WO2016185071A1 - Nanofluidos electroactivos basados en grafeno como electrodos líquidos en celdas de flujo - Google Patents

Nanofluidos electroactivos basados en grafeno como electrodos líquidos en celdas de flujo Download PDF

Info

Publication number
WO2016185071A1
WO2016185071A1 PCT/ES2016/070371 ES2016070371W WO2016185071A1 WO 2016185071 A1 WO2016185071 A1 WO 2016185071A1 ES 2016070371 W ES2016070371 W ES 2016070371W WO 2016185071 A1 WO2016185071 A1 WO 2016185071A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroactive
rgo
nanofluid
nanofluids
graphene
Prior art date
Application number
PCT/ES2016/070371
Other languages
English (en)
French (fr)
Inventor
Pedro GÓMEZ ROMERO
Deepak DUBAI
Daniel GÓMEZ CASAÑ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Fundació Institut Català De Nanociència I Nanotecnología
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Fundació Institut Català De Nanociència I Nanotecnología filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP16795939.4A priority Critical patent/EP3299338A4/en
Priority to US15/575,622 priority patent/US20180158622A1/en
Publication of WO2016185071A1 publication Critical patent/WO2016185071A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • the invention relates to very stable electroactive nanofluids comprising graphene-based compounds. Furthermore, the present invention relates to the use of said electroactive nanofluids as liquid electrodes for energy storage in flow cells.
  • ECES electrochemical energy storage
  • redox flow batteries are considered the most adapted technology to address high power applications at low cost. This does not mean that they can already compete at the GW level but their design in the kW - MW range could make them good candidates for distributed storage and smart grid applications. [Dunn B. Kamath, H. Tarascón, JM Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935 (201 1)].
  • electrochemical flow cells energy and power are disconnected thanks to the storage of electroactive compounds outside the electrochemical cell.
  • the limited solubility of electroactive species used in conventional flow battery solutions for example vanadium salts 1-2 M in vanadium flow batteries, in turn limits their energy density.
  • the present invention discloses electroactive nanofluids (ENF), specifically high stability graphene-based electro-nanofluids, which can be used as liquid electrodes for energy storage in flow cells.
  • ENF electroactive nanofluids
  • nanomaterial describes a homogeneous dispersion of at least one nanomaterial with at least one dimension on a scale ranging from 10 ° to 10 2 nm in a conventional base fluid.
  • said nanomaterial refers to compounds or composite materials based on graphene (GC).
  • An electroactive material is a material, in the form of particles or liquid, solid or molecular, capable of accepting electrons and thus storing electrical energy through redox-type faradic mechanisms and / or through double-layer capacitive mechanisms and / or through pseudo-capacitive mechanisms.
  • nanofluid electroactive as used herein refers to a nanofluid comprising any type of electroactive material.
  • graphene-based compounds or composites are nanomaterials and also act as materials electroactive
  • the ENFs of the present invention can be used as "fluid electrodes" in flow cells, since they behave like true liquid electrodes Indeed, these graphene-based ENFs behave like real liquid electrodes with a very fast storage mechanism and announce the application of ENF in general for energy storage in a new generation of flow cells.
  • ENFs of the invention as electrodes in flow cells constitutes an innovative concept within electrical energy storage systems that will attract a lot of attention for applications at the grid level due to a very attractive combination of electrochemical properties such as high capacities combined with good performance at high currents and long service life.
  • the graphene-based electroactive nanofluid electrodes of the present invention have reached specific capacitance values around 170 F / g (C) with a high specific energy of 13.1 Wh / Kg (C) at a specific power of 450 W / Kg (C) and excellent coulombic efficiency of 97.6% after 1500 cycles.
  • the inventors of the present invention were able to perform cyclic voltamperograms with potential scans on electrodes comprising the aforementioned ENFs at scanning rates of up to 10-20 V / s.
  • a first aspect of the present invention relates to an electroactive nanofluid (herein “nanofluid of the invention”) characterized in that it comprises a) A liquid medium selected from an organic solvent or an aqueous solution of acidic, neutral or basic compounds and said liquid medium optionally comprising a surfactant, and
  • liquid medium or “base fluid” refers herein to a dielectric liquid medium used as a conventional liquid medium to form an electroactive nanofluid.
  • liquid medium in the present invention are organic solvents such as acetonitrile, dimethylformamide and dimethylacetamide or aqueous solutions of acidic compounds, ie H 2 S0 4 , neutral, that is Na 2 S0 4 or basic, that is KOH.
  • said liquid medium also comprises a surfactant.
  • surfactant refers herein to any compound known to one skilled in the art that can decrease surface tension (or interfacial tension) between two liquids or between a liquid and a solid.
  • examples of surfactant in the present invention are either ionic surfactants such as sodium dodecylsulfonate and MORWET D42 TM, or non-ionic surfactants such as triton X-100 TM.
  • the surfactant is in a weight percentage, between 0.01 and 5% based on the total weight of the liquid medium.
  • compound or composite material based on graphene refers herein to graphene, graphene oxide, reduced graphene oxide or a combination thereof that forms compounds or composite materials with any other molecule, polymer or solid phase, in extended form or nanoparticles.
  • the graphene-based compound of the nanofluid of the invention is in a weight percentage between 0.01% and 10% based on the total weight of the electroactive nanofluid.
  • the electroactive nanofluids were prepared by direct mixing of compound or composite material based on graphene and the liquid medium.
  • the graphene-based compound or compound optionally comprises electroactive substances bound to the graphene compound or forming a mixture by dispersion in the base fluid. Electroactive substances are those known to a person skilled in the art.
  • polyoxomethalate clusters can be anchored on the surface of graphene-based compounds. Therefore, a further embodiment of the present invention relates to graphene-based compounds comprising polyoxomethalate clusters that are in a weight percentage between 0.01% and 10% in based on the total weight of the electroactive nanofluid.
  • the nanofluid polyoxomethalate clusters of the invention were selected from the list consisting of phosphotungstate and phosphomolibdate.
  • electroactive organic compounds examples include quinones such as benzoquinone, naphthoquinone, anthraquinone and their derivatives.
  • electroactive solid phases examples include hexacyanoferrates, ie KCu [Fe (CN) 6 ], Fe 2 [Fe (CN) 6 ], oxides, that is Mn0 2 , Na x Mn0 2 , LiMn 2 0 4 , Li (NiMnCo) 0 2 , Ti0 2 , Li 4 Ti 5 0 12 and phosphates, ie LiFeP0 4 , LiMnP0 4 , Li 3 V 2 (P0 4 ) 3 .
  • hexacyanoferrates ie KCu [Fe (CN) 6 ], Fe 2 [Fe (CN) 6 ], oxides, that is Mn0 2 , Na x Mn0 2 , LiMn 2 0 4 , Li (NiMnCo) 0 2 , Ti0 2 , Li 4 Ti 5 0 12 and phosphates, ie LiFeP0 4 , LiMnP0 4 , Li 3 V 2 (P
  • electroactive polymers examples include polypyrrole, polyaniline, PEDOT, polyvinylcarbazole and its derivatives.
  • Another preferred embodiment of the present invention relates to the electroactive nanofluid of the invention further comprising carbon materials such as Activated Carbon (AC) or Carbon Nanotubes (CNT) apart from graphene.
  • carbon materials such as Activated Carbon (AC) or Carbon Nanotubes (CNT) apart from graphene.
  • AC Activated Carbon
  • CNT Carbon Nanotubes
  • an electrochemical flow cell comprising two compartments (positive and negative) with conductive current collectors in contact with the liquid electroactive nanofluids, both compartments separated by a membrane (cationic or anionic) or a separator.
  • FIG. GO and rGO spectra respectively
  • FIG. (a) Graphite diffractograms, graphene oxide (GO) and reduced graphene oxide (rGO), (b) XPS spectrum of rGO, the inserted table shows the spectrum of internal levels of C1 S
  • FIG 3. (a, b) M i cryophotog scanning electron microscopy (SEM) and (c, d) transmission electron microscopy (TEM) microphotographs at two different magnifications.
