WO2016181497A1 - Mounting management device - Google Patents

Mounting management device Download PDF

Info

Publication number
WO2016181497A1
WO2016181497A1 PCT/JP2015/063629 JP2015063629W WO2016181497A1 WO 2016181497 A1 WO2016181497 A1 WO 2016181497A1 JP 2015063629 W JP2015063629 W JP 2015063629W WO 2016181497 A1 WO2016181497 A1 WO 2016181497A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
feeders
arrangement
mounting
time index
Prior art date
Application number
PCT/JP2015/063629
Other languages
French (fr)
Japanese (ja)
Inventor
寿人 澤浪
芳行 深谷
和也 松山
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2017517519A priority Critical patent/JP6488373B2/en
Priority to PCT/JP2015/063629 priority patent/WO2016181497A1/en
Publication of WO2016181497A1 publication Critical patent/WO2016181497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a mounting management apparatus.
  • a component mounting machine in which components are sequentially picked up by a nozzle from a plurality of feeders arranged in a slot of a feeder set base and mounted on a substrate.
  • a device that proposes a method of arranging feeders arranged on a feeder set base so that the moving time or moving distance of a component picking head holding a nozzle is optimized (for example, Patent Document 1). .
  • the present invention has been made to solve such a problem, and in order to manufacture a predetermined number of component mounting boards of the same type, the feeders are arranged in consideration of workability when the feeders are arranged on the feeder set base.
  • the main purpose is to provide indicators of
  • the mounting management apparatus of the present invention A mounting management device that manages a component mounting machine that sequentially collects components from a plurality of feeders arranged on a feeder set stand and mounts them on a board, Storage means for storing factors necessary for calculating an individual placement time index taking into account workability when placing the feeder on the feeder set base; In manufacturing a predetermined number of component mounting boards of the same type, the individual placement time index of each of the plurality of feeders is calculated using the factor, and based on the calculated individual placement time index of all the feeders Calculating means for calculating all feeder arrangement time indexes required to manufacture the predetermined number of the component mounting boards; It is equipped with.
  • an individual placement time index is added for each of the plurality of feeders, taking into account workability when placing the feeders on the feeder set base. Then, based on the calculated individual placement time indexes of all feeders, all feeder placement time indexes required for such production are calculated.
  • the individual arrangement time index is an index that takes into account workability when the feeder is arranged on the feeder set base. Such workability varies depending on how the feeders are arranged. For this reason, the individual arrangement time index also changes depending on how the feeders are arranged.
  • the all feeder arrangement time index is an index of time required to manufacture a predetermined number of component mounting boards of the same type, and is calculated based on the individual arrangement time index of all feeders. Therefore, the total feeder arrangement time index also changes depending on how the feeders are arranged. Therefore, when producing a predetermined number of component mounting boards of the same type, all feeder arrangement time indicators can be used as indicators for arranging feeders in consideration of workability when the feeders are arranged on the feeder set base.
  • the factors may include environmental factors related to the arrangement environment on the left and right sides of each feeder.
  • Environmental factors are factors that vary depending on how the feeders are arranged. For this reason, it is preferable to calculate the individual placement time index, and thus the total feeder placement time index, using environmental factors.
  • the environmental factor may include at least one of a first sub-factor related to the arrangement work space on the left and right sides of each feeder and a second sub-factor related to the adjacent feeder. Since the first and second sub-factors are greatly influenced by how the feeders are arranged, it is preferable to include them as environmental factors.
  • the first sub-factor is determined so that a value closer to the feeder among slots on the left and right sides of the feeder is larger, and the second sub-factor is arranged so that two feeders are adjacent to each other.
  • the smaller the gap between the two feeders the larger the value may be set.
  • the factor includes, in addition to the environmental factor, a single placement factor related to a standard single placement time when each feeder is placed on the feeder set stand alone, and the component An arrangement frequency factor related to the arrangement frequency of each feeder required to manufacture the predetermined number of mounting substrates may be included.
  • the individual placement time index can be regarded as the work time required to place one feeder when a predetermined number of the same type of component mounting boards are manufactured.
  • the calculation means uses the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of ways of arranging the feeders, and calculates the total feeder arrangement
  • the arrangement of the feeders may be determined so that the time index is minimized. In this way, it is possible to propose a method for arranging the feeders so that the entire feeder arrangement time is as short as possible.
  • the calculation means calculates the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of ways of arranging the feeders, and the component mounter Calculates the time required to produce one component mounting board as a board production time index, and arranges the feeders so that the total of the calculated feeder placement time index and the board production time index is minimized. You may decide. In this way, it is possible to propose a feeder arrangement method in which the total of the total feeder arrangement time and the substrate production time is as short as possible.
  • FIG. 1 is a schematic explanatory diagram of a component mounting system 1.
  • FIG. The perspective view of the component mounting machine 10.
  • FIG. The perspective view of the feeder set stand 60.
  • FIG. The flowchart of a mounting optimization process routine.
  • FIG. FIG. 8 is an explanatory diagram illustrating an example of a numerical value S representing the first subfactor. Explanatory drawing which shows an example of how to arrange a feeder. Explanatory drawing which shows an example of how to arrange a feeder.
  • FIG. 1 is a schematic explanatory view of the component mounting system 1
  • FIG. 2 is a perspective view of the component mounting machine 10
  • FIG. 3 is a perspective view of a reel 42
  • FIG. 4 is a perspective view of a feeder set base 60.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
  • the component mounting system 1 includes a plurality of component mounters 10 that form a mounting line, and a mounting management device 80 that manages the production of a board.
  • each component mounter 10 mounts components on the substrate 12 carried in from the upstream side, and the substrate 12 after component mounting is unloaded.
  • the component mounter 10 includes a board transfer device 18, a head unit 34, a parts camera 39, a feeder 40, a feeder set base 60, and a mounting controller 70.
  • the substrate transport device 18 is provided with support plates 20 and 20 provided at intervals in the front and rear direction of FIG. 2 and extending in the left-right direction, and conveyor belts 22 and 22 provided on the mutually opposing surfaces of the support plates 20 and 20 (FIG. 1 shows only one of them).
  • the conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless.
  • the substrate 12 is carried on the upper surfaces of the pair of conveyor belts 22 and 22 and is conveyed from left to right.
  • the substrate 12 is supported by a large number of support pins 23 erected on the back side.
  • the head unit 34 is detachably attached to the front surface of the X-axis slider 26.
  • the head unit 34 has a handle 35 on the front surface to be gripped by an operator during replacement work.
  • the X-axis slider 26 is slidably attached to a pair of upper and lower guide rails 28, 28 provided in front of the Y-axis slider 30 and extending in the left-right direction.
  • the Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction.
  • the head unit 34 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction.
  • Each slider 26, 30 is driven by a drive motor (not shown).
  • the head unit 34 has a rotary head 36 having a plurality of suction nozzles 38.
  • the suction nozzle 38 uses pressure to suck a component at the tip of the nozzle or release a component sucked at the tip of the nozzle.
  • the height of the suction nozzle 38 can be adjusted by a Z-axis motor (not shown) mounted on the head unit 34. Such a suction nozzle 38 is appropriately replaced in accordance with the type and size of the component.
  • the parts camera 39 is installed between the feeder set base 60 and the substrate transfer device 18 so that the imaging direction is upward at the approximate center of the length in the left-right direction.
  • the parts camera 39 images the parts sucked by the suction nozzle 38 passing above, and outputs an image obtained by the imaging to the mounting controller 70.
  • the feeder 40 rotatably holds a reel 42 around which a tape 44 is wound, as shown in FIG.
  • a plurality of recesses 46 are formed in the tape 44 so as to be arranged along the longitudinal direction of the tape 44.
  • Each recess 46 accommodates a part P.
  • These parts P are protected by a film 48 that covers the surface of the tape 44.
  • the feeder 40 has a component suction position.
  • the component suction position is a position determined by design in which the suction nozzle 38 sucks the component P.
  • the parts P accommodated in the tape 44 are sequentially arranged at the parts suction position.
  • the part P that has reached the part suction position is in a state where the film 48 is peeled off, and is sucked by the suction nozzle 38.
  • the width of the tape 44 increases as the size of the component P increases
  • the width of the reel 42 increases as the width of the tape 44 increases
  • the width of the feeder 40 increases as the width of the reel 42 increases. Therefore, there are feeders having various widths depending on the size of the part P.
  • the feeder set base 60 has a plurality of slots 62 on its upper surface as shown in FIG.
  • the slots 62 are grooves extending along the Y axis, and a plurality of slots 62 are provided in a row on the upper surface of the feeder set base 60 along the X axis.
  • a rail (not shown) provided on the lower surface of the feeder 40 is inserted into the slot 62.
  • the feeder set base 60 has a standing wall at the rear end. The standing wall is provided with a connector 65 at a position corresponding to each slot 62, and positioning holes 66 and 67 are provided above and below each connector 65.
  • the feeder 40 When the feeder 40 is inserted into the slot 62, two positioning pins and connectors (not shown) provided on the rear end surface of the feeder 40 are connected to the positioning holes 66 and 67 of the feeder set base 60 and the connector 75, respectively.
  • the feeder 40 occupies only one slot 62 when it is narrow, but occupies a plurality of slots 62 when it is wide.
  • the mounting controller 70 is configured as a microprocessor centered on a CPU, and includes a ROM that stores processing programs, an HDD that stores various data, a RAM that is used as a work area, and the like. These are electrically connected via a bus (not shown).
  • the mounting controller 70 is connected to a feeder controller (not shown) of the feeder 40 and a mounting management device 80 so as to be capable of bidirectional communication. Further, the mounting controller 70 is connected so as to be able to output control signals to the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, etc. Has been.
  • the mounting controller 70 picks up the component P from the component supply tape sent to the component supply position by each feeder 40 by the suction nozzle 38 on the basis of the production program received from the mounting management device 80 and performs predetermined processing on the substrate 12.
  • the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, and the like are controlled so as to be sequentially mounted at the positions.
  • the mounting controller 70 determines whether or not a component is attracted to the suction nozzle 38 based on an image captured by the parts camera 39, and determines the shape, size, suction position, and the like of the component.
  • the mounting management apparatus 80 is a microprocessor centered on a CPU 81, and includes a ROM 82 that stores a processing program, an HDD 83 that stores a board production program, and a RAM 84 that is used as a work area. . These are electrically connected via a bus (not shown).
  • An input signal is input to the mounting management device 80 from an input device 85 such as a mouse or a keyboard, and an image signal to the display 86 is output from the mounting management device 80.
  • FIG. 5 is a flowchart of a mounting optimization processing routine.
  • a case where a predetermined number of component mounting boards of the same type are manufactured will be described as an example.
  • the CPU 81 of the mounting management device 80 reads the current production program data from the HDD 83 (step S100).
  • the production program is a program related to a plan that determines what parts are to be mounted on a board and how many boards on which such parts are mounted.
  • Such a production program is stored in the HDD 83 of the mounting management apparatus 80 when the operator operates the input device 85.
  • the production program data includes production date and time, the number of substrates to be manufactured, component information about components to be mounted on the substrate, head information about the head to be used, nozzle information about the suction nozzle mounted on the head, and the like.
  • the CPU 81 of the mounting management device 80 sets a mounting sequence (step S200). Specifically, the CPU 81 sets a mounting sequence by designating a component type, a mounting position (X coordinate, Y coordinate) and a type of suction nozzle to be used (used nozzle type) in the mounting order.
  • the used nozzle type is set to a suction nozzle having a large nozzle diameter from among the types of suction nozzles that can suck parts and do not interfere with adjacent mounted parts.
  • the CPU 81 of the mounting management device 80 distributes the mounting sequence to each component mounting machine 10 (step S300). Specifically, the CPU 81 distributes so that the number of mounting sequences distributed to each component mounter 10 is equal or as even as possible. In each mounting sequence, which feeder component is to be mounted is determined. Therefore, how many feeders 40 are mounted on each component mounter 10 is determined by the distribution of the mounting sequence.
  • the CPU 81 of the mounting management device 80 calculates the mounting order of components for each component mounting machine 10 (step S400). At this time, the CPU 81 calculates the mounting order so that, for example, when the components are mounted on the substrate, the mounting of the components is not hindered by the previously mounted components.
