengths L1 and L4 in the longitudinal direction of 24a are longer than 1200 mm, the slit holes cannot be processed with high accuracy.

また、スリット部23aのスリット幅L2は0.2mm〜2.0mmの範囲に設定することが好ましく、このようにすれば、加工の容易化を図ったり、供給穴23から外部誘電体22と内部誘電体35との間に供給される処理ガスの流量や流速を調整し易くすることができる。これは、スリット幅L2が0.2mmよりも小さくなると、加工が困難になるという問題を生じ、スリット幅L2が2.0mmよりも大きくなると、供給穴23から外部誘電体22と内部誘電体35との間に供給される処理ガスの流量や流速を調整し難くなるからである。   In addition, the slit width L2 of the slit portion 23a is preferably set in a range of 0.2 mm to 2.0 mm. In this way, it is possible to facilitate processing, or from the supply hole 23 to the external dielectric 22 and the inside. It is possible to easily adjust the flow rate and flow rate of the processing gas supplied to the dielectric 35. This causes a problem that processing becomes difficult when the slit width L2 is smaller than 0.2 mm, and when the slit width L2 is larger than 2.0 mm, the external dielectric 22 and the internal dielectric 35 are supplied from the supply hole 23. This is because it becomes difficult to adjust the flow rate and flow rate of the processing gas supplied between the two.

また、スリット穴の隣り合う端部間の距離L3,L6は0.5mm〜2.0mmの範囲に設定することが好ましく、このようにすれば、外部誘電体22の強度低下を招くのを防止したり、処理ガスが供給穴23から外部誘電体22と内部誘電体35との間に供給されない部分や、処理ガスが吐出穴24から外部に吐出されない部分を狭くして処理ガス流量のムラを少なくすることができる。これは、端部間の距離L3,L6が0.5mmよりも小さいと、当該端部間の強度が低下して亀裂や割れなどを生じる恐れが高くなるからであり、端部間の距離L3,L6が2.0mmよりも大きいと、処理ガスが供給穴23から外部誘電体22と内部誘電体35との間に供給されない部分や、処理ガスが吐出穴24から外部に吐出されない部分が広くなって、処理ガス流量のムラが大きくなるからである。   Further, the distances L3 and L6 between the adjacent end portions of the slit holes are preferably set in the range of 0.5 mm to 2.0 mm, and this prevents the strength of the external dielectric 22 from being reduced. Or a portion where the processing gas is not supplied between the outer dielectric 22 and the inner dielectric 35 from the supply hole 23 or a portion where the processing gas is not discharged to the outside from the discharge hole 24 is narrowed, thereby causing unevenness in the flow rate of the processing gas. Can be reduced. This is because if the distances L3 and L6 between the end portions are smaller than 0.5 mm, the strength between the end portions is lowered and the risk of causing cracks and cracks increases. , L6 is larger than 2.0 mm, there are wide portions where the processing gas is not supplied from the supply hole 23 between the external dielectric 22 and the internal dielectric 35 and where the processing gas is not discharged outside from the discharge hole 24. This is because the unevenness of the processing gas flow rate becomes large.

また、スリット部23a,24aの長手方向両端部に、スリット幅L2,L5よりも大きい直径D1,D2の丸穴23b,24bをそれぞれ形成し、スリット穴端部の応力集中を緩和するようにしたので、外部誘電体22に衝撃が加わっても当該端部に亀裂や割れを生じ難くして破損を防止することができ、取り扱いを容易にすることができる。また、丸穴23b,24b部分から供給されたり、吐出される処理ガスが、処理ガスの供給や処理ガスの吐出がない、スリット穴間の部分の処理ガス流量を補うので、供給穴23や吐出穴24から短い距離で処理ガス流量の均一化を図ることができる。   In addition, round holes 23b and 24b having diameters D1 and D2 larger than the slit widths L2 and L5 are formed at both ends in the longitudinal direction of the slit portions 23a and 24a, respectively, so as to alleviate stress concentration at the slit hole ends. Therefore, even if an impact is applied to the external dielectric 22, it is difficult to cause cracks or cracks at the end portions, and damage can be prevented, and handling can be facilitated. In addition, since the processing gas supplied or discharged from the round holes 23b and 24b does not supply processing gas or discharge processing gas, the processing gas flow in the portion between the slit holes is supplemented. The processing gas flow rate can be made uniform at a short distance from the hole 24.