  • FIG. 4. (a, b) Nitrogen absorption / desorption isotherms for a rGO sample with the corresponding BJH pore size distribution graph.
  • FIG. 5 Schematic diagram of the arrangement of the flow cell used in example 3 in which the ENFs loaded and unloaded are stored in separate containers. Two peristaltic pumps with automatic control of the flow direction and flow rate were used. 1 Tanks 2 Pump 3 Separator 4 Cell FIG. 6 Cyclic Voltammetry (CV) curves of rGO electroactive nanofluids of different concentrations at a scanning speed of 20 mV / s under static conditions.
  • CV Cyclic Voltammetry
  • FIG. 8 Cyclic voltammetry (CV) curves of (a, b) electroactive nanofluid of 0.1% rGO by weight and (c, d) electroactive nanofluid of rGO 0.4% by weight at different scanning speeds starting at slower than 1 mV / s (0.001 V / s) at 10,000 mV / s (10V / s). It is very remarkable that the flow electrodes based on these rGO electroactive nanofluids showed a rectangular shaped CV (typical of capacitive behavior) at the very high scanning speed of 10 V / s which confirms an excellent power density for the capacitors flow electrochemicals based on rGO electroactive nanofluids. This is the highest scan speed used to measure CV curves in flow cells.
  • FIG. 9 Variation of the specific capacitance with the scanning speed for ENF of rGO of different concentrations
  • FIG. 10 (a) Nyquist diagrams for rGO ENFs of different concentrations in the frequency range between 10 mHz and 10 kHz.
  • FIG. 1 Galvanic discharge charge curves for 0.025% rGO electroactive nanofluids at different current densities under static conditions.
  • FIG. 12 Power density versus energy density for rGO electroactive nanofluids in a Ragone diagram.
  • FIG. 13 Variation of the ENF coulombic efficiency of rGO over 1500 cycles of loading and unloading.
  • FIG. 14 Chronoamperometry for an electroactive nanofluid of rGO (0.025% by weight) at different applied voltages such as 0.2, 0.4, 0.6, 0.8 V, which shows a high coulombic efficiency of 98.2% when Charge at a potential of 0.8 V and then discharge at 0 V.
  • FIG. 15 Self-discharge, that is, it shows the time-dependent loss of the potential of the open circuit cell for ENF of rGO (0.025% by weight).
  • FIG. 16 Cyclic voltamperograms (20 mV / s) of ENF of rGO at 0.025% by weight for different flow rates.
  • FIG. 17 Variation of the specific capacitance of rGO ENFs with the flow rate.
  • FIG. 18 Nyquist diagrams for 0.025% rGO electroactive nanofluid by weight for different flow rates (10 mHz to 10 kHz frequency range).
  • FIG. 19 Chronoamperometry for an electroactive nanofluid of rGO (0.025% by weight) during flow conditions at 10 ml / min showing high coulombic efficiency of 96.8% when charged to a 0.9 V cell potential and discharged subsequently at 0 V.
  • FIG. 20 (a, b, c) Scanning electron microscopy (SEM) microphotographs and (d, e, f) Scanning electron microscopy photomicrographs in transmission (TEM) for rGO, rGO-PMo12, rGO-PW12, respectively.
  • FIG. 21 CV curves of the electrode of electroactive nanofluids (0.025% by weight) a) rGO-PW12 and b) rGO-PMo12 at different scan speeds (from 5 mV / s at the highest scan speed of 200 mV / s)
  • FIG. 22 Variation of the electrode specific capacitance of electroactive nanofluids (0.025% by weight) rGO-PW12 and rGO-PMo12 with the scanning speed.
  • FIG. 23 Galvanic discharge charge curves for 0.025% by weight of electroactive nanofluids (a) rGO-PW12 and (b) rGO-PMo12 at different current densities under static conditions.
  • FIG. 24 Power density versus energy density of rGO-PW12 and rGO-PMo12 electroactive nanofluids (0.025% by weight) in a Ragone diagram.
  • FIG. 25 Chronoamperometries for electroactive nanofluids (a) rGO-PW12 and (b) rGO-PMo12 at different applied voltages, such as 0.4, 0.6, 0.8, and 1.0 V showing high coulombic efficiency of 95 , 2% when charged to a cell potential of 1.0 V and subsequently unloaded at 0 V
  • FIG. 26 Testing of galvanostatic loading and unloading cycles for rGO-POM electroactive nanofluids (rGO-PW12 and rGO-PMo12) at different current densities, from 4 A / g to 16 A / g for 200 cycles.
  • FIG. 27 CV curves (at 100 mV / s scanning speed) of 0.025% rGO-POM electroactive nanofluid by weight, (a) rGO-PW12 and b) rGO-PMo12) for different flow rates.
  • Graphene oxide (GO) was synthesized from natural graphite using the modified Hummers method.
  • 5 g of NaN0 3 and 225 ml of H 2 S0 4 were added to 5 g of graphite and stirred for 30 min in an ice bath.
  • 25 g of KMn0 4 were added to the resulting solution and then the solution was stirred for 2 h at 50 ° C.
  • the reduced graphene oxide (rGO) was prepared by a high temperature treatment of the GO sample at 800 ° C under a nitrogen atmosphere.
  • Figures 2a) and b) refer to (a) graphite diffractograms, graphene oxide (GO) and reduced graphene oxide (rGO), (b) XGO spectrum of rGO, the inserted box shows the spectrum of C1 to the level of the nucleus.
  • the oxygen content in this rGO, determined by XPS was 5.8%.
  • N2 The adsorption / desorption of N2 was determined by Brunauer-Emmett-Teller (BET) measurements using a Micromeritics instrument (Data Master V4.00Q, Serial No.: 2000/2400). The results are shown in Figure 4. A clear hysteresis cycle is observed that is associated with the presence of a mesoporous structure related to interleaved nanolines. In addition, rGO nanolilamines exhibit pores in both the mesopore and macropore regions.
  • BET Brunauer-Emmett-Teller
  • Example 2 synthesis of the electroactive nanofluid of rGO.
  • the electroactive nanofluids of rGO were prepared by direct mixing of the rGO with the liquid medium also called base fluid.
  • the base fluid was H 2 S0 4 1 M in deionized water.
  • Electroactive nanofluids with different concentrations were prepared by mixing 0.025, 0.1 and 0.4% by weight of rGO in aqueous H 2 S0 4 1 M solution.
  • 0.5% by weight of surfactant was added ( triton X-100) and the mixture was kept in an ultrasonic bath for 2 h.
  • the resulting soles were used directly as flow electrodes in a flow cell manufactured in our laboratory and described in the text.
  • the electroactive nanofluids of rGO were prepared with different concentrations (0.025, 0.05, 0.1, 0.2 and 0.4% by weight) after different time intervals.
  • the electroactive nanofluid of rGO prepared in this way has a dark black appearance indicating a stable and uniform dispersion of the rGO in aqueous solution of H 2 S0 4 1 M.
  • the dispersions of rGO began to precipitate after standing for almost 10 h. and only after 40 h. The precipitation was complete.
  • rGO electroactive nanofluids with low concentrations (0.025 and 0.05% by weight) remain stable for even longer.
  • all rGO electroactive nanofluids could be easily redispersed by gentle agitation, again looking similar to products prepared in this way and remaining stable for more than 5 h, which suggests high stability of electroactive nanofluids from RGO
  • the electrochemical characterization of these rGO electroactive nanofluids from Example 2 was carried out both in static conditions and in continuous flow conditions using a specially designed flow cell. See Figure 5.
  • the cell body (7 cm x 6 cm x 1 cm) was manufactured with two stainless steel plates that act as current collectors, with a 5 mm wide and 5 serpentine shaped flow channel. mm deep
  • the two cell compartments were separated by a polyvinylidene fluoride (PVDF) membrane (Durapore®; Merck Millipore, Germany) and oiled paper was used as a gasket that provides a tight seal.
  • PVDF polyvinylidene fluoride
  • the contact area between the ion permeable membrane and the flow electrode was 12.7 cm 2 .
  • Example 4 characterization of rGO electroactive nanofluid electrodes.
  • the electrochemical performance of electrodes of electroactive nanofluids of rGO of different concentrations was investigated under static conditions by cyclic Voltammetry (CV) using the flow cell design of Example 3.
  • FIG 6. Shows the CV curves of symmetric cells with electroactive nanofluid of rGO with different concentrations (from 0.025% by weight to 0.4% by weight of rGO) at a scanning speed of 20 mV / s.
  • Current currents under curves increase and specific capacitances decrease as the concentration of electroactive nanofluids increases, thus showing a behavior similar to that of conventional supercapacitors with solid electrodes.
  • the shape of the CV curves is quasi-rectangular which indicates a dominant mechanism of capacitive type of energy storage.
  • FIG 7 (a, b) shows the CV curves of electroactive nanofluid of rGO (0.025% by weight) at different scanning speeds (from 1 mV / s at the maximum speed of 10 V / s).
