WO2016181702A1 - 自動製氷機 - Google Patents

自動製氷機 Download PDF

Info

Publication number
WO2016181702A1
WO2016181702A1 PCT/JP2016/058191 JP2016058191W WO2016181702A1 WO 2016181702 A1 WO2016181702 A1 WO 2016181702A1 JP 2016058191 W JP2016058191 W JP 2016058191W WO 2016181702 A1 WO2016181702 A1 WO 2016181702A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice making
side plate
outer frame
making chamber
ice
Prior art date
Application number
PCT/JP2016/058191
Other languages
English (en)
French (fr)
Inventor
誠治 小林
輝道 原
野津 真澄
門脇 静馬
稔 中尾
Original Assignee
ホシザキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015099251A external-priority patent/JP2016217549A/ja
Priority claimed from JP2015099250A external-priority patent/JP6712443B2/ja
Priority claimed from JP2015099249A external-priority patent/JP6712442B2/ja
Application filed by ホシザキ株式会社 filed Critical ホシザキ株式会社
Priority to EP16792427.3A priority Critical patent/EP3242097B1/en
Priority to AU2016261527A priority patent/AU2016261527B2/en
Priority to KR1020177018839A priority patent/KR20180006361A/ko
Priority to CN201680007923.7A priority patent/CN107429962A/zh
Priority to US15/541,256 priority patent/US10274239B2/en
Priority to ES16792427T priority patent/ES2877134T3/es
Publication of WO2016181702A1 publication Critical patent/WO2016181702A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/12Means for sanitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means