尚、前記丸穴23b,24bの直径D1,D2はスリット幅L2,L5の2倍〜6倍の範囲に設定することが好ましく、このようにすれば、応力集中を効果的に緩和して外部誘電体22の破損を防止したり、スリット部23a,24aと丸穴23b,24bの部分との間における処理ガスの流量差を小さくすることができる。これは、直径D1,D2がスリット幅L2,L5の2倍よりも小さくなると、応力集中の緩和が不十分となって外部誘電体22が破損し易く、直径D1,D2がスリット幅L2,L5の6倍よりも大きくなると、スリット部23a,24aから供給されたり、吐出される処理ガスと、丸穴23b,24bから供給されたり、吐出される処理ガスとの間における流量差が大きくなり過ぎるからである。   The diameters D1 and D2 of the round holes 23b and 24b are preferably set in the range of 2 to 6 times the slit widths L2 and L5. It is possible to prevent the dielectric 22 from being damaged, or to reduce the difference in flow rate of the processing gas between the slit portions 23a, 24a and the round holes 23b, 24b. This is because when the diameters D1 and D2 are smaller than twice the slit widths L2 and L5, the stress concentration is insufficiently relaxed and the external dielectric 22 is easily damaged, and the diameters D1 and D2 are the slit widths L2 and L5. Is larger than 6 times, the flow rate difference between the processing gas supplied or discharged from the slit portions 23a and 24a and the processing gas supplied or discharged from the round holes 23b and 24b becomes too large. Because.

したがって、本例の表面処理装置1によれば、上記処理ガス吐出装置20が、放電の集中による外部誘電体22や内部誘電体35の局所的な温度上昇を防止してこれらが破損するのを防止することができ、また、内部誘電体35と内部電極36との間で放電が生じるのを防止して無駄な電力を消費するのを防止したり、内部誘電体35を効率的且つ均一に冷却して内部誘電体35の破損を防止することができ、更に、供給穴23から外部誘電体22と内部誘電体35との間に供給される処理ガスの流量や、吐出穴24から外部に吐出される処理ガスの流量を均一にしたり、外部誘電体22の強度を高めることができるので、プラズマ表面処理を均一且つ効率的に実施したり、プラズマ表面処理にかかるコストを低減したり、取り扱いの容易化を図ることができる。   Therefore, according to the surface treatment apparatus 1 of this example, the processing gas discharge apparatus 20 prevents the local temperature rise of the external dielectric 22 and the internal dielectric 35 due to the concentration of discharge and prevents them from being damaged. In addition, it is possible to prevent discharge from occurring between the internal dielectric 35 and the internal electrode 36 to prevent wasteful power consumption, and to make the internal dielectric 35 efficient and uniform. The internal dielectric 35 can be prevented from being damaged by cooling, and further, the flow rate of the processing gas supplied between the external dielectric 22 and the internal dielectric 35 from the supply hole 23 and the discharge hole 24 to the outside. Since the flow rate of the discharged processing gas can be made uniform and the strength of the external dielectric 22 can be increased, the plasma surface treatment can be carried out uniformly and efficiently, the cost for the plasma surface treatment can be reduced, Simplification It is possible to achieve.

以上、本発明の一実施形態について説明したが、本発明の採り得る具体的な態様は、何らこれに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all.

上例では、ラッパ状の導電部材29により、外部誘電体22の下部側部分を除いた外周面を間隔を隔てて囲むようにしたが、導電部材29の形状は、外部電極26の形状に応じて適宜変更することが可能である。例えば、外部電極26が外部誘電体22の外周面の一部分にしか設けられていない場合には、導電部材29は、外部誘電体22の円周方向において外部電極26のある部分にのみ設けられるように円弧状に形成されていても良い。また、導電部材29は、外部電極26や保持部材27などと一体的に単一部材から構成されていても良い。   In the above example, the outer peripheral surface excluding the lower portion of the external dielectric 22 is surrounded by the trumpet-shaped conductive member 29 with a space therebetween. However, the shape of the conductive member 29 depends on the shape of the external electrode 26. Can be changed as appropriate. For example, when the external electrode 26 is provided only on a part of the outer peripheral surface of the external dielectric 22, the conductive member 29 is provided only on a portion where the external electrode 26 exists in the circumferential direction of the external dielectric 22. It may be formed in an arc shape. Further, the conductive member 29 may be formed of a single member integrally with the external electrode 26, the holding member 27, and the like.

また、上例では、基板Kを処理するように構成したが、処理対象物は基板Kに限定されるものではなく、また、処理ガスも窒素ガスを主成分とするものに限定されるものではない。   In the above example, the substrate K is configured to be processed. However, the processing target is not limited to the substrate K, and the processing gas is not limited to the main component of nitrogen gas. Absent.

