WO2016183895A1 - 一种量子点发光元件、背光模组和显示装置 - Google Patents

一种量子点发光元件、背光模组和显示装置 Download PDF

Info

Publication number
WO2016183895A1
WO2016183895A1 PCT/CN2015/081848 CN2015081848W WO2016183895A1 WO 2016183895 A1 WO2016183895 A1 WO 2016183895A1 CN 2015081848 W CN2015081848 W CN 2015081848W WO 2016183895 A1 WO2016183895 A1 WO 2016183895A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
light
disposed
base substrate
Prior art date
Application number
PCT/CN2015/081848
Other languages
English (en)
French (fr)
Inventor
曹晓梅
高上
曹建伟
刘卫东
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2016183895A1 publication Critical patent/WO2016183895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present application relates to the field of optoelectronic devices, and in particular, to a quantum dot illuminating device, a backlight module, and a display device.
  • the highest color gamut backlighting scheme in the industry is a scheme in which blue light-excited quantum dot materials produce white light, and the color gamut can reach 100% NTSC or higher. Because the thermal stability of quantum dots is poor, the excitation efficiency drops rapidly or even fails when the temperature is higher than 120 °C. Therefore, the current mature practice in the industry is to place the quantum dot material far away from the LED.
  • the solution is applied to a direct-lit backlighting scheme in which a quantum dot material is encapsulated in a diaphragm as a diaphragm in a module placed above the diffusing plate, below all of the diaphragms.
  • the scheme is applied to a side-entry backlight scheme in which quantum dots are packaged in a glass tube and fixed above the light-input side LED by a bracket, and a certain distance is required.
  • quantum dots are packaged in a glass tube and fixed above the light-input side LED by a bracket, and a certain distance is required.
  • some embodiments of the present application provide a quantum dot light emitting device, including:
  • the LED light emitting structure wherein the LED light emitting structure is disposed on the first surface of the base substrate for generating excitation light;
  • the heat insulating layer is disposed on the second surface of the base substrate
  • the quantum dot layer is disposed on the heat insulating layer, the quantum dot layer is excited by the excitation light to emit light; the heat insulating layer is used for blocking the base substrate and the quantum dot Thermal conduction of the layer.
  • a backlight module including:
  • the backlight source is disposed on the back plate, the backlight source includes a plurality of point light sources, and each of the point light sources includes a quantum dot light emitting element;
  • An optical film set the optical film set is disposed in a light emitting direction of the backlight source; a liquid crystal display panel, the liquid crystal display panel is disposed above the optical film set;
  • the backplane, the backlight source, the optical film set, and the liquid crystal display panel are assembled into an integrated structure
  • the quantum dot light emitting element includes a base substrate
  • the LED light emitting structure wherein the LED light emitting structure is disposed on the first surface of the base substrate for generating excitation light;
  • the heat insulating layer is disposed on the second surface of the base substrate
  • the quantum dot layer is disposed on the heat insulating layer, the quantum dot layer is excited by the excitation light to emit light; the heat insulating layer is used for blocking the base substrate and the quantum dot Thermal conduction or thermal radiation of the layer.
  • some embodiments of the present application provide a display device, including a backlight module, where the backlight module includes a backplane;
  • the backlight source is disposed on the back plate, the backlight source includes a plurality of point light sources, and each of the point light sources includes a quantum dot light emitting element;
  • An optical film set the optical film set is disposed in a light emitting direction of the backlight source; a liquid crystal display panel, the liquid crystal display panel is disposed above the optical film set;
  • the backplane, the backlight source, the optical film set, and the liquid crystal display panel are assembled into an integrated structure
  • the quantum dot light emitting element includes a base substrate
  • LED light emitting structure wherein the LED light emitting structure is disposed on the substrate substrate first Surface for generating excitation light;
  • the heat insulating layer is disposed on the second surface of the base substrate
  • the quantum dot layer is disposed on the heat insulating layer, the quantum dot layer is excited by the excitation light to emit light; the heat insulating layer is used for blocking the base substrate and the quantum dot Thermal conduction or thermal radiation of the layer.
  • FIG. 1 is a schematic structural diagram of a quantum dot light emitting device according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a quantum dot light emitting device according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a quantum dot light emitting device according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of a light refraction principle of two dielectric surfaces provided by some embodiments of the present application.
  • FIG. 5 is a schematic diagram of the principle of total light reflection on the surface of two media provided by some embodiments of the present application.
  • FIG. 6 is a schematic diagram showing a transmittance characteristic curve of a heat insulating layer for different wavelengths of light according to some embodiments of the present application;
  • FIG. 7 is a schematic structural diagram of a backlight module according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a backlight module according to some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a display device according to some embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a display device according to some embodiments of the present application.
  • Frame sealant-124 heat insulation layer-13; quantum dot layer-14; first electrode-15; first ohmic contact layer-16; second electrode-17; second ohmic contact layer-18; heat dissipation substrate-19 Water Oxygen Barrier Layer-20; First Reflective Layer-21; Second Reflective Layer-22; Back Sheet-71; Backlight Source-72; Optical Film Set-73; Light Guide Plate-731; Liquid Crystal Display Panel-74.
  • the inventors tried to package the quantum dots directly into the LED. Because the TV backlight needs high brightness, high-power LED light-emitting chips are needed. The heat dissipation problem becomes a technical bottleneck, because the junction temperature often occurs. Close to or even higher than 120 ° C, seriously affecting the excitation efficiency of quantum dot materials.
  • Some embodiments of the present application provide a quantum dot light emitting device, a backlight module, and a display device, which can reduce the influence of the heat dissipation problem of the quantum dot light emitting device on the luminous efficiency of the quantum dot material.
  • some embodiments of the present application provide a quantum dot light emitting device, including:
  • the LED light emitting structure 12 wherein the LED light emitting structure 12 is disposed on the first surface of the base substrate 11 for generating excitation light;
  • the heat insulation layer 13 is disposed on the second surface of the base substrate 11;
  • the quantum dot layer 14 is disposed on the heat insulating layer 13, and the quantum dot layer 14 is excited by the excitation light to emit light; the heat insulating layer 13 is used for blocking the heat conduction or heat radiation of the base substrate 11 and the quantum dot layer 14. Shoot.
  • the heat insulating layer is disposed between the base substrate and the quantum dot layer, heat generated by the LED light emitting structure can be prevented or reduced from being transmitted or radiated to the quantum dot layer through the base substrate, thereby enabling The effect of heat dissipation of quantum dot light-emitting elements on the luminous efficiency of quantum dots is reduced.
  • the LED light emitting structure 12 may further include: a hole layer 121 disposed on the first surface of the base substrate 11 , a quantum well 122 disposed on the hole layer 121 , and disposed in the quantum well Electronic layer 123 on 122.
  • the solution provided by some embodiments may further include: the electron layer 123 is electrically connected to the first ohmic contact layer 16 on the heat dissipation substrate 19 through the first electrode 15;
  • the hole layer 121 is electrically connected to the second ohmic contact layer 18 on the heat dissipation substrate 19 through the second electrode 17.
  • the first electrode 15 and the second electrode 17 form two heat dissipation channels to achieve good heat dissipation of the PN junction.
  • some embodiments of the present application provide a solution. It may further include: a first reflective layer 22 between the electron layer 123 and the first electrode 15; and a second reflective layer 21 between the hole layer 121 and the second electrode 17.
  • the LED light emitting structure 12 can be used to provide an excitation light source for the vector sub-dot layer 14.
  • the hole layer 121 can be a P-type gallium nitride material (P-GaN), and the electronic layer 123 can be an N-type.
  • a gallium nitride material (N-GaN) the base substrate 11 may be a sapphire substrate; as shown in FIG. 3, a hole generated by the P-type gallium nitride and an electron generated by the N-type gallium nitride combine to emit a photon.
  • a part of the photon i is emitted upward through the transparent sapphire substrate to the quantum dot layer 14, and a part of the photons o are reflected downward by the reflective layer above the first electrode and the second electrode, and are emitted from the upper surface of the sapphire substrate to the quantum dot layer 14 .
  • the current semiconductor LED light-emitting device can only convert about 30% of the input power into light energy, and the remaining part is converted into heat energy to cause the junction temperature to be too high. Therefore, the temperature in the LED package is too high to disable the quantum dots.