Definitions

  • the present invention relates to an automatic ice making machine for continuously producing ice blocks by supplying ice making water to an ice making part cooled by an evaporator, and more specifically, can improve the corrosion resistance of the ice making part. It relates to a coating.
  • An automatic ice making machine that continuously produces a large amount of ice blocks is suitably used in facilities such as coffee shops and restaurants and other kitchens.
  • These automatic ice makers include a jet type automatic ice machine that continuously produces ice of the required shape by supplying ice making water from below to a large number of ice making chambers that open downward, and an upper surface of an inclined ice making plate.
  • This closed cell type ice making mechanism 13 includes an ice making chamber 10 as an ice making section in which a large number of ice making chambers 12 opening downward are defined, and a tiltable water dish 40 is provided below the ice making chamber 10.
  • the pivot 42 is pivotally supported.
  • An ice making water tank 44 for storing ice making water supplied from the water supply unit 43 is integrally provided at the lower portion of the water tray 40.
  • An evaporator 48 led out from the refrigeration system 46 is meanderingly disposed on the upper surface of the ice making chamber 10, and the refrigerant from the refrigeration system 46 is circulated and supplied to the evaporator 48, so that the ice making chamber 10 is brought to below the freezing point. It is designed to cool.
  • the refrigeration system 46 includes a compressor CM, a condenser CD, and an expansion valve EV.
  • the discharge side of the compressor CM and the suction side of the evaporator 48 are connected by a bypass pipe 50, and a hot gas valve HV is provided in the bypass pipe 50.
  • the ice making water is sprayed and supplied from the water tray 40, which has closed the ice making chamber 12 from below, to each ice making chamber 12, so that ice blocks are forcibly cooled in the ice making chamber 12. Is formed. Further, during the deicing operation, the water tray 40 is tilted obliquely downward to open the ice making chamber 12, and the hot gas valve HV is opened to supply hot gas from the compressor CM to the evaporator 48. As a result, the icing between the ice making chamber 12 and the ice block is melted, and the ice block is dropped to the ice storage chamber located below by its own weight.
  • FIG. 12 is an exploded perspective view of the ice making chamber 10 installed in the automatic jet ice making machine.
  • the ice making chamber 10 is basically composed of a box-shaped outer frame 14 opened downward, and a lattice-shaped partition member 30 disposed inside the outer frame 14 and defining the plurality of ice making chambers 12. It is configured.
  • a cooling pipe 48 as the evaporator is meanderingly disposed on the upper surface of the outer frame 14 in close contact therewith.
  • the ice making chamber 10 is manufactured by assembling components such as the outer frame 14, the partition member 30, and the cooling pipe 48 that are molded into a required shape.
  • the ice making chamber 10 accommodates the partition member 30 in which a plurality of metal plates are assembled in a lattice shape in the outer frame 14 formed into a box shape by bending a metal plate, and the upper surface of the outer frame 14. It is assembled by arranging the cooling pipe 48 in a meander shape by bending a long hollow pipe.
  • the outer frame 14 and the partition member 30 are joined by means such as caulking and brazing, and the outer frame 14 and the cooling pipe 48 are joined by brazing.
  • a protrusion 31 is provided on the upper part of the partition member 30, and a caulking hole 16a is formed on the upper surface of the outer frame, and the upper surface of the outer frame 14 is inserted through the caulking hole 16a.
  • each partition plate 30a, 30b constituting the partition member 30 is provided at the side end of each partition plate 30a, 30b constituting the partition member 30, and the locking piece is engaged with the locking piece at a position corresponding to the locking piece in the outer frame 14.
  • a mating groove may be provided to position both members 14 and 30.
  • the components of the ice making chamber 10 such as the outer frame 14, the partition member 30, and the cooling pipe 48 are made of a metal material such as copper having a good thermal conductivity as the substrate 17 (see FIG. 2). Heat exchange with the circulating refrigerant can be performed satisfactorily. Since the substrate 17 made of copper or the like is excellent in thermal conductivity but easily rusted, a molten tin plating film 11 is formed on the surface of the ice making chamber 10 as a rust preventive treatment as shown in an enlarged view in FIG. It is common. The molten tin plating film 11 is formed by immersing the entire ice making chamber 10 in which the constituent members 14, 30, and 48 are assembled in a tin bath containing molten tin as a main component.
  • Patent Document 1 discloses an automatic ice making machine including an ice making chamber having a surface on which a molten tin plating film is applied.
  • the galvanized tin coating film is less likely to rust than a base made of copper or the like, but when an oxidizing substance or the like is included in the use atmosphere, corrosion products such as rust may be formed over time. Since this corrosion product is easily peeled off from the molten tin plating film, there are problems such as the corrosion product being mixed into ice blocks. In addition, since the molten tin plating film has low resistance to sterilizing agents such as sodium hypochlorite and electrolytic acid water, it is not suitable for sterilizing the ice making chamber in which the film is formed with these chemicals.
  • the present invention has been proposed in order to solve these problems inherently in the automatic ice making machine according to the prior art, and provides an automatic ice making machine that improves the corrosion resistance of the ice making part.
  • the purpose is to do.
  • the ice making chamber 10 includes an outer frame 14 including a rectangular top plate 16 and a side plate 18 that surrounds the four sides of the top plate 16.
  • Partitioning member 30 that defines the ice making chamber 12 in a lattice shape.
  • the outer frame 14 and the partition member 30 are assembled by inserting the protrusions 31 projecting from the necessary portions of the partition member 30 into the caulking holes 16a formed correspondingly to the top plate 16. Then, it is performed by caulking and fixing the head of the protrusion 31. However, the caulking is performed only by the plurality of protrusions 31 inserted into the caulking holes 16a.
  • the caulking hole 16a drilled in the top plate 16 and the fitting portion between the projection 31 of the partition member 30 are joined by soldering or brazing.
  • the outer frame 14 and the partition member 30 are made of copper, which is a good heat conductor, as a general material, there is a drawback that the copper is softened and deformed when exposed to high temperatures during the brazing. .
  • a low melting point brazing material it is conceivable to use a low melting point brazing material, but this brazing material is more expensive and costly than a brazing material that is generally used.
  • a surface treatment of molten tin plating is generally adopted from the viewpoint of food hygiene.
  • the coating 11 formed by hot dip tin plating is relatively hard to rust.
  • the atmosphere used in the ice making machine contains a substance that promotes corrosion, such as an oxidizing substance, the outer frame 14 and the partition member over time. 30 may cause corrosion products due to rust and the like.
  • Such a corrosion product is easily peeled off from the molten tin plating film 11, and if this product is mixed into ice-making water or the ice block after production, there is a possibility that it becomes a problem in food hygiene management.
  • Another invention in the present application is a so-called closed cell type injection type ice making machine that supplies ice making water to each ice making chamber in a state where the ice making chamber is closed with a water dish from below.
  • An object of the present invention is to improve the corrosion resistance by applying an electroless nickel-phosphorous plating film to the outer frame and the partitioning member, as compared with the conventional surface treatment by hot-dip tin plating.
  • an invention according to claim 1 is an automatic ice maker that circulates and supplies ice-making water to an ice-making room cooled by an evaporator to generate ice of a required shape.
  • the gist is that an electroless nickel-phosphorous plating film containing 10% to 15% of a phosphorus component is formed on the outermost layer of the ice making chamber to a thickness of 15 ⁇ m or more.
  • the corrosion resistance of the ice making chamber can be improved by the electroless nickel-phosphorous plating film formed on the outermost layer of the ice making chamber. For this reason, even if it is the use atmosphere where corrosion progresses in the conventional ice-making room, since generation
  • the gist of the invention according to claim 2 is that the electroless nickel-phosphorus plating film is directly formed on the outer surface of the base of the ice making chamber. According to the invention of claim 2, the electroless nickel-phosphorous plating film formed on the outermost layer of the ice making chamber improves the corrosion resistance of the ice making chamber. There is no need to apply a multi-layer coating, and the production efficiency can be increased.
  • the invention according to claim 3 provides a partition member formed by assembling a plurality of lateral partition plates and longitudinal partition plates in a lattice shape, and a top plate.
  • An ice making chamber that is arranged in an outer frame made of side plates and defines a plurality of ice making chambers that open downward, and a refrigerant that is arranged on the top plate of the outer frame and circulates a refrigerant supplied from a refrigeration system.
  • An evaporator for cooling the ice making chamber and a water tray for closing the ice making chamber so that the ice making chamber can be opened and closed from below and supplying ice-making water correspondingly to the plurality of ice making chambers, the partition member and the outer frame
  • the gist is that an electroless nickel-phosphorous plating film is applied to the ice making chamber. According to the invention which concerns on Claim 3, even if the oxidizing substance which accelerates
  • the part where the partition member is joined to the top plate of the outer frame is formed by a straight line, and the joining of the partition member and the top plate is brazed by soft brazing or hard brazing.
  • the gist of this is as follows. According to the invention which concerns on Claim 4, since it is not necessary to give the crimping
  • the gist of the invention according to claim 5 is that the joining of the partition member and the top plate by the hard solder is achieved by brazing in a furnace in a heating furnace.
  • the partition member and the top plate of an outer frame can achieve whole heating by heating in a furnace, and the thermal distortion by local heating does not arise. For this reason, the distortion correction work as a post-process becomes unnecessary.
  • the corrosion resistance of the ice making chamber is improved, so that corrosion products such as rust are not mixed into ice making water and ice, and the reliability of food hygiene can be improved. Further, according to the closed cell type jet ice making machine according to another invention of the present application, the corrosion resistance of the ice making chamber subjected to the surface treatment can be remarkably improved. There is no risk of corrosion products such as rust entering water or ice blocks.
  • (c) is also an enlarged view of a portion in which the corner portion is surrounded by A, and a part of the second side plate is broken to expose the extending portion.
  • molding the outer frame shown in FIG. 3 Comprising: (a) shows the state before bending a side plate with respect to a top plate, (b) bent the side plate with respect to the top plate. Indicates the state. It is an expansion perspective view of the corner part of the outer frame which concerns on another example. It is explanatory drawing of the process of shape
  • (a) is an expansion perspective view of the corner part of the outer frame which concerns on another example, Comprising: (b) shows the state before pressing an extension part. It is explanatory drawing of the process of shape
  • FIG. 9 is a perspective view of another example of the ice making chamber shown in FIG.
  • FIG. 12 showing a state in which the evaporator is disassembled into an outer frame having an evaporator disposed above and a grid-like partition member. It is a perspective view which shows the partition member shown in FIG. 13 in the state decomposed
  • an ice making chamber used in a so-called closed cell type spray type automatic ice making machine will be described as an ice making unit.
  • an ice making chamber of a so-called open cell type automatic ice making machine that supplies ice making water without going through a water tray, an ice making plate of a flow down type automatic ice making machine that flows ice making water down to the ice making surface, etc. It may be.
  • the ice making chamber described in the embodiment has the same basic configuration as the conventional ice making chamber described in FIG. 12, and therefore, the same reference numerals are used for the members already described.
  • the automatic ice making machine circulates and supplies ice making water to the ice making chamber 10 cooled by the cooling pipe 48 as an evaporator, like the conventional ice making chamber 10 described in FIG. Generate.
  • the ice making chamber 10 is basically composed of a box-shaped outer frame 14 that opens downward, and a lattice-shaped partition member 30 that is disposed inside the outer frame 14 and defines a plurality of ice making chambers 12.
  • the cooling pipe 48 is closely arranged in a meandering manner on the upper surface of the outer frame 14.
  • the box-shaped outer frame 14, the lattice-shaped partition member 30, and the cooling pipe 48 constituting the ice making chamber 10 are made of metal or alloy having excellent thermal conductivity such as copper.
  • the electroless nickel-phosphorous plating film 23 is formed on the outermost layer of the substrate 17.
  • the outermost layer of the ice making chamber 10 is a layer formed on a surface exposed to the outside in the ice making chamber 10. There may be a region where the electroless nickel-phosphorous plating film 23 is not formed on a part of the exposed surface of the ice making chamber 10.
  • the electroless nickel-phosphorous plating film 23 may be provided in contact with the outer surface of the substrate 17, and as shown in FIG.
  • an underlayer 25 made of a plating film such as nickel or palladium may be provided below the coating 23.
  • an adjustment layer 33 made of a plating film such as copper may be provided on the surface of the substrate 17 in order to prepare the surface of the substrate 17. If the substrate 17 contains an element such as tin or lead that inhibits the precipitation of nickel in the electroless nickel-phosphorous plating process described later, the base layer 25 is applied to the surface of the substrate 17. Is preferred. That is, the base layer 25 and the adjustment layer 33 are appropriately implemented according to the surface state of the substrate 17 and the surface state of the base on which the electroless nickel-phosphorous plating film 23 is applied.
  • the base layer 25 and the adjustment layer 33 that are not exposed to the outer surface of the ice making chamber 10 may have a thickness of about 1 ⁇ m.
  • the electroless nickel-phosphorous plating film 23 formed on the outermost layer of the ice making chamber 10 is a so-called high phosphorus type containing 10% to 15% (mass percent concentration, hereinafter the same) phosphorus component. Further, as shown in FIGS. 1A to 1C, the electroless nickel-phosphorus plating film 23 is formed so that its film thickness t is 15 ⁇ m or more. In addition, by setting the film thickness t of the electroless nickel-phosphorous plating film 23 to 15 ⁇ m or more, it is possible to suppress the generation of pinholes reaching the substrate 17 or the base layer 25 or the adjustment layer 33. It has been confirmed by a confirmation test.
  • the electroless nickel-phosphorous plating process for forming the electroless nickel-phosphorous plating film 23 will be described.
  • the ice making chamber 10 is placed in a storage tank of a nickel-phosphorous plating solution mainly composed of a metal salt containing nickel such as nickel sulfate and a reducing agent such as sodium hypophosphite. It is carried out by so-called soaking.
  • the nickel-phosphorous plating solution is adjusted so that the concentration of the phosphorous component in the formed electroless nickel-phosphorous plating film 23 is 10% to 15%.
  • a required catalyst may be added to the nickel-phosphorous plating solution.
  • the electroless nickel-phosphorous plating treatment is performed after the surface treatment. Do. In the outermost layer of the ice making chamber 10 immersed in the storage tank, the nickel cation derived from the metal salt is reduced and deposited, thereby forming the electroless nickel-phosphorous plating film 23 made of a nickel alloy. . As described above, the electroless nickel-phosphorous plating process is performed until the film thickness t of the electroless nickel-phosphorous plating film 23 becomes 15 ⁇ m or more. The electroless nickel-phosphorous plating process is performed individually on the constituent members such as the outer frame 14, the partition member 30, and the cooling pipe 48, and the constituent members 14, 30, 48 after the plating process are assembled. You may do it.
  • the electroless nickel-phosphorous plating film 23 formed on the outermost layer of the ice making chamber 10 is an alloy, it is not eroded at all by an organic solvent and is good for organic acids, salts and alkalis. It has the advantage that it shows corrosion resistance and is very resistant to rust. Furthermore, since the electroless nickel-phosphorous plating film 23 has a thickness t of 15 ⁇ m or more, the occurrence of pinholes reaching the substrate 17 or the base layer 25 or the adjustment layer 33 can be suppressed, and the above-described good Can exhibit sufficient corrosion resistance.
  • the plating film applied to the outermost layer of the ice making chamber 10 generally has a film thickness of 10 ⁇ m or less. This is due to the reason that it takes time to form the coating, and the reason that the thermal conductivity is lowered and the plating coating is easily peeled off by increasing the film thickness.
  • the ice making chamber 10 according to the embodiment has excellent corrosion resistance as described above, even in an environment where corrosion proceeds in the conventional ice making chamber 10 described with reference to FIG. It can be performed.