  • the rectangular form of CV is maintained even at the very high speed of 10,000 mV / s; indicating that rGO electroactive nanofluids have excellent high speed performance, as required for high power supercapacitors.
  • FIG 8 shows cyclic Voltammetry (CV) curves of (a, b) electroactive nanofluid of 0.1% rGO by weight and (c, d) electroactive nanofluid of rGO 0.4% by weight at different scanning rates from the lowest scan speed of 1 mV / s (0.001 V / s) to 10,000 mV / s (10 V / s).
  • the electrode of flow based on electroactive nanofluid of rGO showed a CV of rectangular form, typical of capacitive behavior at the very high scanning speed of 10 V / s confirming an excellent power density of the electrochemical flow condenser (EFC) based in rGO electroactive nanofluid.
  • EFC electrochemical flow condenser
  • the shape of the CV curves becomes more and more rectangular as the scanning speed increases. This indicates a relative contribution. increasingly important capacitive storage (double layer) against the pseudo-capacitive (faradaic) at high speeds.
  • electroactive nanofluids implies that the entire volume of the liquid can be polarized, which in turn implies percolative electronic conduction through the electroactive nanofluid, which could thus be considered as a true liquid electrode.
  • this cell uses a "liquid electrode” in which the charge must be percolated through a dynamic network of conductive particles.
  • the specific capacitance values represented in FIG. 9 are comparable or even higher than the values reported for consistent sludge or thick carbon suspension.
  • electrochemical impedance spectroscopy data showed a low ohmic resistance, in the range of -0.23-0.28 ⁇ that suggests a fast ionic transport and a highly conductive network that facilitates the percolation of charge and ions, see FIG 10. These values are even lower than those described for electrodes of spherical carbon particle suspensions in the documents:
  • the impedance curves show a distorted semicircle in the high frequency region due to the porosity of rGO and an almost vertical linear increase in the low frequency region.
  • the high frequency intersection of the semicircle on the real axis gives the resistance of the solution (electrolyte) (Rsol), and the diameter gives the resistance of charge transfer (Rct) at the interface of the rGO electrode and the electrolyte.
  • the electrochemical performance of the rGO electroactive nanofluids of Examples 2 was further studied by galvanostatic charge / discharge cycles under static conditions, as shown in FIG 11.
  • the shapes of the charge and discharge curves are symmetrical, triangular and linear for the electroactive nanofluids of rGO at all the different current densities used.
  • the specific capacitance values were 1 17 and 50 F / g (rGO) at current densities of 1 A / g and 2.5 A / g respectively. This corresponds to specific energy values of 5.7-13.1 Wh / kg (rGO) and specific power of 0.45-1, 13 kVWkg (rGO), as shown in FIG 12.
  • FIG 14 shows a series of chronoamperometry experiments carried out for electroactive nanofluids of rGO under static conditions. Initially, the cell was completely discharged over a period of 15 min and then charged to different potentials such as 0.2, 0.4, 0.6 and 0.8 V. The specific capacitances for the electroactive nanofluids of rGO were calculated at different potentials and are in the range of 36-156 F / g (rGO), which are comparable to the values derived from the CV.
  • the coulombic efficiency of the rGO electroactive nanofluid cell was 98.2% (FIG 14), a high value considering that the leakage current was included, a value that matches very well with the coulombic efficiency derived from the experiments Loading / unloading galvanostatics (98.9%).
  • FIG 15 shows the time-dependent loss of the potential of the open circuit cell (self-discharge) for rGO electroactive nanofluids. After 30 min of charging to the maximum cell potential of 0.9 V the open circuit voltage dropped to 34% of the initial voltage (0.9 V) after 24 h.
  • FIG 16 shows CV curves of a 0.025% rGO electroactive nanofluid by weight (at a scan rate of 20 mV / s) for different flow rates. It is interesting to appreciate that the shape of the CV curves remains identical for the different flow rates used, which confirms the uniform and stable nature of the electroactive nanofluid. However, the current under the curves increases as the flow rate increases between 0 and 10 ml / min, but then begins to decrease for flow rates> 10 ml / min.
  • Example 5 synthesis of rGO electroactive nanofluids with polyoxometalate (POM).
  • POM polyoxometalate
  • Two different hybrid materials based on rGO and po I i oxo meta latos (POM) i) rGO-phosphotungstate (H3PW12O40) (abbreviated, rGO-PW12) and ii) rGO-phosphomolibdate (H3PMo12O40) (abbreviated, rGO-PMo12) were prepared .
  • two samples of 0.25 g each of rGO were dispersed in 100 ml of deionized water in two Vessels of different precipitates with ultrasonic sonic probe (1500 W of power) for 2 h.
  • hybrid electroactive nanofluids of rGO-POM were prepared by direct dispersion of rGO-PW12 and rGO-PMo12 solids in water.
  • the solids were dispersed in an aqueous H 2 S0 4 electrolyte.
  • hybrid electroactive nanofluids were prepared by separately mixing 0.025% by weight of rGO-PW12 and rGO-PMo12 in a 1 M aqueous solution of H 2 S0 4 .
  • 0.5% by weight of surfactant triton X-100
  • FIG 20 shows SEM images of samples of rGO, rGO-PMo12 and rGO-PW12 respectively, while FIG 20 d), e) and f) show high resolution images of scanning TEM (STEM) , which show the complete and homogeneous coverage of the POM clusters on rGO (FIG 20 e) and f)) that are perceived as tiny shiny nuggets (1 nm in size) on graphene sheets.
  • STEM scanning TEM
  • Example 6 characterization of electrodes of electroactive nanofluids of POM-rGO.
  • FIG 21 shows the CV curves of an electrode based on electroactive nanofluid of a) rGO-PW12 and b) rGO-PMo12 (0.025% by weight) at different scanning speeds (between 5 mV / s and 200 mV / s). It should be noted that the forms of these CVs are not rectangular, which confirms the contribution of the redox activities of the POM clusters. In addition, the shape of the CV curves remains unchanged even at high 200 mV / s scanning speed, which indicates that rGO-POM electroactive nanofluids have excellent performance at high speeds, as needed for high power supercapacitors.
  • Cell specific capacitance values for electroactive nanofluids based on rGO-POM were calculated from the CV curves and are shown in FIG 22 for nanofluid of rGO-PW12 and rGO-PMo12 of constant concentration (0.025 % by weight) at different scan speeds.
  • the electrochemical performance of the electroactive nanofluids of rGO-POM described in Example 5 was further studied by charge / discharge cycles under static conditions as shown in FIG 23 a) rGO-PW12 and b) rGO-PMo12.
  • the shapes of the charge-discharge curves do not have the ideal triangular and linear appearance for the electroactive nanofluids of rGO-POM at all the different current densities used.
  • FIG 25 shows a series of chronoamperometry experiments carried out for electroactive nanofluids of a) rGO-PW12 and b) rGO-PMo12 under static conditions. Initially, the cell was completely discharged for a period of 15 min and then charged to different potentials such as 0.4, 0.6, 0.8 and 1.0 V.
  • the specific capacitances were calculated for both rGO electroactive nanofluids. -POM at different potentials and are in the range of 124-242 F / g (rGO-PW12 and 143-293 F / g (rGO-PMo12), which are comparable to the values derived from the CVs. It was discovered that efficiency The electrochemical nanofluid cell of rGO-POM was between 98.3 and 98.7% (FIG 25), a high value since the leakage current was included.
  • FIG 26 shows the cyclic stability of rGO-POM electroactive nanofluids that was investigated by galvanostatic loading / unloading tests at different current densities, from 4 A / g to 16 A / g for 200 cycles. It is interesting to note that both liquid electrodes based on rGO-POM have a stability in the range of 92-94% after 2000 cycles.
  • FIG 27 a) rGO-PW12, b) rGO-PMo12 shows CV curves (at scanning speeds of 100 mV / s) of 0.025% rGO-POM electroactive nanofluid by weight for different flow rates. It is interesting to note that the shape of the CV curves remains identical for the different flow rates used, which confirms the stable and uniform nature of the electroactive nanofluid of rGO-POM. However, the current under the curve increases slightly with the increase in flow rate from 0 to 10 ml / min and then decreases slightly for flow rates> 10 ml / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