  • a thermal insulation layer is added on the upper part of the sapphire substrate, and the quantum dot material is encapsulated in the upper part of the thermal insulation layer to form a quantum dot layer, and the thermal insulation layer is used to block the base substrate.
  • the thermal conduction of the quantum dot layer the thermal energy converted by the LED junction temperature is separated from the quantum dot layer, and the light generated by the LED light emitting structure is transmitted to the quantum dot layer in the form of radiation, and the quantum dot material is excited to generate light of a specific wavelength.
  • LED hair A large amount of thermal energy generated by the PN junction of the optical structure can be conducted downward through the heat dissipation channel formed by the first electrode and the second electrode, and the thermal energy is transmitted to the heat dissipation substrate through the ohmic contact electrode to ensure the life of the LED, and the LED chip can be effectively prevented from being overheated.
  • the quantum dot layer 14 is covered with a water-oxygen barrier layer 20.
  • the material of the water-oxygen barrier layer may be silicone, acrylic polymer or glass, which is capable of isolating moisture from oxygen and preventing quantum dot material from failing.
  • the water-oxygen barrier layer 20 may be bonded to the heat-insulating layer 13 by a sealant, and the function of the quantum dot layer is achieved by encapsulating the quantum dot material between the water-oxygen barrier layer 20 and the heat-insulating layer 13.
  • the material of the heat insulation layer 13 may have a refractive index to blue light that is greater than a refractive index of the material of the substrate substrate to blue light.
  • the refractive index of the thermal insulation layer to blue light is greater than the refractive index of the sapphire substrate in the package to the blue light, so that when the light is incident on the thermal insulation layer (light-tight medium) by the sapphire substrate (light-diffusing medium), full emission at the interface can be avoided.
  • is a critical angle at which total reflection occurs when light is incident on the heat insulating layer from the sapphire substrate, as shown in FIG. 4, when the light propagates from the light-diffusing medium to the optically dense medium, the light 100 % refraction, no total reflection occurs, wherein the refraction angle is ⁇ in Fig. 3; as shown in Fig. 5, when the light propagates from the optically dense medium to the light-diffusing medium, the light is totally reflected when the incident angle is larger than ⁇ , and the light is taken out. Reduced efficiency. Therefore, if the refractive index of the heat insulating layer is larger than that of the sapphire substrate, the light propagates as shown in Fig. 4, improving the light extraction efficiency.
  • the excitation light source of the quantum dot material mostly uses a shorter wavelength blue, violet or ultraviolet band, in the present application
  • the heat insulation layer has a first transmittance for light exceeding a first predetermined wavelength; the heat insulation layer has a second transmittance for light lower than the first predetermined wavelength; wherein the first transmittance is less than the first transmittance Two transmittance.
  • FIG. 6 a transmittance characteristic curve of light of different wavelengths; wherein FIG. 6 shows an emission spectrum of the quantum dot light-emitting element and a spectral characteristic curve after the blue light-excited quantum dot in some embodiments. -1, and a transmittance characteristic curve 5-2 of the heat insulating layer to the visible light region; wherein the abscissa indicates the wavelength and the ordinate indicates the transmittance; the heat insulating layer may be translucent, not 100 for all visible light. % transmission, the longer the wavelength, the lower the transmittance of the heat-insulating layer; from the spectral transmittance characteristic curve of 5-2 in Fig.
  • the heat-insulating layer is suitable for a quantum dot light-emitting element having an excitation source wavelength lower than 470 nm.
  • the thermal insulation layer reflects the blue light in the spectrum.
  • the light (B) transmittance is 100%, and the blue photons can completely illuminate the quantum dot material through the thermal insulation layer to effectively ensure the utilization of blue light; and the red (R) and green (G) bands generated by the excitation quantum dots
  • the transmittance of the thermal insulation layer is low. Most of the red and green light are reflected upward by the thermal insulation layer and then emitted through the quantum dot material layer and the water oxygen barrier layer, and the optical path length is reduced, and the energy loss is relatively reduced. A small portion is transmitted downward to the ohmic contact layer and is reflected back by the reflective surface of the ohmic contact layer.
  • the heat insulation layer can not only block the contact heat conduction, but has the characteristics shown by the curve 5-2, and the transmittance for the infrared or near-infrared radiation carrying a large amount of heat energy is almost zero, thereby avoiding the heat generated by the LED light-emitting structure to be infrared.
  • the form radiates to the quantum dot layer, which more effectively reduces the influence of the heat dissipation problem of the quantum dot light-emitting element on the luminous efficiency of the quantum dot material.
  • the LED light emitting structure generates blue light, and the material of the quantum dot layer is a red-green quantum dot hybrid material; or the LED light emitting structure generates ultraviolet light, and the material of the quantum dot layer is a red green blue quantum dot mixed material.
  • the heat insulating layer is disposed between the base substrate and the quantum dot layer, heat generated by the LED light-emitting structure can be avoided or reduced through the base substrate. After conduction or radiation to the quantum dot layer, the effect of the heat dissipation problem of the quantum dot light-emitting element on the luminous efficiency of the quantum dot material can be reduced.
  • Some embodiments of the present application provide a backlight module, as shown in FIGS. 1, 7, and 8, including a back plate 71; a backlight source 72, an optical film set 73, a liquid crystal display panel 74;
  • the backlight source 72 may be disposed on the back plate 71.
  • the backlight source 72 may include a plurality of point light sources, each of the point light sources may include the quantum dot light emitting elements provided by any of the above embodiments; and the optical film set 73 is disposed at the backlight source 72.
  • the liquid crystal display panel 74 is disposed above the optical film group 73.
  • the back plate 71, the backlight source 72, the optical film group 73, and the liquid crystal display panel 74 are assembled into a unitary structure.
  • the quantum dot light emitting device comprises: a substrate substrate 11; an LED light emitting structure 12, wherein the LED light emitting structure 12 is disposed on the first surface of the base substrate 11 for generating excitation light; and the heat insulating layer 13 is disposed on the base substrate a second surface; a quantum dot layer 14 disposed on the heat insulating layer 13, the quantum dot layer 14 being excited by the excitation light to emit light; and the heat insulating layer 13 for blocking heat conduction or heat radiation of the base substrate 11 and the quantum dot layer 14. .
  • the LED light emitting structure 12 may further include: a hole layer 121 disposed on the first surface of the base substrate 11, a quantum well 122 disposed on the hole layer 121, and an electron layer 123 disposed on the quantum well 122.
  • Some embodiments provided by the application may further include: The sub-layer 123 is electrically connected to the first ohmic contact layer 16 on the heat dissipation substrate 19 through the first electrode 15; the hole layer 121 is electrically connected to the second ohmic contact layer 18 on the heat dissipation substrate 19 through the second electrode 17.
  • some embodiments of the present application may further include: a first reflective layer 22 between the electron layer 123 and the first electrode 15; and a second between the hole layer 121 and the second electrode 17 Reflective layer 21.
  • the quantum dot layer 14 is covered with a water oxygen barrier layer 20.
  • the material of the water oxygen barrier layer 20 includes any of the following: silicone, acrylic polymer, and glass.
  • the material of the thermal barrier layer 13 may have a refractive index to blue light that is greater than a refractive index of the material of the substrate substrate to blue light.
  • the heat insulation layer has a first transmittance for light exceeding a first predetermined wavelength; the heat insulation layer has a second transmittance for light lower than the first predetermined wavelength; wherein the first transmittance is smaller than the second transmission rate.
  • the LED light emitting structure generates blue light, and the material of the quantum dot layer is a red-green quantum dot hybrid material; or the LED light emitting structure generates ultraviolet light, and the material of the quantum dot layer is a red green blue quantum dot mixed material.
  • the backlight module provided by some embodiments may be a direct-lit backlight module.
  • the backlight source 72 is evenly disposed on the bottom surface of the back plate 71.
  • the optical film group 73 may be a diffusion film.
  • the backlight module provided by some embodiments may be a side-lit backlight module.
  • the backlight source 72 is disposed on a side of the back plate 71
  • the optical film set 73 further includes a light guide plate 731 .
  • the light guide plate 731 is configured to reflect the light emitted by the backlight source 72 to the other film structure of the optical film group 73.
  • the optical film groups of the direct type and the side-entry backlight module are all prior art. Let me repeat.
  • the embodiment of the present application further provides a display device, which may include a backlight module, wherein the backlight module may have the structure mentioned in the above embodiment.