  • the electroless nickel-phosphorous plating film 23 exhibits excellent corrosion resistance as described above, and therefore is not easily corroded by a disinfectant such as sodium hypochlorite or electrolytic acid water. For this reason, maintenance such as sterilization treatment using the sterilizing agent can be performed, and the ice making chamber 10 can be kept more hygienic.
  • the ice making chamber 10 is enhanced in corrosion resistance by the electroless nickel-phosphorous plating film 23, the film applied to the lower layer of the electroless nickel-phosphorous plating film 23 for the purpose of preventing the corrosion of the substrate 17.
  • Example 1 A corrosion resistance confirmation test was performed on the ice making chamber 10 of the example to confirm the corrosion resistance. Further, as shown in Table 1, Comparative Example 1 in which the concentration of the phosphorus component was 8%, Comparative Example 2 and Comparative Example 3 in which the film thickness t of the electroless nickel-phosphorous plating film 23 was less than 15 ⁇ m, Corrosion resistance confirmation tests were also performed on Comparative Example 4 and Comparative Example 5 in which the hot-tin plating film 11 was applied instead of the electrolytic nickel-phosphorous plating film 23. In Experimental Examples 1 to 6 and Comparative Examples 1 to 3, a test was performed on a test piece provided with the electroless nickel-phosphorous plating film 23.
  • Comparative Example 4 and Comparative Example 5 the test was performed on the test piece provided with the molten tin plating film 11 as in the conventional ice making chamber 10 described with reference to FIG.
  • the conditions of each experimental example and comparative example are as shown in Table 1.
  • Test Example 1, Experimental Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3 are performed with test A described later, and Experimental Example 3, Experimental Example 4 and Comparative Example 4 are described with test described later.
  • B was performed, and Test C, which will be described later, was performed on Experimental Example 5, Experimental Example 6, and Comparative Example 5.
  • test A a 5% sodium chloride (NaCl) aqueous solution and a 0.5% hydrogen chloride (HCl) aqueous solution are mixed to prepare a test solution, and the test solution is sprayed on a 35 ° C. test tank and the test solution is sprayed. The specimen is exposed to the test solution for 168 hours.
  • test B the test piece was immersed in a 10 ppm sodium hypochlorite (NaClO) aqueous solution for 1500 hours.
  • test C the test piece was exposed to a hydrogen sulfide gas atmosphere of 5 ppm for 1500 hours.
  • the corrosion resistance confirmation test whether or not corrosion occurred on the test piece was mainly confirmed visually. The results are shown in Table 1. In the test results shown in Table 1, when the occurrence of corrosion was confirmed, it was evaluated as “x”, and when the occurrence of corrosion was not confirmed, it was evaluated as “ ⁇ ”.
  • Test A corrosion was observed in Comparative Example 2 and Comparative Example 3 in which the film thickness t of the electroless nickel-phosphorous plating film 23 was 10.4 ⁇ m and 10.8 ⁇ m.
  • the film thickness t of the electroless nickel-phosphorous plating film 23 was 27.0 and 27.1. This is because the substrate 17 exposed through the pinhole of the coating 23 was oxidized in the comparative example 1 and the comparative example 2 in which the film thickness t of the coating 23 was thin compared to the experimental example 1 and the experimental example 2.
  • Experimental Example 1 and Experimental Example 2 in which the film 23 is thickened it is considered that there is no pinhole reaching the substrate 17.
  • Comparative Example 1 in which the content of phosphorus component in the electroless nickel-phosphorous plating film 23 was 8% (so-called medium phosphorus type), the film thickness t was 15 ⁇ m or more, but corrosion was confirmed in the film 23. On the other hand, no corrosion was confirmed in Experimental Examples 1 to 6 in which the content of the phosphorus component in the electroless nickel-phosphorous plating film 23 was 10% to 15% (so-called high phosphorus type). Therefore, it can be confirmed that sufficient corrosion resistance can be exhibited by setting the content of the phosphorus component in the electroless nickel-phosphorous plating film 23 to 10% to 15%.
  • Comparative Example 4 and Comparative Example 5 in which the thickness of the molten tin plating film 11 was 21.8 ⁇ m and 21.3 ⁇ m, corrosion was confirmed on the film 11. On the other hand, no corrosion was confirmed on the coating 23 in Experimental Examples 3 and 5 in which the film thickness t of the electroless nickel-phosphorous plating film 23 was 15.2 ⁇ m and 15.1 ⁇ m, respectively. From this, it can be confirmed that the electroless nickel-phosphorous plating film 23 exhibits higher corrosion resistance than the hot-tin plating film 11.
  • the present invention is not limited to the embodiment described with reference to FIG. 1, and can be modified as follows, for example.
  • the layer structure between the substrate and the electroless nickel-phosphorous plating film is not limited to the example. That is, an underlayer or an adjustment layer different from that in the embodiment may be provided, or another layer may be provided.
  • the ice making section includes not only ice making rooms used for jet type automatic ice making machines, ice making plates used for flow-down type automatic ice making machines, but also, for example, auger type automatic ice making machines, with cooling pipes on the outer peripheral surface. It may be a refrigerated casing or the like that is wound and generates ice on the inner peripheral surface.
  • the configuration of the ice making chamber as the ice making unit is not limited to the embodiment.
  • a type in which a frame body in which an ice making chamber is formed is provided on the lower surface of an ice making substrate on which cooling pipes are meandered may be used.
  • the automatic ice making machine is not limited to an independent type as in the embodiment, but may be one built in a refrigerator or a freezer. That is, the automatic ice making machine according to the present invention may be provided in an ice making space defined in a freezer compartment of a home refrigerator, and in this case, the ice making part is disposed in the ice making space, An ice tray or the like that is cooled by an evaporator connected to a refrigeration system to produce ice may be used.
  • the electroless nickel-phosphorous plating film may be formed at least in the range where ice is generated in the outermost layer of the ice making part.
  • the jet type ice maker according to another invention is a closed cell type ice maker described with reference to FIG.
  • the configuration of the ice making chamber 10 to which this another invention is applied is also as described with reference to FIG.
  • the partition member 30 is a combination of a plurality of horizontal partition plates 30a and a vertical partition plate 30b, and partitions the interior into a lattice shape to thereby partition the plurality of ice making chambers 12. Is defined.
  • the slits 60 are formed at predetermined intervals on the lower edge of the horizontal partition plate 30a, and the slits 62 are formed at predetermined intervals on the upper edge of the vertical partition plate 30b. Is inserted into the slit 62 of the corresponding vertical partition plate 30b, whereby the lattice-shaped partition member 30 shown in FIG. 13 is obtained.
  • the portion of the outer frame 14 that will be described later is in contact with the back surface of the top plate 16, and is configured with a straight line.
  • the protrusion 31 is not provided.
  • the outer frame 14 and the grid-like partition member 30 are preferably made of copper having good thermal conductivity.
  • the outer frame 14, the partition member 30 composed of vertical and horizontal partition plates 30a and 30b, the evaporator 48, and other parts such as a bracket (not shown) for attaching a temperature sensor are degreased and cleaned before assembling them. Go and remove the fat component completely.
  • the ice making chamber 10 is obtained by arranging the grid-like partition members 30 inside the box-shaped outer frame 14 and joining them together.
  • the outer frame 14 and the partition member 30 are joined by so-called brazing.
  • brazing means for joining two metals, “soldering” using an alloy “solder” mainly composed of tin and lead as a bonding agent, and “brazing material” of various alloys having a melting point lower than that of the base material. And “brazing” using as a bonding agent.
  • solddering and “brazing” are academically a type of welding, and the case where a bonding agent (soft solder) with a melting point of 450 ° C. or lower is used is called “soldering”, and the melting point is 450 ° C.
  • the “solder” and “brazing material” include sheet-like, foil-like, linear and other paste-like forms in addition to rod-like ones, an appropriate one is selected for use.
  • the box-shaped outer frame 14 is covered from above.
  • the rod-shaped brazing material is interposed closely between the back surface of the top plate 16 in the outer frame 14 and the vertical partition plate 30b.
  • the ice making chamber 10 composed of the outer frame 14 and the partition member 30 is placed in a heating furnace heated to a predetermined temperature range, and brazing in the furnace for a predetermined time is performed.
  • the furnace is heated in the furnace in this manner, each member is heated as a whole, so that thermal distortion does not occur. Therefore, the correction work for removing the thermal distortion is not required.
  • a paste-like brazing material may be used, and the partition member 30 may be disposed after this is applied to the back surface of the top plate 16.
  • a paste-like brazing material may be applied to the entire back surface of the top plate 16, but the amount of use can be reduced by applying only to the portion where the vertical and horizontal partition plates 30a, 30b abut on the partition member 30. May be saved.
  • the evaporator 48 is placed on the top plate 16 or a part requiring brazing joining such as a bracket for attaching a temperature sensor is attached, and heating is performed simultaneously. You may braze and join by a furnace.
  • brazing copper when copper is selected as the material of the outer frame 14 and the partition member 30, since the inside of the furnace is exposed to a high temperature in brazing using the hard braze, the copper is annealed and the hardness is lowered. There is. For this reason, when brazing copper, it is preferable to carry out at the lowest possible brazing temperature.
  • a brazing material whose melting point is lowered by a quaternary eutectic (eutectic mixture) of copper, phosphorus and silver or a quaternary eutectic of copper, nickel, phosphorus and tin is used.
  • the maximum temperature of the brazing temperature is lowered and the high temperature exposure time in the furnace is shortened, so that it is possible to minimize the softening of copper, which is the material of the outer frame 14 and the partition member 30. is there.
  • the material of the outer frame 14 and the partition member 30 a copper alloy having heat resistance and not impairing the characteristics as a good thermal conductor is used, and the entire contact area of both the members 14 and 30 is brazed. You may join.
  • the copper alloy having heat resistance is a characteristic in which a certain element is added to the component, and the element is precipitated when heated in a furnace at a high temperature to prevent softening of the copper alloy. It has what has.
  • a residue of flux generated at the time of brazing adheres to the surface.
  • the surface of the ice making chamber 10 is cleaned by washing away the flux residue with a cleaning agent or water, or by physically scraping it off by means such as sandblasting.
  • the cleaning step can be omitted if a reducing furnace that keeps the inside of the furnace in a reducing atmosphere is used as the heating furnace.
  • the reduction furnace uses hydrogen gas or modified gas as the atmosphere in the furnace, so that the brazing can be performed without using a flux, and thus no flux residue is produced.
  • an electroless nickel-phosphorus plating film 23 is applied to the surface of the ice making chamber 10 (all the inner and outer surfaces of the outer frame 14 and the partition member 30) after the surface cleaning process. .
  • the electroless nickel-phosphorous plating film 23 is applied to the outermost layer of the ice making chamber 10.
  • the phosphorus concentration is 10% or more (high phosphorus type)
  • the film thickness t is 15 ⁇ m or more.
  • the electroless nickel-phosphorous plating film 23 is for enhancing the corrosion resistance of the ice making chamber 10, and as a result of a corrosion resistance confirmation test, it is found that the thickness is 15 ⁇ m or more.
  • the film 23 is smaller than 15 ⁇ m, pinholes reaching the substrate 17 may be formed, and even if the electroless nickel-phosphorous plating film 23 is applied, high corrosion resistance cannot be obtained.
  • 5% NaCl + 0.5% HCl aqueous solution is used as a test solution, and the test solution is sprayed onto a test piece at a test bath temperature of 35 ° C., and the test solution is exposed to a high temperature necessary for brazing. According to accelerated test.
  • the treatment of the electroless nickel-phosphorous plating film 23 is performed by so-called soaking in which the ice making chamber 10 is completely immersed in a nickel-phosphorous plating solution storage tank.
  • a base treatment of the electroless nickel-phosphorous plating film 23 which is the outermost layer the surface of the base 17 of the ice making chamber 10 is plated with nickel, palladium, etc., and then the electroless nickel- It is good also as a two-layer process which gives the phosphorus plating film 23.
  • a three-layer process may be performed in which the surface of the ice making chamber 10 is subjected to copper plating, then nickel plating, and then the electroless nickel-phosphorous plating film 23 is formed on the nickel plating.
  • the ice making chamber 10 as in the second or third layer. It is highly necessary to apply nickel plating or copper plating to the substrate 17.
  • the ice making chamber 10 shown in FIG. 13 includes a partition member 30 in which vertical and horizontal partition plates 30a and 30b are combined in a lattice pattern inside an outer frame 14 constituted by a rectangular top plate 16 and four side plates 18. Is housed.
  • a partition member 30 in which vertical and horizontal partition plates 30a and 30b are combined in a lattice pattern inside an outer frame 14 constituted by a rectangular top plate 16 and four side plates 18. Is housed.
  • FIG. 2 and FIG. 8 of Japanese Patent Laid-Open No. 7-260301 there are some in which the vertical and horizontal partition plates located on the outermost side of the grid-like partition function as the side plates of the ice making chamber.
  • a rectangular box-shaped ice making chamber is configured simply by covering the grid-like partition plate with a top plate.
  • the grid-like partition member 30 and the side plate 18 of the outer frame 14 may be separated, and the vertical and horizontal partition plates 30 a and 30 b positioned on the outermost side of the grid-like partition member 30. It may be handled as the side plate 18 of the outer frame 14. Further, the outer frame 14 of the ice making chamber 10 may be formed by integrally forming the top plate 16 and the side plate 18, or may be configured by separately forming the top plate 16 and the side plate 18.
  • the following advantageous effects can be obtained.
  • -By applying the surface treatment of the ice making chamber with specifications that allow the actual amount of electroless nickel-phosphorous plating to be fully demonstrated it can be operated without being corroded even in an environment where conventional tin plating corrodes.
  • ⁇ Maintenance using chemicals such as disinfectants (sodium hypochlorite, electrolytic acid water, etc.) that were difficult to use due to corrosion and deterioration caused by conventional tin plating is possible.
  • -Even if it is not a skilled worker, it becomes possible to mass-produce the ice-making room of the stable quality by observing the setting value in a joining agent supply apparatus, a heating furnace, etc.
  • the melting temperature is extremely lower than that of the brazing material (for example, the brazing temperature of phosphor copper brazing is 650 to 900 ° C, and the solder is 200 to 300 ° C). It will be advantageous.
  • the strength of the joint is increased because the material strength is higher than that of soldering.
  • the ice making chamber has anisotropy in strength due to the effect of combining the partition plates, but the anisotropy disappears because all the brazing materials are joined.
  • post-cleaning is unnecessary by using a reduction furnace and making it flux-free, so that cleaning water, chemicals and other labor can be greatly reduced, and cost can be reduced.
  • brazing there is no need to worry about surface treatment defects (plating repellency, poor adhesion) due to flux residue remaining after cleaning when joining without flux, and quality is stabilized.
  • surface treatment defects plating repellency, poor adhesion
  • the strength of the ice making chamber is maintained even when a brazing material having a high brazing temperature and an inexpensive brazing material is used because there is no reduction in the strength of the material even when brazing at a high temperature. The cost can be reduced by using an inexpensive brazing material.
  • FIG. 9A is an exploded perspective view of the ice making chamber 10 basically described in FIGS. 12 and 13.
  • the outer frame 14 includes a rectangular top plate 16 on which the cooling pipe 48 is disposed, and a rectangular side plate 18 extending downward from each side 16b of the top plate 16, and has a thermal conductivity. It is formed by bending a good metal plate such as copper. That is, as shown in FIG.
  • the outer frame 14 has a side plate 18 extending integrally from the four sides 16b of the top plate 16 along each side 16b of the top plate 16. It is manufactured as a rectangular box that is bent downward in the same direction indicated by the arrow f in FIG. Therefore, as shown in an enlarged view in FIG. 9B, each side end portion of the two side plates 18 and 18 adjacent to each other by the bending forms a corner portion 20 of the outer frame 14.
  • the lattice-shaped partition member 30 shown in FIG. 9A is accommodated inside the outer frame 14 bent in this way from the opening 14a side of the outer frame 14, and both members 14 are secured by means such as caulking and brazing. , 30 are joined. When the caulking is fixed, as shown in FIG.
  • a protrusion 31 is provided on the upper part of the partition member 30, and a caulking hole 16a is formed in the top plate 16, and the caulking hole 16a is inserted into the ceiling. This is done by crushing the protrusion 31 protruding from the upper surface of the plate 16 with a hammer or the like.
  • the corner portion 20 of the outer frame 14 described with reference to FIG. 12 the side end portions of the two side plates 18 and 18 are adjacent to each other by the bending as shown in FIG. 9B. And this corner part 20 is joined to the both ends by spot welding using a brazing material such as phosphor copper brazing.