La invención se refiere a nanofluidos electroactivos muy estables que comprenden compuestos basados en grafeno y sus procesos de obtención. Además, la presente invención se refiere al uso de dichos nanofluidos electroactivos como electrodos líquidos para almacenamiento de energía en celdas de flujo.

Description

NANOFLUIDOS ELECTROACTIVOS BASADOS EN GRAFENO COMO ELECTRODOS LÍQUIDOS EN CELDAS DE FLUJO
DESCRIPCIÓN
La invención se refiere a nanofluidos electroactivos muy estables que comprenden compuestos basados en grafeno. Además, la presente invención se refiere al uso de dichos nanofluidos electroactivos como electrodos líquidos para almacenamiento de energía en celdas de flujo.
ESTADO DE LA TÉCNICA
El almacenamiento de energía se encuentra en medio de un cambio revolucionario que lo convertirá en un factor clave dentro del emergente modelo energético sostenible. De hecho, el almacenamiento electroquímico de energía (ECES por sus siglas en inglés) ha evolucionado profundamente desde las baterías de plomo ácido, pesadas y contaminantes, introducidas por Planté en 1859, hasta la última generación de baterías recargables de ion litio que dominan hoy el reino de la electrónica de consumo, y la nueva generación de supercondensadores. Pero cuando se trata de aplicaciones de alta potencia, el bombeo hidroeléctrico, y en menor medida el aire comprimido, son actualmente las únicas tecnologías con capacidad suficiente para responder a nuestras sobredimensionadas necesidades colectivas de potencia.
Entre los sistemas de ECES, las baterías de flujo redox se consideran la tecnología más adaptada para abordar aplicaciones de alta potencia a bajo coste. Esto no quiere decir que puedan competir ya al nivel de GW pero su diseño en el rango kW - MW las podría convertir en buenas candidatas para aplicaciones de almacenamiento distribuido y de redes inteligentes. [Dunn B. Kamath, H. Tarascón, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935 (201 1)]. En las celdas electroquímicas de flujo la energía y la potencia están desvinculadas gracias al almacenamiento de los compuestos electroactivos fuera de la celda electroquímica. Sin embargo, la limitada solubilidad de las especies electroactivas usadas en soluciones de baterías de flujo convencionales, por ejemplo sales de vanadio 1 - 2 M en baterías de flujo de vanadio, limita a su vez su densidad de energía. Además, el aumento de la densidad de energía manteniendo bajos costes podría hacer de las celdas de flujo sistemas prácticos no sólo para almacenar energías renovables intermitentes sino también para alimentar vehículos eléctricos (EV por sus siglas en inglés). [Leung P. y col. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv., 2, 10125-10156 (2012)].
Cabe destacar que existen unas pocas publicaciones relevantes en la bibliografía que describen el uso de lodos consistentes o suspensiones espesas como electrodos para almacenamiento de energía. Por ejemplo, Gogotsi y col. [Presser, V. y col. The electrochemical flow capacitor: A new concept for rapid energy storage and recovery. Adv. Energy Mater. 2, 895-902 (2012)] describieron un condensador electroquímico de flujo que empleaba un lodo consistente de carbono que fluíaa que mejoraba el concepto introducido por Kastening y col. [Kastening B. Boinowitz, T. Heins, M. Design of a slurry electrode reactor system. J. Appl. Electrochem. 27, 147-152 (1997)]. Sin embargo, los electrodos en suspensión consistente o espesa no son prácticos para su aplicación en celdas de flujo debido precisamente a sus malas propiedades de flujo. Efectivamente, varias suspensiones de mi ero partículas se han probado en diversas aplicaciones (incluyendo térmicas) pero no dan la talla cuando se trata de un diseño de ingeniería eficaz debido a procesos de precipitación y/u obstrucción del sistema. SaidurR., y col. (201 1). "A review on applications and challenges of nanofluids." Renewable & Sustainable Energy Reviews 15(3): 1646-1668
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención desvela nanofluidos electroactivos (ENF por sus siglas en inglés), concretamente nanofluidos electroactivos basados en grafeno de alta estabilidad, que pueden ser usados como electrodos líquidos para almacenamiento de energía en celdas de flujo. En la presente invención, el término "nanofluido" describe una dispersión homogénea de al menos un nanomaterial con al menos una dimensión en una escala que va de 10° a 102 nm en un fluido de base convencional. En la presente invención, dicho nanomaterial se refiere a compuestos o materiales compuestos basados en grafeno (GC por sus siglas en inglés). Un material electroactivo es un material, en forma de partículas o líquido, sólido o molecular, capaz de aceptar electrones y almacenar así energía eléctrica a través de mecanismos faradaicos de tipo redox y/o a través de mecanismos capacitivos de doble capa y/o a través de mecanismos pseudo-capacitivos. Así, el término "nanofluido electroactivo (ENF)" tal como se usa en el presente documento se refiere a un nanofluido que comprende cualquier tipo de material electroactivo. En el ENF de la presente invención, los compuestos o materiales compuestos basados en grafeno son los nanomateriales y actúan además como materiales electroactivos. Los ENF de la presente invención se pueden usar como "electrodos fluidos" en celdas de flujo, puesto que se comportan como verdaderos electrodos líquidos. Efectivamente, estos ENF basados en grafeno se comportan como auténticos electrodos líquidos con un mecanismo de almacenamiento muy rápido y anuncian la aplicación de ENF en general para almacenamiento de energía en una nueva generación de celdas de flujo.
El uso de los ENF de la invención como electrodos en celdas de flujo constituye un concepto innovador dentro de los sistemas de almacenamiento de energía eléctrica que atraerá mucha atención para aplicaciones a nivel de red debido a una muy atractiva combinación de propiedades electroquímicas tales como altas capacidades combinadas con buenas prestaciones a corrientes altas y larga vida útil.
Los electrodos de nanofluidos electroactivos basados en grafeno de la presente invención han alcanzado valores de capacitancia específica alrededor de 170 F/g(C) con una alta energía específica de 13, 1 Wh/Kg(C) a una potencia específica de 450 W/Kg(C) y eficiencia coulómbica excelente del 97,6% después de 1500 ciclos. Los inventores de la presente invención fueron capaces de a realizar voltamperogramas cíclicos con barridos de potencial sobre electrodos que comprendían los ENF mencionados anteriormente a velocidades de barrido de hasta 10 - 20 V/s.
Un primer aspecto de la presente invención se refiere a un nanofluido electroactivo (en el presente documento "nanofluido de la invención") caracterizado porque comprende a) Un medio líquido seleccionado entre un disolvente orgánico o una disolución acuosa de compuestos ácidos, neutros o básicos y dicho medio líquido comprendiendo opcionalmente un surfactante, y
b) Un compuesto o material compuesto basado en grafeno dispersado de forma homogénea en el medio líquido y dicho compuesto o material compuesto basado en grafeno comprendiendo opcionalmente un material electroactivo asociado a los compuestos basados en grafeno. La expresión "medio líquido" o "fluido de base" se refiere en el presente documento a un medio líquido dieléctrico usado como medio líquido convencional para formar un nanofluido electroactivo. Ejemplos de medio líquido en la presente invención son disolventes orgánicos como el acetonitrilo, dimetilformamida y dimetilacetamida o soluciones acuosas de compuestos ácidos, es decir H2S04, neutros, es decir Na2S04 o básicos, es decir KOH.
En caso necesario, dicho medio líquido, comprende además un surfactante. El término "surfactante" se refiere en el presente documento a cualquier compuesto conocido por un experto en la materia que puede disminuir la tensión superficial (o tensión interfacial) entre dos líquidos o entre un líquido y un sólido. Ejemplos de surfactante en la presente invención son bien surfactantes iónicos tales como dodecilsulfonato de sodio y MORWET D42™, o surfactantes no iónicos tales como tritón X-100™. Preferentemente, el surfactante está en un porcentaje en peso, entre el 0,01 y el 5% en base al peso total del medio líquido. La expresión "compuesto o material compuesto basado en grafeno" se refiere en el presente documento a grafeno, óxido de grafeno, óxido de grafeno reducido o una combinación de los mismos que forma compuestos o materiales compuestos con cualquier otra molécula, polímero o fase sólida, en forma extendida o de nanopartículas. En otra realización preferida de la presente invención, el compuesto basado en grafeno del nanofluido de la invención está en un porcentaje en peso entre el 0,01 % y el 10% en base al peso total del nanofluido electroactivo.
Los nanofluidos electroactivos se prepararon por mezcla directa de compuesto o material compuesto basado en grafeno y el medio líquido. El compuesto o material compuesto basado en grafeno comprende opcionalmente sustancias electroactivas enlazadas al compuesto de grafeno o que forman una mezcla por dispersión en el fluido de base. Sustancias electroactivas son aquellas conocidas por un experto en la materia.
Por ejemplo, los clústeres de polioxometalatos se pueden anclar en la superficie de los compuestos basados en grafeno. Por lo tanto, una realización adicional de la presente invención se refiere a los compuestos basados en grafeno que comprenden clústeres de polioxometalatos que están en un porcentaje en peso entre el 0,01 % y el 10% en base al peso total del nanofluido electroactivo. En otra realización preferida de la presente invención, los clústeres de polioxometalatos del nanofluido de la invención se seleccionaron entre la lista que consiste en fosfotungstato y fosfomolibdato.
Ejemplos de compuestos orgánicos electroactivos son quinonas tales como benzoquinona, naftoquinona, antraquinona y sus derivados.
Ejemplos de fases sólidas electroactivas son hexacianoferratos, es decir KCu[Fe(CN)6], Fe2[Fe(CN)6], óxidos, es decir Mn02, NaxMn02, LiMn204, Li(NiMnCo)02, Ti02, Li4Ti5012 y fosfatos, es decir LiFeP04, LiMnP04, Li3V2(P04)3.
Ejemplos de polímeros electroactivos son polipirrol, polianilina, PEDOT, polivinilcarbazol y sus derivados.
Otra realización preferida de la presente invención se refiere al nanofluido electroactivo de la invención que comprende además materiales de carbono tales como Carbones Activados (AC por sus siglas en inglés) o Nanotubos de Carbono (CNT por sus siglas en inglés) aparte del grafeno. Cada uno de estos presenta ventajas específicas tales como bajo coste (AC) o anisotropía (CNT) que expanden las posibles aplicaciones de los nanofluidos de la invención.