  • the display device can be a display device such as an electronic paper, a mobile phone, a television, a digital photo frame, or the like.
  • the display device 90 may include a backlight module, which may include a back plate 71, a backlight source 72, an optical film set 73, and a liquid crystal display panel 74;
  • the backlight source 72 may be disposed on the back plate 71.
  • the backlight source 72 may include a plurality of point light sources, each of the point light sources may include the quantum dot light emitting elements provided by any of the above embodiments; and the optical film set 73 is disposed at the backlight source 72.
  • the liquid crystal display panel 74 is disposed above the optical film group 73.
  • the back plate 71, the backlight source 72, the optical film group 73, and the liquid crystal display panel 74 are assembled into a unitary structure.
  • a quantum dot light emitting device includes: a substrate substrate 11 ; an LED The light emitting structure 12, wherein the LED light emitting structure 12 is disposed on the first surface of the base substrate 11 for generating excitation light; the heat insulating layer 13 is disposed on the second surface of the base substrate 11, and the quantum dot layer 14 is disposed on the heat insulating layer On the 13th, the quantum dot layer 14 is excited by the excitation light to emit light; the heat insulation layer 13 serves to block the heat conduction or heat radiation of the base substrate 11 and the quantum dot layer 14.
  • the LED light emitting structure 12 may further include: a hole layer 121 disposed on the first surface of the base substrate 11, a quantum well 122 disposed on the hole layer 121, and an electron layer 123 disposed on the quantum well 122.
  • Some embodiments provided by the application may further include: the electron layer 123 is electrically connected to the first ohmic contact layer 16 on the heat dissipation substrate 19 through the first electrode 15; and the hole layer 121 is passed through the second electrode 17 and the heat dissipation substrate 19 The second ohmic contact layer 18 is turned on. Referring to FIG.
  • some embodiments of the present application may further include: a first reflective layer 22 between the electron layer 123 and the first electrode 15; and a second between the hole layer 121 and the second electrode 17 Reflective layer 21.
  • the quantum dot layer 14 is covered with a water oxygen barrier layer 20.
  • the material of the water oxygen barrier layer 20 includes any of the following: silicone, acrylic polymer, and glass.
  • the material of the thermal barrier layer 13 may have a refractive index to blue light that is greater than a refractive index of the material of the substrate substrate to blue light.
  • the heat insulation layer has a first transmittance for light exceeding a first predetermined wavelength; the heat insulation layer has a second transmittance for light lower than the first predetermined wavelength; wherein the first transmittance is smaller than the second transmission rate.
  • the LED light emitting structure generates blue light, and the material of the quantum dot layer is a red-green quantum dot hybrid material; or the LED light emitting structure generates ultraviolet light, and the material of the quantum dot layer is a red green blue quantum dot mixed material.
  • the backlight module provided by some embodiments may be a direct-lit backlight module.
  • the backlight source 72 is uniformly disposed on the bottom surface of the back plate 71.
  • the optical film group 73 may be a diffusion film.
  • the backlight module provided by some embodiments may be a side-lit backlight module.
  • the backlight source 72 is disposed on a side of the back plate 71
  • the optical film set 73 further includes a light guide plate 731 .
  • the light guide plate 731 is configured to reflect the light emitted by the backlight source 72 to the other film structure of the optical film group 73.
  • the optical film groups of the direct type and the side-entry backlight module are all prior art. Let me repeat.
  • FIG. 10 illustrates a display device 100 in some embodiments of the present application.
  • the display device 100 may include components such as a memory, an input unit, an output unit, one or more processors, and the like. It will be understood by those skilled in the art that the structure of the display device shown in FIG. 10 does not constitute a limitation of the display device, and the display device may further include more or less components, or groups, than illustrated. Some parts, or different parts. among them:
  • the memory can be used to store software programs and modules, and the processor can execute various functional applications and data processing by running software programs and modules stored in the memory.
  • the memory may include a high speed random access memory, and may also include a non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Additionally, the memory can also include a memory controller to provide access to the memory by the processor and the input unit.
  • the processor is a control center of the display device 100, which connects various parts of the entire display device using various interfaces and lines, executes or executes software programs and/or modules stored in the memory, and calls data stored in the memory to execute
  • the various functions and processing data of the device 100 are displayed to thereby monitor the display device as a whole.
  • the processor may include one or more processing cores; optionally, the processor may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor.
  • the display device 100 can include a television broadcast receiver, a high-definition multimedia interface (English name: High Definition Multimedia Interface, English abbreviation: HDMI), USB (English full name: Universal Serial Bus, Chinese: universal serial bus) port, audio and video
  • An input unit such as an input interface, and the input unit may further include a remote controller receiver that receives a signal transmitted by the remote controller.
  • the input unit may further include a touch-sensitive surface and other input devices, and the touch-sensitive surface may be implemented by various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • Other input devices may include but are not limited to physical keyboards and function keys ( For example, one or more of a volume control button, a switch button, etc., a trackball, a mouse, a joystick, and the like.
  • the output unit is for outputting a sound signal, a video signal, an alarm signal, a vibration signal, and the like.
  • the output unit may include a display panel, a sound output module, and the like.
  • the display panel can be used to display information entered by the user or information provided to the user and various graphical user interfaces of the display device 100, which can be composed of graphics, text, icons, video, and any combination thereof.
  • the display panel can use LCD (English name: Liquid Crystal Display, Chinese: liquid crystal display), OLED (English name: Organic Light-Emitting Diode, Chinese: organic light-emitting diode), flexible display, three-dimensional display, CRT (English full name: Cathode Ray Tube, Chinese: Cathode Ray Tube) display, plasma display panel, etc.
  • Display device 100 may also include at least one type of sensor (not shown), such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel according to the brightness of the ambient light, and the proximity sensor may close the display panel when the display device 100 moves to a certain position. Or backlight.
  • the display device 100 can also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, and an infrared sensor.
  • the display device 100 may also include an audio circuit (not shown) that provides an audio interface between the user and the display device 100.
  • the audio circuit can transmit the converted electrical signal of the received audio data to the speaker and convert it into a sound signal output by the speaker; on the other hand, the microphone converts the collected sound signal into an electrical signal, which is received by the audio circuit and converted into audio.
  • the data is then processed by the audio data output processor, sent to, for example, another display device, or the audio data is output to a memory for further processing.
  • the audio circuit may also include an earbud jack to provide communication of the peripheral earphones with the display device 100.
  • the display device 100 may further include an RF (English full name: Radio Frequency, Chinese: Radio Frequency) circuit.
  • RF circuits can be used for signal reception and transmission.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a tuner, one or more oscillators, a subscriber identity module (SIM, English full name: Subscriber Identity Module) card, a transceiver, a coupler, an LNA. (English full name: Low Noise Amplifier, Chinese: low noise amplifier), duplexer, etc.
  • SIM Subscriber identity module
  • the display device 100 may further include a camera, a Bluetooth module, and the like.
  • the display device 100 may further include a WiFi (English full name: wireless fidelity) module (not shown).
  • WiFi is a short-range wireless transmission technology, and the display device 100 can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module, which provides wireless broadband Internet access for users.
  • FIG. 1 shows a WiFi module, it can be understood that it does not belong to the essential configuration of the terminal 100, and may be omitted as needed within the scope of not changing the essence of the present application.
  • the heat insulating layer is disposed between the substrate substrate and the quantum dot layer in the point light source of the backlight module, the heat generated by the LED light emitting structure can be reduced or substantially radiated to the quantum through the substrate.
  • the dot layer can reduce the influence of the heat dissipation problem of the quantum dot light-emitting element on the luminous efficiency of the quantum dot material, thereby improving the light-emitting effect of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Led Devices (AREA)