  • a brazing material such as phosphor copper brazing.
  • this welding work is performed manually, the spot welding performed by abutting the end faces of the side plates 18 and 18 requires skill, and it is generally difficult to ensure a certain quality.
  • the corner portion 20 is insufficiently welded, a strong stress is applied to the side plate 18 due to expansion when ice grows in the ice making chamber 12, and the side plates 18 in the corner portion 20 are disconnected from each other.
  • the outer frame opening 14a may open.
  • the ice making chamber 10 is proposed as follows, which structurally suppresses the corner portion 20 of the outer frame 14 from coming off and has a stable quality.
  • the ice making chamber 10 is a rectangular side plate that integrally extends from the four sides 16 b of the rectangular top plate 16, similarly to the ice making chamber 10 described in FIGS. 9 and 10. 18 is disposed inside the outer frame 14 and a box-shaped outer frame 14 that is bent downward (in the same direction) along the sides 16b of the top plate 16 and opened downward (one side).
  • the cooling pipe 48 constituting the refrigeration system 46 is closely and meanderingly disposed on the upper surface of the outer frame 14.
  • the partition member 30 defines a plurality of ice making chambers 12.
  • the outer frame 14 is a metal having a shape in which the outer frame 14 is cut out at a corner portion 20 where the side plates 18 are joined and developed on a plane as shown in FIG. A plate is formed, and each side plate 18 is formed by bending downward as indicated by an arrow a along each side 16b of the top plate 16 indicated by a two-dot chain line in FIG.
  • the lattice-shaped partition member 30 is arranged inside the outer frame 14 that is bent and formed.
  • the side plate 18 is opposed to two long side plates 18 and 18 (hereinafter sometimes referred to as the first side plate 18A) extending in parallel to face each other.
  • the two side plates 18 and 18 (hereinafter sometimes referred to as second side plates 18B) extending in parallel with each other, and the side edges of the first side plate 18A and the second side plate 18B that are perpendicular to each other, A corner portion 20 of the outer frame 14 is formed.
  • the dimensions of the first side plate 18A and the second side plate 18B are set in accordance with the size and amount of ice blocks produced in the ice making chamber 10, and the both side plates 18A and 18B may have the same dimensions.
  • each partition plate 30a, 30b constituting the partition member 30 shown in FIG.
  • An engagement groove that engages with the locking piece may be formed.
  • the side plate 18 is bent with respect to the top plate 16 at the side end portions of the two side plates 18, 18 forming the corner portion 20 adjacent to each other in the outer frame 14.
  • the fitting part 22 which fits mutually is provided. That is, the outer frame 14 is provided with the fitting portion 22 at each of the four corner portions 20 formed by the side end portion of the first side plate 18A and the side end portion of the second side plate 18B.
  • the fitting portion 22 includes an extension portion 24 formed at a side end portion (end portion) of the first side plate 18A (one side plate) facing the corner portion 20, and a second side plate 18B facing the corner portion 20.
  • a notch 26 is formed at a side end (end) of (the other side plate) and accepts the extension 24 in a contact state.
  • a side end portion of the first side plate 18A has a first side end surface 19a of the first side plate 18A extending on the same plane as the inner surface 18Bb of the second side plate 18B.
  • the extending portion 24 extending in the thickness direction of the second side plate 18B is formed.
  • the extending portions 24 are provided at both lower corners of the first side plate 18A so as to extend on the same plane as the plate surface of the first side plate 18A with the same thickness as the first side plate 18A.
  • the extension dimension L1 from the first side end face 19a in the extension part 24 is set to a dimension at least equal to the thickness dimension D2 of the second side plate 18B.
  • the extension dimension L1 of the extension part 24 shown in FIGS. 3 and 4 is set to be equal to the thickness dimension D2 of the second side plate 18B, and as shown in FIG. The extended end surface 24b and the outer surface 18Ba of the second side plate 18B are aligned.
  • the extension part 24 is designed to increase its strength by increasing its height dimension H1 (FIG. 4A).
  • the second side plate 18B has a side end portion from a second side end surface 19b of the second side plate 18B extending on the same plane as the inner surface 18Ab of the first side plate 18A.
  • a protruding portion 21 that protrudes in the thickness direction of the first side plate 18A is formed.
  • the projecting portion 21 is provided at a position shifted upward from the lower end of the second side plate 18B so as to correspond to the extending portion 24 of the first side plate 18A.
  • the cutout portion 26 is formed to open downward and laterally by 19b and receive the extended portion 24 in a contact state.
  • the notches 26 are provided in correspondence with the extending portions 24 at both lower corners of the second side plate 18B.
  • the protrusion dimension L2 of the protrusion 21 from the second side end surface 19b is set to be equal to the thickness dimension D1 of the first side plate 18A, and as shown in FIG.
  • the end surface 21b and the outer surface of the extending portion 24 (the outer surface 18Aa of the first side plate 18A) fitted to the notch portion 26 are aligned.
  • the vertical height (length) dimension H2 of the notch 26 in the second side plate 18B is the vertical direction of the extension 24 in the first side plate 18A.
  • the height (length) dimension H1 is set to be slightly larger than the height dimension H1, and the extended portion 24 can be received in contact with the cutout portion 26 as will be described later.
  • the fitting portion 22 is formed on the cutout portion 26 when the side plate 18 is bent from each side 16 b of the top plate 16 in the molding process of the outer frame 14. 24 is received in contact.
  • the upper surface 24a of the extending portion 24 and the protruding portion 21 forming the notched portion 26 are provided.
  • the lower surface 21a of the first side plate 18A and the second side surface 18a are in close contact with each other, and the inner surface of the extended portion 24 and the second side end surface 19b forming the notch 26 are in close contact with each other.
  • the side plate 18B is structurally fixed.
  • the fitting force of the fitting part 22 is such that the extension part 24 and the notch part 26 come into contact with each side plate 18 even if the expansion force of the ice mass growing in the ice making chamber 12 acts outwardly on each side plate 18. It is set so that the first side plate 18A and the second side plate 18B are not disconnected by the frictional force of the surface. If the height dimension H1 of the extension part 24 and the height dimension H2 of the notch part 26 are increased, the contact area (adhesion degree) between the extension part 24 and the notch part 26 increases. The bonding strength of 18B increases.
  • the inner surface of the protruding portion 21 of the second side plate 18B and the first side end surface 19a of the first side plate 18A come into contact with each other.
  • the inner surface of the extension portion 24 in the first side plate 18A and the second side end surface 19b of the second side plate 18B abut in the fitted state. That is, the first side plate 18A and the second side plate 18B come into contact with the side end surfaces 19a and 19b of the other side plate 18, so that deformation that falls inward with respect to the top plate 16 is regulated. ing.
  • the first side plate 18A and the second side plate 18B are in a relationship of receiving each other.
  • each side plate 18 rotates in the direction of the arrow a about each side 16b of the top plate 16 indicated by a two-dot chain line.
  • the first side plate 18A and the second side plate 18B are folded to a predetermined position that is substantially perpendicular to the top plate 16 shown in FIG. It contacts the side plate 18. That is, the first side plate 18A and the second side plate 18B are adapted to receive forces in the bending operation direction.
  • the ice making chamber 10 bends the side plate 18 with respect to the top plate 16 so that the extended portion of the first side plate 18A facing the same corner portion 20 is formed in the notch portion 26 of the second side plate 18B facing the corner portion 20.
  • the first side plate 18A and the second side plate 18B are structurally fixed by receiving 24 and fitting together.
  • the corner portions 20 of the first side plate 18A and the second side plate 18B are joined by brazing in the furnace. That is, it is not necessary for the operator to perform spot welding by hand, and the number of work steps can be reduced.
  • the ice making chamber 10 has the extending portion 24 of the first side plate 18A in contact with the second side end surface 19b of the second side plate 18B, and the protruding portion 21 of the second side plate 18B is the first of the first side plate 18A. It contacts the side end face 19a. In this way, the first side plate 18A and the second side plate 18B abut against the other side plate 18 and receive each other, thereby structurally restricting deformation such that the side plate 18 tilts inward with respect to the top plate 16. Can do.
  • the internal space of the outer frame 14 in which the partition member 30 is disposed becomes small, and the partition member 30 cannot enter or is disposed.
  • partition member 30 is deformed.
  • the shape of the ice block to be manufactured is distorted or an extra load is constantly applied to the outer frame 14. Since the outer frame 14 can keep a constant distance between the opposing side plates 18, 18, the partition member 30 can be disposed with an appropriate clearance.
  • the outer frame 14 in which the side plates 18 are integrated with the top plate 16 at the upper end portion has a structure in which the lower side (open end side) of the corner portion 20 is easy to open.
  • the extension portion 24 and the cutout portion 26 are provided in the lower corner portion of the side plate 18, so that the lower portion of the corner portion 20 is effectively prevented from opening by the fitting portion 22. Can do.
  • the height dimension H1 of the extension part 24 and the height dimension H2 of the notch part 26 are increased, the strength of the extension part 24 itself to which a force is easily applied increases, and the extension part 24 and the notch part 26 are increased.
  • the bonding strength between the side end portion of the first side plate 18A and the side end portion of the second side plate 18B is increased. That is, by increasing the ratio of the height dimension of the fitting portion 22 to the height dimension of the outer frame 14, the structural joint strength of the corner portion 20 of the outer frame 14 is increased, and the outer frame opening 14a Opening can be effectively suppressed.
  • the ice making chamber 10 shown in FIG. 4 is configured such that the extended end surface 24b of the extended portion 24 provided at the side end portion of the first side plate 18A and the outer surface 18Ba of the second side plate 18B are aligned.
  • the extending portion 24 extends larger than the thickness dimension D ⁇ b> 2 of the second side plate 18 ⁇ / b> B (the other side plate) and the top plate 16. After the side plate 18 is bent, the extended portion 24 is bent and brought into contact with the second side plate 18B.
  • the same members as those shown in FIGS. 3 and 4 are denoted by the same reference numerals.
  • the extending portion 24 extends along the plate surface of the first side plate 18 ⁇ / b> A and is fitted with the notch portion 26, and the extending end portion 27 is the second end plate 27. It is bent along the plate surface of the side plate 18B. That is, the extension end portion 27 of the extension portion 24 shown in FIG. 5 is perpendicular to the second side plate 18B side with respect to the plate surface of the first side plate 18A so that the inner surface abuts on the outer surface 18Ba of the second side plate 18B. A bent portion 27 is formed.
  • the extension 24 extends from the first side end face 19a in the extension 24 in a state before the side plate 18 is bent with respect to the top plate 16.
  • the extending end portion 27 of the extending portion 24 is extended on the same plane as the plate surface of the first side plate 18A so that the dimension L1 is larger than the thickness dimension D2 of the second side plate 18B.
  • the outer frame 14 is similar to the outer frame 14 shown in FIGS. 3 and 4 when the side plate 18 is bent from each side 16b of the top plate 16.
  • the extending portion 24 formed at the side end portion of the first side plate 18A is received in contact with the cutout portion 26 formed at the side end portion of the second side plate 18B.
  • the extended portion 24 extends outward from the outer surface 18Ba of the second side plate 18B.
  • the extension end portion 27 of the extension portion 24 is indicated by an arrow c in FIG. 6B by a corner molding machine or the like so that the inner surface of the extension end portion 27 approaches the outer surface 18Ba of the second side plate 18B.
  • the bent portion 27 extending along the outer surface 18Ba of the second side plate 18B is formed as shown by a two-dot chain line in FIG.
  • the extending portion 24 is bent in a hook shape so as to follow the outer surface 18Ba of the second side plate 18B, and therefore the fitting between the extending portion 24 and the notch portion 26 is further performed.
  • the extending portion 24 provided on the first side plate 18A is bent along the outer surface 18Ba of the second side plate 18B.
  • the extending portion 24 extends larger than the thickness dimension D ⁇ b> 2 of the second side plate 18 ⁇ / b> B (the other side plate), and with respect to the top plate 16. After the side plate 18 is bent, the extended portion 24 is pressed and brought into contact with the second side plate 18B.
  • the same members as those in the configurations shown in FIGS. 3 and 4 and the configurations shown in FIGS. 5 and 6 are denoted by the same reference numerals.
  • the extension 24 provided at the side end of the first side plate 18A extends outward from the outer surface 18Ba of the second side plate 18B, and the second It protrudes above the notch 26 of the side plate 18B.
  • the extended end portion 28 of the extended portion 24 has a protrusion 29 protruding upward from the cutout portion 26 of the second side plate 18B (the portion that fits the cutout portion 26 in the extended portion 24).
  • the protrusion 29 is pressed so as to contact an upper portion of the cutout portion 26 (mainly the outer surface of the protruding portion 21) on the outer surface 18Ba of the second side plate 18B.
  • the extension portion L1 shown in FIG. 8A is an extension dimension L1 from the first side end surface 19a, and the thickness dimension of the second side plate 18B.
  • the extension end portion 28 of the extension portion 24 is on the same plane as the plate surface of the first side plate 18A so as to have an inclined surface 29a that becomes larger than D2 and has an oblique angle that increases in the extension direction.
  • the extended end portion 28 of the extended portion 24 is formed with a triangular protrusion 29 that protrudes upward from a portion of the extended portion 24 that is received by the notch 26 and has the inclined surface 29a. Has been.
  • the outer frame 14 shown in FIG. 8 (b) has the extending portion 24 formed at the side end portion of the first side plate 18A.
  • the cutout portion 26 formed at the side end of the second side plate 18B is received in a contact state.
  • the extending end portion 28 of the extending portion 24 extends outward from the outer surface 18Ba of the second side plate 18B, and
  • the protrusion 29 extends to above the notch 26.
  • the inclined surface 29a of the protrusion 29 and the outer surface 18Ba of the second side plate 18B face each other, and the interval between the inclined surface 29a and the outer surface 18Ba of the second side plate 18B is It expands as you go upward.
  • the extension end portion 28 of the extension portion 24 is pressed by a corner molding machine or the like so as to be pressed against the outer surface 18Ba of the second side plate 18B as shown by an arrow e in FIG.
  • the inclined surface 29a is crushed so as to contact the outer surface 18Ba of the second side plate 18B.
  • the range in which the first side plate 18 ⁇ / b> A and the second side plate 18 ⁇ / b> B are in close contact with each other is extended in the height direction by the pressed protrusion 29.
  • the extension end portion 28 of the extension portion 24 includes a protrusion 29 that protrudes upward and is pressed to come into contact with the outer surface 18Ba of the second side plate 18B.
  • the fitting between the protruding portion 24 and the cutout portion 26 becomes stronger. That is, since the range in which the first side plate 18A and the second side plate 18B are in close contact with each other is extended in the height direction by the protrusion 29, the structural bonding strength of the corner portion 20 of the outer frame 14 is increased. It can suppress effectively that the 14 corner parts 20 open.
  • the inclined surface 29a of the protrusion 29 has an oblique angle that increases in the extending direction of the extending portion 24, the first side plate 18A is bent with respect to the top plate 16.
  • the protrusion 29 does not interfere with the second side plate 18B. In this way, it is possible to increase the bonding strength of the corner portion 20 of the outer frame 14 in an operation that does not require skill, such as extending the extending portion 24 and pressing the extended extending end portion 28 with a corner molding machine or the like. Since the quality can be increased, the quality can be stabilized and the manufacturing cost can be reduced.
  • the ice making chamber described with reference to FIGS. 3 to 8 is not limited to the configuration described above, and can be modified as follows, for example.
  • the extension part was formed in the edge part of one side plate, the extension dimension of this extension part may be smaller or larger than the thickness dimension of the other side plate. That is, it is only necessary that at least a part of the extension part is received by at least a part of the notch part.
  • the fitting strength of the extension part and the notch part increases, it is preferable to make the extension dimension of the extension part larger than the thickness dimension of the other side plate from the viewpoint of bonding strength.
  • the shape of the notch and the extending part received in the notch may be, for example, a triangle.
  • the shape of the extended end portion bent so as to come into contact with the other side plate is not limited to a rectangular shape, for example, a triangle or the like Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemically Coating (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