Otro aspecto de la invención se refiere al uso del nanofluido de la invención como electrodo de una celda electroquímica de flujo. Por ejemplo, una celda electroquímica de flujo que comprende dos compartimentos (positivo y negativo) con colectores de corriente conductores en contacto con los nanofluidos electroactivos líquidos, ambos compartimentos separados por una membrana (catiónica o aniónica) o un separador.
A no ser que se definan de otra forma, todos los términos técnicos y científicos usados en el presente documento tienen el mismo significado que los entendidos habitualmente por un experto en la materia al que pertenece esta invención. Métodos y materiales similares o equivalentes a los descritos en el presente documento se pueden usar en la práctica de la presente invención. A lo largo de la descripción y las reivindicaciones, la palabra "comprenden" y sus variaciones no implican la exclusión de otros aspectos técnicos, aditivos, componentes o etapas. Objetos, ventajas y características adicionales de la invención serán evidentes para los expertos en la materia tras el examen de la descripción o se pueden aprender mediante la puesta en práctica de la invención. Los siguientes ejemplos y dibujos se presentan a modo de ilustración y no pretenden ser limitantes de la presente invención. BREVE DESCRIPCIÓN DE LOS DIBUJOS
FIG 1. Espectros de GO y rGO respectivamente
FIG 2. (a) Difractogramas de grafito, óxido de grafeno (GO) y óxido de grafeno reducido (rGO), (b) espectro XPS de rGO, el cuadro insertado muestra el espectro de los niveles internos del C1 S
FIG 3. (a, b) M i crofotog rafias de microscopía electrónica de barrido (SEM por sus siglas en inglés) y (c, d) microfotografías de microscopía electrónica de transmisión (TEM por sus siglas en inglés) a dos aumentos diferentes.
FIG. 4. (a, b) Isotermas de absorción/desorción de nitrógeno para una muestra de rGO con el correspondiente gráfico de distribución de tamaño de poro BJH.
FIG. 5. Diagrama esquemático de la disposición de la celda de flujo usada en el ejemplo 3 en la que los ENF cargados y descargados se almacenan en recipientes separados. Se emplearon dos bombas peristálticas con control automático de la dirección de flujo y de la velocidad de flujo. 1 Depósitos 2 Bomba 3 Separador 4 Celda FIG. 6 Curvas de Voltamperometrías cíclicas (CV por sus siglas en inglés) de nanofluidos electroactivos de rGO de diferentes concentraciones a velocidad de barrido de 20 mV/s en condiciones estáticas.
FIG. 7 (a, b) Curvas CV de un nanofluido electroactivo de rGO de concentración 0,025% en peso a diferentes velocidades de barrido empezando por la velocidad más lenta de 1 mV/s a la más rápida de 10000 mV/s respectivamente.
FIG. 8 Curvas de voltamperometría cíclica (CV) de (a, b) nanofluido electroactivo de rGO al 0, 1 % en peso y (c, d) nanofluido electroactivo de rGO al 0,4% en peso a diferentes velocidades de barrido empezando por la más lenta de 1 mV/s (0,001 V/s) a 10000 mV/s (10V/s). Es muy destacable que los electrodos de flujo basados en estos nanofluidos electroactivos de rGO mostraron una CV con forma rectangular (típica de comportamiento capacitivo) a la muy alta velocidad de barrido de 10 V/s lo cual confirma una excelente densidad de potencia para los condensadores electroquímicos de flujo basados en nanofluidos electroactivos de rGO. Ésta es la velocidad de barrido más alta usada para medir curvas CV en celdas de flujo. FIG. 9 Variación de la capacitancia específica con la velocidad de barrido para ENF de rGO de diferentes concentraciones
FIG. 10 (a) Diagramas de Nyquist para los ENF de rGO de diferentes concentraciones en el intervalo de frecuencia entre 10 mHz y 10 kHz. FIG. 1 1 Curvas de carga descarga galvanostáticas para nanofluidos electroactivos de rGO al 0,025% en peso a diferentes densidades de corriente en condiciones estáticas.
FIG. 12 Densidad de potencia frente a densidad de energía para los nanofluidos electroactivos de rGO en un diagrama de Ragone.
FIG. 13 Variación de la eficiencia coulómbica de ENF de rGO a lo largo de 1500 ciclos de carga y descarga.
FIG. 14 Cronoamperometría para un nanofluido electroactivo de rGO (0,025% en peso) a diferentes voltajes aplicados tales como 0,2, 0,4, 0,6, 0,8 V, que muestra una alta eficiencia coulómbica del 98,2% cuando se carga a un potencial de 0,8 V y se descarga posteriormente a 0 V. FIG. 15 Autodescarga, es decir muestra la pérdida dependiente del tiempo del potencial de la celda a circuito abierto para ENF de rGO (0,025% en peso).
FIG. 16 Voltamperogramas cíclicos (20 mV/s) de ENF de rGO al 0,025% en peso para diferentes velocidades de flujo.
FIG. 17 Variación de la capacitancia específica de ENFs de rGO con la velocidad de flujo.
FIG. 18 Diagramas de Nyquist para el nanofluido electroactivo de rGO al 0,025% en peso para diferentes velocidades de flujo (intervalo de frecuencia de 10 mHz a 10 kHz).
FIG. 19 Cronoamperometría para un nanofluido electroactivo de rGO (0,025% en peso) durante condiciones de flujo a 10 ml/min que muestra una alta eficiencia coulómbica del 96,8% cuando se carga a un potencial de celda de 0,9 V y se descarga posteriormente a 0 V.
FIG. 20 (a, b, c) Microfotografías de microscopía electrónica de barrido (SEM por sus siglas en inglés) y (d, e, f) Microfotografías de microscopía electrónica de barrido en transmisión (TEM por sus siglas en inglés) para rGO, rGO-PMo12, rGO-PW12, respectivamente.
FIG. 21 Curvas CV del electrodo de los nanofluidos electroactivos (0,025% en peso) a) rGO-PW12 y b) rGO-PMo12 a diferentes velocidades de barrido (de 5 mV/s a la velocidad de barrido más alta de 200 mV/s)
FIG. 22 Variación de la capacitancia específica del electrodo de los nanofluidos electroactivos (0,025% en peso) rGO-PW12 y rGO-PMo12 con la velocidad de barrido.
FIG. 23 Curvas de carga descarga galvanostáticas para el 0,025% en peso de los nanofluidos electroactivos (a) rGO-PW12 y (b) rGO-PMo12 a diferentes densidades de corriente en condiciones estáticas.
FIG. 24 Densidad de potencia frente a densidad de energía de los nanofluidos electroactivos rGO-PW12 y rGO-PMo12 (0,025% en peso) en un diagrama de Ragone.
FIG. 25 Cronoamperometrías para nanofluidos electroactivos (a) rGO-PW12 y (b) rGO- PMo12 a diferentes voltajes aplicados, tales como 0,4, 0,6, 0,8, y 1 ,0 V que muestra una alta eficiencia coulómbica del 95,2% cuando se carga a un potencial de celda de 1 ,0 V y se descarga posteriormente a 0 V
FIG. 26 Ensayo de ciclos de carga y descarga galvanostáticos para nanofluidos electroactivos rGO-POM (rGO-PW12 y rGO-PMo12) a diferentes densidades de corriente, de 4 A/g a 16 A/g durante 200 ciclos. FIG. 27 Curvas CV (a velocidad de barrido de 100 mV/s) de nanofluido electroactivo rGO-POM al 0,025% en peso, (a) rGO-PW12 y b) rGO-PMo12) para diferentes velocidades de flujo.
EJEMPLOS Ejemplo 1 : síntesis de óxido de grafeno reducido (rGO).
El óxido de grafeno (GO) se sintetizó a partir de grafito natural usando el método de Hummers modificado. En resumen, 5 g de NaN03 y 225 mi de H2S04 se añadieron a 5 g de grafito y se agitaron durante 30 min en un baño de hielo. 25 g de KMn04 se añadieron a la disolución resultante y a continuación la disolución se agito durante 2 h a 50°C. 500 mi de agua desionizada y 30 mi de H202 (35%) se añadieron lentamente a la disolución, y la disolución se lavó con HCI diluido, además, el producto de GO se lavó de nuevo con 500 mi de HCI concentrado (37%). El óxido de grafeno reducido (rGO) se preparó mediante un tratamiento a alta temperatura de la muestra de GO a 800 °C en atmosfera de nitrógeno.
Los resultados del análisis por espectroscopia Raman se muestran en la figura 1. La relación de intensidades de la banda D (a 1348 cm"1) y la banda G (a1591 cm"1) de Raman fue de D/G = 1 ,02, confirmando de este modo la formación del óxido de grafeno reducido. Se llevó a cabo el estudio cristalográfico usando un instrumento Panalytical X'pert Pro- MRD (radiación CuKalpha y detector PIXel). Los análisis de rayos-X se llevaron a cabo mediante de espectroscopia fotoelectrónica de rayos-X (XPS, SPECS Germany, PHOIBOS 150). Las figuras 2a) y b) se refieren a (a) difractogramas de grafito, oxido de grafeno (GO) y oxido de grafeno reducido (rGO), (b) espectro XPS de rGO, el recuadro insertado muestra el espectro de C1 s a nivel del núcleo. El contenido de oxígeno en este rGO, determinado por XPS fue del 5,8%.
El análisis morfológico de la superficie de una muestra de rGO se llevó a cabo mediante microscopía electrónica de barrido (FEI Quanta 650F Environmental SEM). Las imágenes de TEM se obtuvieron con un microscopio electrónico de transmisión de emisión de campo (Tecnai G2 F20 S-TWIN HR(S) TEM, FEI). Véase figura 3 a) - d). HRTEM reveló que las láminas de rGO son cercanas a una monocapa con un aspecto muy transparente, mientras que las imágenes de FESEM y TEM de una muestra del grueso del material mostró capas perfectamente extendidas para formar una estructura laminar altamente porosa. La adsorción/desorción de N2 se determinó mediante mediciones de Brunauer- Emmett-Teller (BET) usando un instrumento Micromeritics (Data Master V4.00Q, N° de serie: 2000/2400). Los resultados se muestran en la figura 4. Se observa un claro ciclo de histéresis que se asocia a la presencia de una estructura mesoporosa relacionada con las nanoláminas intercaladas. Además, las nanoláminas de rGO exhiben poros tanto en la región de los mesoporos como en la de macroporos.
Ejemplo 2: síntesis del nanofluido electroactivo de rGO. Los nanofluidos electroactivos de rGO se prepararon por mezcla directa del rGO con el medio líquido también llamado fluido de base. En este análisis, el fluido de base fue H2S04 1 M en agua desionizada. Se prepararon nanofluidos electroactivos con diferentes concentraciones mezclando el 0,025, 0,1 y 0,4% en peso de rGO en disolución acuosa de H2S04 1 M. Para obtener suspensiones estables se añadió un 0,5% en peso de surfactante (tritón X-100) y la mezcla se mantuvo en un baño de ultrasonidos durante 2 h. Los soles resultantes se usaron directamente como electrodos de flujo en una celda de flujo fabricada en nuestro laboratorio y que se describe en el texto. Los nanofluidos electroactivos de rGO se prepararon con diferentes concentraciones (0,025, 0,05, 0,1 , 0,2 y 0,4% en peso) después de diferentes intervalos de tiempo. El nanofluido electroactivo de rGO preparado de este modo tiene un aspecto negro oscuro lo que indica una dispersión estable y uniforme del rGO en disolución acuosa de H2S04 1 M. Las dispersiones de rGO empezaron a precipitar después de reposar casi 10 h. y solo después de 40 h. la precipitación fue completa. Además, es interesante resaltar que los nanofluidos electroactivos de rGO con concentraciones bajas (0,025 y 0,05% en peso) permanecen estables durante más tiempo incluso. Finalmente todos los nanofluidos electroactivos de rGO se podían redispersar muy fácilmente mediante una suave agitación, teniendo de nuevo un aspecto similar a los productos preparados de este modo y permaneciendo estables durante más de 5 h, lo cual sugiere una alta estabilidad de los nanofluidos electroactivos de rGO.