Abstract

一种量子点发光元件、背光模组和显示装置,涉及光电器件领域。所述量子点发光元件,包括:衬底基板(11);LED发光结构(12),其中所述LED发光结构(12)设置于所述衬底基板(11)第一表面,用于产生激励光线;隔热层(13),所述隔热层(13)设置于所述衬底基板(11)第二表面;量子点层(14),所述量子点层(14)设置于所述隔热层(13)上,所述量子点层(14)受所述激励光线激发而发光;所述隔热层(13)用于阻隔所述衬底基板(11)和所述量子点层(14)的热传导或热辐射。

Description

一种量子点发光元件、背光模组和显示装置
本申请要求于2015年05月19日提交中国专利局、申请号为201510257128.0、申请名称为“一种量子点发光元件、背光模组和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电器件领域,尤其涉及一种量子点发光元件、背光模组和显示装置。
背景技术
目前市面上最常见的液晶电视,它们能表现的色域范围一般都不大,其显示色域一般在68%~72%NTSC(英文全称:National Television Standards Committee,中文缩写:国家电视标准委员会)标准左右,因而不能提供很好的色彩效果。随着消费者对画质要求的提高,高色域背光技术正成为行业内研究的重点。ULED(Ultra Light Emitting Diode,极致发光二极管)色域可达85%NTSC以上,色彩表现力突出,市场反应较好,更高的色域是下一代ULED产品的发展方向。
目前行业内可实现色域最高的背光方案是蓝光激发量子点材料产生白光的方案,色域可达100%NTSC以上。因为量子点的热稳定性较差,温度高于120℃时激发效率急速下降甚至失效。因此,目前行业内比较成熟的做法是将量子点材料放置在距离LED较远的地方。该方案应用于直下式背光方案中,量子点材料被封装在膜片中,作为模组中的一张膜片,放置在扩散板的上方,所有膜片的下方。该方案应用于侧入式背光方案中,量子点被封装在一条玻璃管中,通过支架固定在入光侧LED上方,并需保证一定距离。这两种方式由于量子点材料用量较大,不仅增加了背光成本和设计难度,而且量子点材料的激发效率也会受到影响,蓝光利用率降低。
申请内容
一方面,本申请一些实施例提供一种量子点发光元件,包括:
衬底基板;
LED发光结构,其中所述LED发光结构设置于所述衬底基板第一表面,用于产生激励光线;
隔热层,所述隔热层设置于所述衬底基板第二表面;
量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导。
另一方面,本申请一些实施例提供一种背光模组,包括:
背板;
背光光源,所述背光光源设置在所述背板上,所述背光光源包括多个点光源,每个所述点光源包括量子点发光元件;
光学膜片组,所述光学膜片组设置在所述背光光源的出光方向上;液晶显示面板,所述液晶显示面板设置在所述光学膜片组上方;
其中,所述背板、所述背光光源、所述光学膜片组及所述液晶显示面板组装成一体结构;其中,
所述量子点发光元件包括衬底基板;
LED发光结构,其中所述LED发光结构设置于所述衬底基板第一表面,用于产生激励光线;
隔热层,所述隔热层设置于所述衬底基板第二表面;
量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导或热辐射。
再一方面,本申请一些实施例提供一种显示装置,包括背光模组,所述背光模组包括背板;
背光光源,所述背光光源设置在所述背板上,所述背光光源包括多个点光源,每个所述点光源包括量子点发光元件;
光学膜片组,所述光学膜片组设置在所述背光光源的出光方向上;液晶显示面板,所述液晶显示面板设置在所述光学膜片组上方;
其中,所述背板、所述背光光源、所述光学膜片组及所述液晶显示面板组装成一体结构;其中,
所述量子点发光元件包括衬底基板;
LED发光结构,其中所述LED发光结构设置于所述衬底基板第一 表面,用于产生激励光线;
隔热层,所述隔热层设置于所述衬底基板第二表面;
量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导或热辐射。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一些实施例提供的一种量子点发光元件的结构示意图;
图2为本申请的一些实施例提供的一种量子点发光元件的结构示意图;
图3为本申请的一些实施例提供的一种量子点发光元件的结构示意图;
图4为本申请的一些实施例提供的一种两种介质表面的光线折射原理示意图;
图5为本申请的一些实施例提供的一种两种介质表面的光线全反射原理示意图;
图6为本申请的一些实施例提供的隔热层对不同波长光线的透过率特性曲线示意图;
图7为本申请的一些实施例提供的一种背光模组的结构示意图;
图8为本申请的一些实施例提供的一种背光模组的结构示意图;
图9为本申请的一些实施例提供的一种显示装置的结构示意图;
图10本申请的一些实施例提供的一种显示装置的结构示意图。
附图标记:
衬底基板-11;LED发光结构-12;空穴层-121;量子阱-122;电子层-123;
封框胶-124;隔热层-13;量子点层-14;第一电极-15;第一欧姆接触层-16;第二电极-17;第二欧姆接触层-18;散热基板-19;水氧阻隔层-20;第一反射层-21;第二反射层-22;背板-71;背光光源-72;光学膜片组-73;导光板-731;液晶显示面板-74。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
为提高激发效率并降低生产成本,发明人在尝试将量子点直接封装到LED内部时,因为电视背光需要亮度较高,需采用大功率LED发光芯片,散热问题成为技术瓶颈,由于结温经常会接近甚至高于120℃,严重影响到了量子点材料的激发效率。
本申请的一些实施例提供一种量子点发光元件、背光模组和显示装置,能够降低量子点发光元件散热问题对量子点材料发光效率的影响。
参照图1所示,本申请的一些实施例提供一种量子点发光元件,包括:
衬底基板11;
LED发光结构12,其中LED发光结构12设置于衬底基板11第一表面,用于产生激励光线;
隔热层13,设置于衬底基板11第二表面;
量子点层14,设置于隔热层13上,量子点层14受激励光线激发而发光;隔热层13用于阻隔衬底基板11和量子点层14的热传导或热辐 射。
上述提供的量子点发光元件,由于衬底基板和量子点层之间设置有隔热层,因此能够避免或降低LED发光结构产生的热量通过衬底基板后传导或辐射至量子点层,从而能够降低量子点发光元件散热问题对量子点发光效率的影响。
参照图1所示,一些实施例中,LED发光结构12还可以包括:设置于衬底基板11第一表面的空穴层121、设置于空穴层121上的量子阱122、设置于量子阱122上的电子层123。
为了对LED发光结构12形成的PN结实现良好的散热,申请一些实施例提供的方案还可以包括:电子层123通过第一电极15与散热基板19上的第一欧姆接触层16导通;空穴层121通过第二电极17与散热基板19上的第二欧姆接触层18导通。其中第一电极15和第二电极17形成两个散热通道,实现对PN结的良好散热。