【課題】製氷室の耐腐蝕性を向上させることで、錆等の腐蝕生成物が製氷水や氷に混入することがなく、食品衛生の信頼性を高めた自動製氷機を提供する。 【解決手段】自動製氷機は、冷却パイプ48により冷却される製氷室10に製氷水を循環供給して所要形状の氷を生成する。前記自動製氷機は、前記製氷室10の最外層に、10%~15%のリン成分を含有した無電解ニッケル-リンめっき被膜23が、15μm以上の厚みで形成されている。

Description

自動製氷機
 この発明は、蒸発器により冷却される製氷部に製氷水を供給して氷塊を連続的に製造する自動製氷機に関するものであって、更に詳しくは、前記製氷部の耐腐蝕性を向上し得る被膜に関するものである。
 多量の氷塊を連続的に製造する自動製氷機が、喫茶店やレストラン等の施設その他の厨房において好適に使用されている。これらの自動製氷機としては、下向きに開口する多数の製氷小室に製氷水を下方から供給して所要形状の氷を連続的に製造する噴射式自動製氷機や、傾斜させた製氷板の上面に製氷水を流下させて該製氷板に板状氷を製造する流下式自動製氷機等が存在する。
 例えば、図11に示すように、噴射式自動製氷機として所謂クローズドセルタイプの製氷機構13を備えたものがある。このクローズドセルタイプの製氷機構13は、下方に開口する多数の製氷小室12が画成された製氷部としての製氷室10を備え、該製氷室10の下方には、傾動可能な水皿40が支軸42に枢支されている。この水皿40の下部には、給水部43から供給される製氷水を貯留する製氷水タンク44が一体的に設けられている。前記製氷室10の上面には、冷凍系46から導出した蒸発器48が蛇行配置され、前記冷凍系46からの冷媒を該蒸発器48に循環供給することで、該製氷室10を氷点下にまで冷却するようになっている。なお、前記冷凍系46は圧縮機CM、凝縮器CDおよび膨張弁EVから構成される。また、前記圧縮機CMの吐出側と蒸発器48の吸込側とはバイパス管50で接続され、該バイパス管50にホットガス弁HVが設けられている。
 前記自動製氷機の製氷運転時には、前記製氷小室12を下方から閉成した前記水皿40から製氷水を各製氷小室12に噴射供給することで、強制冷却されている該製氷小室12内に氷塊が形成される。また、除氷運転時には、前記水皿40を斜め下方に傾動させて前記製氷小室12を開放すると共に、前記ホットガス弁HVを開いて前記圧縮機CMからのホットガスを前記蒸発器48へ供給することで、該製氷小室12と氷塊との氷結を融解させ、該氷塊を自重により下方に位置する貯氷室へ落下させる。
 図12は、噴射式自動製氷機に配設される製氷室10の分解斜視図である。この製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、前記複数の製氷小室12を画成する格子状の仕切部材30とから基本的に構成されている。また、前記外枠14の上面には、前記蒸発器としての冷却パイプ48が密着的に蛇行配置されている。この製氷室10は、所要の形状に成形された外枠14、仕切部材30および冷却パイプ48等の構成部材を組付けて製作される。すなわち、製氷室10は、金属板を折り曲げて箱状に成形された前記外枠14の内部に、複数の金属板を格子状に組立てた前記仕切部材30を収容すると共に、外枠14の上面に長尺の中空パイプを折り曲げて蛇行状とした前記冷却パイプ48を配置することで組立てられる。そして、前記外枠14と仕切部材30とは、カシメ固定やろう付け等の手段により接合され、外枠14と冷却パイプ48とはろう付けにより接合される。なお、前記カシメ固定を行う場合は、前記仕切部材30の上部に突部31を設けると共に、前記外枠の上面にカシメ孔16aを開設し、該カシメ孔16aに挿通して外枠14の上面に突出させた突部31をハンマー等で圧潰することで行う。また、前記仕切部材30を構成する各仕切板30a,30bの側端部に係止片を設けると共に、前記外枠14における前記係止片と対応する位置に該係止片と係合する係合溝を設け、両部材14,30を位置決めするようにしても良い。
 前記外枠14、仕切部材30および冷却パイプ48などの製氷室10の構成部材は、素地17(図2参照)として熱伝導率の良い銅等の金属材料が使用され、冷却パイプ48の内部を循環する冷媒との熱交換を良好に行い得るようになっている。この銅等からなる素地17は、熱伝導率に優れるが錆び易いので、図2に拡大して示すように、前記製氷室10の表面には、防錆処理として溶融錫めっき被膜11を形成するのが一般的である。前記溶融錫めっき被膜11は、溶融させた錫を主成分とする錫浴中に、各構成部材14,30,48が組付けられた製氷室10の全体をそっくり浸すことで、該製氷室10の表面に形成される。なお、このめっき処理は、前記各構成部材14,30,48に対して個別に行う場合もあり、この場合、前記製氷室10は、めっき処理後の各構成部材14,30,48を組付けて組立てられる。前述した表面に溶融錫めっき被膜を施した製氷室を備える自動製氷機は、例えば、特許文献1に開示されている。
特開2005-30702号公報
 前記溶融錫めっき被膜は、銅等からなる素地に較べると錆び難いが、使用雰囲気に酸化性物質等が含まれている場合、経時的に錆等の腐蝕生成物を生じることがある。この腐蝕生成物は溶融錫めっき被膜から剥がれ易いため、該腐蝕生成物が氷塊に混入する等の問題が指摘される。また、前記溶融錫めっき被膜は、次亜塩素ナトリウムや電解酸性水等の殺菌剤に対する耐性が低いので、前記被膜を形成した製氷室をこれらの薬剤で殺菌処理するのには適さない。
 本発明は、従来技術に係る自動製氷機に内在する前記諸問題に鑑み、これらを好適に解決するべく提案されたものであって、製氷部の耐腐蝕性を向上させた自動製氷機を提供することを目的とする。
 前記製氷室10は、図12で説明したように、矩形状の天板16および該天板16の四方を囲む側板18からなる外枠14と、該外枠14の内部に位置して前記多数の製氷小室12を格子状に画成する仕切部材30とから構成される。この場合に、前記外枠14と仕切部材30との組付けは、該仕切部材30の必要個所に突設した突部31を前記天板16に対応的に穿設したカシメ孔16aへ挿入した後、該突部31の頭部を潰すカシメ固定により行っている。しかしカシメ固定は、前記カシメ孔16aへ挿入した複数の突部31だけで行うものである。このため、各製氷小室12内で氷塊が成長する際の大きな膨張圧力が製氷運転の都度加わるので、経時的に外枠14と仕切部材30との結合が緩くなってグラツいてしまう欠点がある。この場合は、製氷室10に施されている各種表面処理を劣化させたり剥落させたりして、耐久性を低下させる弊害がある。
 これを改善するために、前記天板16に穿設したカシメ孔16aと前記仕切部材30の突部31との嵌合部とを、はんだ付けまたはろう付けで接合することが行われている。しかし、前記外枠14および仕切部材30は、良好な熱伝導体である銅を一般的な材質としているため、前記ろう付け時の高温に曝されると銅が軟化して変形する欠点がある。このような軟化による強度低下を回避するために、低融点型のろう材を使用することが考えられるが、このろう材は一般に使用されるろう材よりも高価でコストアップになってしまう。
 また、前記製氷室10には製氷水が循環的に噴射供給されて、各製氷小室12の内部に氷塊が形成されるので、食品衛生の観点から一般に溶融錫めっきの表面処理が採用されている。この溶融錫めっきによる被膜11は比較的錆にくいものであるが、製氷機の使用雰囲気に酸化性物質等の腐蝕を促進させる物質が含まれていると、経時的に前記外枠14や仕切部材30にサビ等による腐蝕生成物を生じてしまうことがある。このような腐蝕生成物は前記溶融錫めっき被膜11から剥落し易く、これが製氷水や生成後の氷塊中に混入すると、食品衛生管理上問題になる虞がある。
 そこで本願における別の発明は、製氷室を下方から水皿で閉成した状態で、該製氷室の各製氷小室へ製氷水を噴射供給する所謂クローズドセルタイプの噴射式製氷機において、製氷室を構成する外枠と仕切部材とに無電解ニッケル-リンめっき被膜を施すことで、従来の溶融錫めっきによる表面処理に比べて耐腐蝕性を向上させることを目的とする。
 前記課題を克服し、所期の目的を達成するため、請求項1に係る発明は、蒸発器により冷却される製氷室に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、前記製氷室の最外層に、10%~15%のリン成分を含有した無電解ニッケル-リンめっき被膜が15μm以上の厚みで形成されていることを要旨とする。
 請求項1に係る発明によれば、製氷室の最外層に形成された無電解ニッケル-リンめっき被膜により、該製氷室の耐腐蝕性を向上し得る。このため、従来の製氷室では腐蝕が進行してしまう使用雰囲気の下であっても、腐蝕の発生が抑えられるので氷の製造を行うことができる。また、殺菌剤に対する耐腐蝕性も高いので、殺菌剤を使用したメンテナンスにより製氷室を衛生に保つことが可能となる。
 請求項2に係る発明は、前記無電解ニッケル-リンめっき被膜は、前記製氷室の素地の外表面に直接形成されていることを要旨とする。
 請求項2に係る発明によれば、製氷室の最外層に形成された無電解ニッケル-リンめっき被膜により、該製氷室の耐腐蝕性が向上するので、素地の腐蝕を防ぐ目的で該素地に多層の被膜を施す必要がなく、製造効率を高めることができる。
 前記課題を解決し、所期の目的を達成するため請求項3に記載の発明は、複数の横方向仕切板と縦方向仕切板とを格子状に組付けてなる仕切部材を、天板と側板とからなる外枠に配設して、下方に開放する製氷小室を複数画成した製氷室と、前記外枠の天板に配設され、冷凍系から供給される冷媒を循環させることで前記製氷室を冷却する蒸発器と、前記製氷室を下方から開閉自在に閉成して、前記複数の製氷小室へ対応的に製氷水を供給する水皿とを備え、前記仕切部材と外枠とからなる前記製氷室に無電解ニッケル-リンめっき被膜を施したことを要旨とする。
 請求項3に係る発明によれば、クローズドセルタイプの噴射式製氷機が稼働する現場の使用雰囲気に腐蝕を促進させる酸化性物質が存在していても、製氷室がサビたりして腐蝕生成物を生じさせる虞が低減される。
 請求項4に係る発明では、前記仕切部材が前記外枠の天板に接合される部位は直線で構成されると共に、前記仕切部材と前記天板との接合は軟ろうまたは硬ろうによるろう付けにより行われることを要旨とする。
 請求項4に係る発明によれば、仕切部材および外枠の天板にカシメ固定のための加工を施す必要がないため、製造工程数を減らすことができる。
 請求項5に係る発明では、前記硬ろうによる前記仕切部材と前記天板との接合は、加熱炉で炉中ろう付けにより達成されることを要旨とする。
 請求項5に係る発明によれば、仕切部材と外枠の天板とを炉中加熱により全体加熱を達成することができ、局所的な加熱による熱歪みを生ずることがない。このため、後工程としての歪み修正作業も不要になる。
 本発明に係る自動製氷機によれば、製氷室の耐腐蝕性が向上するため、錆等の腐蝕生成物が製氷水や氷に混入することがなく、食品衛生の信頼性を高め得る。
 また本願の別の発明に係るクローズドセルタイプの噴射式製氷機によれば、表面処理を施した製氷室の耐腐蝕性を格段に向上させることができ、従って長期に亘り使用しても、製氷水や氷塊中にサビ等の腐蝕生成物が混入する虞がない。
実施例に係る製氷室の表層部を拡大した断面図であって、(a)は、素地の外表面に無電解ニッケル-リンめっき被膜を施したものであり、(b)は、(a)の無電解ニッケル-リンめっき被膜の下に下地層を設けたものであり、(c)は、(b)の素地と下地層との間に調整層を設けたものである。 製氷室の表層部を拡大した断面図である。 (a)は、製氷室の全体斜視図である。(b)は、(a)における外枠のコーナー部をAで囲んだ部分の拡大図であって、第1側板の一部を破断して切欠部を露出させてある。(c)は、同じく前記コーナー部をAで囲んだ部分の拡大図であって、第2側板の一部を破断して延出部を露出させてある。 図3に示す外枠を成形する工程の説明図であって、(a)は、天板に対して側板を折り曲げる前の状態を示し、(b)は、天板に対して側板を折り曲げた状態を示す。 別例に係る外枠のコーナー部の拡大斜視図である。 図5に示す外枠を成形する工程の説明図であって、(a)は、天板に対して側板を折り曲げる前の状態を示し、(b)は、天板に対して側板を折り曲げた状態を示し、延出部を第2側板に沿って折り曲げた状態を2点鎖線で表している。 (a)は、更に別の例に係る外枠のコーナー部の拡大斜視図であって、(b)は、延出部を押圧する前の状態を示す。 図7に示す外枠を成形する工程の説明図であって、(a)は、天板に対して側板を折り曲げる前の状態を示し、(b)は、天板に対して側板を折り曲げた状態を示す図7(b)の側面図であり、(c)は、延出部を押圧した状態で示す図7(a)の側面図である。 (a)は、従来技術に係る製氷室の分解斜視図であり、(b)は、(a)における外枠のコーナー部をXで囲んだ部分の拡大図である。 図9に示す製氷室の外枠を成形する工程の説明斜視図であって、(a)は、天板に対して側板を折り曲げる前の状態を示し、(b)は、天板に対して側板を折り曲げる途中の状態を示す。 噴射式自動製氷機の概略構成図である。 従来技術に係る製氷室の分解斜視図である。 図12に示す製氷室の別例の斜視図であって、蒸発器を上部に配設した外枠と、格子状の仕切部材とに分解した状態を示している。 図13に示す仕切部材を、縦方向仕切体と横方向仕切体とに分解した状態で示す斜視図である。
 次に、本発明に係る自動製氷機の好適な実施例について、添付図面を参照しながら説明する。実施例では、製氷部として所謂クローズドセルタイプの噴射式自動製氷機に用いられる製氷室について説明する。前記製氷部としては、水皿を介さずに製氷水を噴射供給する所謂オープンセルタイプの噴射式自動製氷機の製氷室や、製氷面に製氷水を流下する流下式自動製氷機の製氷板などであってもよい。なお、実施例で説明する製氷室は、図12で説明した従来の製氷室と基本的な構成は共通するため、既出の部材については、同じ参照符号を使用してある。
(自動製氷機)
 実施例に係る自動製氷機は、図12で説明した従来の製氷室10と同様に、蒸発器としての冷却パイプ48により冷却される製氷室10に製氷水を循環供給して所要形状の氷を生成する。また、前記製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、複数の製氷小室12を画成する格子状の仕切部材30とから基本的に構成され、前記外枠14の上面に冷却パイプ48が密着的に蛇行配置されている。
(製氷室10)
 前記製氷室10を構成する箱状の外枠14、格子状の仕切部材30および冷却パイプ48は、図1に示すように、銅等の熱伝導性に優れた金属や合金等を材質としており、その素地17の最外層に無電解ニッケル-リンめっき被膜23が形成されている。ここで、製氷室10の最外層とは、該製氷室10における外部に露出する面に形成された層である。なお、製氷室10の露出面の一部に前記無電解ニッケル-リンめっき被膜23を形成しない領域があってもよい。図1(a)に示すように、前記無電解ニッケル-リンめっき被膜23は、前記素地17の外表面に接触して設けられていてもよく、また、図1(b)に示すように、無電解ニッケル-リンめっき被膜23の下地として、該被膜23の下層にニッケルやパラジウム等のめっき被膜からなる下地層25を設けてもよい。更に、図1(c)に示すように、前記素地17の表面を整えるために、該素地17の表面に銅等のめっき被膜からなる調整層33を設けてもよい。なお前記素地17が、後述する無電解ニッケル-リンめっき処理でのニッケルの析出を阻害する錫や鉛などの元素を含んでいる場合には、該素地17の表面に前記下地層25を施すのが好ましい。すなわち、前記下地層25および調整層33は、前記素地17の表面状態や無電解ニッケル-リンめっき被膜23を施す下地の表面状態などに応じて適宜実施される。なお、前記製氷室10の外面に露出しない前記下地層25および調整層33の厚さは、1μm程度であってもよい。
(無電解ニッケル-リンめっき被膜23)
 前記製氷室10の最外層に形成された無電解ニッケル-リンめっき被膜23は、10%~15%(質量パーセント濃度、以下同様)のリン成分を含有している所謂高リンタイプである。また、図1(a)~(c)に示すように、前記無電解ニッケル-リンめっき被膜23は、その膜厚tが15μm以上の厚みとなるよう形成されている。なお、無電解ニッケル-リンめっき被膜23の膜厚tを15μm以上とすることで、前記素地17または前記下地層25や調整層33に達するピンホールの発生を抑えることが、後述する耐腐蝕性確認試験により確認されている。
(無電解ニッケル-リンめっき処理)
 ここで、前記無電解ニッケル-リンめっき被膜23を形成する無電解ニッケル-リンめっき処理について説明する。無電解ニッケル-リンめっき処理は、硫酸ニッケルなどのニッケルを含む金属塩と、次亜リン酸ナトリウムなどの還元剤とを主成分とするニッケル-リンめっき溶液の貯留槽へ、前記製氷室10をそっくり浸漬させる所謂どぶ漬けで行われる。前記ニッケル-リンめっき溶液は、形成される無電解ニッケル-リンめっき被膜23におけるリン成分の濃度が、10%~15%となるよう調整される。また、前記ニッケル-リンめっき溶液には、所要の触媒が添加されることもある。なお、前記素地17と無電解ニッケル-リンめっき被膜23との間に前記調整層33や前記下地層25を設ける場合には、これらの表面処理を施した後で無電解ニッケル-リンめっき処理を行う。前記貯留槽に浸漬された製氷室10の最外層には、前記金属塩由来のニッケル陽イオンが還元されて析出することで、ニッケル合金からなる前記無電解ニッケル-リンめっき被膜23が形成される。前述の如く、無電解ニッケル-リンめっき処理は、無電解ニッケル-リンめっき被膜23の膜厚tが15μm以上となるまで行う。なお、無電解ニッケル-リンめっき処理は、前記外枠14、仕切部材30および冷却パイプ48等の構成部材に対して個別に行い、該めっき処理後の各構成部材14,30,48を組付けるようにしてもよい。
〔実施例の作用〕
 次に、図1の実施例に係る自動製氷機の作用について説明する。前記製氷室10の最外層に形成された前記無電解ニッケル-リンめっき被膜23は、合金であるため大抵の有機溶剤には全く浸食されず、有機酸、塩類、アルカリ類に対しても良好な耐腐蝕性を示し、非常に錆びにくいといった利点がある。更に、前記無電解ニッケル-リンめっき被膜23は、その膜厚tを15μm以上としたことで、前記素地17または前記下地層25や調整層33に達するピンホールの発生が抑えられ、前述の良好な耐腐蝕性を充分に発揮し得る。また、前記無電解ニッケル-リンめっき被膜23の含有するリン成分の濃度を10%~15%としたことで、リン成分の濃度を10%以下とした場合に比べて耐腐蝕性に優れている。なお、耐腐蝕性については、後述する耐腐蝕性確認試験により確認されている。なお、前記製氷室10の最外層に施されるめっき被膜は、その膜厚を10μm以下とするのが一般的である。これは、被膜の形成には時間を要するという製造上の理由や、膜厚を大きくすることで熱伝導率が低下したりめっき被膜が剥がれ易くなったりする等の理由に由来する。