Ejemplo 3: diseño de la celda de flujo
La caracterización electroquímica de estos nanofluidos electroactivos de rGO del ejemplo 2 se llevó a cabo tanto en condiciones estáticas como en condiciones de flujo continuo usando una celda de flujo diseñada especialmente. Véase la figura 5. El cuerpo de la celda (7 cm x 6 cm x 1 cm) se fabricó con dos placas de acero inoxidable que actúan como colectores de corriente, con un canal de flujo con forma serpentina de 5 mm de ancho y 5 mm de profundidad. Los dos compartimentos de la celda se separaron mediante una membrana de fluoruro de polivinilideno (PVDF, por sus siglas en inglés) (Durapore®; Merck Millipore, Alemania) y se empleó papel aceitado como junta que proporciona un sellado estanco. El área de contacto entre la membrana permeable a los iones y el electrodo de flujo fue de 12,7 cm2. Finalmente, la celda se diseñó con el nivel de control de flujo requerido para ensayos de un prototipo para cumplir las expectativas para un dispositivo de funcionamiento a mayor escala (Effective Function Code (EFC)). De este modo, se implementaron bombas peristálticas para cada uno de los compartimentos positivo y negativo, con control automático de flujo dual (flujo directo e inverso).
Ejemplo 4: caracterización de electrodos de nanofluido electroactivo de rGO. El rendimiento electroquímico de electrodos de nanofluidos electroactivos de rGO de diferentes concentraciones se investigó en condiciones estáticas mediante Voltamperometrías cíclica (CV) usando el diseño de celda de flujo del ejemplo 3.
La FIG 6. Muestra las curvas CV de celdas simétricas con nanofluido electroactivo de rGO con diferentes concentraciones (desde el 0,025% en peso hasta el 0,4% en peso de rGO) a una velocidad de barrido de 20 mV/s. las intensidades de corriente bajo las curvas aumentan y las capacitancias específicas disminuyen a medida que la concentración de los nanofluidos electroactivos aumenta, mostrando así un comportamiento similar al de los supercondensadores convencionales con electrodos sólidos. La forma de las curvas CV es cuasi-rectangular lo que indica un mecanismo dominante de tipo capacitivo de almacenamiento de energía.
La FIG 7 (a, b) muestra las curvas CV de nanofluido electroactivo de rGO (0,025 % en peso) a diferentes velocidades de barrido (desde 1 mV/s a la máxima velocidad de 10 V/s). La forma rectangular de CV se mantiene incluso a la muy alta velocidad de 10.000 mV/s; lo que indica que los nanofluidos electroactivos de rGO poseen excelentes prestaciones a alta velocidad, tal y como se requiere para supercondensadores de alta potencia.
Resultados similares se observaron incluso para nanofluidos electroactivos de alta concentración. La FIG 8 muestra curvas de Voltamperometrías cíclicas (CV) de (a, b) nanofluido electroactivo de rGO al 0,1 % en peso y (c, d) nanofluido electroactivo de rGO al 0,4 % en peso a diferentes velocidades de barrido desde la velocidad de barrido más baja de 1 mV/s (0,001 V/s) hasta 10.000 mV/s (10 V/s). Extraordinariamente, el electrodo de flujo basado en nanofluido electroactivo de rGO mostró una CV de forma rectangular, típicas de comportamiento capacitivo a la muy alta velocidad de barrido de 10 V/s confirmando una excelente densidad de potencia del condensador de flujo electroquímico (EFC) basado en nanofluido electroactivo de rGO. Debe observarse que la forma de las curvas CV se vuelve más y más rectangular a medida que aumenta la velocidad de barrido. Esto indica una contribución relativa cada vez más importante de almacenamiento capacitivo (doble capa) frente al pseudo- capacitivo (faradaico) a altas velocidades.
El comportamiento observado para los nanofluidos electroactivos implica que todo el volumen del líquido se puede polarizar, lo cual a su vez implica una conducción electrónica percolativa a través del nanofluido electroactivo que, de ese modo, podría considerarse como un verdadero electrodo líquido.
Los valores de capacitancia específica de la celda para fluidos electroactivos de rGO se calcularon a partir de las curvas CV y se muestran en la FIG. 9 para las diferentes concentraciones y velocidades de barrido ensayadas. Como cabría esperar, las capacitancias específicas disminuyen gradualmente a medida que aumenta la velocidad de barrido. Para el nanofluido electroactivo de rGO al 0,025% en peso se obtuvo un valor de capacitancia específica de 169 F/g (rGO) a una velocidad de barrido de 1 mV/s. Nótese que, para almacenar esa cantidad de carga en el rGO de la celda de flujo, las láminas de rGO deben estar conectadas eléctricamente a la carga externa a través de una trayectoria conductora. A diferencia de los supercondensadores convencionales en los que los electrodos de película sólida se benefician de trayectorias de conducción fijas y bien definidas, esta celda utiliza un "electrodo líquido" en el que la carga debe percolar a través de una red dinámica de partículas conductoras. Los valores de capacitancias específicas representados en la FIG. 9 son comparables o incluso superiores a los valores notificados para lodos consistentes o suspensión espesa de carbono.
Por ejemplo, Presser y col. [The electrochemical flow capacitor: A new concept for rapid energy storage and recovery. Adv. Energy Mater. 2, 895-902 (2012)] prepararon un lodo consistente de carbono derivado de polvo de carburo obtenido de carburo de titanio (TiC: CDC) y Na2S04 1 M con nanofluidos electroactivos 3: 1 y 4: 1 (electrolito:carbono en masa). La capacitancia específica más elevada notificada para un lodo consistente de TiC:CDC con textura de pasta de dientes (3: 1 electrolito:carbono) fue de 109 F/g a una velocidad de barrido de 2 mV/s. Por otra parte, Zhang y col. [Zhang, C. y col. Highly porous carbón spheres for electrochemical capacitors and capacitive flowable suspensión electrodes. Carbón, 77, 155-164 (2014)] describieron una capacitancia específica de 154 F/g a 2 mV/s en H2S04 1 M para un lodo consistente de esferas de carbono poroso con concentraciones que variaban entre el 16% y el 23% en peso.
Finalmente, los datos de espectroscopia de impedancia electroquímica mostraron una resistencia óhmica baja, en el intervalo de -0,23-0,28 Ω que sugiere un transporte iónico rápido y una red altamente conductora que facilita la percolación de carga e iones, Véase la FIG 10. Estos valores son incluso más bajos que los descritos para electrodos de suspensiones de partículas de carbono esféricas en los documentos:
Hatzell, K. B. y col. A high performance pseudocapacitive suspensión electrode for the electrochemical flow capacitor. Electrochim. Acta, 111 , 888-897 (2013). - Hatzell, K. B. y col. Composite manganese oxide percolating networks as a suspensión electrode for an asymmetric flow capacitor. ACS Appl. Mater. Interfaces, 6, 8886-8893 (2014).
Hatzell, K. B. y col. Capacitive deionization concept based on suspensión electrodes without ion exchange membranes. Electrochem. Commun. 43, 18-21 (2014).
Además, las curvas de impedancia muestran un semicírculo distorsionado en la región de altas frecuencias debido a la porosidad de rGO y un aumento lineal casi vertical en la región de bajas frecuencias. La intersección a alta frecuencia del semicírculo sobre el eje real da la resistencia de la disolución (electrolito) (Rsol), y el diámetro da la resistencia de transferencia de carga (Rct) en la interfaz del electrodo de rGO y el electrolito.
El rendimiento electroquímico de los nanofluidos electroactivos de rGO de los ejemplos 2 se estudió adicionalmente mediante ciclos galvanostáticos de carga/descarga en condiciones estáticas, tal como se muestra en la FIG 11. Las formas de las curvas de carga y descarga son simétricas, triangulares y lineales para los nanofluidos electroactivos de rGO a todas las diferentes densidades de corriente usadas. Para el nanofluido electroactivo de rGO al 0,025% en peso, los valores de capacitancia específica fueron 1 17 y 50 F/g (rGO) a densidades de corriente de 1 A/g y 2,5 A/g respectivamente. Esto corresponde a valores de energía específica de 5,7- 13,1 Wh/kg(rGO) y potencia específica de 0,45-1 ,13 kVWkg(rGO), tal como se muestra en la FIG 12. Los valores de energía específica son significativamente mayores que los descritos previamente para lodos consistentes, por ejemplo 5,6-8,2 Wh/kg para un lodo consistente de perlas de carbono [Campos, J. W. y col. Investigation of carbón materials for use as a flowable electrode in electrochemical flow capacitors. Electrochim. Acta 98, 123-130 (2013)].
Además, los ciclos galvanostáticos fueron estables, con eficiencias del ciclo mayores del 97,6% después de 1500 ciclos de carga/descarga (FIG 13).
La FIG 14 muestra una serie de experimentos de cronoamperometría llevados a cabo para nanofluidos electroactivos de rGO en condiciones estáticas. Inicialmente, la celda se descargó completamente durante un periodo de 15 min y después se cargó a diferentes potenciales tales como 0,2, 0,4, 0,6 y 0,8 V. las capacitancias específicas para los nanofluidos electroactivos de rGO se calcularon a diferentes potenciales y se encuentran en el intervalo de 36-156 F/g(rGO), que son comparables a los valores derivados de las CV. La eficiencia coulómbica de la celda del nanofluido electroactivo de rGO fue del 98,2% (FIG 14), un valor elevado teniendo en cuenta que se incluyó la corriente de fuga, un valor que concuerda muy bien con la eficiencia coulómbica derivada de los experimentos galvanostáticos de carga/descarga (98,9%).
La FIG 15 muestra la pérdida dependiente del tiempo del potencial de la celda a circuito abierto (autodescarga) para los nanofluidos electroactivos de rGO. Después de 30 min de carga al potencial máximo de la celda de 0,9 V el voltaje a circuito abierto cayó al 34% del voltaje inicial (0,9 V) después de 24 h.
Esto sigue siendo comparable o incluso mejor que las celdas de supercondensadores comerciales con electrodos solidos [Kaus, M. Kowal, J. Sauer, D. U. Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim. Acta 55, 7516-7523 (2010)].
Para profundizar en el potencial de los nanofluidos electroactivos que se describen en el ejemplo 2 para su aplicación en celdas de flujo, se investigaron también las propiedades electroquímicas de nanofluidos electroactivos de rGO en condiciones de flujo continuo. La FIG 16 muestra curvas CV de un nanofluido electroactivo de rGO al 0,025 % en peso (a velocidad de barrido de 20 mV/s) para diferentes velocidades de flujo. Es interesante apreciar que la forma de las curvas CV permanece idéntica para las diferentes velocidades de flujo usadas, lo cual confirma la naturaleza uniforme y estable del nanofluido electroactivo. Sin embargo, la corriente bajo las curvas aumenta a medida que aumenta la velocidad de flujo entre 0 y 10 ml/min, pero después empieza a decrecer para velocidades de flujo > 10 ml/min.
La variación de los valores de capacitancia específica con la velocidad de flujo se presenta en la FIG 17. Se puede apreciar como esos valores aumentan de 31 a 48 F/g(rGO) a medida que la velocidad de flujo se aumenta de 0 a 10 ml/min, pero a continuación disminuyen para velocidades de flujo superiores. Este aumento inicial de la capacitancia específica se puede atribuir al flujo de nuevas nanopartículas de rGO que toman parte en el almacenamiento de carga. Sin embargo a velocidades de flujo altas y en las condiciones experimentales usadas, el tiempo de residencia de las nanopartículas de rGO en los canales de flujo será eventualmente insuficiente para permitir la carga completa de todo el material dispersado, causando en consecuencia una disminución de la capacitancia específica. Debe observarse, no obstante, que este efecto de derivación ("bypassing") podría tener lugar a velocidades de flujo mucho mayores, a través de un diseño optimizado de la celda electroquímica, por ejemplo con colectores de corriente con mayor área superficial.
Además de esto, velocidades de flujo elevadas pueden también causar un aumento perjudicial de la resistencia (resistencia de contacto, resistencias de fricción, y entre partículas). Esto se confirma mediante mediciones de impedancia electroquímica potenciodinámica (PEIS) que se muestran en la FIG 18. Se descubrió que la resistencia interfacial asociada con la interfaz del colector de corriente y el nanofluido electroactivo de rGO constituye una gran parte de la resistencia total de la celda.
Además, cuando se comparan con experimentos de carga-descarga estática, existe una ligera disminución de la eficiencia coulómbica en ciclos en condiciones de flujo (96,8%) (FIG 19). Esto se puede atribuir también al aumento de la resistencia interfacial en condiciones de flujo. Sin embargo, estos experimentos preliminares con flujo confirmaron que las celdas EFC basadas en nanofluidos electroactivos de rGO funcionan de manera muy prometedora durante las condiciones de flujo.
Ejemplo 5: síntesis de nanofluidos electroactivos de rGO con polioxometalato (POM). Se prepararon dos materiales híbridos diferentes basados en rGO y po I i oxo meta latos (POM) i) rGO-fosfotungstato (H3PW12O40) (abreviado, rGO-PW12) y ii) rGO- fosfomolibdato (H3PMo12O40) (abreviado, rGO-PMo12). Resumiendo, dos muestras de 0,25 g cada una de rGO se dispersaron en 100 mi de agua desionizada en dos vasos de precipitados diferentes con sonda sonicadora de ultrasonidos (1500 W de potencia) durante 2 h. Después, se añadieron 10 mM de cada uno de ácido fosfotúngstico (H3PW12O403H2O, (PW12)) y ácido fosfomolíbdico (H3PMo12O40.3H2O, (PMo12)) a los vasos de precipitados de las disoluciones de rGO presonicadas. Estas suspensiones se sonicaron adicionalmente durante 5 h más y se mantuvieron a temperatura ambiente durante las siguientes 24 h. Posteriormente, estos productos se retiraron por filtración por separado y se secaron en un horno de vacío a 80°C durante una noche. Los productos resultantes se etiquetaron como rGO- PW12 y rGO-PMo12, para la síntesis a partir de ácidos fosfotúngstico y fosfomolíbdico, respectivamente.
Los nanofluidos electroactivos híbridos de rGO-POM se prepararon por dispersión directa de los sólidos rGO-PW12 y rGO-PMo12 en agua. En particular, para su aplicación como electrodo de flujo, los sólidos se dispersaron en un electrolito de H2S04 acuoso. Así, los nanofluidos electroactivos híbridos se prepararon mezclando por separado el 0,025% en peso de rGO-PW12 y rGO-PMo12 en una disolución acuosa de 1 M de H2S04. Con el fin de obtener una suspensión estable, se añadió un 0,5% en peso de surfactante (tritón X-100) y la mezcla se mantuvo en baño de ultrasonidos hasta 2 h.
La FIG 20 (a, b y c) muestra imágenes de SEM de muestras de rGO, rGO-PMo12 y rGO-PW12 respectivamente, mientras que la FIG 20 d), e) y f) muestran imágenes de alta resolución de TEM de barrido (STEM), que muestran la cobertura completa y homogénea de los clústeres de POM sobre rGO (FIG 20 e) y f)) que se perciben como pepitas minúsculas brillantes (1 nm de tamaño) sobre las láminas de grafeno.
Ejemplo 6: caracterización de los electrodos de nanofluidos electroactivos de POM-rGO.
La caracterización electroquímica de los nanofluidos electroactivos de POM-rGO del ejemplo 5 se llevó a cabo tanto en condiciones estáticas como de flujo continuo usando la celda de flujo descrita en el ejemplo 4.
La FIG 21 muestra las curvas CV de un electrodo basado en nanofluido electroactivo de a) rGO-PW12 y b) rGO-PMo12 (0,025% en peso) a diferentes velocidades de barrido (entre 5 mV/s y 200 mV/s). Cabe resaltar que las formas de estas CV no son rectangulares, lo cual confirma la contribución de las actividades redox de los clústeres de POMs. Además, la forma de las curvas CV permanece inalterada incluso a la alta velocidad de barrido de 200 mV/s, lo cual indica que los nanofluidos electroactivos de rGO-POM poseen un excelente comportamiento a altas velocidades, tal y como se necesitan para supercondensadores de alta potencia.
Los valores de capacitancia específica de la celda para nanofluidos electroactivos basados en rGO-POM (ejemplo 5) se calcularon a partir de las curvas CV y se muestran en la FIG 22 para nanofluido de rGO-PW12 y rGO-PMo12 de concentración constante (0,025% en peso) a diferentes velocidades de barrido.
Las capacitancias específicas decrecen gradualmente a medida que aumenta la velocidad de barrido. Curiosamente, se obtuvieron valores de capacitancia específica de 273 F/g(rGO-PW12) y 305 F/g(rGO-PMo12) para nanofluidos electroactivos de rGO-POM al 0,025% en peso a velocidades de barrido de 5 mV/s. Los valores de capacitancias específicas que se representan en la FIG 22 son comparables o incluso considerablemente superiores a los valores descritos para electrodos solidos nanocompuestos de carbono-POM en supercondensadores convencionales. Por ejemplo, en la reciente investigación por P. Gomez-Romero y col. [Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon- phosphotungstate hybrid materials, Mater. Chem. A, 2014, 2, 1014] se describió una capacitancia específica de 254 F/g para electrodos compuestos sólidos de carbón activado-PW12, mientras que en otra publicación [Hybrid electrodes based on polyoxometalates-carbon for electrochemical supercapacitors] el valor de capacitancia específica obtenida para un electrodo solido de carbón activado-PMo12 fue de 183 F/g.
El rendimiento electroquímico de los nanofluidos electroactivos de rGO-POM descritos en el ejemplo 5 se estudió adicionalmente mediante ciclos de carga/descarga en condiciones estáticas tal como se muestra en la FIG 23 a) rGO-PW12 y b) rGO- PMo12. Las formas de las curvas de carga-descarga no tienen el aspecto ideal triangular y lineal para los nanofluidos electroactivos de rGO-POM en todas las diferentes densidades de corriente utilizadas. Para el nanofluido electroactivo de rGO- POM al 0,025% en peso, los valores de energía específica obtenidos están en el intervalo de 7-28,8 Wh/kg(rGO-PW12) y 9,3-30,9 Wh/kg(rGO-PMo12), mientras que la potencia específica para ambos nanofluidos electroactivos es de 2-8 kW/kg(rGO- POM), tal como se muestra en la FIG 24. La FIG 25 muestra una serie de experimentos de cronoamperometría llevados a cabo para nanofluidos electroactivos de a) rGO-PW12 y b) rGO-PMo12 en condiciones estáticas. Inicialmente, la celda se descargó completamente durante un periodo de 15 min y a continuación se cargó a diferentes potenciales tales como 0,4, 0,6, 0,8 y 1 ,0 V. Las capacitancias específicas se calcularon para ambos nanofluidos electroactivos de rGO-POM a diferentes potenciales y están en el intervalo de 124-242 F/g(rGO-PW12 y 143-293 F/g(rGO-PMo12), que son comparables a los valores derivados de las CV. Se descubrió que la eficiencia coulómbica de la celda de nanofluido electroactivo de rGO- POM estaba entre el 98,3 y el 98,7% (FIG 25), un valor elevado puesto que se incluyó la corriente de fuga.
En los supercondensadores, la vida cíclica es un parámetro muy importante. La FIG 26 muestra la estabilidad cíclica de nanofluidos electroactivos de rGO-POM que se investigó mediante ensayos de carga/descarga galvanostáticos a diferentes densidades de corriente, desde 4 A/g a 16 A/g durante 200 ciclos. Es interesante observar que ambos electrodos líquidos basados en rGO-POM presentan una estabilidad en el intervalo del 92-94% después de 2000 ciclos.
Además, los nanofluidos electroactivos descritos en el ejemplo 5 a aplicar en celdas de flujo, para investigar las propiedades electroquímicas de nanofluidos electroactivos de rGO-POM en condiciones de flujo continuo. La FIG 27 a) rGO-PW12, b) rGO-PMo12 muestra curvas CV (a velocidades de barrido de 100 mV/s) de nanofluido electroactivo de rGO-POM al 0,025% en peso para diferentes velocidades de flujo. Es interesante observar que la forma de las curvas CV se mantiene idéntica para las diferentes velocidades de flujo utilizadas, lo cual confirma la naturaleza estable y uniforme del nanofluido electroactivo de rGO-POM. Sin embargo, la corriente bajo la curva aumenta ligeramente con el aumento en velocidad de flujo de 0 a 10 ml/min y luego decrece ligeramente para velocidades de flujo > 10 ml/min.
La ligera variación de la densidad de corriente se puede atribuir al flujo de nuevas nanopartículas de rGO-POM que toman parte en el almacenamiento de carga. Sin embargo, a velocidades de flujo superiores y en las condiciones experimentales usadas, el tiempo de residencia para las partículas de rGO-POM en los canales de flujo será eventualmente insuficiente para permitir una carga completa de todo el material dispersado, causando en consecuencia una disminución de la capacitancia específica. Además de esto, durante el proceso a alta velocidad de flujo las especies redox en rGO-POM (ejemplo 5) podrían no tener tiempo para completar su oxidación o reducción lo que reduciría en consecuencia la corriente bajo las curvas.