  • the CPU 81 of the mounting management apparatus 80 executes a feeder arrangement determining routine for determining the arrangement of the feeders 40 for each component mounting machine 10 (step S500). Taking one component mounter 10 as an example, based on the mounting sequence allocated to the component mounter 10, a plurality of feeder arrangement methods are created, and the optimum feeder arrangement method is selected from among them. Is determined as a method of arranging the feeders of the component mounter 10. Details of this routine will be described later. Thereby, in each component mounting machine 10, how to arrange the feeders 40 is determined. Thereafter, the CPU 81 stores the production program including the arrangement method in the HDD 83 (step S600), and ends this routine.
  • step S500 the feeder arrangement method determination routine (step S500) will be described with reference to the flowchart of FIG.
  • a routine for setting the mounting position of the feeder 40 allocated to one component mounting machine 10 will be described. In practice, this routine is performed for all the component mounting machines 10 constituting the component mounting system 1. Execute.
  • the HDD 83 stores factors necessary for calculating an individual placement time index that takes into account workability when placing the feeder 40 on the feeder set base 60. As shown in FIG. 7, these factors include a single arrangement factor and an arrangement frequency factor in addition to environmental factors.
  • the environmental factor is a factor related to the arrangement environment on the left and right sides of each feeder 40.
  • the environmental factor is related to the first sub-factor related to the arrangement work space on the left and right sides of each feeder and the adjacent feeder. Sub-factors.
  • FIG. 8 An example of the numerical value S representing the first subfactor is shown in FIG. In FIG. 8, it is assumed that the feeder 40 includes three types of a feeder A having a narrow width, a feeder B having a medium width, and a feeder C having a wide width. For each of the feeders A, B, and C, a numerical value S representing the first subfactor is set. In the following description, numerical values S Lm and S Rm are used. Of the subscripts Lm and Rm after S, L is the slot 62 on the left side of the feeder to be placed (placement target feeder). R means that it is the slot 62 on the right side of the placement target feeder, and m means that it is the m th slot 62 from the slot 62 into which the placement target feeder is inserted.
  • the feeder A has a width that occupies one slot 62.
  • a value 1 is set as a numerical value S L1 .
  • a value 1 is set as a numerical value S R1 .
  • the feeder B has a width that occupies the three slots 62.
  • a value 3 is set as the numerical value S L1
  • a value 1 is set as the numerical value S L2 .
  • a value 3 is set as a numerical value S R1 in the first slot 62 on the right side of the feeder B, and a value 1 is set as a numerical value S R2 in the second slot 62.
  • the feeder C has a width that occupies the five slots 62.
  • a value 5 is set as a numerical value S L1
  • a value 3 is set as a numerical value S L2 in the second slot 62
  • a numerical value S is set in the third slot 62.
  • the value 1 is set as L3 .
  • the first slot 62 on the right side of the feeder C is set to a value 5 as a numerical value S R1
  • the second slot 62 is set to a value 3 as a numerical value S R2
  • the third slot 62 is a numerical value.
  • the value 1 is set as S R3 .
  • the numerical value S representing the first sub-factor has an effect on workability when inserting the feeder into the slot 62 in the slots 62 closer to the feeder among the left and right sides of the slot 62 into which the placement target feeder is inserted. Since the value is large, the value is set to be large. In addition, since the work load increases as the width of the placement target feeder increases, the value is determined to increase.
  • Table 1 An example of the numerical value K representing the second subfactor is shown in Table 1.
  • Table 1 a numerical value K is set according to the relationship between the placement target feeder and the surrounding feeders.
  • the width of each feeder is not necessarily made an integral multiple of the slot width.
  • the width of the feeder depends on the width of the target tape. For this reason, when each feeder occupies the slot 62, there are a feeder that occupies the entire slot width and a feeder that occupies a gap left and right.
  • the feeders are arranged adjacent to each other, there are cases where the two feeders are in contact with each other without a gap, and there are cases where a little gap is left. In the case of a combination that touches without a gap, it is difficult to perform the arrangement work.
  • the values are set so as to increase as the gap between the two feeders becomes smaller when they are arranged adjacent to each other.
  • the numerical value K is set to a small value of 1.0 even if the surrounding feeder is any of the feeders A, B, and C. This is because the feeder A occupies the slot 62 with a large gap between the left and right, so that when the feeder A is inserted into the slot 62, a sufficient gap is formed between the feeder A and any feeder. For this reason, workability when the feeder A is arranged does not deteriorate so much.
  • the numerical value K is set to be a large value.
  • the numerical value K representing the second sub-factor is determined such that the value increases as the gap between the two feeders becomes smaller when the two feeders are arranged adjacent to each other.
  • the single placement factor is a factor related to a standard single placement time when each feeder is placed on the feeder set base 60 alone. Let this single arrangement factor be t.
  • An example of the relationship between the feeder and the single placement factor is shown in Table 2. As shown in Table 2, since the work load when inserting the feeder into the slot 62 increases as the width of the placement target feeder increases, the single placement factor t is set to increase.
  • the standard single unit arrangement time of the feeder A is defined as a value 1
  • the ratio of the standard single unit arrangement time of the feeders B and C to the value is expressed as a numerical value t.
  • the arrangement frequency factor is a factor related to the arrangement frequency of each feeder required to manufacture a predetermined number of component mounting boards.
  • This arrangement frequency factor is N.
  • Table 3 shows an example of the relationship between the feeder and the arrangement frequency factor. Regarding the number of feeders arranged, the more the number of components supplied by the feeder is mounted per board, the greater the number of feeder replacements.
  • feeders A-1, A-2, and A-3 (using the same feeder A but different parts to be supplied) are set to 5 times, feeder B is set to 3 times, and feeder C is set to 1 time. Has been. Since the number of times of feeder replacement is greatly related to the work time when the feeder is inserted into the slot, the number of feeder replacement itself is used as the arrangement number factor N here. Note that the number of replacements is also counted as one when the feeder is first set on the feeder set base 60.
  • the CPU 81 When starting the feeder arrangement method determination routine, the CPU 81 first creates a plurality of feeder arrangement methods based on the mounting sequence allocated to the component mounter 10 (step S510). Specifically, the CPU 81 selects necessary feeders according to the mounting sequence allocated to the component mounter 10, and creates a plurality of ways of arranging these feeders using concepts such as permutations and combinations.
  • the description will be made assuming that the two arrangements shown in FIG. 9 and the arrangement shown in FIG. 10 are created. 9 and 10, it is assumed that the feeder set base 60 is provided with a total of 23 slots 62 from No. 1 to No. 23.
  • FIG. 9 is an example of an arrangement in which feeders are packed and arranged so that there is no empty slot between the feeders.
  • FIG. 10 is an example of an arrangement in which feeders are arranged so that empty slots are formed around feeders B and C. It is an example.
  • the CPU 81 calculates the total of the individual arrangement time index T k as the total feeder arrangement time index T SUM for each of the plurality of ways of arranging the feeders (step S520). Specifically, for each arrangement, the individual placement time index T k of each of the plurality of feeders is set to the first and second sub-factors S and K constituting the environmental factor, the single placement factor t, the placement frequency factor N, And the total ⁇ T k is calculated as the total feeder arrangement time index T SUM .
  • An example of an arithmetic expression for the individual arrangement time index T k is shown in the following expression (1). Further, C k in the equation (1) is calculated by the following equation (2). 9 and 10 show the values of the individual placement time indexes T 1 to T 5 of each feeder and the values of all the feeder placement time indexes T SUM in the respective arrangement methods.
  • T k (t k + C k ) * N k (1)
  • T k Individual placement time index T of the kth feeder from the left among the feeders set on the feeder set stand
  • t k single placement factor t of the k th feeder
  • N k arrangement factor N of the kth feeder
  • C k correction term C of the k th feeder k: an integer greater than or equal to 1
  • S Lmk Numerical value S assigned to the mth slot from the left of the kth feeder
  • K Lmk Numerical value K assigned by the relationship between the kth feeder and the feeder that occupies the mth slot from the left of the feeder
  • S Rmk Numerical value S assigned to the mth slot from the right of the kth feeder
  • K Rmk Numerical value K assigned by the relationship between the kth feeder and the feeder occupying the mth slot from the right of the feeder m: an integer greater than or equal to 1
  • the CPU 81 determines the feeder arrangement that minimizes the calculated total feeder arrangement time index T SUM as the recommended feeder arrangement this time (step S530), and displays it on the display 86 (step S540). This routine ends. In this example, since the value of the total feeder arrangement time index T SUM is smaller in FIG. 9 than in FIG. 10, the CPU 81 determines the arrangement in FIG. 86.
  • the individual arrangement time index T k is an index considering workability when the feeder 40 is arranged on the feeder set base 60. Such workability varies depending on how the feeders 40 are arranged (for example, whether or not the feeders 40 are arranged next to each other, and what kind of feeders 40 are arranged). For this reason, the individual arrangement time index T k also changes depending on how the feeders 40 are arranged. All feeders arranged time index T SUM is the same type of component mounting substrate is indicative of time required for a predetermined number of production, in which is calculated as the sum of the individual arrangement time index T k of all feeders 40. Therefore, the total feeder arrangement time index TSUM also changes depending on how the feeders 40 are arranged.
  • the HDD 83 of this embodiment corresponds to the storage unit of the present invention
  • the CPU 81 corresponds to the calculation unit.
  • the mounting management device 80 of the present embodiment described above when a predetermined number of component mounting boards of the same type are manufactured, all feeder placement time indices TSUM are used, and work when placing the feeder 40 on the feeder set base 60 is performed. This can be used as an index for arranging the feeders 40 in consideration of the characteristics.
  • the environmental factors are factors that change depending on how the feeders are arranged. Since the individual placement time index T k and thus the total feeder placement time index T SUM are calculated using this environmental factor, an appropriate index can be obtained.
  • the first subfactor is determined such that the slot closer to the feeder out of the left and right side slots of the feeder has a larger value
  • the second subfactor is determined when the two feeders are arranged adjacent to each other.
  • the value is determined to be larger as the feeder gap is smaller. For this reason, the value of each sub-factor increases as the influence of the arrangement work is increased, and as a result, the value of the total feeder arrangement time index T SUM also increases.
  • the recommended feeder arrangement is determined such that the total feeder arrangement time index T SUM is obtained for each of a plurality of feeder arrangement methods and is minimized, but is determined by other methods. May be.
  • the time component mounting apparatus 10 is required to produce a single component mounting board is calculated as the substrate production time index T pro, total minimum the total feeder arranged time index T SUM and board production time index T pro
  • the recommended feeder arrangement may be determined so that The suction nozzle 38 picks up the component P supplied by the feeder 40, sucks the component P, moves to a predetermined position of the substrate 12 through the position above the parts camera 39, and releases the component P there. A series of operations are repeated for all the parts to be mounted on the substrate 12.
  • a component type, a mounting position (X coordinate, Y coordinate) and a type of suction nozzle to be used (used nozzle type) are specified in the mounting order. Therefore, if the arrangement of the feeders 40 is determined, the time required for the component mounter 10 to produce one component mounting board, that is, the board production time index T pro can be calculated by simulation. In this way, it is possible to propose a feeder arrangement method in which the total of the total feeder arrangement time and the substrate production time is as short as possible. If an attempt is made to shorten the total feeder arrangement time, the board production time may become longer. Conversely, if an attempt is made to shorten the board production time, the entire feeder arrangement time may become longer. For this reason, it is considered that selection of feeders that minimizes the sum of the two is the best choice.
  • the total of correction terms C k related to environmental factors may be used as the total feeder arrangement time index.
  • This correction term C k varies depending on the arrangement environment on both the left and right sides of the feeder, that is, how the feeders are arranged, as shown in the above equation (2).
  • the single arrangement factor t k and the arrangement frequency factor K k do not change depending on how the feeders are arranged. Therefore, ⁇ C k can be used as an index for arranging the feeders 40 in consideration of workability when the feeders 40 are arranged on the feeder set base 60.
  • the environmental factor has been described as including both the first subfactor and the second subfactor, but either one may be included. Or you may make it include the subfactor related to an environment different from the 1st and 2nd subfactor.
  • T SUM is obtained from the above equation (1), but is not limited to the above equation (1), and any other equation including three factors t k , C k , and N k may be used. The following formula may also be used.
  • C k is obtained from the above equation (2), but is not limited to the above equation (2), and is a numerical value S representing the first subfactor and a numerical value representing the second subfactor.
  • Other formulas may be used as long as they include K.
  • C k may be obtained by the above formula (2 ′).
  • C k ((S L1k + K L1k ) + (S L2k + K L2k ) + ...) + ((S R1k + K R1k ) + (S R2k * K R2k ) + ...) (2 ')
  • the present invention is applicable to a mounting management apparatus that manages a component mounting machine that sequentially collects components from a plurality of feeders arranged on a feeder set base and mounts them on a substrate.