本発明の一実施形態に係る表面処理装置の概略構成を示した正断面図である。It is the front sectional view showing the schematic structure of the surface treatment apparatus concerning one embodiment of the present invention. 図1における矢示A−A方向の断面図である。It is sectional drawing of the arrow AA direction in FIG. 図1における矢示B−B方向の断面図である。It is sectional drawing of the arrow BB direction in FIG. 本実施形態に係る外部誘電体の概略構成を示した平面図である。It is the top view which showed schematic structure of the external dielectric material concerning this embodiment. 図4に示した外部誘電体の底面図である。FIG. 5 is a bottom view of the external dielectric shown in FIG. 4. 本実施形態に係る内部電極の概略構成を示した説明図である。It is explanatory drawing which showed schematic structure of the internal electrode which concerns on this embodiment. 本実施形態に係る内部電極及び冷却管などの概略構成を示した断面図である。It is sectional drawing which showed schematic structure, such as an internal electrode and a cooling pipe which concerns on this embodiment. 本実施形態に係る接続部材及び整流板の概略構成を示した底面図である。It is the bottom view which showed schematic structure of the connection member which concerns on this embodiment, and a baffle plate. 本例における電気力線の状態を示した説明図である。It is explanatory drawing which showed the state of the electric line of force in this example. 従来例における電気力線の状態を示した説明図である。It is explanatory drawing which showed the state of the electric line of force in a prior art example.

符号の説明Explanation of symbols

1 表面処理装置
10 搬送ローラ
20 処理ガス吐出装置
21 吐出機構
22 外部誘電体
23 供給穴
24 吐出穴
26 外部電極
27 保持部材
29 導電部材
30 取付部
31 傾斜部
35 内部誘電体
36 内部電極
37 心材
38 金属箔
39 高周波電源
40 冷却液循環機構
41 冷却管
42 金属ワイヤ
50 ガス供給機構
51 導入管
52 処理ガス生成装置
53 接続部材
54 整流板
DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 10 Conveyance roller 20 Processing gas discharge apparatus 21 Discharge mechanism 22 External dielectric 23 Supply hole 24 Discharge hole 26 External electrode 27 Holding member 29 Conductive member 30 Mounting part 31 Inclination part 35 Internal dielectric 36 Internal electrode 37 Core material 38 Metal foil 39 High frequency power supply 40 Coolant circulation mechanism 41 Cooling pipe 42 Metal wire 50 Gas supply mechanism 51 Introducing pipe 52 Process gas generator 53 Connecting member 54 Rectifying plate

Claims (3)

処理ガスをプラズマ化して吐出する吐出手段と、該吐出手段に前記処理ガスを供給するガス供給手段とから構成される処理ガス吐出装置であって、
前記吐出手段は、
管状の部材からなり、前記処理ガスが供給される供給穴と、前記供給された処理ガスを吐出する吐出穴とが外周面に開口した外部誘電体と、
前記外部誘電体の外周面の、前記供給穴及び吐出穴を塞がない位置に設けられ、接地された外部電極と、
管状の部材からなり、前記外部誘電体の管内に、該外部誘電体の内周面と一定間隔を隔てるように且つ該外部誘電体と同軸に設けられる内部誘電体と、
前記内部誘電体の管内に設けられる内部電極と、
前記内部電極と外部電極との間に電圧を印加する電圧印加手段とを備え、
前記ガス供給手段は、前記供給穴から前記外部誘電体と内部誘電体との間に前記処理ガスを供給するように構成され、
前記外部誘電体と内部誘電体との間に供給された処理ガスは、前記電圧印加手段により前記内部電極と外部電極との間に電圧が印加されることによってプラズマ化された後、前記吐出穴から外部へ吐出されるように構成された処理ガス吐出装置において、
前記外部誘電体の軸線方向における、前記外部電極の両端部に配置され、且つ該外部電極にそれぞれ接続された導電部材を備え、該導電部材は、前記外部誘電体の円周方向において前記外部電極のある部分に少なくとも設けられ、該外部誘電体の外周面と間隔を隔てて円弧状に形成されるとともに、前記外部電極の両端部から該外部誘電体の軸線方向に離れるに従って内径が大きくなるように該外部誘電体の軸線に対し傾斜して形成されてなることを特徴とする処理ガス吐出装置。
A processing gas discharge device comprising discharge means for converting a processing gas into plasma and discharging, and gas supply means for supplying the processing gas to the discharge means;
The discharge means is
An external dielectric made of a tubular member and having a supply hole to which the processing gas is supplied and a discharge hole for discharging the supplied processing gas opened on an outer peripheral surface;
An outer electrode provided on the outer peripheral surface of the external dielectric at a position that does not block the supply hole and the discharge hole, and is grounded;
An inner dielectric formed of a tubular member and provided in the outer dielectric tube so as to be spaced apart from the inner peripheral surface of the outer dielectric and coaxially with the outer dielectric;
An internal electrode provided in the internal dielectric tube;
Voltage application means for applying a voltage between the internal electrode and the external electrode,
The gas supply means is configured to supply the processing gas between the external dielectric and the internal dielectric from the supply hole,
The processing gas supplied between the external dielectric and the internal dielectric is turned into plasma by applying a voltage between the internal electrode and the external electrode by the voltage applying means, and then the discharge hole. In the processing gas discharge device configured to be discharged from the outside,
Conductive members disposed at both ends of the external electrode in the axial direction of the external dielectric and connected to the external electrodes, respectively, and the conductive member is connected to the external electrode in a circumferential direction of the external dielectric. The outer dielectric is formed in an arc shape at a distance from the outer peripheral surface of the external dielectric, and the inner diameter increases as the distance from the both ends of the external electrode in the axial direction of the external dielectric increases. And a processing gas discharge device, wherein the processing gas discharge device is inclined with respect to the axis of the external dielectric.
前記導電部材の、前記外部誘電体の軸線に対する傾斜角度は、2°〜30°であることを特徴とする請求項1記載の処理ガス吐出装置。   The processing gas discharge apparatus according to claim 1, wherein an inclination angle of the conductive member with respect to an axis of the external dielectric is 2 ° to 30 °. 処理対象物を支持する支持手段と、
前記請求項1又は2記載の処理ガス吐出装置とを備え、
前記処理ガス吐出装置は、前記吐出穴が前記支持手段によって支持された処理対象物と対峙するように配置され、
前記処理ガス吐出装置から吐出された処理ガスによって前記処理対象物の表面を処理するように構成されてなることを特徴とする表面処理装置。
Support means for supporting the object to be treated;
The process gas discharge device according to claim 1 or 2,
The processing gas discharge device is disposed so that the discharge hole faces the processing object supported by the support means,
A surface treatment apparatus configured to treat the surface of the object to be treated with a treatment gas discharged from the treatment gas discharge apparatus.
JP2006007576A 2006-01-16 2006-01-16 Device for discharging treating gas and surface treatment apparatus with the same Withdrawn JP2007185635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007576A JP2007185635A (en) 2006-01-16 2006-01-16 Device for discharging treating gas and surface treatment apparatus with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007576A JP2007185635A (en) 2006-01-16 2006-01-16 Device for discharging treating gas and surface treatment apparatus with the same