由于量子点层激发的光线存在后向散射光线,后向散射光线为量子点发光元件损失光线,为提高量子点发光元件的出光效率,参照图3所示,本申请的一些实施例提供的方案还可以包括:电子层123与第一电极15之间的第一反射层22;空穴层121与第二电极17之间的第二反射层21。
一些实施例中,上述LED发光结构12可用于向量子点层14提供激发光源,示例性的:空穴层121可以采用P型氮化镓材料(P-GaN),电子层123可以采用N型氮化镓材料(N-GaN);衬底基板11可以采用蓝宝石衬底;参照图3所示,P型氮化镓产生的空穴和N型氮化镓产生的电子结合后释放出一个光子,一部分光子i向上通过透明的蓝宝石衬底出射至量子点层14,一部分光子o向下被第一电极和第二电极上方的反射层反射回来,从蓝宝石衬底上表面出射至量子点层14。此外,受半导体LED发光结构内部量子效率和光取出效率的影响,目前半导体LED发光器件仅能够将约30%的输入功率转化光能,剩余部分转化为热能致使结温过高。从而造成LED封装内温度过高使量子点失效,一些实施例中蓝宝石衬底上部增加一隔热层,在隔热层上部封装量子点材料形成量子点层,隔热层用于阻隔衬底基板和量子点层的热传导,将LED结温升高转化的热能与量子点层隔离,而LED发光结构产生的光以辐射的形式传递到量子点层,并激发量子点材料产生特定波长的光线。此外LED发 光结构的PN结产生的大量热能可以通过第一电极和第二电极形成的散热通道向下传导,通过欧姆接触电极将热能传递到散热基板,以保证LED寿命,同时可有效避免因LED芯片过热引起的量子点材料失效问题。
为对量子点层中的量子点材料进行保护,一些实施例中,参照图2、3所示,量子点层14上覆盖有水氧阻隔层20。水氧阻隔层的材料可以是硅酮、丙烯酸聚合物或玻璃,该层可以对水分和氧气隔离,防止量子点材料失效。例如,水氧阻隔层20可以通过封框胶粘接在隔热层13上方,通过将量子点材料封装于水氧阻隔层20和隔热层13之间实现量子点层的功能。
此外为了进一步提高激发光源的利用效率,一些实施例中,隔热层13的材料对蓝光的折射率可以大于衬底基板的材料对蓝光的折射率。隔热层对蓝光的折射率大于封装内蓝宝石衬底对蓝光的折射率,这样光线由蓝宝石衬底(光疏介质)入射到隔热层(光密介质)时,可以避免界面上发生全发射,提高蓝光取出效率。如图4、5所示,若α为光线自蓝宝石衬底入射到隔热层时发生全反射的临界角,如图4所示,当光线由光疏介质向光密介质传播时,光线100%折射,不会发生全反射,其中折射角为图3中的β;如图5所示当光线由光密介质向光疏介质传播时,入射角大于α时光线会发生全反射,光线取出效率降低。因此,若隔热层折射率大于蓝宝石衬底,光线按图4所示方式传播,提高了光线取出效率。
此外,由于光线波长越短,对量子点的激发效率越高,并且长波长光谱携带大量热量,因此量子点材料的激发光源多选用波长较短的蓝光、紫光或紫外光波段,在本申请的实施例中隔热层对超过第一预设波长的光为第一透过率;隔热层对低于第一预设波长的光为第二透过率;其中第一透过率小于第二透过率。
参照图6所示的隔热层对不同波长光线的透过率特性曲线图;其中图6中示出了一些实施例中量子点发光元件的出射光谱及蓝光激发量子点后的光谱特性曲线5-1,以及隔热层对可见光区域的透过率特性曲线5-2;其中横坐标表示波长,纵坐标表示透过率;该隔热层可以为半透明状态,并不是对所有可见光都100%透过,波长越长隔热层的透过率越低;从图6中5-2的光谱透过率特性曲线可知,隔热层适用于激发源波长低于470nm的量子点发光元件。从图6可以看出,隔热层对谱段内的蓝光 光线(B)透过率为100%,蓝光光子可以全部透过隔热层对激发量子点材料,有效保证蓝光利用率;而对于激发量子点所产生的红色(R)和绿色(G)波段,隔热层的透过率较低,大部分红光和绿光经隔热层向上反射后经量子点材料层和水氧阻隔层出射,光线光程减小,能量损失也相对减少,另一小部分则向下透射到欧姆接触层被欧姆接触层的反射面反射回来。
隔热层不仅可以阻断接触热传导,因其具有曲线5-2所示特性,对于携带大量热能的红外或近红外辐射的透过率几乎为0,因此避免了LED发光结构产生的热量以红外线的形式辐射至量子点层,更加有效的降低了量子点发光元件散热问题对量子点材料发光效率的影响。
一些实施例中,LED发光结构产生蓝光,量子点层的材料为红绿量子点混合材料;或者,LED发光结构产生紫外光,量子点层的材料为红绿蓝量子点混合材料。
本申请一些实施例提供的量子点发光元件、背光模组和显示装置,由于衬底基板和量子点层之间设置有隔热层,因此能够避免或降低LED发光结构产生的热量通过衬底基板后传导或辐射至量子点层,从而能够降低量子点发光元件散热问题对量子点材料发光效率的影响。
本申请一些实施例提供一种背光模组,参照图1、7、8所示,包括背板71;背光光源72,光学膜片组73、液晶显示面板74;
背光光源72可设置在背板71上,背光光源72可包括多个点光源,每个点光源可包括上述任一实施例提供的量子点发光元件;光学膜片组73设置在背光光源72的出光方向上;液晶显示面板74,设置在光学膜片组73上方,其中,背板71、背光光源72、光学膜片组73及液晶显示面板74组装成一体结构。
其中,量子点发光元件,包括:衬底基板11;LED发光结构12,其中LED发光结构12设置于衬底基板11第一表面,用于产生激励光线;隔热层13,设置于衬底基板11第二表面;量子点层14,设置于隔热层13上,量子点层14受激励光线激发而发光;隔热层13用于阻隔衬底基板11和量子点层14的热传导或热辐射。
一些实施例中,LED发光结构12还可以包括:设置于衬底基板11第一表面的空穴层121、设置于空穴层121上的量子阱122、设置于量子阱122上的电子层123。申请的一些实施例提供的方案还可以包括:电 子层123通过第一电极15与散热基板19上的第一欧姆接触层16导通;空穴层121通过第二电极17与散热基板19上的第二欧姆接触层18导通。参照图3所示,本申请的一些实施例提供的方案还可以包括:电子层123与第一电极15之间的第一反射层22;空穴层121与第二电极17之间的第二反射层21。一些实施例中,参照图2、3所示,量子点层14上覆盖有水氧阻隔层20。其中水氧阻隔层20的材料包括以下任一:硅酮、丙烯酸聚合物和玻璃。一些实施例中,隔热层13的材料对蓝光的折射率可以大于衬底基板的材料对蓝光的折射率。隔热层对超过第一预设波长的光为第一透过率;隔热层对低于第一预设波长的光为第二透过率;其中第一透过率小于第二透过率。一些实施例中,LED发光结构产生蓝光,量子点层的材料为红绿量子点混合材料;或者,LED发光结构产生紫外光,量子点层的材料为红绿蓝量子点混合材料。其中上述结构所产生的技术效果参考上述量子点发光元件相关实施例的描述,这里不再赘述。
参照图7所示,申请一些实施例提供的背光模组可以为直下式背光模组,此时背光光源72均匀设置于背板71的底面,上述的光学膜片组73具体可以为由扩散膜、棱镜片组成的光学膜层结构。