Abstract

This mounting management device 80 manages a component mounting device 10, which picks up components sequentially from a plurality of feeders 40 aligned on a feeder set table 60 and mounts the components onto a substrate 12. The mounting management device 80 stores in HDD the factors required for calculating an individual placement time index that takes into account the operation performance of placing the feeders 40 onto the feeder set table 60. When manufacturing a prescribed number of the same type of component-mounted substrates, a CPU in the mounting management device 80 calculates the individual placement time index for each of the plurality of feeders 40 using the factors stored in the HDD. The CPU then calculates the entire feeder placement time index required for manufacturing the prescribed number of the component-mounted substrates on the basis of the individual placement time indexes calculated for all the feeders.

Description

実装管理装置Mounting management device
 本発明は、実装管理装置に関する。 The present invention relates to a mounting management apparatus.
 従来より、フィーダセット台のスロットに配置された複数のフィーダから順次部品をノズルにより吸着して基板上に実装する部品実装機が知られている。こうした部品実装機として、ノズルが保持された部品採取ヘッドの移動時間又は移動距離が最適となるように、フィーダセット台に並べるフィーダの並べ方を提案するものが知られている(例えば特許文献1)。 2. Description of the Related Art Conventionally, a component mounting machine is known in which components are sequentially picked up by a nozzle from a plurality of feeders arranged in a slot of a feeder set base and mounted on a substrate. As such a component mounting machine, there is known a device that proposes a method of arranging feeders arranged on a feeder set base so that the moving time or moving distance of a component picking head holding a nozzle is optimized (for example, Patent Document 1). .
特開2013-51240号公報JP 2013-51240 A
 しかしながら、同じ種類の部品搭載基板を所定数製造する場合、1枚の基板に実装する個数の多い部品を供給するフィーダについては、途中でフィーダを何度か交換しなければならないことがある。その場合、フィーダの並べ方によって、フィーダを交換するときの作業性が大きく異なる。こうした作業性を考慮してフィーダの並べ方を提案するものは知られていない。 However, when a predetermined number of parts mounting boards of the same type are manufactured, a feeder that supplies a large number of parts to be mounted on one board may have to be replaced several times along the way. In that case, workability at the time of exchanging feeders varies greatly depending on how the feeders are arranged. There is no known method for arranging feeders considering such workability.
 本発明は、このような課題を解決するためになされたものであり、同じ種類の部品搭載基板を所定数製造するにあたり、フィーダをフィーダセット台に配置するときの作業性を考慮したフィーダの並べ方の指標を提供することを主目的とする。 The present invention has been made to solve such a problem, and in order to manufacture a predetermined number of component mounting boards of the same type, the feeders are arranged in consideration of workability when the feeders are arranged on the feeder set base. The main purpose is to provide indicators of
 本発明の実装管理装置は、
 フィーダセット台に並べられた複数のフィーダから順次部品を採取して基板上に実装する部品実装機を管理する実装管理装置であって、
 前記フィーダを前記フィーダセット台に配置するときの作業性を加味した個別配置時間指標を演算するのに必要な因子を記憶する記憶手段と、
 同じ種類の部品搭載基板を所定数製造するにあたり、前記複数のフィーダのそれぞれの前記個別配置時間指標を前記因子を用いて演算し、該演算されたすべてのフィーダの前記個別配置時間指標に基づいて、前記部品搭載基板を前記所定数製造するのに要する全フィーダ配置時間指標を演算する演算手段と、
 を備えたものである。
The mounting management apparatus of the present invention
A mounting management device that manages a component mounting machine that sequentially collects components from a plurality of feeders arranged on a feeder set stand and mounts them on a board,
Storage means for storing factors necessary for calculating an individual placement time index taking into account workability when placing the feeder on the feeder set base;
In manufacturing a predetermined number of component mounting boards of the same type, the individual placement time index of each of the plurality of feeders is calculated using the factor, and based on the calculated individual placement time index of all the feeders Calculating means for calculating all feeder arrangement time indexes required to manufacture the predetermined number of the component mounting boards;
It is equipped with.
 この実装管理装置では、同じ種類の部品搭載基板を所定数製造するにあたり、まず、フィーダをフィーダセット台に配置するときの作業性を加味した個別配置時間指標を複数のフィーダのそれぞれについて演算する。そして、演算されたすべてのフィーダの個別配置時間指標に基づいて、そうした製造に要する全フィーダ配置時間指標を演算する。個別配置時間指標は、フィーダをフィーダセット台に配置するときの作業性を加味した指標である。こうした作業性は、フィーダの並べ方によって変わる。そのため、個別配置時間指標も、フィーダの並べ方によって変わる。全フィーダ配置時間指標は、同じ種類の部品搭載基板を所定数製造するのに要する時間の指標であり、すべてのフィーダの個別配置時間指標に基づいて演算されるものである。そのため、全フィーダ配置時間指標も、フィーダの並べ方によって変わる。したがって、同じ種類の部品搭載基板を所定数製造するにあたり、全フィーダ配置時間指標を、フィーダをフィーダセット台に配置するときの作業性を考慮したフィーダの並べ方の指標として利用することができる。 In this mounting management apparatus, when a predetermined number of component mounting boards of the same type are manufactured, first, an individual placement time index is added for each of the plurality of feeders, taking into account workability when placing the feeders on the feeder set base. Then, based on the calculated individual placement time indexes of all feeders, all feeder placement time indexes required for such production are calculated. The individual arrangement time index is an index that takes into account workability when the feeder is arranged on the feeder set base. Such workability varies depending on how the feeders are arranged. For this reason, the individual arrangement time index also changes depending on how the feeders are arranged. The all feeder arrangement time index is an index of time required to manufacture a predetermined number of component mounting boards of the same type, and is calculated based on the individual arrangement time index of all feeders. Therefore, the total feeder arrangement time index also changes depending on how the feeders are arranged. Therefore, when producing a predetermined number of component mounting boards of the same type, all feeder arrangement time indicators can be used as indicators for arranging feeders in consideration of workability when the feeders are arranged on the feeder set base.
 本発明の実装管理装置において、前記因子には、各フィーダの左右両側の配置環境に関連する環境因子が含まれるようにしてもよい。環境因子はフィーダの並べ方によって変化する因子である。そのため、個別配置時間指標ひいては全フィーダ配置時間指標を環境因子を用いて演算するのが好ましい。 In the mounting management apparatus of the present invention, the factors may include environmental factors related to the arrangement environment on the left and right sides of each feeder. Environmental factors are factors that vary depending on how the feeders are arranged. For this reason, it is preferable to calculate the individual placement time index, and thus the total feeder placement time index, using environmental factors.
 ここで、前記環境因子には、各フィーダの左右両側の配置作業スペースに関連する第1の副因子と、隣接するフィーダに関連する第2の副因子の少なくとも一方が含まれていてもよい。第1及び第2の副因子は、フィーダの並べ方によって大きな影響を受けるため、環境因子に含めるのが好ましい。 Here, the environmental factor may include at least one of a first sub-factor related to the arrangement work space on the left and right sides of each feeder and a second sub-factor related to the adjacent feeder. Since the first and second sub-factors are greatly influenced by how the feeders are arranged, it is preferable to include them as environmental factors.
 このとき、前記第1の副因子は、フィーダの左右両側のスロットのうち前記フィーダに近いスロットほど値が大きくなるように定められ、前記第2の副因子は、2つのフィーダを隣接して配置したときの両フィーダの隙間が小さいほど値が大きくなるように定められていてもよい。こうすれば、配置作業に影響を及ぼしやすいものほど第1及び第2の副因子の値が大きくなるため、結果として全フィーダ配置時間指標の値も大きくなる。 At this time, the first sub-factor is determined so that a value closer to the feeder among slots on the left and right sides of the feeder is larger, and the second sub-factor is arranged so that two feeders are adjacent to each other. In this case, the smaller the gap between the two feeders, the larger the value may be set. By doing so, the values of the first and second sub-factors increase as the influence of the arrangement operation is increased, and as a result, the value of the total feeder arrangement time index also increases.
 本発明の実装管理装置において、前記因子には、前記環境因子に加えて、各フィーダを単体で前記フィーダセット台に配置するときの標準的な単体配置時間に関連する単体配置因子と、前記部品搭載基板を前記所定数製造するのに要する各フィーダの配置回数に関連する配置回数因子とが含まれていてもよい。こうすれば、個別配置時間指標を、同じ種類の部品搭載基板を所定数製造する際の、1つのフィーダを配置するのに要する作業時間とみなすことができる。 In the mounting management apparatus of the present invention, the factor includes, in addition to the environmental factor, a single placement factor related to a standard single placement time when each feeder is placed on the feeder set stand alone, and the component An arrangement frequency factor related to the arrangement frequency of each feeder required to manufacture the predetermined number of mounting substrates may be included. In this way, the individual placement time index can be regarded as the work time required to place one feeder when a predetermined number of the same type of component mounting boards are manufactured.
 本発明の実装管理装置において、前記演算手段は、複数通りのフィーダの並べ方の各々について、前記複数のフィーダの前記個別配置時間指標の合計を前記全フィーダ配置時間指標とし、該演算した全フィーダ配置時間指標が最小となるようにフィーダの並べ方を決定してもよい。こうすれば、全フィーダ配置時間ができるだけ短くなるようなフィーダの並べ方を提案することができる。 In the mounting management apparatus of the present invention, the calculation means uses the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of ways of arranging the feeders, and calculates the total feeder arrangement The arrangement of the feeders may be determined so that the time index is minimized. In this way, it is possible to propose a method for arranging the feeders so that the entire feeder arrangement time is as short as possible.
 本発明の実装管理装置において、前記演算手段は、複数通りのフィーダの並べ方の各々について、前記複数のフィーダの前記個別配置時間指標の合計を前記全フィーダ配置時間指標として演算すると共に前記部品実装機が1枚の部品搭載基板を生産するのに要する時間を基板生産時間指標として演算し、該演算した全フィーダ配置時間指標と前記基板生産時間指標との合計が最小となるようにフィーダの並べ方を決定してもよい。こうすれば、全フィーダ配置時間と基板生産時間との合計ができるだけ短くなるようなフィーダの並べ方を提案することができる。 In the mounting management apparatus of the present invention, the calculation means calculates the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of ways of arranging the feeders, and the component mounter Calculates the time required to produce one component mounting board as a board production time index, and arranges the feeders so that the total of the calculated feeder placement time index and the board production time index is minimized. You may decide. In this way, it is possible to propose a feeder arrangement method in which the total of the total feeder arrangement time and the substrate production time is as short as possible.
部品実装システム1の概略説明図。1 is a schematic explanatory diagram of a component mounting system 1. FIG. 部品実装機10の斜視図。The perspective view of the component mounting machine 10. FIG. リール42の斜視図。FIG. フィーダセット台60の斜視図。The perspective view of the feeder set stand 60. FIG. 実装最適化処理ルーチンのフローチャート。The flowchart of a mounting optimization process routine. フィーダの並べ方決定ルーチンのフローチャート。The flowchart of the feeder arrangement method determination routine. HDD83の説明図。FIG. 第1の副因子を表す数値Sの一例を図8に示す説明図。FIG. 8 is an explanatory diagram illustrating an example of a numerical value S representing the first subfactor. フィーダの並べ方の一例を示す説明図。Explanatory drawing which shows an example of how to arrange a feeder. フィーダの並べ方の一例を示す説明図。Explanatory drawing which shows an example of how to arrange a feeder.
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は部品実装システム1の概略説明図、図2は部品実装機10の斜視図、図3はリール42の斜視図、図4はフィーダセット台60の斜視図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1,図2及び図4に示した通りとする。 Preferred embodiments of the present invention will be described below with reference to the drawings. 1 is a schematic explanatory view of the component mounting system 1, FIG. 2 is a perspective view of the component mounting machine 10, FIG. 3 is a perspective view of a reel 42, and FIG. 4 is a perspective view of a feeder set base 60. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
 部品実装システム1は、図1に示すように、実装ラインを形成する複数の部品実装機10と、基板の生産を管理する実装管理装置80とを備えている。部品実装システム1は、上流側から搬入された基板12に対し、各部品実装機10が部品の実装を行い、部品実装後の基板12を搬出するものである。 As shown in FIG. 1, the component mounting system 1 includes a plurality of component mounters 10 that form a mounting line, and a mounting management device 80 that manages the production of a board. In the component mounting system 1, each component mounter 10 mounts components on the substrate 12 carried in from the upstream side, and the substrate 12 after component mounting is unloaded.
 部品実装機10は、図2に示すように、基板搬送装置18と、ヘッドユニット34と、パーツカメラ39、フィーダ40と、フィーダセット台60と、実装コントローラ70とを備えている。 As shown in FIG. 2, the component mounter 10 includes a board transfer device 18, a head unit 34, a parts camera 39, a feeder 40, a feeder set base 60, and a mounting controller 70.