Claims

REIVINDICACIONES
Un nanofluido electroactivo caracterizados porque comprende
a) un medio líquido seleccionado entre un disolvente orgánico o una disolución acuosa de compuestos ácidos, neutros o básicos y dicho medio líquido comprendiendo opcionalmente un surfactante, y b) un compuesto o material compuesto basado en grafeno, dispersado de forma homogénea en el medio líquido, y dicho compuesto o material compuesto basado en grafeno comprendiendo opcionalmente una sustancia electroactiva asociada al compuesto o material compuesto basado en grafeno.
El nanofluido electroactivo de acuerdo con la reivindicación anterior, en el que el medio líquido es un disolvente orgánico seleccionado entre la lista que consiste en acetonitrilo, dimetilformamida y dimetilacetamida.
El nanofluido electroactivo de acuerdo con la reivindicación anterior, en el que el surfactante está en un porcentaje en peso entre el 0,01 % y el 5% en base al peso total del medio líquido.
El nanofluido electroactivo de acuerdo con cualquiera de las reivindicaciones de 1 a 3, en el que el compuesto basado en grafeno está en un porcentaje en peso entre el 0,01 % y el 10% en base al peso total del nanofluido electroactivo.
El nanofluido electroactivo de acuerdo con la reivindicación anterior, en el que el compuesto basado en grafeno está en un porcentaje en peso entre el 0,025% y el 0,4% en base al peso total del nanofluido electroactivo.
6. El nanofluido electroactivo de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que el compuesto basado en grafeno comprende además clústeres polioxometalatos como material electroactivo.
7. El nanofluido electroactivo de acuerdo con la reivindicación anterior en el que el clústeres polioxometalatos están en un porcentaje en peso entre el 0,01 % y el 10% en base al peso total del nanofluido electroactivo.
8. El nanofluido electroactivo de acuerdo con cualquiera de las reivindicaciones 6 ó 7, en el que los clústeres polioxometalatos se seleccionan entre la lista que consiste en fosfotungstato y fosfomolibdato. 9. El nanofluido electroactivo de acuerdo con cualquiera de las reivindicaciones 1 a 8, que comprende carbones activados o nanotubos de carbono.
10. El uso del nanofluido electroactivo de acuerdo con cualquiera de las reivindicaciones 1 a 9 como electrodo de una celda electroquímica de flujo.
PCT/ES2016/070371 2015-05-20 2016-05-18 Nanofluidos electroactivos basados en grafeno como electrodos líquidos en celdas de flujo WO2016185071A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16795939.4A EP3299338A4 (en) 2015-05-20 2016-05-18 GRAPHENE-BASED ELECTROACTIVE NANOFLUIDS FOR USE AS LIQUID ELECTRODES IN FLOWING CELLS
US15/575,622 US20180158622A1 (en) 2015-05-20 2016-05-18 Graphene-based electroactive nanofluids as liquid electrodes in flow cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530693 2015-05-20
ES201530693A ES2594508B1 (es) 2015-05-20 2015-05-20 Nanofluidos electroactivos basados en grafeno como electrodos liquidos en celdas de flujo

Publications (1)

Publication Number Publication Date
WO2016185071A1 true WO2016185071A1 (es) 2016-11-24

Family

ID=57319512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070371 WO2016185071A1 (es) 2015-05-20 2016-05-18 Nanofluidos electroactivos basados en grafeno como electrodos líquidos en celdas de flujo

Country Status (4)

Country Link
US (1) US20180158622A1 (es)
EP (1) EP3299338A4 (es)
ES (1) ES2594508B1 (es)
WO (1) WO2016185071A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484381A (zh) * 2021-06-28 2021-10-08 河北工业职业技术学院 多酸复合材料及其制备方法和应用
CN114142076A (zh) * 2021-11-30 2022-03-04 成都先进金属材料产业技术研究院股份有限公司 提高钒电池电解液电化学活性的方法
EP3413586B1 (en) * 2017-06-09 2022-06-29 GN Hearing A/S An occlusion control system for a hearing instrument and a hearing instrument
US11432085B2 (en) 2017-06-09 2022-08-30 Gn Hearing A/S Occlusion control system for a hearing instrument and a hearing instrument
CN115779966A (zh) * 2022-11-30 2023-03-14 陕西理工大学 一种用于偶氮染料催化氧化降解的高性能催化剂
CN115779966B (zh) * 2022-11-30 2024-06-07 陕西理工大学 一种用于偶氮染料催化氧化降解的高性能催化剂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029164B (zh) * 2019-12-16 2021-06-04 太原理工大学 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
CN112436114A (zh) * 2020-11-16 2021-03-02 扬州大学 一种三维石墨烯/碳纳米管/磷钨酸/硫复合材料、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256087A1 (en) * 2009-05-26 2010-12-01 Belenos Clean Power Holding AG Stable dispersions of single and multiple graphene layers in solution
WO2012006657A1 (en) * 2010-07-14 2012-01-19 Monash University Material and applications therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942906B (zh) * 2012-11-28 2015-04-01 上海第二工业大学 一种高导热、低粘度水基含复合导热填料纳米流体及其制备方法
WO2014183028A2 (en) * 2013-05-10 2014-11-13 Timofeeva Elena V Rechargeable nanoelectrofuel electrodes and devices for high energy density flow batteries
CN104016337B (zh) * 2014-06-13 2015-08-12 吉林大学 一种采用多金属氧簇复合物制备石墨烯分散液的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256087A1 (en) * 2009-05-26 2010-12-01 Belenos Clean Power Holding AG Stable dispersions of single and multiple graphene layers in solution
WO2012006657A1 (en) * 2010-07-14 2012-01-19 Monash University Material and applications therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BABY, T. T. ET AL.: "Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, 2011, pages 8527 - 8533, XP055330811, ISSN: 1932-7447 *
IJAM, A. ET AL.: "A glycerol-water-based nanofluid containing graphene oxide nanosheets", JOURNAL OF MATERIALS SCIENCE, vol. 49, 2014, pages 5934 - 5944, XP055330813, ISSN: 0022-2461 *
See also references of EP3299338A4 *
TIMOFEEVA, E. V. ET AL.: "Rechargeable nanofluid electrodes for high energy density flow battery.", TECHNICAL PROCEEDINGS OF THE 2013 NSTI NANOTECHNOLOGY CONFERENCE AND EXPO, NSTI-NANOTECH 2013, vol. 2, pages 679 - 682, XP055330853, ISBN: 978-1-4822-0584-8 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413586B1 (en) * 2017-06-09 2022-06-29 GN Hearing A/S An occlusion control system for a hearing instrument and a hearing instrument
US11432085B2 (en) 2017-06-09 2022-08-30 Gn Hearing A/S Occlusion control system for a hearing instrument and a hearing instrument
CN113484381A (zh) * 2021-06-28 2021-10-08 河北工业职业技术学院 多酸复合材料及其制备方法和应用
CN113484381B (zh) * 2021-06-28 2023-01-17 河北工业职业技术学院 多酸复合材料及其制备方法和应用
CN114142076A (zh) * 2021-11-30 2022-03-04 成都先进金属材料产业技术研究院股份有限公司 提高钒电池电解液电化学活性的方法
CN114142076B (zh) * 2021-11-30 2024-04-19 成都先进金属材料产业技术研究院股份有限公司 提高钒电池电解液电化学活性的方法
CN115779966A (zh) * 2022-11-30 2023-03-14 陕西理工大学 一种用于偶氮染料催化氧化降解的高性能催化剂
CN115779966B (zh) * 2022-11-30 2024-06-07 陕西理工大学 一种用于偶氮染料催化氧化降解的高性能催化剂

Also Published As

Publication number Publication date
EP3299338A4 (en) 2019-05-01
EP3299338A1 (en) 2018-03-28
ES2594508B1 (es) 2017-09-27
ES2594508A1 (es) 2016-12-20
US20180158622A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
ES2594508B1 (es) Nanofluidos electroactivos basados en grafeno como electrodos liquidos en celdas de flujo
Ghaly et al. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@ 3D graphene electrodes with high power and energy densities
Chen et al. One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors
Wang et al. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors
Qu et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes
Xu et al. Low-Temperature pseudocapacitive energy storage in Ti3C2Tx MXene
Zhang et al. Three-dimensional porous V 2 O 5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance
Balasingam et al. Freeze-dried MoS 2 sponge electrodes for enhanced electrochemical energy storage
Lei et al. A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte
Zhu et al. An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances
Zhai et al. 3D MnO 2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors
Kim et al. Development of high power and energy density microsphere silicon carbide–MnO 2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors
Zhang et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density
Tran et al. Three-dimensionally assembled Graphene/α-MnO2 nanowire hybrid hydrogels for high performance supercapacitors
Xu et al. Activated amorphous carbon with high-porosity derived from camellia pollen grains as anode materials for lithium/sodium ion batteries
Tang et al. Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density
Wang et al. High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte
Zhang et al. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance
Sun et al. Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window
Abbas et al. Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior
Lv et al. A cellulose-based hybrid 2D material aerogel for a flexible all-solid-state supercapacitor with high specific capacitance
Zheng et al. Three dimensional Ni foam-supported graphene oxide for binder-free pseudocapacitor
Deshmukh et al. Synthesis and electrochemical performance of a single walled carbon nanohorn–Fe 3 O 4 nanocomposite supercapacitor electrode
KR20160088235A (ko) 높은 에너지 밀도 유동 배터리를 위한 재충전가능한 나노전기연료 전극 및 장치
Li et al. Embedding hollow Co 3 O 4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575622

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016795939

Country of ref document: EP