或者,参照图8所示,一些实施例提供的背光模组可以为侧入式背光模组,此时背光光源72设置于背板71的侧面,上述的光学膜片组73还包括导光板731,其中导光板731用于将背光光源72发射的光线反射至光学膜片组73的其他膜片结构,其中上述直下式和侧入式背光模组的光学膜片组均为现有技术这里不再赘述。
另外,本申请实施例还提供一种显示装置,该显示装置可以包括背光模组,其中背光模组可以具有上述实施例提到的结构。该显示装置可以为电子纸、手机、电视、数码相框等等显示设备。
如图9所示,显示装置90可以包括背光模组,该背光模组可以包括背板71;背光光源72,光学膜片组73、液晶显示面板74;
背光光源72可设置在背板71上,背光光源72可包括多个点光源,每个点光源可包括上述任一实施例提供的量子点发光元件;光学膜片组73设置在背光光源72的出光方向上;液晶显示面板74,设置在光学膜片组73上方,其中,背板71、背光光源72、光学膜片组73及液晶显示面板74组装成一体结构。
其中,参照图1所示,量子点发光元件,包括:衬底基板11;LED 发光结构12,其中LED发光结构12设置于衬底基板11第一表面,用于产生激励光线;隔热层13,设置于衬底基板11第二表面;量子点层14,设置于隔热层13上,量子点层14受激励光线激发而发光;隔热层13用于阻隔衬底基板11和量子点层14的热传导或热辐射。
一些实施例中,LED发光结构12还可以包括:设置于衬底基板11第一表面的空穴层121、设置于空穴层121上的量子阱122、设置于量子阱122上的电子层123。申请的一些实施例提供的方案还可以包括:电子层123通过第一电极15与散热基板19上的第一欧姆接触层16导通;空穴层121通过第二电极17与散热基板19上的第二欧姆接触层18导通。参照图3所示,本申请的一些实施例提供的方案还可以包括:电子层123与第一电极15之间的第一反射层22;空穴层121与第二电极17之间的第二反射层21。一些实施例中,参照图2、3所示,量子点层14上覆盖有水氧阻隔层20。其中水氧阻隔层20的材料包括以下任一:硅酮、丙烯酸聚合物和玻璃。一些实施例中,隔热层13的材料对蓝光的折射率可以大于衬底基板的材料对蓝光的折射率。隔热层对超过第一预设波长的光为第一透过率;隔热层对低于第一预设波长的光为第二透过率;其中第一透过率小于第二透过率。一些实施例中,LED发光结构产生蓝光,量子点层的材料为红绿量子点混合材料;或者,LED发光结构产生紫外光,量子点层的材料为红绿蓝量子点混合材料。其中上述结构所产生的技术效果参考上述量子点发光元件相关实施例的描述,这里不再赘述。
参照图7所示,一些实施例提供的背光模组可以为直下式背光模组,此时背光光源72均匀设置于背板71的底面,上述的光学膜片组73具体可以为由扩散膜、棱镜片组成的光学膜层结构。
或者,参照图8所示,一些实施例提供的背光模组可以为侧入式背光模组,此时背光光源72设置于背板71的侧面,上述的光学膜片组73还包括导光板731,其中导光板731用于将背光光源72发射的光线反射至光学膜片组73的其他膜片结构,其中上述直下式和侧入式背光模组的光学膜片组均为现有技术这里不再赘述。
图10示出了本申请一些实施例中的显示装置100,显示装置100可以包括存储器、输入单元、输出单元、一个或者一个以上处理器等部件。本领域技术人员可以理解,图10中示出的显示装置的结构并不构成对显示装置的限定,该显示装置还可以包括比图示更多或更少的部件,或者组 合某些部件,或者不同的部件布置。其中:
存储器可用于存储软件程序以及模块,处理器可通过运行存储在存储器的软件程序以及模块执行各种功能应用以及数据处理。存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件,或其他易失性固态存储器件。另外,存储器还可以包括存储器控制器,以提供处理器和输入单元对存储器的访问。
处理器是显示装置100的控制中心,利用各种接口和线路连接整个显示装置的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行显示装置100的各种功能和处理数据,从而对显示装置进行整体监控。可选的,处理器可包括一个或多个处理核心;可选的,处理器可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器中。
显示装置100可包括电视广播接收器、高清晰度多媒体接口(英文全称:High Definition Multimedia Interface,英文缩写:HDMI)、USB(英文全称:Universal Serial Bus,中文:通用串行总线)口、音视频输入接口等输入单元,输入单元还可以包括接收遥控器发送的信号的遥控器接收器。另外,输入单元还可包括触敏表面以及其他输入设备,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面,其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
输出单元用于输出声音信号、视频信号、警报信号、振动信号等。输出单元可以包括显示面板、声音输出模块等。显示面板可用于显示由用户输入的信息或提供给用户的信息以及显示装置100的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。例如,显示面板可以采用LCD(英文全称:Liquid Crystal Display,中文:液晶显示器)、OLED(英文全称:Organic Light-Emitting Diode,中文:有机发光二极管)、柔性显示器、三维显示器、CRT(英文全称:Cathode Ray Tube,中文:阴极射线管)显示器、等离子体显示面板等。
显示装置100还可包括至少一种传感器(图中未示出),比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板的亮度,接近传感器可在显示装置100移动到一定位置时,关闭显示面板和/或背光。显示装置100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器。
显示装置100还可以包括音频电路(图中未示出),扬声器、传声器可提供用户与显示装置100之间的音频接口。音频电路可将接收到的音频数据转换后的电信号,传输到扬声器,由扬声器转换为声音信号输出;另一方面,传声器将收集的声音信号转换为电信号,由音频电路接收后转换为音频数据,再将音频数据输出处理器处理后,发送给比如另一显示装置,或者将音频数据输出至存储器以便进一步处理。音频电路还可能包括耳塞插孔,以提供外设耳机与显示装置100的通信。
另外,显示装置100还可包括RF(英文全称:Radio Frequency,中文:射频)电路。RF电路可用于信号的接收和发送。通常,RF电路包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(英文简称:SIM,英文全称:Subscriber Identity Module)卡、收发信机、耦合器、LNA(英文全称:Low Noise Amplifier,中文:低噪声放大器)、双工器等。另外,显示装置100还可以包括摄像头、蓝牙模块等