 基板搬送装置18は、図2の前後に間隔を開けて設けられ左右方向に延びる支持板20,20と、両支持板20,20の互いに対向する面に設けられたコンベアベルト22,22(図1では片方のみ図示)とを備えている。コンベアベルト22,22は、支持板20,20の左右に設けられた駆動輪及び従動輪に無端状となるように架け渡されている。基板12は、一対のコンベアベルト22,22の上面に乗せられて左から右へと搬送される。この基板12は、裏面側に多数立設された支持ピン23によって支持される。 The substrate transport device 18 is provided with support plates 20 and 20 provided at intervals in the front and rear direction of FIG. 2 and extending in the left-right direction, and conveyor belts 22 and 22 provided on the mutually opposing surfaces of the support plates 20 and 20 (FIG. 1 shows only one of them). The conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless. The substrate 12 is carried on the upper surfaces of the pair of conveyor belts 22 and 22 and is conveyed from left to right. The substrate 12 is supported by a large number of support pins 23 erected on the back side.
 ヘッドユニット34は、X軸スライダ26の前面に着脱可能に取り付けられている。このヘッドユニット34は、交換作業時に作業者が掴むための取っ手35を前面に有している。X軸スライダ26は、Y軸スライダ30の前面に設けられた左右方向に延びる上下一対のガイドレール28,28にスライド可能に取り付けられている。Y軸スライダ30は、前後方向に延びる左右一対のガイドレール32,32にスライド可能に取り付けられている。ヘッドユニット34は、X軸スライダ26が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ30が前後方向に移動するのに伴って前後方向に移動する。なお、各スライダ26,30は、それぞれ駆動モータ(図示せず)により駆動される。ヘッドユニット34は、複数の吸着ノズル38を備えたロータリーヘッド36を有している。吸着ノズル38は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を離したりするものである。この吸着ノズル38は、ヘッドユニット34に搭載された図示しないZ軸モータによって高さ調整が可能となっている。こうした吸着ノズル38は、部品の種類や大きさなどに応じて適宜交換される。 The head unit 34 is detachably attached to the front surface of the X-axis slider 26. The head unit 34 has a handle 35 on the front surface to be gripped by an operator during replacement work. The X-axis slider 26 is slidably attached to a pair of upper and lower guide rails 28, 28 provided in front of the Y-axis slider 30 and extending in the left-right direction. The Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction. The head unit 34 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction. Each slider 26, 30 is driven by a drive motor (not shown). The head unit 34 has a rotary head 36 having a plurality of suction nozzles 38. The suction nozzle 38 uses pressure to suck a component at the tip of the nozzle or release a component sucked at the tip of the nozzle. The height of the suction nozzle 38 can be adjusted by a Z-axis motor (not shown) mounted on the head unit 34. Such a suction nozzle 38 is appropriately replaced in accordance with the type and size of the component.
 パーツカメラ39は、フィーダセット台60と基板搬送装置18との間であって左右方向の長さの略中央にて、撮像方向が上向きとなるように設置されている。このパーツカメラ39は、その上方を通過する吸着ノズル38に吸着された部品を撮像し、撮像により得られた画像を実装コントローラ70へ出力する。 The parts camera 39 is installed between the feeder set base 60 and the substrate transfer device 18 so that the imaging direction is upward at the approximate center of the length in the left-right direction. The parts camera 39 images the parts sucked by the suction nozzle 38 passing above, and outputs an image obtained by the imaging to the mounting controller 70.
 フィーダ40は、図3に示すように、テープ44が巻回されたリール42を回転可能に保持している。テープ44には、複数の凹部46がテープ44の長手方向に沿って並ぶように形成されている。各凹部46には、部品Pが収容されている。これらの部品Pは、テープ44の表面を覆うフィルム48によって保護されている。フィーダ40には、部品吸着位置が定められている。部品吸着位置は、吸着ノズル38が部品Pを吸着する設計上定められた位置である。テープ44がフィーダ40によって所定量後方へ送られるごとに、テープ44に収容された部品Pが順次、部品吸着位置へ配置されるようになっている。部品吸着位置に至った部品Pは、フィルム48が剥がされた状態になっており、吸着ノズル38によって吸着される。テープ44の幅は、部品Pの大きさが大きいほど広くなり、リール42の幅は、テープ44の幅が広いほど広くなり、フィーダ40の幅は、リール42の幅が広いほど広くなる。そのため、フィーダ40は、部品Pの大きさに応じて種々の幅を持つものが存在する。 The feeder 40 rotatably holds a reel 42 around which a tape 44 is wound, as shown in FIG. A plurality of recesses 46 are formed in the tape 44 so as to be arranged along the longitudinal direction of the tape 44. Each recess 46 accommodates a part P. These parts P are protected by a film 48 that covers the surface of the tape 44. The feeder 40 has a component suction position. The component suction position is a position determined by design in which the suction nozzle 38 sucks the component P. Each time the tape 44 is fed backward by a predetermined amount by the feeder 40, the parts P accommodated in the tape 44 are sequentially arranged at the parts suction position. The part P that has reached the part suction position is in a state where the film 48 is peeled off, and is sucked by the suction nozzle 38. The width of the tape 44 increases as the size of the component P increases, the width of the reel 42 increases as the width of the tape 44 increases, and the width of the feeder 40 increases as the width of the reel 42 increases. Therefore, there are feeders having various widths depending on the size of the part P.
 フィーダセット台60は、図4に示すように、上面に複数のスロット62を有している。スロット62は、Y軸に沿って延びる溝であり、複数個がX軸に沿ってフィーダセット台60の上面に一列に設けられている。スロット62には、フィーダ40の下面に設けられた図示しないレールが差し込まれるようになっている。フィーダセット台60は、後端に立壁を有している。この立壁には、各スロット62に対応する位置にコネクタ65が設けられると共に、各コネクタ65の上下に位置決め穴66,67が設けられている。フィーダ40がスロット62に差し込まれると、フィーダ40の後端面に設けられた図示しない2本の位置決めピン及びコネクタがフィーダセット台60の位置決め穴66,67及びコネクタ75にそれぞれ接続される。フィーダ40は、幅の狭いものについてはスロット62を1つだけ占有するが、幅が広いものについてはスロット62を複数個占有する。 The feeder set base 60 has a plurality of slots 62 on its upper surface as shown in FIG. The slots 62 are grooves extending along the Y axis, and a plurality of slots 62 are provided in a row on the upper surface of the feeder set base 60 along the X axis. A rail (not shown) provided on the lower surface of the feeder 40 is inserted into the slot 62. The feeder set base 60 has a standing wall at the rear end. The standing wall is provided with a connector 65 at a position corresponding to each slot 62, and positioning holes 66 and 67 are provided above and below each connector 65. When the feeder 40 is inserted into the slot 62, two positioning pins and connectors (not shown) provided on the rear end surface of the feeder 40 are connected to the positioning holes 66 and 67 of the feeder set base 60 and the connector 75, respectively. The feeder 40 occupies only one slot 62 when it is narrow, but occupies a plurality of slots 62 when it is wide.
 実装コントローラ70は、図2に示すように、CPUを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM、各種データを記憶するHDD、作業領域として用いられるRAMなどを備える。これらは、図示しないバスを介して電気的に接続されている。この実装コントローラ70は、フィーダ40の図示しないフィーダコントローラや実装管理装置80と双方向通信可能なように接続されている。また、実装コントローラ70は、基板搬送装置18やX軸スライダ26、Y軸スライダ30、Z軸モータなどへ制御信号を出力可能なように接続されると共に、パーツカメラ39から画像を受信可能に接続されている。例えば、実装コントローラ70は、実装管理装置80から受信した生産プログラムに基づいて、各フィーダ40によって部品供給位置に送り出された部品供給テープから部品Pが吸着ノズル38によりピックアップされて基板12上の所定位置に順次装着されるよう、基板搬送装置18やX軸スライダ26、Y軸スライダ30、Z軸モータなどを制御する。また、実装コントローラ70は、パーツカメラ39で撮像された画像に基づいて吸着ノズル38に部品が吸着されているか否かの判断やその部品の形状、大きさ、吸着位置などを判定する。 As shown in FIG. 2, the mounting controller 70 is configured as a microprocessor centered on a CPU, and includes a ROM that stores processing programs, an HDD that stores various data, a RAM that is used as a work area, and the like. These are electrically connected via a bus (not shown). The mounting controller 70 is connected to a feeder controller (not shown) of the feeder 40 and a mounting management device 80 so as to be capable of bidirectional communication. Further, the mounting controller 70 is connected so as to be able to output control signals to the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, etc. Has been. For example, the mounting controller 70 picks up the component P from the component supply tape sent to the component supply position by each feeder 40 by the suction nozzle 38 on the basis of the production program received from the mounting management device 80 and performs predetermined processing on the substrate 12. The substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, and the like are controlled so as to be sequentially mounted at the positions. Further, the mounting controller 70 determines whether or not a component is attracted to the suction nozzle 38 based on an image captured by the parts camera 39, and determines the shape, size, suction position, and the like of the component.
 実装管理装置80は、図1に示すように、CPU81を中心とするマイクロプロセッサであって、処理プログラムを記憶するROM82、基板の生産プログラムなどを記憶するHDD83、作業領域として用いられるRAM84などを備える。これらは、図示しないバスを介して電気的に接続されている。実装管理装置80には、マウスやキーボード等の入力デバイス85から入力信号が入力され、実装管理装置80からは、ディスプレイ86への画像信号が出力される。 As shown in FIG. 1, the mounting management apparatus 80 is a microprocessor centered on a CPU 81, and includes a ROM 82 that stores a processing program, an HDD 83 that stores a board production program, and a RAM 84 that is used as a work area. . These are electrically connected via a bus (not shown). An input signal is input to the mounting management device 80 from an input device 85 such as a mouse or a keyboard, and an image signal to the display 86 is output from the mounting management device 80.
 次に、こうして構成された部品実装システム1の実装管理装置80が実施する実装最適化処理ルーチンについて説明する。図5は実装最適化処理ルーチンのフローチャートである。ここでは、同じ種類の部品搭載基板を所定数製造する場合を例に挙げて説明する。 Next, a mounting optimization processing routine executed by the mounting management device 80 of the component mounting system 1 configured as described above will be described. FIG. 5 is a flowchart of a mounting optimization processing routine. Here, a case where a predetermined number of component mounting boards of the same type are manufactured will be described as an example.
 この実装最適化処理ルーチンが開始されると、実装管理装置80のCPU81は、今回の生産プログラム用データをHDD83から読み込む(ステップS100)。生産プログラムとは、どのような部品を基板へ実装するかとか、そうした部品を実装した基板を何枚作製するかなどを定めた計画に関するプログラムをいう。こうした生産プログラムは、作業者が入力デバイス85を操作することにより実装管理装置80のHDD83に保存されている。生産プログラム用データには、生産日時や基板の作製数、基板に実装する部品に関する部品情報、使用するヘッドに関するヘッド情報、ヘッドに装着される吸着ノズルに関するノズル情報などがある。 When this mounting optimization processing routine is started, the CPU 81 of the mounting management device 80 reads the current production program data from the HDD 83 (step S100). The production program is a program related to a plan that determines what parts are to be mounted on a board and how many boards on which such parts are mounted. Such a production program is stored in the HDD 83 of the mounting management apparatus 80 when the operator operates the input device 85. The production program data includes production date and time, the number of substrates to be manufactured, component information about components to be mounted on the substrate, head information about the head to be used, nozzle information about the suction nozzle mounted on the head, and the like.
 次に、実装管理装置80のCPU81は、装着シーケンスを設定する(ステップS200)。具体的には、CPU81は、装着順に部品種、装着位置(X座標,Y座標)及び使用する吸着ノズルの種類(使用ノズル種)を指定することにより装着シーケンスを設定する。なお、使用ノズル種は、部品を吸着可能で且つ隣接する装着済みの部品と干渉しない吸着ノズルの種類の中から、ノズル径の大きい吸着ノズルに設定される。 Next, the CPU 81 of the mounting management device 80 sets a mounting sequence (step S200). Specifically, the CPU 81 sets a mounting sequence by designating a component type, a mounting position (X coordinate, Y coordinate) and a type of suction nozzle to be used (used nozzle type) in the mounting order. The used nozzle type is set to a suction nozzle having a large nozzle diameter from among the types of suction nozzles that can suck parts and do not interfere with adjacent mounted parts.
 次に、実装管理装置80のCPU81は、各部品実装機10へ装着シーケンスを配分する(ステップS300)。具体的には、CPU81は、各部品実装機10に配分される装着シーケンスの数が均等又はできるだけ均等になるように配分する。各装着シーケンスには、どのフィーダの部品を実装するかが決められている。そのため、装着シーケンスの配分によって、各部品実装機10にどれだけのフィーダ40が搭載されるのかが決まる。 Next, the CPU 81 of the mounting management device 80 distributes the mounting sequence to each component mounting machine 10 (step S300). Specifically, the CPU 81 distributes so that the number of mounting sequences distributed to each component mounter 10 is equal or as even as possible. In each mounting sequence, which feeder component is to be mounted is determined. Therefore, how many feeders 40 are mounted on each component mounter 10 is determined by the distribution of the mounting sequence.
 次に、実装管理装置80のCPU81は、部品実装機10ごとに部品の装着順を演算する(ステップS400)。このとき、CPU81は、例えば部品を基板に装着するときに先に装着された部品によってその部品の装着が妨げられることのないように装着順を演算する。 Next, the CPU 81 of the mounting management device 80 calculates the mounting order of components for each component mounting machine 10 (step S400). At this time, the CPU 81 calculates the mounting order so that, for example, when the components are mounted on the substrate, the mounting of the components is not hindered by the previously mounted components.
 次に、実装管理装置80のCPU81は、部品実装機10ごとにフィーダ40の並べ方を決定するフィーダの並べ方決定ルーチンを実行する(ステップS500)。1台の部品実装機10を例に挙げると、その部品実装機10に配分された装着シーケンスに基づき、複数通りのフィーダの並べ方を作成し、その中から最適なフィーダの並べ方を選出し、それをその部品実装機10のフィーダの並べ方に決定する。このルーチンの詳細については、後述する。これにより、各部品実装機10において、フィーダ40の並べ方が決定される。その後、CPU81は、その並べ方を含む生産プログラムをHDD83に保存し(ステップS600)、このルーチンを終了する。 Next, the CPU 81 of the mounting management apparatus 80 executes a feeder arrangement determining routine for determining the arrangement of the feeders 40 for each component mounting machine 10 (step S500). Taking one component mounter 10 as an example, based on the mounting sequence allocated to the component mounter 10, a plurality of feeder arrangement methods are created, and the optimum feeder arrangement method is selected from among them. Is determined as a method of arranging the feeders of the component mounter 10. Details of this routine will be described later. Thereby, in each component mounting machine 10, how to arrange the feeders 40 is determined. Thereafter, the CPU 81 stores the production program including the arrangement method in the HDD 83 (step S600), and ends this routine.