Publications (1)

Publication Number Publication Date
JP2007185635A true JP2007185635A (en) 2007-07-26

Family

ID=38341168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007576A Withdrawn JP2007185635A (en) 2006-01-16 2006-01-16 Device for discharging treating gas and surface treatment apparatus with the same

Country Status (1)

Country Link
JP (1) JP2007185635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704133A (en) * 2017-03-09 2017-05-24 中国工程物理研究院核物理与化学研究所 Non-trigger type vacuum arc micro thruster using gas storage electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704133A (en) * 2017-03-09 2017-05-24 中国工程物理研究院核物理与化学研究所 Non-trigger type vacuum arc micro thruster using gas storage electrodes
CN106704133B (en) * 2017-03-09 2023-06-27 中国工程物理研究院核物理与化学研究所 Triggerless micro-vacuum arc propeller adopting gas storage electrode

Similar Documents

Publication Publication Date Title
JP5248370B2 (en) Shower head and plasma processing apparatus
JP2007227375A (en) Long-distance plasma generator
JP2007188823A (en) Treatment gas discharging device and surface treatment device equipped with the same
JP2006297339A (en) Treated-gas discharging apparatus and surface treatment apparatus equipped with same
JP2007294210A (en) Treatment gas discharging device and surface treatment device equipped with it
KR101688338B1 (en) Plasma processing device, and plasma processing method
JP5764461B2 (en) Plasma processing equipment
EP0630087A2 (en) Apparatus for allowing web-like material to be subjected to vacuum glow-discharging treatment and method of conducting vacuum glow-discharging treatment
JP2007185635A (en) Device for discharging treating gas and surface treatment apparatus with the same
EP2899294B1 (en) Ion implantation device
JP2007188824A (en) Treatment gas discharging device and surface treatment device equipped with the same
JP5253779B2 (en) Annealing method and annealing apparatus
JP2007059242A (en) Treated gas discharging device, and surface treatment device equipped therewith
JP2008248281A (en) Plasma generator and thin film deposition apparatus using the same
JP6526186B2 (en) Substrate charge removing mechanism and vacuum processing apparatus using the same
WO2014045565A1 (en) Plasma processing device and method
JP2007042503A (en) Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method
JP5504896B2 (en) Lamp unit
JP4426783B2 (en) Plasma processing apparatus and processing method
JP2009130302A (en) Surface processing apparatus
JP5445903B2 (en) Thin film forming equipment
KR100368052B1 (en) Continous polymerizing apparatus using plasma
JP4359220B2 (en) Tube processing method and processing apparatus
JP2007328953A (en) Plasma device
TWI412042B (en) Ultraviolet radiation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407