 実施例に係る製氷室10は、前述の如く優れた耐腐蝕性を有するので、図12で説明した従来の製氷室10では腐蝕が進行する環境であっても、自動製氷機を設置して製氷を行うことができる。また、前記無電解ニッケル-リンめっき被膜23は、前述の如く優れた耐腐蝕性を発揮するので次亜塩素酸ナトリウムや電解酸性水等の殺菌剤により腐蝕され難い。このため、前記殺菌剤を使用した殺菌処理などのメンテナンスを行うことができ、製氷室10をより衛生に保つことができる。また、前記製氷室10は、前記無電解ニッケル-リンめっき被膜23により耐腐蝕性が高められるので、該素地17の腐蝕を防ぐ目的で無電解ニッケル-リンめっき被膜23の下層に施される被膜を省略することもできる。このため、図1(a)に示す如く、前記無電解ニッケル-リンめっき被膜23を前記素地17の外表面に直接形成しても、腐蝕の発生を効果的に抑制できる。すなわち、素地17の外表面に接触して無電解ニッケル-リンめっき被膜23を形成した場合には、製氷室10の表面処理に要する手間を削減することができ、製造効率を高める効果も期待できる。なお、図1(b)および図1(c)に示すように、多層の被膜を施した場合には、腐蝕防止の確実性が高められる。
 〔実験例〕
 実施例の製氷室10に関して耐腐蝕性確認試験を行い、耐腐蝕性を確認した。また、表1に示すように、リン成分の含有濃度を8%とした比較例1、無電解ニッケル-リンめっき被膜23の膜厚tを15μmより薄くした比較例2および比較例3、前記無電解ニッケル-リンめっき被膜23に変えて溶融錫めっき被膜11を施した比較例4および比較例5についても、耐腐蝕性確認試験を行った。実験例1~6および比較例1~3では、無電解ニッケル-リンめっき被膜23を施した試験片に対して試験を行っている。但し、比較例1における無電解ニッケル-リンめっき被膜23のリン成分含有濃度、比較例2および比較例3における無電解ニッケル-リンめっき被膜23の膜厚tについては、実施例とは変えてある。また、比較例4および比較例5では、図12で説明した従来の製氷室10の如く溶融錫めっき被膜11を施した試験片に対して試験を行っている。なお、各実験例および比較例の諸条件は表1に記載の通りである。実験例1、実験例2、比較例1、比較例2および比較例3に対しては、後述する試験Aを行い、実験例3、実験例4および比較例4に対しては、後述する試験Bを行い、実験例5、実験例6および比較例5に対しては、後述する試験Cを行った。
 前記試験Aでは、5%の塩化ナトリウム(NaCl)水溶液および0.5%の塩化水素(HCl)水溶液を混合して試験液を作成し、該試験液を35℃の試験槽に噴霧して前記試験片を試験液に168時間に亘って暴露させている。前記試験Bでは、前記試験片を1500時間に亘って10ppmの次亜塩素酸ナトリウム(NaClO)水溶液に浸漬させた。前記試験Cでは、前記試験片を1500時間に亘って5ppmの硫化水素ガス雰囲気下に暴露させている。耐腐蝕性確認試験では、試験片に腐蝕が発生しているか否かを主に目視により確認した。その結果を表1に示す。なお、表1の試験結果では、腐蝕の発生が確認された場合には「×」と評価し、腐蝕の発生が確認されなかった場合には「○」と評価してある。
Figure JPOXMLDOC01-appb-T000001
 試験Aでは、無電解ニッケル-リンめっき被膜23の膜厚tを10.4μmおよび10.8μmとした比較例2および比較例3では、腐蝕が見られた。しかし、無電解ニッケル-リンめっき被膜23の膜厚tを27.0および27.1とした実験例1および実験例2では、腐蝕が確認されなかった。これは、実験例1および実験例2と比べて被膜23の膜厚tが薄い比較例1および比較例2では、該被膜23のピンホールを介して露出した素地17が酸化されたのに対し、被膜23を厚くした実験例1および実験例2では、素地17に達するピンホールが存在しないためと考えられる。試験Bおよび試験Cにおいても、無電解ニッケル-リンめっき被膜23の膜厚tを夫々15.2μm、21.0μm、15.1μmおよび21.5μmとした実験例3、実験例4、実験例5および実験例6では腐蝕が発生しなかった。このことから、被膜23の膜厚tを15μm以上とすることで、充分な耐腐蝕性を発揮し得ることが確認された。
 無電解ニッケル-リンめっき被膜23におけるリン成分の含有量を8%(所謂中リンタイプ)とした比較例1では、膜厚tが15μm以上であるが、該被膜23に腐蝕が確認された。これに対し、無電解ニッケル-リンめっき被膜23のリン成分の含有量を10%~15%(所謂高リンタイプ)とした実験例1~6では、腐蝕が確認されなかった。従って、無電解ニッケル-リンめっき被膜23のリン成分の含有量を10%~15%とすることで、充分な耐腐蝕性を発揮し得ることが確認できる。
 また、溶融錫めっき被膜11の厚さを夫々21.8μmおよび21.3μmとした比較例4および比較例5では、何れも被膜11に腐蝕が確認された。これに対し、無電解ニッケル-リンめっき被膜23の膜厚tを夫々15.2μmおよび15.1μmとした実験例3および実験例5では、何れも被膜23に腐蝕は確認されなかった。このことから、無電解ニッケル-リンめっき被膜23は、溶融錫めっき被膜11に比べて高い耐腐蝕性を発揮することが確認できる。
〔変更例〕
 本発明は、図1を参照して説明した実施例に限定されるものでなく、例えば以下のように変更することが可能である。
(1) 素地と無電解ニッケル-リンめっき被膜との間の層構成は、実施例に限定されない。すなわち、実施例とは異なる下地層や調整層が設けられていたり、別の層が設けられていてもよい。
(2) 製氷部としては、噴射式自動製氷機に用いられる製氷室、流下式自動製氷機に用いられる製氷板だけでなく、例えば、オーガ式自動製氷機に用いられ、外周面に冷却パイプが巻回されると共に内周面に氷が生成される冷凍ケーシング等であってもよい。また、製氷部としての製氷室の構成についても、実施例に限定されない。例えば、冷却パイプが蛇行配置された製氷基板の下面に、製氷小室が形成された枠体が設けられたタイプ等であってもよい。また、自動製氷機は、実施例の如く独立したタイプだけではなく、冷蔵庫や冷凍庫に内蔵されたものでもよい。すなわち、本発明に係る自動製氷機としては、家庭用冷蔵庫の冷凍室に画成された製氷用空間に設けたものでもよく、この場合の製氷部としては、前記製氷用空間に配設され、冷凍系に接続する蒸発器により冷却されて氷を作る製氷皿等であってもよい。
(3) 無電解ニッケル-リンめっき被膜は、少なくとも製氷部の最外層において少なくとも氷が生成される範囲に形成されていればよい。
 次に、本願の別の発明に係る噴射式製氷機について説明する。この別発明の噴射式製氷機は、図11に関して説明したクローズドセル方式の製氷機である。また、この別発明が適用される製氷室10の構成も、図12に関して説明した通りのものである。ここで前記仕切部材30は、例えば図13および図14に示すように、複数の横方向仕切板30aと縦方向仕切板30bとを組合せ、内部を格子状に仕切ることで前記複数の製氷小室12が画成される。すなわち、横方向仕切板30aの下端縁に所定間隔でスリット60を形成すると共に、縦方向仕切板30bの上端縁にも所定間隔でスリット62を形成し、夫々の横方向仕切板30aのスリット60を対応する縦方向仕切板30bのスリット62に嵌挿させることで、図13に示す格子状の仕切部材30が得られる。ここで横方向仕切板30aおよび縦方向仕切板30bの何れも、後述する外枠14における天板16の裏面に当接する部位が直線で構成されていて、図12の構成とは異なりカシメ固定用の突部31は有していない。なお、前記外枠14および格子状の仕切部材30は、何れも熱伝導率の良好な銅を使用するのが好ましい。但し、熱伝導率が良いものであれば、他の金属乃至合金材料であってもよい。また、前記外枠14、縦横の仕切板30a,30bからなる仕切部材30および前記蒸発器48、その他温度センサ取付け用のブラケット(図示せず)等の部品は、これらを組立てるに先立ち脱脂洗浄を行って脂成分を完全に除去しておく。
 前記格子状の仕切部材30を、前記箱状をなす外枠14の内部に配設して両者を接合することで、前記製氷室10が得られる。この外枠14と仕切部材30との接合は、所謂ろう付けにより行う。ここで2つの金属を接合する手段としては、錫と鉛とを主成分とする合金の「はんだ」を接合剤として用いる「はんだ付け」と、母材よりも融点の低い各種合金の「ろう材」を接合剤として用いる「ろう付け」とがある。「はんだ付け」および「ろう付け」の何れも学術的には溶接の一種で、融点が450℃以下の接合剤(軟ろう)を用いる場合を「はんだ付け」と称し、融点が450℃以上の接合剤(硬ろう)を用いる場合を「ろう付け」と称する旨の解説がある。この別発明では、軟ろうを使用する場合も、硬ろうを使用する場合も、所謂「ろう付け」と表記するものとする。
 前記「はんだ」や「ろう材」には、棒状のもの以外にシート状、箔状、線状その他ペースト状の形態があるので、使用に際して適宜の形態のものが選択される。接合作業に際しては、例えば図13に示す仕切部材30において、前記縦方向仕切板30bの上面に棒状のろう材(図示せず)を配置した後、上方から前記箱状の外枠14を被せることで、前記棒状のろう材を該外枠14における天板16の裏面と該縦方向仕切板30bとの間に密着的に介在させる。次いで、前記外枠14と仕切部材30とからなる前記製氷室10を、所定の温度域まで加熱した加熱炉に配置して、所定時間の炉中ろう付けを行う。このように加熱炉で炉中加熱を行うと、各部材は全体加熱されるために、熱歪みを生ずることがない。従って、熱歪みを除去するための修正作業を必要としなくなる。
 なお、前述した棒状のろう材に代えて、ペースト状のろう材を使用し、これを前記天板16の裏面に塗布してから前記仕切部材30を配置するようにしてもよい。この場合、ペースト状のろう材を前記天板16の裏面に全面的に塗ってもよいが、前記仕切部材30における縦横の各仕切板30a,30bが当接する部位だけに塗ることで、使用量の節約を図ってもよい。また、前述した炉中ろう付けに際し、前記天板16に前記蒸発器48を載置したり、温度センサ取付け用ブラケットのようなろう付け接合を必要とする部品を付帯させたりして、同時に加熱炉によるろう付け接合を行ってもよい。なお、前記外枠14や仕切部材30の材料として銅を選択した場合、前記硬ろうを使用するろう付けでは炉内が高温に曝されるため、前記銅が焼き鈍されて硬度が低下する弊害がある。このため銅をろう付けする際は、可能な限り低いろう付け温度で実施することが好ましい。例えば、銅、リン、銀の3元共晶(共融混合物)や、銅、ニッケル、リン、錫の4元共晶により低融点化したろう材を使用する。これにより、ろう付け温度の最高到達温度を下げると共に、炉中での高温曝露時間が短くなるので、前記外枠14および仕切部材30の材料である銅の軟化を最小限に抑えることが可能である。
 また、前記外枠14および仕切部材30の材料として、耐熱性を有しかつ熱良導体としての特性を損なうことのない銅合金を使用して、両部材14,30の接触部位全周をろう付け接合してもよい。ここで耐熱性を有する銅合金とは、或る種の元素が成分中に添加されていて、高温で炉中加熱した際に前記元素が析出することで、該銅合金の軟化を防止する特性を有するものを云う。
 前記外枠14と仕切部材30との接合により得られた前記製氷室10は、その表面にろう付け時に生じたフラックスの残渣が付着している。殊に前記軟ろうを使用したはんだ付けの場合、接合特性を向上させるために大量のフラックスを使用するのが普通である。そこで、フラックスの残渣を洗浄剤や水等で洗い流したり、サンドブラスト等の手段で物理的に削り落としたりして製氷室10の表面を清浄化する。但し、前記硬ろうを使用したろう付けの場合、炉中を還元雰囲気に保つ還元炉を前記加熱炉として使用すれば、前記洗浄工程は省略できる。ここで還元炉は、水素ガスや変性ガスを炉内雰囲気とするもので、フラックスを使用することなく前記ろう付けが出来、従ってフラックス残渣を生ずることがない。
 次に、前記表面洗浄処理を終えた前記製氷室10の表面(前記外枠14および仕切部材30の内外表面の全て)に、図1に示す如く無電解ニッケル-リンめっき被膜23が施される。すなわち製氷室10の最外層に無電解によるニッケル-リンめっきの被膜23を施すもので、この場合のリン濃度は10%以上(高リンタイプ)であり、膜厚tは15μm以上とするのが好ましい。すなわち前記無電解ニッケル-リンめっきの被膜23は、前記製氷室10の耐腐蝕性を高めるためのものであって、耐腐蝕性確認試験を行った結果として15μm以上が良いことが判っている。なお、前記被膜23が15μmよりも小さいと、前記素地17に達するピンホールを生ずることがあり、前記無電解ニッケル-リンめっき被膜23を施しても高い耐腐蝕性は得られない。なお、耐腐蝕性試験は5%NaCl+0.5%HCl水溶液を試験液とし、該試験液を試験槽温度35℃で試験片に噴霧し、該試験液をろう付けに必要な高温に曝露する腐蝕促進試験によった。
 無電解ニッケル-リンめっき被膜23の処理は、ニッケル-リンめっき溶液の貯留槽へ前記製氷室10をそっくり浸漬させる所謂どぶ漬けで行われる。このとき、最外層となる無電解ニッケル-リンめっき被膜23の下地処理として、前記製氷室10の素地17となる表面にニッケルやパラジウム等のめっきを施した後、その上に前記無電解ニッケル-リンめっき被膜23を施す2層処理としてもよい。更に、前記製氷室10の表面に銅めっきを施した上にニッケルめっきを施し、次いで該ニッケルめっきの上に前記無電解ニッケル-リンめっき被膜23を施す3層処理としてもよい。殊に、前記軟ろうによるはんだ付けの場合は、錫や鉛の如く後工程での無電解めっきの析出を阻害する(所謂「触媒毒」)ので、前記2層または3層の如く製氷室10の素地17にニッケルめっきや銅めっきを施しておく必要性が高い。
 ところで、図13に示す製氷室10は、矩形状の天板16と4枚の側板18とから構成した外枠14の内部に、縦横の仕切板30a,30bを格子状に組合せた仕切部材30を収容したものである。しかし、特開平7-260301号公報の図2や図8に示すように、格子状仕切体の最も外側に位置する縦および横の仕切板が、製氷室の側板として機能するものも存在する。この場合は、格子状仕切板の上に天板を被せるだけで矩形箱体の製氷室が構成されるものである。
 従って前記製氷室10において、格子状の仕切部材30と外枠14の側板18とは別体としてよいし、格子状の仕切部材30の一番外側に位置する縦および横の仕切板30a,30bをもって、前記外枠14の側板18とする扱いにしてもよい。また、製氷室10の外枠14は、天板16と側板18とを一体成形したものでも良いし、天板16と側板18とを別体として構成したものであっても良い。
 前述した別発明によれば、以下の有利な効果が得られる。
・無電解ニッケル-リンめっきの実量が充分発揮できる仕様で製氷室の表面処理を施すことで、従来の錫めっきでは腐蝕してしまう環境においても、腐蝕を生ずることなく稼働させることができる。
・従来の錫めっきでは腐蝕や劣化が起きてしまい使用が困難であった殺菌剤(次亜塩素酸ナトリウム、電解酸性水等)等の薬剤を使用してのメンテナンスが可能となり、装置をより衛生に保つことができる。
・熟練した作業者でなくても、接合剤の供給装置や加熱炉等における設定値を遵守することで、安定した品質の製氷室を量産することが可能となる。
・全ての部品を一度に接合出来るので仕掛部品がなくなり、効率的な生産が可能になって作業工程が削減できる。
・ろう付けを点付けで接合する場合には、局部加熱となるために製氷室本体に熱歪みを生じていた。しかし加熱炉による全体加熱により、熱歪みが解消した。そのため歪み修正が不要となった。
・製氷室における外枠の内面と仕切部材との接触面全体を接合するので、接合強度が向上し、表面処理の耐久性アップに寄与する。
・仕切部材のカシメ固定用の突部を不要とすることで、材料の歩留まり性が向上する。
・カシメ固定に関する加工(突部・カシメ孔)が不要になり、加工時間の短縮につながる。
・はんだ付けの場合、溶融温度はろう材よりも極めて低いため(例えば、リン銅ろうのろう付け温度は650~900℃、はんだは200~300℃)、銅の組織粗大化等の変化に対しても有利になる。
・ろう付けの場合、はんだ付けよりも材料強度が大きいので接合部位の強度がアップする。特に製氷小室は、仕切板を組合せている影響で強度に異方性があったが、ろう材で全て接合するので異方性がなくなる。
・ろう付けの場合、還元炉を使用し、フラックスレスとすることで後洗浄が不要となり、洗浄水、薬剤その他手間を大幅に削減することができ、低コスト化が図れる。
・ろう付けの場合、フラックスレスで接合を行った時に、洗浄後に残ってしまったフラックス残渣による表面処理不具合(めっきはじき、密着不良)の心配がなくなり、品質が安定化する。
・耐熱性を有する銅を使用の場合、高温でろう付けしても材料の強度低下がないため、ろう付け温度の高い、安価なろう材を使用しても製氷室の強度は保たれる。安価なろう材を使用することでコストを安く抑えることができる。
 本願発明に係る自動製氷機に使用される製氷室の構造については、外枠のコーナー部が外れる難点があるので、これを解決する手段を以下に説明する。そこで、先ず従来技術の欠点を述べた上で、それを解決する製氷室の構成を説明する。
 図9(a)は、基本的に図12および図13で説明した製氷室10の分解斜視図である。前記外枠14は、前記冷却パイプ48が配設される矩形状の天板16と、この天板16の各辺16bから下方に延出する矩形状の側板18とからなり、熱伝導率の良い銅等の金属板を折り曲げて成形される。すなわち外枠14は、図10(a)に示すように、前記天板16の四辺16bから一体的に延出している側板18を、該天板16の各辺16bに沿って、図10(b)の矢印fに示す同一方向へ折り曲げて、下方に開放する矩形の箱体として製作される。従って、図9(b)に拡大して示す如く、前記折り曲げにより隣り合う2つの前記側板18,18の各側端部は、前記外枠14のコーナー部20を形成している。このように折り曲げた外枠14の内部に、図9(a)に示す格子状の前記仕切部材30を外枠14の開口14a側から収容し、カシメ固定やろう付け等の手段により両部材14,30が接合される。前記カシメ固定を行う場合は、図12に説明した如く、前記仕切部材30の上部に突部31を設けると共に、前記天板16にカシメ孔16aを開設し、該カシメ孔16aに挿通して天板16の上面に突出させた突部31をハンマー等で圧潰することで行う。