 ここで、フィーダの並べ方決定ルーチン(ステップS500)について、図6のフローチャートを用いて説明する。ここでは、便宜上、一つの部品実装機10に配分されたフィーダ40の搭載位置を設定するルーチンについて説明するが、実際には、部品実装システム1を構成するすべての部品実装機10についてこのルーチンを実行する。 Here, the feeder arrangement method determination routine (step S500) will be described with reference to the flowchart of FIG. Here, for convenience, a routine for setting the mounting position of the feeder 40 allocated to one component mounting machine 10 will be described. In practice, this routine is performed for all the component mounting machines 10 constituting the component mounting system 1. Execute.
 このルーチンが実行される前に、HDD83には、フィーダ40をフィーダセット台60に配置するときの作業性を加味した個別配置時間指標を演算するのに必要な因子が記憶されている。こうした因子には、図7に示すように、環境因子に加えて、単体配置因子や配置回数因子が含まれる。 Before this routine is executed, the HDD 83 stores factors necessary for calculating an individual placement time index that takes into account workability when placing the feeder 40 on the feeder set base 60. As shown in FIG. 7, these factors include a single arrangement factor and an arrangement frequency factor in addition to environmental factors.
 環境因子とは、各フィーダ40の左右両側の配置環境に関連する因子であり、本実施形態では、各フィーダの左右両側の配置作業スペースに関連する第1の副因子と、隣接するフィーダに関連する副因子とを含む。 The environmental factor is a factor related to the arrangement environment on the left and right sides of each feeder 40. In this embodiment, the environmental factor is related to the first sub-factor related to the arrangement work space on the left and right sides of each feeder and the adjacent feeder. Sub-factors.
 第1の副因子を表す数値Sの一例を図8に示す。図8では、フィーダ40には、幅狭のフィーダAと、中程度の幅を持つフィーダBと、幅広のフィーダCの3種類が存在するものとする。フィーダA,B,Cの各々について、第1の副因子を表す数値Sが設定されている。なお、以下の説明では、数値SLm,SRmを使用するが、Sの後ろの添え字Lm,Rmのうち、Lは配置しようとするフィーダ(配置対象フィーダ)の左側のスロット62であることを意味し、Rは配置対象フィーダの右側のスロット62であることを意味し、mが配置対象フィーダが差し込まれるスロット62からm番目のスロット62であることを意味する。 An example of the numerical value S representing the first subfactor is shown in FIG. In FIG. 8, it is assumed that the feeder 40 includes three types of a feeder A having a narrow width, a feeder B having a medium width, and a feeder C having a wide width. For each of the feeders A, B, and C, a numerical value S representing the first subfactor is set. In the following description, numerical values S Lm and S Rm are used. Of the subscripts Lm and Rm after S, L is the slot 62 on the left side of the feeder to be placed (placement target feeder). R means that it is the slot 62 on the right side of the placement target feeder, and m means that it is the m th slot 62 from the slot 62 into which the placement target feeder is inserted.
 フィーダAは、1つのスロット62を占有する幅を持っている。そのフィーダAの左側の1番目のスロット62には、数値SL1として値1が設定されている。また、フィーダAの右側の1番目のスロット62には、数値SR1として値1が設定されている。フィーダBは、3つのスロット62を占有する幅を持っている。そのフィーダBの左側の1番目のスロット62には、数値SL1として値3が設定され、2番目のスロット62には数値SL2として値1が設定されている。また、フィーダBの右側の1番目のスロット62には、数値SR1として値3が設定され、2番目のスロット62には数値SR2として値1が設定されている。フィーダCは、5つのスロット62を占有する幅を持っている。そのフィーダCの左側の1番目のスロット62には、数値SL1として値5が設定され、2番目のスロット62には数値SL2として値3が設定され、3番目のスロット62には数値SL3として値1が設定されている。また、フィーダCの右側の1番目のスロット62には、数値SR1として値5が設定され、2番目のスロット62には数値SR2として値3が設定され、3番目のスロット62には数値SR3として値1が設定されている。 The feeder A has a width that occupies one slot 62. In the first slot 62 on the left side of the feeder A, a value 1 is set as a numerical value S L1 . In the first slot 62 on the right side of the feeder A, a value 1 is set as a numerical value S R1 . The feeder B has a width that occupies the three slots 62. In the first slot 62 on the left side of the feeder B, a value 3 is set as the numerical value S L1 , and in the second slot 62, a value 1 is set as the numerical value S L2 . Further, a value 3 is set as a numerical value S R1 in the first slot 62 on the right side of the feeder B, and a value 1 is set as a numerical value S R2 in the second slot 62. The feeder C has a width that occupies the five slots 62. In the first slot 62 on the left side of the feeder C, a value 5 is set as a numerical value S L1 , a value 3 is set as a numerical value S L2 in the second slot 62, and a numerical value S is set in the third slot 62. The value 1 is set as L3 . The first slot 62 on the right side of the feeder C is set to a value 5 as a numerical value S R1 , the second slot 62 is set to a value 3 as a numerical value S R2 , and the third slot 62 is a numerical value. The value 1 is set as S R3 .
 このように、第1の副因子を表す数値Sは、配置対象フィーダが差し込まれるスロット62の左右両側のうちそのフィーダに近いスロット62ほど、そのフィーダをスロット62に差し込むときの作業性に与える影響が大きいため、値が大きくなるように定められられている。また、配置対象フィーダの幅が広いほど、作業負担が大きくなるため、値が大きくなるように定められている。 Thus, the numerical value S representing the first sub-factor has an effect on workability when inserting the feeder into the slot 62 in the slots 62 closer to the feeder among the left and right sides of the slot 62 into which the placement target feeder is inserted. Since the value is large, the value is set to be large. In addition, since the work load increases as the width of the placement target feeder increases, the value is determined to increase.
 第2の副因子を表す数値Kの一例を表1に示す。表1では、配置対象フィーダと周囲のフィーダとの関係によって数値Kが設定されている。各フィーダの幅は、必ずしもスロット幅の整数倍で作られているわけではない。フィーダの幅は、対象とするテープの幅に依存している。このため、各フィーダがスロット62を占有するとき、スロット幅全体を占有するフィーダと、左右に隙間を空けて占有するフィーダとがある。この結果、各フィーダを隣接して配置した場合に、2つのフィーダ同士が隙間なく接する場合と、少し隙間が空く場合とがある。隙間なく接する組合せの場合、配置するときの作業はしづらい。これに対して、隙間が大きいほど作業はしやすい。そこで、表1では、隣接して配置した場合に、2つのフィーダ同士の隙間が小さい組合せほど値が大きくなるように設定されている。例えば、配置対象フィーダがフィーダAの場合、周囲のフィーダがフィーダA,B,Cのいずれであっても数値Kは値1.0という小さな値に設定されている。これは、フィーダAは左右に大きく隙間を空けてスロット62を占有するため、スロット62に差し込んだ場合に隣接するフィーダがいずれのフィーダであってもフィーダAとの間に十分な隙間ができる。このため、フィーダAを配置するときの作業性があまり悪化しないからである。配置対象フィーダがフィーダB,Cの場合、スロット幅に対して占有する幅が比較的大きく、隙間が生じにくい。このため、数値Kが大きな値になるように設定されている。このように、第2の副因子を表す数値Kは、2つのフィーダを隣接して配置したときの両フィーダの隙間が小さいほど値が大きくなるように定められている。 An example of the numerical value K representing the second subfactor is shown in Table 1. In Table 1, a numerical value K is set according to the relationship between the placement target feeder and the surrounding feeders. The width of each feeder is not necessarily made an integral multiple of the slot width. The width of the feeder depends on the width of the target tape. For this reason, when each feeder occupies the slot 62, there are a feeder that occupies the entire slot width and a feeder that occupies a gap left and right. As a result, when the feeders are arranged adjacent to each other, there are cases where the two feeders are in contact with each other without a gap, and there are cases where a little gap is left. In the case of a combination that touches without a gap, it is difficult to perform the arrangement work. On the other hand, the larger the gap, the easier the work. Therefore, in Table 1, the values are set so as to increase as the gap between the two feeders becomes smaller when they are arranged adjacent to each other. For example, when the feeder to be arranged is the feeder A, the numerical value K is set to a small value of 1.0 even if the surrounding feeder is any of the feeders A, B, and C. This is because the feeder A occupies the slot 62 with a large gap between the left and right, so that when the feeder A is inserted into the slot 62, a sufficient gap is formed between the feeder A and any feeder. For this reason, workability when the feeder A is arranged does not deteriorate so much. When the placement target feeders are feeders B and C, the width occupied with respect to the slot width is relatively large, and a gap is hardly generated. For this reason, the numerical value K is set to be a large value. Thus, the numerical value K representing the second sub-factor is determined such that the value increases as the gap between the two feeders becomes smaller when the two feeders are arranged adjacent to each other.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、単体配置因子について説明する。単体配置因子とは、各フィーダを単体でフィーダセット台60に配置するときの標準的な単体配置時間に関連する因子である。この単体配置因子をtとする。
フィーダと単体配置因子との関係の一例を表2に示す。表2に示すように、配置対象フィーダの幅が広くなるにつれて、フィーダをスロット62に差し込むときの作業負担が増すため、単体配置因子tが大きくなるように設定されている。なお、ここでは、フィーダAの標準的な単体配置時間を値1に規定し、それに対するフィーダB,Cの標準的な単体配置時間の割合を数値化してtを設定した。
Next, a single arrangement factor will be described. The single placement factor is a factor related to a standard single placement time when each feeder is placed on the feeder set base 60 alone. Let this single arrangement factor be t.
An example of the relationship between the feeder and the single placement factor is shown in Table 2. As shown in Table 2, since the work load when inserting the feeder into the slot 62 increases as the width of the placement target feeder increases, the single placement factor t is set to increase. Here, the standard single unit arrangement time of the feeder A is defined as a value 1, and the ratio of the standard single unit arrangement time of the feeders B and C to the value is expressed as a numerical value t.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、配置回数因子について説明する。配置回数因子とは、部品搭載基板を所定数製造するのに要する各フィーダの配置回数に関連する因子である。この配置回数因子をNとする。フィーダと配置回数因子との関係の一例を表3に示す。フィーダの配置回数は、そのフィーダによって供給される部品を基板1枚あたりに装着する数が多いほど、フィーダの交換回数が増えるため、配置回数因子Nが大きくなる。表3では、フィーダA-1,A-2,A-3(同じフィーダAを使用しているが供給する部品がそれぞれ異なる)は5回、フィーダBは3回、フィーダCは1回に設定されている。フィーダの交換回数はフィーダをスロットに差し込むときの作業時間に大きく関係しているため、ここではフィーダの交換回数そのものを配置回数因子Nとした。なお、交換回数には、フィーダセット台60に最初にフィーダをセットする回数も1回とカウントするものとした。 Next, the placement frequency factor will be described. The arrangement frequency factor is a factor related to the arrangement frequency of each feeder required to manufacture a predetermined number of component mounting boards. This arrangement frequency factor is N. Table 3 shows an example of the relationship between the feeder and the arrangement frequency factor. Regarding the number of feeders arranged, the more the number of components supplied by the feeder is mounted per board, the greater the number of feeder replacements. In Table 3, feeders A-1, A-2, and A-3 (using the same feeder A but different parts to be supplied) are set to 5 times, feeder B is set to 3 times, and feeder C is set to 1 time. Has been. Since the number of times of feeder replacement is greatly related to the work time when the feeder is inserted into the slot, the number of feeder replacement itself is used as the arrangement number factor N here. Note that the number of replacements is also counted as one when the feeder is first set on the feeder set base 60.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 CPU81は、フィーダの並べ方決定ルーチンを開始すると、まず、部品実装機10に配分された装着シーケンスに基づき、複数通りのフィーダの並べ方を作成する(ステップS510)。具体的には、CPU81は、部品実装機10に配分された装着シーケンスにしたがって必要なフィーダを選定し、順列や組合せ等の考え方を利用してそれらのフィーダの並べ方を複数通り作成する。ここでは、便宜上、図9の並べ方と図10の並べ方の2つを作成したものとして説明する。図9及び図10では、フィーダセット台60にスロット62が1番~23番までの合計23個設けられているとした。図9は、フィーダ同士の間に空きスロットができないようにフィーダを詰めて並べた並べ方の一例であり、図10は、フィーダB,Cの周囲に空きスロットができるようにフィーダを並べた並べ方の一例である。 When starting the feeder arrangement method determination routine, the CPU 81 first creates a plurality of feeder arrangement methods based on the mounting sequence allocated to the component mounter 10 (step S510). Specifically, the CPU 81 selects necessary feeders according to the mounting sequence allocated to the component mounter 10, and creates a plurality of ways of arranging these feeders using concepts such as permutations and combinations. Here, for the sake of convenience, the description will be made assuming that the two arrangements shown in FIG. 9 and the arrangement shown in FIG. 10 are created. 9 and 10, it is assumed that the feeder set base 60 is provided with a total of 23 slots 62 from No. 1 to No. 23. FIG. 9 is an example of an arrangement in which feeders are packed and arranged so that there is no empty slot between the feeders. FIG. 10 is an example of an arrangement in which feeders are arranged so that empty slots are formed around feeders B and C. It is an example.
 次に、CPU81は、複数通りのフィーダの並べ方の各々について、個別配置時間指標Tkの合計を全フィーダ配置時間指標TSUMとして演算する(ステップS520)。具体的には、各並べ方について、複数のフィーダのそれぞれの個別配置時間指標Tkを、環境因子を構成する第1及び第2の副因子S,Kと単体配置因子tと配置回数因子Nとを用いて演算し、その合計ΣTkを全フィーダ配置時間指標TSUMとして演算する。個別配置時間指標Tkの演算式の一例を下記式(1)に示す。また、式(1)中のCkは下記式(2)により演算する。図9及び図10には、それぞれの並べ方における、各フィーダの個別配置時間指標T1~T5の数値及び全フィーダ配置時間指標TSUMの数値を示した。 Next, the CPU 81 calculates the total of the individual arrangement time index T k as the total feeder arrangement time index T SUM for each of the plurality of ways of arranging the feeders (step S520). Specifically, for each arrangement, the individual placement time index T k of each of the plurality of feeders is set to the first and second sub-factors S and K constituting the environmental factor, the single placement factor t, the placement frequency factor N, And the total ΣT k is calculated as the total feeder arrangement time index T SUM . An example of an arithmetic expression for the individual arrangement time index T k is shown in the following expression (1). Further, C k in the equation (1) is calculated by the following equation (2). 9 and 10 show the values of the individual placement time indexes T 1 to T 5 of each feeder and the values of all the feeder placement time indexes T SUM in the respective arrangement methods.
k=(tk+Ck)*Nk   (1)
 Tk:フィーダセット台にセットされたフィーダのうち左からk番目のフィーダの個別配置時間指標T
 tk:k番目のフィーダの単体配置因子t
 Nk:k番目のフィーダの配置回数因子N
 Ck:k番目のフィーダの補正項C
 k:1以上の整数
T k = (t k + C k ) * N k (1)
T k : Individual placement time index T of the kth feeder from the left among the feeders set on the feeder set stand
t k : single placement factor t of the k th feeder
N k : arrangement factor N of the kth feeder
C k : correction term C of the k th feeder
k: an integer greater than or equal to 1
k=(SL1k*KL1k+SL2k*KL2k+…)+(SR1k*KR1k+SR2k*KR2k+…) (2)
 SLmk:k番目のフィーダの左からm番目のスロットに割り当てられた数値S
 KLmk:k番目のフィーダと、そのフィーダの左からm番目のスロットを占有するフィーダとの関係によって割り当てられた数値K
 SRmk:k番目のフィーダの右からm番目のスロットに割り当てられた数値S
 KRmk:k番目のフィーダと、そのフィーダの右からm番目のスロットを占有するフィーダとの関係によって割り当てられた数値K
 m:1以上の整数
C k = (S L1k * K L1k + S L2k * K L2k + ...) + (S R1k * K R1k + S R2k * K R2k + ...) (2)
S Lmk : Numerical value S assigned to the mth slot from the left of the kth feeder
K Lmk : Numerical value K assigned by the relationship between the kth feeder and the feeder that occupies the mth slot from the left of the feeder
S Rmk : Numerical value S assigned to the mth slot from the right of the kth feeder
K Rmk : Numerical value K assigned by the relationship between the kth feeder and the feeder occupying the mth slot from the right of the feeder
m: an integer greater than or equal to 1
 次に、CPU81は、演算した全フィーダ配置時間指標TSUMが最小となるフィーダの並び方を、今回推奨するフィーダの並び方として決定し(ステップS530)、それをディスプレイ86に表示し(ステップS540)、本ルーチンを終了する。今回の例では、図9の方が図10よりも全フィーダ配置時間指標TSUMの数値が小さいため、CPU81は、図10の並べ方を今回推奨するフィーダの並び方として決定し、こちらの並び方をディスプレイ86に表示する。 Next, the CPU 81 determines the feeder arrangement that minimizes the calculated total feeder arrangement time index T SUM as the recommended feeder arrangement this time (step S530), and displays it on the display 86 (step S540). This routine ends. In this example, since the value of the total feeder arrangement time index T SUM is smaller in FIG. 9 than in FIG. 10, the CPU 81 determines the arrangement in FIG. 86.
 ところで、個別配置時間指標Tkは、フィーダ40をフィーダセット台60に配置するときの作業性を加味した指標である。こうした作業性は、フィーダ40の並べ方(例えば隣りにフィーダ40が配置されるか否か、配置されるとすればどのようなフィーダ40か等)によって変わる。そのため、個別配置時間指標Tkも、フィーダ40の並べ方によって変わる。全フィーダ配置時間指標TSUMは、同じ種類の部品搭載基板を所定数製造するのに要する時間の指標であり、すべてのフィーダ40の個別配置時間指標Tkの和として演算されるものである。そのため、全フィーダ配置時間指標TSUMも、フィーダ40の並べ方によって変わる。 By the way, the individual arrangement time index T k is an index considering workability when the feeder 40 is arranged on the feeder set base 60. Such workability varies depending on how the feeders 40 are arranged (for example, whether or not the feeders 40 are arranged next to each other, and what kind of feeders 40 are arranged). For this reason, the individual arrangement time index T k also changes depending on how the feeders 40 are arranged. All feeders arranged time index T SUM is the same type of component mounting substrate is indicative of time required for a predetermined number of production, in which is calculated as the sum of the individual arrangement time index T k of all feeders 40. Therefore, the total feeder arrangement time index TSUM also changes depending on how the feeders 40 are arranged.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のHDD83が本発明の記憶手段に相当し、CPU81が演算手段に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The HDD 83 of this embodiment corresponds to the storage unit of the present invention, and the CPU 81 corresponds to the calculation unit.
 以上説明した本実施形態の実装管理装置80によれば、同じ種類の部品搭載基板を所定数製造するにあたり、全フィーダ配置時間指標TSUMを、フィーダ40をフィーダセット台60に配置するときの作業性を考慮したフィーダ40の並べ方の指標として利用することができる。 According to the mounting management device 80 of the present embodiment described above, when a predetermined number of component mounting boards of the same type are manufactured, all feeder placement time indices TSUM are used, and work when placing the feeder 40 on the feeder set base 60 is performed. This can be used as an index for arranging the feeders 40 in consideration of the characteristics.
 また、環境因子(第1及び第2の副因子)はフィーダの並べ方によって変化する因子である。この環境因子を用いて個別配置時間指標Tkひいては全フィーダ配置時間指標TSUMを演算しているため、適切な指標が得られる。 The environmental factors (first and second sub-factors) are factors that change depending on how the feeders are arranged. Since the individual placement time index T k and thus the total feeder placement time index T SUM are calculated using this environmental factor, an appropriate index can be obtained.
 更に、第1の副因子は、フィーダの左右両側のスロットのうちフィーダに近いスロットほど値が大きくなるように定められ、第2の副因子は、2つのフィーダを隣接して配置したときの両フィーダの隙間が小さいほど値が大きくなるように定められている。そのため、配置作業に影響を及ぼしやすいものほど、各副因子の数値が大きくなり、結果として全フィーダ配置時間指標TSUMの値も大きくなる。 Further, the first subfactor is determined such that the slot closer to the feeder out of the left and right side slots of the feeder has a larger value, and the second subfactor is determined when the two feeders are arranged adjacent to each other. The value is determined to be larger as the feeder gap is smaller. For this reason, the value of each sub-factor increases as the influence of the arrangement work is increased, and as a result, the value of the total feeder arrangement time index T SUM also increases.
 そしてまた、環境因子に加えて、単体配置因子と配置回数因子を用いて個別配置時間指標Tkを演算したため、個別配置時間指標Tkを、同じ種類の部品搭載基板を所定数製造する際の、1つのフィーダを配置するのに要する作業時間とみなすことができる。 And also, in addition to the environmental factors, since the computed indicators T k individual arrangement time using the arrangement number factors as simplex arrangement factor, individual arrangement time indicator T k, when a predetermined number of manufacturing the same type of component mounting board It can be regarded as the work time required to arrange one feeder.
 そして更に、全フィーダ配置時間ができるだけ短くなるようなフィーダの並べ方をディスプレイ86に表示してオペレータに提案することができる。 Furthermore, it is possible to display on the display 86 how to arrange the feeders so that the total feeder arrangement time is as short as possible, and to propose to the operator.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 上述した実施形態では、推奨するフィーダの並べ方を、複数通りのフィーダの並べ方の各々について全フィーダ配置時間指標TSUMを求め、それが最小となるようにして決定したが、ほかの方法で決定してもよい。例えば、部品実装機10が1枚の部品搭載基板を生産するのに要する時間を基板生産時間指標Tproとして演算し、全フィーダ配置時間指標TSUMと基板生産時間指標Tproとの合計が最小となるように、推奨するフィーダの並べ方を決定してもよい。吸着ノズル38は、フィーダ40によって供給された部品Pを取りに行き、その部品Pを吸着し、パーツカメラ39の上方位置を通って基板12の所定位置へ移動し、そこで部品Pを放す、という一連の動作を、基板12へ装着する全部品について繰り返し行う。また、装着シーケンスには、装着順に部品種、装着位置(X座標,Y座標)及び使用する吸着ノズルの種類(使用ノズル種)が指定されている。そのため、フィーダ40の並べ方が決まれば、部品実装機10が1枚の部品搭載基板を生産するのに要する時間つまり基板生産時間指標Tproをシミュレーションによって演算することができる。こうすれば、全フィーダ配置時間と基板生産時間との合計ができるだけ短くなるようなフィーダの並べ方を提案することができる。全フィーダ配置時間を短くしようとすれば基板生産時間が長くなってしまうことがあり、逆に基板生産時間を短くしようとすれば全フィーダ配置時間が長くなってしまうことがある。そのため、両者の合計が最小となるようなフィーダの並べ方がベストに近い選択と考えられる。 In the above-described embodiment, the recommended feeder arrangement is determined such that the total feeder arrangement time index T SUM is obtained for each of a plurality of feeder arrangement methods and is minimized, but is determined by other methods. May be. For example, the time component mounting apparatus 10 is required to produce a single component mounting board is calculated as the substrate production time index T pro, total minimum the total feeder arranged time index T SUM and board production time index T pro The recommended feeder arrangement may be determined so that The suction nozzle 38 picks up the component P supplied by the feeder 40, sucks the component P, moves to a predetermined position of the substrate 12 through the position above the parts camera 39, and releases the component P there. A series of operations are repeated for all the parts to be mounted on the substrate 12. In the mounting sequence, a component type, a mounting position (X coordinate, Y coordinate) and a type of suction nozzle to be used (used nozzle type) are specified in the mounting order. Therefore, if the arrangement of the feeders 40 is determined, the time required for the component mounter 10 to produce one component mounting board, that is, the board production time index T pro can be calculated by simulation. In this way, it is possible to propose a feeder arrangement method in which the total of the total feeder arrangement time and the substrate production time is as short as possible. If an attempt is made to shorten the total feeder arrangement time, the board production time may become longer. Conversely, if an attempt is made to shorten the board production time, the entire feeder arrangement time may become longer. For this reason, it is considered that selection of feeders that minimizes the sum of the two is the best choice.
 上述した実施形態の全フィーダ配置時間指標TSUMの代わりに、環境因子に関連する補正項Ckの合計、つまりΣCkを全フィーダ配置時間指標としてもよい。この補正項Ckは、上記式(2)に示すとおり、フィーダの左右両側の配置環境つまりフィーダの並べ方によって変化する。一方、単体配置因子tkや配置回数因子Kkはフィーダの並べ方によって変化しない。そのため、ΣCkは、フィーダ40をフィーダセット台60に配置するときの作業性を考慮したフィーダ40の並べ方の指標として利用することができる。 Instead of the total feeder arrangement time index T SUM of the above-described embodiment, the total of correction terms C k related to environmental factors, that is, ΣC k may be used as the total feeder arrangement time index. This correction term C k varies depending on the arrangement environment on both the left and right sides of the feeder, that is, how the feeders are arranged, as shown in the above equation (2). On the other hand, the single arrangement factor t k and the arrangement frequency factor K k do not change depending on how the feeders are arranged. Therefore, ΣC k can be used as an index for arranging the feeders 40 in consideration of workability when the feeders 40 are arranged on the feeder set base 60.
 上述した実施形態では、環境因子には、第1の副因子と第2の副因子の両方が含まれるとして説明したが、いずれか一方を含むようにしてもよい。あるいは、第1及び第2の副因子と別の、環境に関連する副因子を含むようにしてもよい。 In the above-described embodiment, the environmental factor has been described as including both the first subfactor and the second subfactor, but either one may be included. Or you may make it include the subfactor related to an environment different from the 1st and 2nd subfactor.
 上述した実施形態では、TSUMを上記式(1)により求めたが、上記式(1)に限定されるものではなく、3つの因子tk,Ck,Nkを含む式であれば他の式であってもよい。 In the above-described embodiment, T SUM is obtained from the above equation (1), but is not limited to the above equation (1), and any other equation including three factors t k , C k , and N k may be used. The following formula may also be used.
 上述した実施形態では、Ckを上記式(2)により求めたが、上記式(2)に限定されるものではなく、第1の副因子を表す数値Sと第2の副因子を表す数値Kとを含む式であれば他の式であってもよい。例えば、Ckを上記式(2’)により求めてもよい。
k=((SL1k+KL1k)+(SL2k+KL2k)+…)+((SR1k+KR1k)+(SR2k*KR2k)+…)  (2’)
In the above-described embodiment, C k is obtained from the above equation (2), but is not limited to the above equation (2), and is a numerical value S representing the first subfactor and a numerical value representing the second subfactor. Other formulas may be used as long as they include K. For example, C k may be obtained by the above formula (2 ′).
C k = ((S L1k + K L1k ) + (S L2k + K L2k ) + ...) + ((S R1k + K R1k ) + (S R2k * K R2k ) + ...) (2 ')
 上述した実施形態で示した各因子を表す数値は、単なる例示であり、他の数値を採用してもよいことは言うまでもない。 It goes without saying that the numerical values representing the factors shown in the above-described embodiments are merely examples, and other numerical values may be adopted.
 本発明は、フィーダセット台に並べられた複数のフィーダから順次部品を採取して基板上に実装する部品実装機を管理する実装管理装置に利用可能である。 The present invention is applicable to a mounting management apparatus that manages a component mounting machine that sequentially collects components from a plurality of feeders arranged on a feeder set base and mounts them on a substrate.
1 部品実装システム、10 部品実装機、12 基板、18 基板搬送装置、20 支持板、22 コンベアベルト、23 支持ピン、26 X軸スライダ、28 ガイドレール、30 Y軸スライダ、32 ガイドレール、34 ヘッドユニット、35 取っ手、36 ロータリーヘッド、38 吸着ノズル、39 パーツカメラ、40 フィーダ、42 リール、44 テープ、46 凹部、48 フィルム、60 フィーダセット台、62 スロット、65 コネクタ、66 位置決め穴、70 実装コントローラ、75 コネクタ、80 実装管理装置、81 CPU、82 ROM、83 HDD、84 RAM、85 入力デバイス、86 ディスプレイ。 1 component mounting system, 10 component mounting machine, 12 substrate, 18 substrate transfer device, 20 support plate, 22 conveyor belt, 23 support pin, 26 X axis slider, 28 guide rail, 30 Y axis slider, 32 guide rail, 34 head Unit, 35 handle, 36 rotary head, 38 suction nozzle, 39 parts camera, 40 feeder, 42 reel, 44 tape, 46 recess, 48 film, 60 feeder set base, 62 slot, 65 connector, 66 positioning hole, 70 mounting controller 75 connector, 80 mounting management device, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 input device, 86 display.