此外,显示装置100还可以包括WiFi(英文全称:wireless fidelity,中文:无线保真)模块(图中未示出)。WiFi属于短距离无线传输技术,显示装置100通过WiFi模块可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块,但是可以理解的是,其并不属于终端100的必须构成,完全可以根据需要在不改变本申请的本质的范围内而省略。
上述实施例中的显示装置,由于背光模组的点光源中衬底基板和量子点层之间设置有隔热层,因此可以降低LED发光结构产生的热量通过衬底基本后传导或辐射至量子点层,从而能够降低量子点发光元件散热问题对量子点材料发光效率的影响,进而提高显示装置的发光效果。
以上所述,仅为本申请的一些实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种量子点发光元件,其特征在于,包括:
    衬底基板;
    LED发光结构,其中所述LED发光结构设置于所述衬底基板第一表面,用于产生激励光线;
    隔热层,所述隔热层设置于所述衬底基板第二表面;
    量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导或热辐射。
  2. 根据权利要求1所述的量子点发光元件,其特征在于,所述LED发光结构包括:设置于所述衬底基板第一表面的空穴层、设置于所述空穴层上的量子阱、设置于所述量子阱上的电子层;
    所述电子层通过第一电极与散热基板上的第一欧姆接触层导通;所述空穴层通过第二电极与散热基板上的第二欧姆接触层导通。
  3. 根据权利要求2所述的量子点发光元件,其特征在于,所述电子层与所述第一电极之间设置有第一反射层;所述空穴层与所述第二电极之间设置有第二反射层。
  4. 根据权利要求1所述的量子点发光元件,其特征在于,所述量子点层上覆盖有水氧阻隔层。
  5. 根据权利要求4所述的量子点发光元件,其特征在于,所述水氧阻隔层的材料包括以下任一:硅酮、丙烯酸聚合物和玻璃。
  6. 根据权利要求1所述的量子点发光元件,其特征在于,所述隔热层的材料对蓝光的折射率大于所述衬底基板的材料对蓝光的折射率。
  7. 根据权利要求1所述的量子点发光元件,其特征在于,所述隔热层对超过第一预设波长的光为第一透过率;所述隔热层对低于第一预设波长的光为第二透过率;
    其中所述第一透过率小于所述第二透过率。
  8. 根据权利要求1所述的量子点发光元件,其特征在于,所述LED发光结构产生蓝光,所述量子点层的材料为红绿量子点混合材料;
    或者,所述LED发光结构产生紫外光,所述量子点层的材料为红绿蓝量子点混合材料。
  9. 一种背光模组,其特征在于,包括:
    背板;
    背光光源,所述背光光源设置在所述背板上,所述背光光源包括多个点光源,每个所述点光源包括量子点发光元件;
    光学膜片组,所述光学膜片组设置在所述背光光源的出光方向上;
    液晶显示面板,所述液晶显示面板设置在所述光学膜片组上方;
    其中,所述背板、所述背光光源、所述光学膜片组及所述液晶显示面板组装成一体结构;其中,
    所述量子点发光元件包括衬底基板;
    LED发光结构,其中所述LED发光结构设置于所述衬底基板第一表面,用于产生激励光线;
    隔热层,所述隔热层设置于所述衬底基板第二表面;
    量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导或热辐射。
  10. 根据权利要求9所述的背光模组,其特征在于,所述LED发光结构包括:设置于所述衬底基板第一表面的空穴层、设置于所述空穴层上的量子阱、设置于所述量子阱上的电子层;
    所述电子层通过第一电极与散热基板上的第一欧姆接触层导通;所述空穴层通过第二电极与散热基板上的第二欧姆接触层导通。
  11. 根据权利要求10所述的背光模组,其特征在于,所述电子层与所述第一电极之间设置有第一反射层;所述空穴层与所述第二电极之间设置有第二反射层。
  12. 根据权利要求9所述的背光模组,其特征在于,所述量子点层上覆盖有水氧阻隔层。
  13. 根据权利要求12所述的背光模组,其特征在于,所述水氧阻隔层的材料包括以下任一:硅酮、丙烯酸聚合物和玻璃。
  14. 根据权利要求9所述的背光模组,其特征在于,所述隔热层的材料对蓝光的折射率大于所述衬底基板的材料对蓝光的折射率。
  15. 根据权利要求9所述的背光模组,其特征在于,所述隔热层对超过第一预设波长的光为第一透过率;所述隔热层对低于第一预设波长的光为第二透过率;
    其中所述第一透过率小于所述第二透过率。
  16. 根据权利要求9所述的背光模组,其特征在于,所述LED发光结构产生蓝光,所述量子点层的材料为红绿量子点混合材料;
    或者,所述LED发光结构产生紫外光,所述量子点层的材料为红绿蓝量子点混合材料。
  17. 一种显示装置,其特征在于,包括背光模组,所述背光模组包括背板;
    背光光源,所述背光光源设置在所述背板上,所述背光光源包括多个点光源,每个所述点光源包括量子点发光元件;
    光学膜片组,所述光学膜片组设置在所述背光光源的出光方向上;
    液晶显示面板,所述液晶显示面板设置在所述光学膜片组上方;
    其中,所述背板、所述背光光源、所述光学膜片组及所述液晶显示面板组装成一体结构;其中,
    所述量子点发光元件包括衬底基板;
    LED发光结构,其中所述LED发光结构设置于所述衬底基板第一表面,用于产生激励光线;
    隔热层,所述隔热层设置于所述衬底基板第二表面;
    量子点层,所述量子点层设置于所述隔热层上,所述量子点层受所述激励光线激发而发光;所述隔热层用于阻隔所述衬底基板和所述量子点层的热传导或热辐射。
  18. 根据权利要求17所述的显示装置,其特征在于,所述LED发光结构包括:设置于所述衬底基板第一表面的空穴层、设置于所述空穴层上的量子阱、设置于所述量子阱上的电子层;
    所述电子层通过第一电极与散热基板上的第一欧姆接触层导通;所述空穴层通过第二电极与散热基板上的第二欧姆接触层导通。
  19. 根据权利要求17所述的显示装置,其特征在于,所述电子层与所述第一电极之间设置有第一反射层;所述空穴层与所述第二电极之间设置有第二反射层。
  20. 根据权利要求17所述的显示装置,其特征在于,所述量子点层上覆盖有水氧阻隔层。
PCT/CN2015/081848 2015-05-19 2015-06-18 一种量子点发光元件、背光模组和显示装置 WO2016183895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510257128.0A CN106299076B (zh) 2015-05-19 2015-05-19 一种量子点发光元件、背光模组和显示装置
CN201510257128.0 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016183895A1 true WO2016183895A1 (zh) 2016-11-24

Family

ID=57319236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081848 WO2016183895A1 (zh) 2015-05-19 2015-06-18 一种量子点发光元件、背光模组和显示装置

Country Status (2)

Country Link
CN (1) CN106299076B (zh)
WO (1) WO2016183895A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605621A4 (en) * 2017-03-30 2020-12-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. QUANTUM POINT LED ENCAPSULATION STRUCTURE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394025A (zh) * 2017-08-14 2017-11-24 天津中环电子照明科技有限公司 隔热层反射式led封装器件及灯具
CN108224234B (zh) * 2018-01-03 2020-11-06 京东方科技集团股份有限公司 一种量子点光源及其发光方法、背光模组、显示装置
CN109216523A (zh) * 2018-08-30 2019-01-15 武汉华星光电技术有限公司 发光单元及其制造方法
CN111430516B (zh) * 2020-03-24 2021-10-22 纳晶科技股份有限公司 量子点发光装置以及显示装置
CN111682042B (zh) * 2020-06-11 2022-02-25 杭州百伴生物技术有限公司 一种窄带光源阵列及光学检测设备
CN112164744B (zh) * 2020-10-14 2021-12-07 衡山县佳诚新材料有限公司 一种高色域量子点膜的制作方法
CN112164745B (zh) * 2020-10-14 2022-02-22 衡山县佳诚新材料有限公司 一种使用寿命长的高色域量子点膜
CN113097367A (zh) * 2021-03-24 2021-07-09 深圳市华星光电半导体显示技术有限公司 QD-miniLED显示面板及其制备方法
CN115868037A (zh) * 2021-06-17 2023-03-28 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN114019717B (zh) * 2021-09-18 2023-10-24 信阳市谷麦光电子科技有限公司 一种高效稳定量子点发光led
CN114019724A (zh) * 2021-11-19 2022-02-08 深圳创维-Rgb电子有限公司 背光模组以及液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441123A (zh) * 2013-07-26 2013-12-11 京东方科技集团股份有限公司 一种led及显示设备
CN103499054A (zh) * 2013-10-11 2014-01-08 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN103650183A (zh) * 2011-06-30 2014-03-19 松下电器产业株式会社 发光装置
WO2014208896A1 (en) * 2013-06-27 2014-12-31 Samsung Electronics Co., Ltd. Vertical organic light-emitting transistor and organic led illumination apparatus having the same
CN104566015A (zh) * 2014-12-01 2015-04-29 深圳市华星光电技术有限公司 一种量子点背光模组以及显示装置
CN204314577U (zh) * 2014-12-29 2015-05-06 创维液晶器件(深圳)有限公司 光学膜片组、背光模组以及液晶显示模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401541C (zh) * 2005-01-14 2008-07-09 财团法人工业技术研究院 一种量子点/量子阱发光二极管
CN100517780C (zh) * 2006-09-26 2009-07-22 浙江大学 一种ZnO基量子点发光二极管
CN204204899U (zh) * 2014-11-05 2015-03-11 创维液晶器件(深圳)有限公司 一种高显色性白光免封装led

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650183A (zh) * 2011-06-30 2014-03-19 松下电器产业株式会社 发光装置
WO2014208896A1 (en) * 2013-06-27 2014-12-31 Samsung Electronics Co., Ltd. Vertical organic light-emitting transistor and organic led illumination apparatus having the same
CN103441123A (zh) * 2013-07-26 2013-12-11 京东方科技集团股份有限公司 一种led及显示设备
CN103499054A (zh) * 2013-10-11 2014-01-08 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN104566015A (zh) * 2014-12-01 2015-04-29 深圳市华星光电技术有限公司 一种量子点背光模组以及显示装置
CN204314577U (zh) * 2014-12-29 2015-05-06 创维液晶器件(深圳)有限公司 光学膜片组、背光模组以及液晶显示模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605621A4 (en) * 2017-03-30 2020-12-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. QUANTUM POINT LED ENCAPSULATION STRUCTURE

Also Published As

Publication number Publication date
CN106299076B (zh) 2019-02-01
CN106299076A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016183895A1 (zh) 一种量子点发光元件、背光模组和显示装置
US10439108B2 (en) LED light emitting device for display device, and display device
US9869897B2 (en) Quantum dot light-emitting device, backlight module, and display device
US10330980B2 (en) Quantum dot light emitting device, backlight module, and display device
US10310324B2 (en) Backlight module
TWI523261B (zh) 光源模組
JP2004118205A (ja) 波長変換発光デバイスを用いるカラーlcdのバックライト
TW200921942A (en) Packaging structure of light emitting diode device and method of fabricating the same
TWI520398B (zh) 有機發光裝置及包含其之影像顯示系統
CN208889658U (zh) 显示面板及电子设备
JP2008053069A (ja) 発光ダイオード
JP2006221178A (ja) 表示装置
US20140191143A1 (en) Optocoupler
US20220367766A1 (en) Display module and electronic apparatus including the same
CN113196496B (zh) 显示组件及使用该显示组件的电子设备
WO2020107782A1 (zh) 一种面光源芯片及其发光二极管
KR102467197B1 (ko) 발광 다이오드 패키지 및 이를 포함하는 백라이트 유닛과 액정 표시 장치
WO2024020805A1 (zh) 背光模组及显示装置
WO2023070331A1 (zh) 显示基板、显示装置与可见光通信系统
KR20230001818A (ko) 디스플레이 장치
CN117174811A (zh) 一种显示面板和显示装置
KR101502057B1 (ko) 광원 어셈블리
KR102105997B1 (ko) 레이저 다이오드 패키지 및 이를 포함하는 액정표시장치
KR101824881B1 (ko) 백라이트 유닛
TWI497170B (zh) 發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892273

Country of ref document: EP

Kind code of ref document: A1