 しかし、図12に関して説明した外枠14のコーナー部20は、図9(b)に示すように、前記折り曲げにより前記2つの側板18,18の側端部が隣り合っている。そして、このコーナー部20は、リン銅ろう等のろう材を用いて点付け溶接することで、両側端部の接合がなされている。この溶接作業は手作業で行われるが、両側板18,18の端面同士を突き合わせて行う点付け溶接には熟練技術を要し、一定品質を確保するのは一般に困難である。また、コーナー部20の溶接が不十分であると、前記製氷小室12内で氷が成長する際の膨張により側板18に強い応力が加わり、該コーナー部20における側板18同士の接合が外れて前記外枠開口14aが開いてしまう場合がある。更に、前記コーナー部20をろう付けするときは、ろう材の濡れや拡がりを良好にするためフラックスを使用するが、接合作業の後に該コーナー部20に残留するフラックス残渣を洗浄したり物理的に削り取ったりする必要があり、作業工数が増えてしまうという問題もある。そこで前記問題を解決するために、外枠14のコーナー部20が外れるのを構造的に抑制すると共に、品質の安定した製氷室10が以下の通り提案される。
(製氷室10)
 図3および図4に示すように、前記製氷室10は、図9および図10で説明した製氷室10と同様に、矩形状天板16の四辺16bから夫々一体的に延出する矩形状側板18を、該天板16の各辺16bに沿って下方(同一方向)へ折り曲げられて下方(一方)に開放する箱状の外枠14と、前記外枠14の内部に配設されて、複数の製氷小室12を画成する仕切部材30とを備え、前記外枠14の上面に冷凍系46を構成する冷却パイプ48が密着的に蛇行配置されている。すなわち外枠14は、従来の外枠14と同様に、図4(a)に示す如く、外枠14を各側板18同士が接合されたコーナー部20で切り開いて平面上に展開した形状の金属板を形成し、前記各側板18を、図4(a)に2点鎖線で示す天板16の各辺16bに沿って、矢印aの如く下方へ折り曲げて成形される。そして、従来の外枠14と同様に、折り曲げ成形された外枠14の内部に格子状の前記仕切部材30が配設される。
(外枠14)
 図3(a)に示すように、前記側板18は、互いに対向して平行に延在する長尺な2つの側板18,18(以下、第1側板18Aという場合がある)と、互いに対向して平行に延在する短尺な2つの側板18,18(以下、第2側板18Bという場合がある)とから構成され、この互いに垂直な第1側板18Aおよび第2側板18Bの側端部により前記外枠14のコーナー部20が形成されている。なお、第1側板18Aおよび第2側板18Bの寸法は、製氷室10で製造する氷塊のサイズや量に合わせて設定されるものであり、両側板18A,18Bは同じ寸法であってもよい。また、第1側板18Aおよび第2側板18Bの上下寸法および厚み寸法D1,D2は、等しく設定されている。なお、図9(a)に示す前記仕切部材30を構成する各仕切板30a,30bの側端部に係止片を設け、前記側板18の下端部における前記係止片と対応する位置に、該係止片と係合する係合溝を形成してもよい。
(嵌合部22)
 図3(a)に示すように、前記外枠14において隣接してコーナー部20を形成する2つの前記側板18,18の側端部には、前記天板16に対して該側板18を折り曲げることで互いに嵌合する嵌合部22が設けられている。すなわち、外枠14には、前記第1側板18Aの側端部および第2側板18Bの側端部により形成される4つのコーナー部20の夫々に前記嵌合部22が設けられている。前記嵌合部22は、前記コーナー部20に臨む第1側板18A(一方の側板)の側端部(端部)に形成された延出部24と、該コーナー部20に臨む第2側板18B(他方の側板)の側端部(端部)に形成され、前記延出部24を接触状態で受け容れる切欠部26とを備えている。
(延出部24)
 図3(c)に示すように、前記第1側板18Aの側端部には、前記第2側板18Bの内面18Bbと同じ平面上に延在する該第1側板18Aの第1側端面19aから、該第2側板18Bの厚み方向に延出する前記延出部24が形成されている。この延出部24は、前記第1側板18Aにおける両下隅部に、該第1側板18Aと同じ厚みで、第1側板18Aの板面と同じ平面上に延在するよう設けられている。また、前記延出部24における前記第1側端面19aからの延出寸法L1は、少なくとも前記第2側板18Bの厚み寸法D2と等しい寸法に設定される。図3および図4に示した延出部24の前記延出寸法L1は、第2側板18Bの厚み寸法D2と等しくなるよう設定され、図4(b)に示す如く、該延出部24の延出端面24bと第2側板18Bの外面18Baとが揃うようになっている。なお、延出部24は、その高さ寸法H1(図4(a))を大きくすることで強度が増すようになっている。
(切欠部26)
 図3(b)に示すように、前記第2側板18Bの側端部には、前記第1側板18Aの内面18Abと同じ平面上に延在する該第2側板18Bの第2側端面19bから、第1側板18Aの厚み方向に突出する突出部21が形成されている。この突出部21は、第2側板18Bの下端から前記第1側板18Aの前記延出部24に対応させて上方にずらした位置に設けられ、該突出部21の下面21aおよび前記第2側端面19bにより下方および側方に開放し、前記延出部24を接触状態で受け容れる前記切欠部26が形成されている。この切欠部26は、第2側板18Bの両下隅部に前記延出部24と対応的に設けられている。また、前記突出部21の前記第2側端面19bからの突出寸法L2は、第1側板18Aの厚み寸法D1と等しくなるよう設定され、図4(b)に示す如く、該突出部21の突出端面21bと前記切欠部26に嵌合した前記延出部24の外面(第1側板18Aの外面18Aa)とが揃うようになっている。また、図4(a)に示すように、前記第2側板18Bにおける前記切欠部26の上下方向の高さ(長さ)寸法H2は、前記第1側板18Aにおける前記延出部24の上下方向の高さ(長さ)寸法H1よりも若干大きく設定され、後述する如く、切欠部26に延出部24を接触的に受け容れ得るようになっている。
(嵌合状態)
 図4に示すように、前記嵌合部22は、前記外枠14の成形工程において、前記天板16の各辺16bから前記側板18を折り曲げた際に、前記切欠部26に前記延出部24が接触状態で受け容れられるようになっている。この切欠部26に延出部24が受け容れられた嵌合状態では、図4(b)に示すように、前記延出部24の上面24aと、前記切欠部26を形成する前記突出部21の下面21aとが密着的に当接すると共に、延出部24の内面と、切欠部26を形成する前記第2側端面19bとが密着的に当接して、前記第1側板18Aおよび前記第2側板18Bが構造的に固定されるようになっている。この嵌合部22の嵌合力は、前記製氷小室12内で成長する氷塊の膨張力等が各側板18に対して外向きに作用しても、前記延出部24および切欠部26の当接面の摩擦力により、第1側板18Aおよび第2側板18Bの接合が外れないよう設定されている。なお、前記延出部24の高さ寸法H1および前記切欠部26の高さ寸法H2を大きくすると、延出部24および切欠部26の密着する範囲(密着度)が増すので、両側板18A,18Bの接合強度が高くなる。
 また、前記嵌合部22の嵌合状態では、前記第2側板18Bの突出部21の内面と、前記第1側板18Aの前記第1側端面19aとが当接する。また、嵌合状態において、前記第1側板18Aにおける前記延出部24の内面と、前記第2側板18Bにおける第2側端面19bとが当接するのは前述の通りである。すなわち、第1側板18Aおよび第2側板18Bは、他方の側板18の側端面19a,19bに当接することで、前記天板16に対して内方へ倒れ込むような変形が規制されるようになっている。このように、第1側板18Aおよび第2側板18Bは、互いに受け合う関係となっている。ここで、図4(a)に示すように、前記天板16に対して折り曲げられる際に各側板18は、2点鎖線で示す天板16の各辺16bを軸として矢印aの方向に回動する。前記第1側板18Aおよび第2側板18Bは、図4(b)に示す前記天板16に対して略垂直となる所定の位置まで折り曲げられた状態で、前記折り曲げ動作方向と逆方向から他方の側板18に当接する。すなわち、第1側板18Aおよび第2側板18Bは、折り曲げ動作方向の力を互いに受け合うようになっている。
 次に、図3および図4に示した製氷室10の作用を説明する。前記製氷室10は、天板16に対して側板18を折り曲げることで、コーナー部20に臨む第2側板18Bの前記切欠部26に、同じコーナー部20に臨む第1側板18Aの前記延出部24が受け容れられて互いに嵌合して、第1側板18Aと第2側板18Bとが構造的に固定される。そして、第1側板18Aおよび第2側板18Bのコーナー部20は、炉中ろう付けにより接合される。すなわち、作業者が手作業により点付け溶接する必要がなく、作業工数を抑えることができる。また、熟練技術を要するろう材を用いた点付け溶接等とは異なり、前記金属板の曲げ加工は、作業者の技術力による製品の品質のバラツキが生じ難いので、製氷室10の品質を安定させることができる。更に、両側板18A,18Bのコーナー部20に対し炉中ろう付けを行う際に、これら両側板18A,18Bにおける適切なクリアランスを維持することができる。また、第1側板18Aと第2側板18Bとを構造的に固定したことで、外枠14のコーナー部20の接合強度が高まるので、製氷室10内で成長する氷の膨張力により外枠14のコーナー部20が開いてしまうのを効果的に抑えることができる。
 また前記製氷室10は、前記第1側板18Aの延出部24が前記第2側板18Bの第2側端面19bに当接すると共に、第2側板18Bの突出部21が第1側板18Aの第1側端面19aに当接する。このように、第1側板18Aおよび第2側板18Bが他方の側板18に当接して互いに受け合うことで、側板18が天板16に対して内側へ傾くような変形も構造的に規制することができる。ここで、製氷室10の製作過程で前記側板18が内側へ傾くと、前記仕切部材30が配設される外枠14の内部空間が小さくなってしまい、仕切部材30が入らなかったり、配設した仕切部材30が変形してしまう不都合を生じる。なお、仕切部材30が変形すると、製造される氷塊の形状が歪んだり、外枠14に対して恒常的に余計な負荷が加わってしまう。前記外枠14は、対向する側板18,18間の間隔を一定に保つことができるので、仕切部材30を適切なクリアランスで配設できる。
 ここで、各側板18が上端部で天板16と一体になっている外枠14は、コーナー部20の下側(開放端側)が開き易い構造である。図4に示した外枠14は、延出部24および切欠部26が側板18の下隅部に設けられているので、コーナー部20の下側が開くのを嵌合部22により効果的に抑えることができる。なお、前記延出部24の高さ寸法H1および前記切欠部26の高さ寸法H2を大きくすると、力が加わり易い延出部24自体の強度が増すと共に、該延出部24と切欠部26との密着範囲が増すので、前記第1側板18Aの側端部および前記第2側板18Bの側端部の接合強度が高くなる。すなわち、外枠14の高さ寸法における前記嵌合部22の高さ寸法の比率を大きくすることで、該外枠14のコーナー部20の構造的な接合強度を高め、前記外枠開口14aが開くのを効果的に抑制できる。
 次に、図4に示した製氷室10では、前記第1側板18Aの側端部に設けた延出部24の延出端面24bと第2側板18Bの外面18Baとが揃うよう構成されている。これに対して、図5および図6に示す構成では、延出部24が、前記第2側板18B(他方の側板)の厚み寸法D2よりも大きく延出すると共に、前記天板16に対して側板18を折り曲げた後に、該延出部24を折り曲げて前記第2側板18Bに当接させるようになっている。なお、図5および図6に示した製氷室10において、図3および図4に示す構成と同じ部材については同じ符号を付すものとする。
 図5に示すように、前記延出部24は、前記第1側板18Aの板面に沿って延在して前記切欠部26と嵌合すると共に、その延出端部27が、前記第2側板18Bの板面に沿うよう折り曲げられている。すなわち、図5に示した延出部24の延出端部27は、内面が第2側板18Bの外面18Baに当接するよう第1側板18Aの板面に対して第2側板18B側へ垂直に折り曲げられた折曲部27となっている。
 次に、前記外枠14の成形について、図6を参照して説明する。図6(a)に示すように、前記延出部24は、前記天板16に対して前記側板18を折り曲げる前の状態で、前記延出部24における前記第1側端面19aからの延出寸法L1が、前記第2側板18Bの厚み寸法D2より大きくなるよう、該延出部24の延出端部27が第1側板18Aの板面と同じ平面上に延長されている。図6(b)に示すように、前記外枠14は、図3および図4に示した外枠14と同様に、前記天板16の各辺16bから前記側板18を折り曲げた際に、第1側板18Aの側端部に形成された前記延出部24が、第2側板18Bの側端部に形成された前記切欠部26に接触状態で受け容れられる。この切欠部26に延出部24が受け容れられて嵌合した状態では、該延出部24は、第2側板18Bの外面18Baより外方まで延出する。次いで、前記延出端部27の内面が第2側板18Bの外面18Baに近付くよう、前記延出部24の延出端部27をコーナー成形機などにより、図6(b)に矢印cで示す如く第2側板18B側へ90°折り曲げることで、図6(b)に2点鎖線で表す如く、第2側板18Bの外面18Baに沿って延在する前記折曲部27が形成される。
 図5および図6に示す構成では、前記延出部24が、第2側板18Bの外面18Baに沿うよう鉤状に折り曲げられているので、延出部24と切欠部26との嵌合がより強固になる。すなわち、外枠14のコーナー部20の構造的な接合強度が高まるので、外枠14のコーナー部20が開いてしまうのを効果的に抑えることができる。また、前記延出部24を延長し、該延長した延出端部27をコーナー成形機等で折り曲げる、という熟練度を要さない作業で外枠14のコーナー部20の接合強度を高めることができるので、品質を安定させ得ると共に製造コストを抑える効果も期待できる。
 更に、図5および図6で説明した製氷室10は、前記第1側板18Aに設けた延出部24が、第2側板18Bの外面18Baに沿って折り曲げられていた。これに対して、図7および図8に示す構成では、延出部24が、前記第2側板18B(他方の側板)の厚み寸法D2よりも大きく延出すると共に、前記天板16に対して側板18を折り曲げた後に、該延出部24を押圧して、第2の側板18Bに当接させるようになっている。なお、図7および図8に示す製氷室10において、図3および図4に示す構成および図5および図6に示す構成と同じ部材については同じ符号を付すものとする。
 図7(a)に示す外枠14は、第1側板18Aの側端部に設けられた前記延出部24が、前記第2側板18Bの外面18Baより外方に延出すると共に、第2側板18Bの切欠部26より上方まで突出する。このように延出部24の延出端部28には、前記第2側板18Bの切欠部26(該延出部24において前記切欠部26に嵌合する部位)より上方に突出する突起29が設けられ、該突起29は前記第2側板18Bの外面18Baにおける前記切欠部26の上側部分(主に前記突出部21の外面)に当接するよう押圧されている。
 図8(a)に示す前記延出部24は、前記天板16から側板18を折り曲げる前の状態で、前記第1側端面19aからの延出寸法L1が、前記第2側板18Bの厚み寸法D2より大きくなると共に、該延出方向に向けて斜角が大きくなる傾斜面29aが付されるよう、該延出部24の延出端部28が第1側板18Aの板面と同じ平面上に延長されている。すなわち、前記延出部24の延出端部28には、該延出部24において前記切欠部26に受け容れられる部位より上方に突出すると共に前記傾斜面29aを有する三角形状の突起29が形成されている。図8(b)に示す外枠14は、前記天板16の各辺16bから前記側板18を折り曲げた際に、前記第1側板18Aの側端部に形成された前記延出部24が、第2側板18Bの側端部に形成された前記切欠部26に接触状態で受け容れられる。この切欠部26に延出部24が受け容れられて嵌合した状態では、該延出部24の延出端部28は、第2側板18Bの外面18Baより外方まで延出すると共に、前記突起29が該切欠部26の上方まで延出する。この際、前記突起29の傾斜面29aと、前記第2側板18Bの外面18Ba(前記突出部21の外面)とは対向し、該傾斜面29aと第2側板18Bの外面18Baとの間隔は、上方に向かうにつれて拡がるようになっている。次いで、前記延出部24の延出端部28を、図8(b)に矢印eで示す如く、第2側板18Bの外面18Baに押し付けるようにコーナー成形機などで押圧することで、図8(c)に示す如く前記傾斜面29aが前記第2側板18Bの外面18Baに当接するよう圧潰された状態となる。このように、前記外枠14では、第1側板18Aおよび第2側板18Bが密着される範囲が、押圧された前記突起29により高さ方向に延長されている。
 図7および図8に示す製氷室10では、前記延出部24の延出端部28が、上方に突出して第2側板18Bの外面18Baに当接するよう押圧された突起29を備えるので、延出部24と切欠部26との嵌合がより強固になる。すなわち、第1側板18Aおよび第2側板18Bが密着する範囲が、前記突起29により高さ方向に延長されたことで、外枠14のコーナー部20の構造的な接合強度が高まるので、外枠14のコーナー部20が開いてしまうのを効果的に抑えることができる。また、前記突起29の傾斜面29aを、前記延出部24の延出方向に向けて斜角が大きくなるようにしたことで、前記天板16に対して第1側板18Aを折り曲げた際に、該突起29が第2側板18Bに干渉することはない。このように、前記延出部24を延長し、該延長した延出端部28をコーナー成形機等で押圧する、という熟練度を要さない作業で外枠14のコーナー部20の接合強度を高めることができるので、品質を安定させ得ると共に製造コストを抑える効果も期待できる。
〔変更例〕
 図3~図8に関して説明した製氷室は前述した構成に限定されるものでなく、例えば以下のように変更することが可能である。
(1) 一方の側板の端部に延出部を形成したが、該延出部の延出寸法は、他方の側板の厚み寸法より小さくても大きくてもよい。すなわち、延出部の少なくとも一部が、切欠部の少なくとも一部に受け容れられる関係であればよい。なお、延出部および切欠部の嵌合強度が高まるので、接合強度の観点からは延出部の延出寸法を他方の側板の厚み寸法より大きくするのが好ましい。
(2) 切欠部および該切欠部に受け容れられる延出部の形状は、例えば、三角形等であってもよい。
(3) 一方の側板に形成された延出部において、他方の側板に当接するよう折り曲げられた延出端部の形状は、矩形状に限定されるものではなく、例えば、三角形などであってもよい。
 10 製氷室, 12 製氷小室, 14 外枠, 16 天板,
 17 素地, 18 側板, 18A 第1側板(一方の側板),
 18B 第2側板(他方の側板), 20 コーナー部,
 23 無電解ニッケル-リンめっき被膜, 24 延出部,
 26 切欠部, 29a 傾斜面, 30 仕切部材,
 30a 横方向仕切板, 30b 縦方向仕切板, 40 水皿,
 46 冷凍系, 48 蒸発器(冷却パイプ)