Claims (7)

  1.  フィーダセット台に並べられた複数のフィーダから順次部品を採取して基板上に実装する部品実装機を管理する実装管理装置であって、
     前記フィーダを前記フィーダセット台に配置するときの作業性を加味した個別配置時間指標を演算するのに必要な因子を記憶する記憶手段と、
     同じ種類の部品搭載基板を所定数製造するにあたり、前記複数のフィーダのそれぞれの前記個別配置時間指標を前記因子を用いて演算し、該演算されたすべてのフィーダの前記個別配置時間指標に基づいて、前記部品搭載基板を前記所定数製造するのに要する全フィーダ配置時間指標を演算する演算手段と、
     を備えた実装管理装置。
    A mounting management device that manages a component mounting machine that sequentially collects components from a plurality of feeders arranged on a feeder set stand and mounts them on a board,
    Storage means for storing factors necessary for calculating an individual placement time index taking into account workability when placing the feeder on the feeder set base;
    In manufacturing a predetermined number of component mounting boards of the same type, the individual placement time index of each of the plurality of feeders is calculated using the factor, and based on the calculated individual placement time index of all the feeders Calculating means for calculating all feeder arrangement time indexes required to manufacture the predetermined number of the component mounting boards;
    A mounting management device.
  2.  前記因子には、各フィーダの左右両側の配置環境に関連する環境因子が含まれる、
     請求項1に記載の実装管理装置。
    The factors include environmental factors related to the arrangement environment on the left and right sides of each feeder.
    The mounting management apparatus according to claim 1.
  3.  前記環境因子には、各フィーダの左右両側の配置作業スペースに関連する第1の副因子と、隣接するフィーダに関連する第2の副因子の少なくとも一方が含まれる、
     請求項2に記載の実装管理装置。
    The environmental factors include at least one of a first sub-factor related to the arrangement work space on the left and right sides of each feeder and a second sub-factor related to an adjacent feeder.
    The mounting management apparatus according to claim 2.
  4.  前記第1の副因子は、フィーダの左右両側のスロットのうち前記フィーダに近いスロットほど値が大きくなるように定められ、
     前記第2の副因子は、2つのフィーダを隣接して配置したときの両フィーダの隙間が小さいほど値が大きくなるように定められている、
     請求項3に記載の実装管理装置。
    The first sub-factor is determined such that a slot closer to the feeder among slots on the left and right sides of the feeder has a larger value.
    The second sub-factor is determined so that the value increases as the gap between the two feeders when two feeders are arranged adjacent to each other is smaller.
    The mounting management apparatus according to claim 3.
  5.  前記因子には、前記環境因子に加えて、各フィーダを単体で前記フィーダセット台に配置するときの標準的な単体配置時間に関連する単体配置因子と、前記部品搭載基板を前記所定数製造するのに要する各フィーダの配置回数に関連する配置回数因子とが含まれる、
     請求項2~4のいずれか1項に記載の実装管理装置。
    In addition to the environmental factors, the factors include a single arrangement factor related to a standard single arrangement time when each feeder is arranged on the feeder set stand alone, and the predetermined number of the component mounting boards are manufactured. And an arrangement number factor related to the number of arrangements of each feeder required for
    The mounting management apparatus according to any one of claims 2 to 4.
  6.  前記演算手段は、複数通りのフィーダの並べ方の各々について、前記複数のフィーダの前記個別配置時間指標の合計を前記全フィーダ配置時間指標として演算し、該演算した全フィーダ配置時間指標が最小となるようにフィーダの並べ方を決定する、
     請求項1~5のいずれか1項に記載の実装管理装置。
    The calculation means calculates the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of feeder arrangement methods, and the calculated total feeder arrangement time index is minimized. To determine how to arrange the feeders,
    The mounting management apparatus according to any one of claims 1 to 5.
  7.  前記演算手段は、複数通りのフィーダの並べ方の各々について、前記複数のフィーダの前記個別配置時間指標の合計を前記全フィーダ配置時間指標として演算すると共に前記部品実装機が1枚の部品搭載基板を生産するのに要する時間を基板生産時間指標として演算し、該演算した全フィーダ配置時間指標と前記基板生産時間指標との合計が最小となるようにフィーダの並べ方を決定する、
     請求項1~5のいずれか1項に記載の実装管理装置。
    The calculation means calculates the total of the individual arrangement time indexes of the plurality of feeders as the total feeder arrangement time index for each of a plurality of ways of arranging the feeders, and the component mounting machine uses one component mounting board. The time required for production is calculated as a board production time index, and the feeder arrangement method is determined so that the total of the calculated all feeder placement time index and the board production time index is minimized.
    The mounting management apparatus according to any one of claims 1 to 5.
PCT/JP2015/063629 2015-05-12 2015-05-12 Mounting management device WO2016181497A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017517519A JP6488373B2 (en) 2015-05-12 2015-05-12 Mounting management device
PCT/JP2015/063629 WO2016181497A1 (en) 2015-05-12 2015-05-12 Mounting management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063629 WO2016181497A1 (en) 2015-05-12 2015-05-12 Mounting management device

Publications (1)

Publication Number Publication Date
WO2016181497A1 true WO2016181497A1 (en) 2016-11-17

Family

ID=57248757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063629 WO2016181497A1 (en) 2015-05-12 2015-05-12 Mounting management device

Country Status (2)

Country Link
JP (1) JP6488373B2 (en)
WO (1) WO2016181497A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264091A (en) * 2017-10-31 2020-06-09 雅马哈发动机株式会社 Feeder management device and component mounting system provided with feeder management device
CN112425278A (en) * 2018-07-19 2021-02-26 株式会社富士 Component mounting system
JP2023053305A (en) * 2022-03-15 2023-04-12 株式会社Fuji Component mounting system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318091A (en) * 2006-04-24 2007-12-06 Juki Corp Component mounting system
JP2009111106A (en) * 2007-10-30 2009-05-21 Juki Corp Feeder arrangement optimizing method for component mounting machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216945A (en) * 2004-01-27 2005-08-11 Yamaha Motor Co Ltd Method and device for setting arrangement of feeder
JP5877670B2 (en) * 2011-08-30 2016-03-08 富士機械製造株式会社 Component supply method and component mounting apparatus
JPWO2014097389A1 (en) * 2012-12-18 2017-01-12 富士機械製造株式会社 Component mounter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318091A (en) * 2006-04-24 2007-12-06 Juki Corp Component mounting system
JP2009111106A (en) * 2007-10-30 2009-05-21 Juki Corp Feeder arrangement optimizing method for component mounting machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264091A (en) * 2017-10-31 2020-06-09 雅马哈发动机株式会社 Feeder management device and component mounting system provided with feeder management device
CN111264091B (en) * 2017-10-31 2022-02-11 雅马哈发动机株式会社 Feeder management device and component mounting system provided with feeder management device
US11612091B2 (en) 2017-10-31 2023-03-21 Yamaha Hatsudoki Kabushiki Kaisha Feeder management device and component-mounting system provided with same
CN112425278A (en) * 2018-07-19 2021-02-26 株式会社富士 Component mounting system
CN112425278B (en) * 2018-07-19 2022-05-13 株式会社富士 Component mounting system
JP2023053305A (en) * 2022-03-15 2023-04-12 株式会社Fuji Component mounting system
JP7372490B2 (en) 2022-03-15 2023-10-31 株式会社Fuji Parts mounting system

Also Published As

Publication number Publication date
JP6488373B2 (en) 2019-03-20
JPWO2016181497A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
US10869420B2 (en) Method for optimizing component type allocation and apparatus for optimizing component type allocation
JP6266621B2 (en) Preparatory work support system
US11006558B2 (en) Mounting management device
JP6255243B2 (en) Support device
JP6488373B2 (en) Mounting management device
WO2013124959A1 (en) Production plan determining method and determining device
JP6684017B2 (en) Mounting management device
JP5331859B2 (en) Mounting board manufacturing system and mounting board manufacturing method
JP6491317B2 (en) Component mounting line optimization apparatus and component mounting line optimization method
JP6285222B2 (en) Support device
JP6526808B2 (en) Mounting management device
JP4989715B2 (en) Mounting method of electronic parts
JP6906089B2 (en) Parts mounting machine
JP2019071429A (en) Component mounting machine, board production line, and component type allocation method
CN109196971A (en) Component mounting system
WO2016103330A1 (en) Device for managing work performed on substrate
JP6752086B2 (en) Implementation management device
JP6685098B2 (en) Support device
JP2019071477A (en) Device for optimizing component mounting line and method for optimizing component mounting line
JP6227224B2 (en) Electronic component mounting line management device and electronic component mounting device
WO2022070410A1 (en) Production assistance device
JP7393845B2 (en) Board production system
JP2019212774A (en) Temporary storage area positioning method and temporary storage area positioning device in backup device
JPWO2020003378A1 (en) Component supply unit placement determination method and component mounting system
JP6698213B2 (en) Wafer supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891822

Country of ref document: EP

Kind code of ref document: A1