Claims (8)

  1.  蒸発器(48)により冷却される製氷室(10)に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、
     前記製氷室(10)の最外層に、10%~15%のリン成分を含有した無電解ニッケル-リンめっき被膜(23)が15μm以上の厚みで形成されている
    ことを特徴とする自動製氷機。
  2.  前記無電解ニッケル-リンめっき被膜(23)は、前記製氷室(10)の素地(17)の外表面に直接形成されている請求項1記載の自動製氷機。
  3.  複数の横方向仕切板(30a)と縦方向仕切板(30b)とを格子状に組付けてなる仕切部材(30)を、天板(16)と側板(18)とからなる外枠(14)に配設して、下方に開放する製氷小室(12)を複数画成した製氷室(10)と、
     前記外枠(14)の天板(16)に配設され、冷凍系(46)から供給される冷媒を循環させることで前記製氷室(10)を冷却する蒸発器(48)と、
     前記製氷室(10)を下方から開閉自在に閉成して、前記複数の製氷小室(12)へ対応的に製氷水を供給する水皿(40)とを備え、
     前記仕切部材(30)と外枠(14)とからなる前記製氷室(10)に無電解ニッケル-リンめっき被膜(23)を施した
    ことを特徴とする自動製氷機。
  4.  前記仕切部材(30)が前記外枠(14)の天板(16)に接合される部位は直線で構成されると共に、前記仕切部材(30)と前記天板(16)との接合は軟ろうまたは硬ろうによるろう付けにより行われる請求項3記載の自動製氷機。
  5.  前記硬ろうによる前記仕切部材(30)と前記天板(16)との接合は、加熱炉で炉中ろう付けにより達成される請求項4記載の自動製氷機。
  6.  前記製氷室(10)は、前記天板(16)の四辺(16b)から延出する前記側板(18)を、該天板(16)の各辺(16b)に沿って同一方向へ折り曲げてなる箱状の前記外枠(14)と、前記外枠(14)の内部に格子状に配設されて、複数の前記製氷小室(12)を画成する前記仕切部材(30)とからなり、前記折り曲げによって隣り合う2つの前記側板(18,18)の端部が、前記外枠(14)のコーナー部(20)を形成しており、
     前記コーナー部(20)に臨む前記一方の側板(18A)の端部に延出部(24)が形成されると共に、前記他方の側板(18B)の端部に前記延出部(24)を接触状態で受け容れる切欠部(26)が形成されている請求項1~5の何れか一項に記載の自動製氷機。
  7.  前記一方の側板(18A)における前記延出部(24)は、前記他方の側板(18B)の厚み寸法(D2)よりも大きく延出すると共に、
     前記天板(16)に対し前記側板(18)を折り曲げた後に、前記一方の側板(18A)の前記延出部(24)を折り曲げて前記他方の側板(18B)に当接させるようにした請求項6記載の自動製氷機。
  8.  前記一方の側板(18A)における前記延出部(24)は、前記他方の側板(18B)の厚み寸法(D2)よりも大きく延出すると共に、延出方向に向けて斜角が大きくなる傾斜面(29a)を有し、
     前記天板(16)に対し前記側板(18)を折り曲げた後に、前記一方の側板(18A)の前記延出部(24)を押圧して、前記傾斜面(29a)を前記他方の側板(18B)に当接させるようにした請求項6または7記載の自動製氷機。
PCT/JP2016/058191 2015-05-14 2016-03-15 自動製氷機 WO2016181702A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16792427.3A EP3242097B1 (en) 2015-05-14 2016-03-15 Automatic ice maker
AU2016261527A AU2016261527B2 (en) 2015-05-14 2016-03-15 Automatic ice maker
KR1020177018839A KR20180006361A (ko) 2015-05-14 2016-03-15 자동제빙기
CN201680007923.7A CN107429962A (zh) 2015-05-14 2016-03-15 自动制冰机
US15/541,256 US10274239B2 (en) 2015-05-14 2016-03-15 Automatic ice maker
ES16792427T ES2877134T3 (es) 2015-05-14 2016-03-15 Máquina de fabricación de hielo automática

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-099250 2015-05-14
JP2015099251A JP2016217549A (ja) 2015-05-14 2015-05-14 製氷機
JP2015099250A JP6712443B2 (ja) 2015-05-14 2015-05-14 製氷室
JP2015-099251 2015-05-14
JP2015099249A JP6712442B2 (ja) 2015-05-14 2015-05-14 自動製氷機
JP2015-099249 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016181702A1 true WO2016181702A1 (ja) 2016-11-17

Family

ID=57248026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058191 WO2016181702A1 (ja) 2015-05-14 2016-03-15 自動製氷機

Country Status (7)

Country Link
US (1) US10274239B2 (ja)
EP (1) EP3242097B1 (ja)
KR (1) KR20180006361A (ja)
CN (1) CN107429962A (ja)
AU (1) AU2016261527B2 (ja)
ES (1) ES2877134T3 (ja)
WO (1) WO2016181702A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164947A (ja) * 2019-03-29 2020-10-08 東洋鋼鈑株式会社 ろう付け用表面処理基材および熱交換器
US11255589B2 (en) 2020-01-18 2022-02-22 True Manufacturing Co., Inc. Ice maker
US11391500B2 (en) 2020-01-18 2022-07-19 True Manufacturing Co., Inc. Ice maker
US11519652B2 (en) 2020-03-18 2022-12-06 True Manufacturing Co., Inc. Ice maker
US11578905B2 (en) 2020-01-18 2023-02-14 True Manufacturing Co., Inc. Ice maker, ice dispensing assembly, and method of deploying ice maker
US11602059B2 (en) 2020-01-18 2023-03-07 True Manufacturing Co., Inc. Refrigeration appliance with detachable electronics module
US11656017B2 (en) 2020-01-18 2023-05-23 True Manufacturing Co., Inc. Ice maker
US11674731B2 (en) 2021-01-13 2023-06-13 True Manufacturing Co., Inc. Ice maker
US11686519B2 (en) 2021-07-19 2023-06-27 True Manufacturing Co., Inc. Ice maker with pulsed fill routine
US11802727B2 (en) 2020-01-18 2023-10-31 True Manufacturing Co., Inc. Ice maker
US11913699B2 (en) 2020-01-18 2024-02-27 True Manufacturing Co., Inc. Ice maker
US11982484B2 (en) 2022-11-02 2024-05-14 True Manufacturing Co., Inc. Ice maker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053985A1 (en) * 2017-08-17 2019-02-21 Qualcomm Incorporated Expiration date indicator for hypodermic needle devices
US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
CN112609214A (zh) * 2020-12-15 2021-04-06 孙明远 一种制冰机蒸发器电镀液、抗酸合金镀层及其电镀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142353A (en) * 1976-04-26 1977-11-28 Sumitomo Light Metal Ind Freezing tray
JP2003528983A (ja) * 2000-03-31 2003-09-30 ビーエーエスエフ アクチェンゲゼルシャフト 化学プラント構築用の装置および装置部品の被覆方法およびこの方法によって得られる装置および装置部品
JP2005037060A (ja) * 2003-07-15 2005-02-10 Hoshizaki Electric Co Ltd 製氷装置
JP2014119167A (ja) * 2012-12-14 2014-06-30 Hoshizaki Electric Co Ltd 自動製氷機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260301A (ja) * 1994-03-23 1995-10-13 Sanyo Electric Co Ltd 製氷装置における冷却器
JP2005030702A (ja) 2003-07-07 2005-02-03 Hoshizaki Electric Co Ltd 製氷装置
JP2005300023A (ja) * 2004-04-12 2005-10-27 Hoshizaki Electric Co Ltd 製氷室およびその製造方法
US7628030B2 (en) * 2004-10-26 2009-12-08 Whirlpool Corporation Water spillage management for in the door ice maker
JP5228089B2 (ja) * 2011-07-06 2013-07-03 シャープ株式会社 発光装置および表示装置
CN202201727U (zh) * 2011-08-15 2012-04-25 苏州雅本化学股份有限公司 一种用于高盐高浓度废水脱盐预处理的蒸发器
CN203348674U (zh) * 2013-06-25 2013-12-18 常州市腾利汽车配件有限公司 防腐制冷阀座

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142353A (en) * 1976-04-26 1977-11-28 Sumitomo Light Metal Ind Freezing tray
JP2003528983A (ja) * 2000-03-31 2003-09-30 ビーエーエスエフ アクチェンゲゼルシャフト 化学プラント構築用の装置および装置部品の被覆方法およびこの方法によって得られる装置および装置部品
JP2005037060A (ja) * 2003-07-15 2005-02-10 Hoshizaki Electric Co Ltd 製氷装置
JP2014119167A (ja) * 2012-12-14 2014-06-30 Hoshizaki Electric Co Ltd 自動製氷機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3242097A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164947A (ja) * 2019-03-29 2020-10-08 東洋鋼鈑株式会社 ろう付け用表面処理基材および熱交換器
JP7432305B2 (ja) 2019-03-29 2024-02-16 東洋鋼鈑株式会社 ろう付け用表面処理基材および熱交換器
US11802727B2 (en) 2020-01-18 2023-10-31 True Manufacturing Co., Inc. Ice maker
US11578905B2 (en) 2020-01-18 2023-02-14 True Manufacturing Co., Inc. Ice maker, ice dispensing assembly, and method of deploying ice maker
US11602059B2 (en) 2020-01-18 2023-03-07 True Manufacturing Co., Inc. Refrigeration appliance with detachable electronics module
US11656017B2 (en) 2020-01-18 2023-05-23 True Manufacturing Co., Inc. Ice maker
US11391500B2 (en) 2020-01-18 2022-07-19 True Manufacturing Co., Inc. Ice maker
US11255589B2 (en) 2020-01-18 2022-02-22 True Manufacturing Co., Inc. Ice maker
US11913699B2 (en) 2020-01-18 2024-02-27 True Manufacturing Co., Inc. Ice maker
US11519652B2 (en) 2020-03-18 2022-12-06 True Manufacturing Co., Inc. Ice maker
US11674731B2 (en) 2021-01-13 2023-06-13 True Manufacturing Co., Inc. Ice maker
US11686519B2 (en) 2021-07-19 2023-06-27 True Manufacturing Co., Inc. Ice maker with pulsed fill routine
US11982484B2 (en) 2022-11-02 2024-05-14 True Manufacturing Co., Inc. Ice maker

Also Published As

Publication number Publication date
CN107429962A (zh) 2017-12-01
EP3242097A1 (en) 2017-11-08
US20180023874A1 (en) 2018-01-25
AU2016261527A1 (en) 2017-07-20
ES2877134T3 (es) 2021-11-16
KR20180006361A (ko) 2018-01-17
AU2016261527B2 (en) 2021-07-22
EP3242097B1 (en) 2021-06-02
US10274239B2 (en) 2019-04-30
EP3242097A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2016181702A1 (ja) 自動製氷機
ES2199830T3 (es) Producto de hoja para soldadura fuerte y metodo para su fabricacion.
CN1180132C (zh) 铝或铝合金工件的制备方法、含水镀液和其应用、组件和其制备方法
US20070164088A1 (en) Brazing process for stainless steel heat exchangers
ES2244674T3 (es) Metodo de soldadura utilizando un material de soldadura con un bajo punto de fusion.
CN101108436A (zh) 用于无焊剂钎焊工艺的制品及其制备方法
CN101825406A (zh) 换热器
AU2006207665A1 (en) Method of electroplating and pre-treating aluminium workpieces
JP2005257257A (ja) 熱交換器及びその製造方法
KR20030071874A (ko) 브레이징 제품
JP2018028422A (ja) 自動製氷機
JP2016217549A (ja) 製氷機
US6994919B2 (en) Brazing product and method of manufacturing a brazing product
JP6712442B2 (ja) 自動製氷機
ES2268462T3 (es) Procducto para laminar de borcesoldado con una capa de recubrimiento y una capa depositada de una aleacion de hierro, y metodo para su fabricacion.
JP2005300023A (ja) 製氷室およびその製造方法
WO2004011188A1 (en) Brazing product and method of manufacturing a brazing product
JP2007078049A (ja) Lng気化器用伝熱管とそれを用いたlng気化器
JP4554389B2 (ja) 熱交換器用チューブ、その製造方法及び熱交換器
KR100624372B1 (ko) 열교환기용 냉각핀의 부식 방지방법
KR101266445B1 (ko) 제빙유닛의 침지돌기
JP2005037060A (ja) 製氷装置
JP5792434B2 (ja) 表面処理銅管およびヒートポンプ給湯機
JP2017003141A (ja) 製氷室
JPH07260301A (ja) 製氷装置における冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541256

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177018839

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016261527

Country of ref document: AU

Date of ref document: 20160315

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016792427

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE