WO2016181439A1 - Mounting device and mounting method - Google Patents

Mounting device and mounting method Download PDF

Info

Publication number
WO2016181439A1
WO2016181439A1 PCT/JP2015/063343 JP2015063343W WO2016181439A1 WO 2016181439 A1 WO2016181439 A1 WO 2016181439A1 JP 2015063343 W JP2015063343 W JP 2015063343W WO 2016181439 A1 WO2016181439 A1 WO 2016181439A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
unit
component
cycle
recovery
Prior art date
Application number
PCT/JP2015/063343
Other languages
French (fr)
Japanese (ja)
Inventor
茂人 大山
淳 飯阪
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/063343 priority Critical patent/WO2016181439A1/en
Priority to JP2017517464A priority patent/JP6630726B2/en
Publication of WO2016181439A1 publication Critical patent/WO2016181439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a mounting apparatus and a mounting method.
  • a camera is installed around the push-up unit of the die supply device, and images are taken in a state where the push-up pin of the push-up unit is pushed up, and the volume and the position in the XY direction of the push-up pin are measured.
  • a device for measuring breakage or bending of a push-up pin has been proposed (see, for example, Patent Document 1).
  • the sub robot picks up the die pushed up by the push-up unit, reverses it by the reversing unit, and moves the die to the picking position by the shuttle mechanism.
  • the present invention has been made in view of such problems, and a main object of the present invention is to provide a mounting apparatus and a mounting method capable of performing mounting processing while suppressing generation of useless parts.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the mounting apparatus of the present invention is A mounting unit that executes a mounting cycle in which components are sampled from a predetermined sampling position by a sampling member and mounted on a substrate; and A delivery unit that moves from an initial position to the sampling position without returning a plurality of parts to the initial position; When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit.
  • a control unit that causes the mounting unit to execute a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit; It is equipped with.
  • this mounting apparatus when at least a part of a plurality of parts to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the mounting is performed until the next part is sampled from the delivery unit. In the cycle, recovery mounting processing is executed using the remaining components.
  • a mounting error occurs, such as when parts are not properly collected, the recovery mounting process is performed collectively in a subsequent mounting cycle, so that a sampling member is left empty. In some cases, the mounting process can be performed efficiently. In this case, when other components are mounted in the next mounting cycle, the components remaining in the delivery unit may be discarded without being returned to the initial position.
  • the recovery mounting process is performed in the mounting cycle until the next part is picked up from the delivery unit using the remaining parts, so the mounting process is performed while suppressing the generation of wasted parts.
  • moving without returning to the initial position means that the part cannot be physically returned to the initial position and cannot be returned.
  • the part can be physically returned but the return process is complicated. Including the case where is not returned to the initial position.
  • “when at least some of the plurality of parts to be collected by the collection member remain in the delivery unit” means “when a mounting error occurs in a part collected from the delivery unit” Also good.
  • the control unit next receives the receiving unit when at least a part of the plurality of components to be sampled by the sampling member remains in the delivery unit in the one mounting cycle.
  • the mounting unit may be caused to execute a recovery mounting process using the remaining component until the final mounting cycle. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components.
  • the control unit next performs the delivery unit.
  • the recovery mounting process may be executed using the remaining components in the next mounting cycle or the most recent mounting cycle.
  • the component remaining in the delivery unit is used immediately, it is preferable that the component is not left in the delivery unit.
  • the delivery unit includes a flip unit that reverses and moves a component from the initial position to the sampling position, and a shuttle unit that moves by placing the component from the initial position to the sampling position. It may be either one.
  • the component in the mounting apparatus using the flip part or the shuttle part, it is possible to perform the mounting process while suppressing generation of useless parts.
  • the component may be a wafer component. Since wafer parts are expensive, there is a high demand for suppressing the generation of wasted parts.
  • control unit may cause the mounting unit to execute the recovery mounting process using only the components remaining in the delivery unit.
  • control unit adds the component to the delivery unit when the mounting unit has an available sampling member that can collect the remaining component in the next mounting cycle. Then, the mounting process of the recovery may be executed by the mounting unit in the next mounting cycle.
  • the control unit performs mounting processing for recovery of the mounting error in a backward mounting cycle when no component remains in the delivery unit at the time of mounting error of the component collected from the delivery unit.
  • the mounting unit may be executed.
  • the “backward mounting cycle” is, for example, a cycle later than “the next mounting cycle for collecting parts from the delivery unit”. For example, the last mounting cycle of all the mounting cycles It is good.
  • the “backward mounting cycle” means that the mounting order may be changed in the recovery mounting process when the recovery mounting process is collectively performed in the last mounting cycle.
  • the control unit may cause the mounting unit to execute mounting processing for recovery of the mounting error in a backward mounting cycle when a component mounting error is not collected from the delivery unit.
  • this mounting device when a component is left in the delivery unit in the event of a mounting error, recovery is performed in the next mounting cycle using this component, while in a component not using the delivery unit, the components are collected in the rear mounting cycle. Recovery. For this reason, in this mounting apparatus, it is possible to perform the mounting process while further suppressing the generation of wasted components, while performing recovery collectively in the rear mounting cycle to prevent the sampling member from being vacant. Can be implemented efficiently.
  • the mounting method of the present invention is: A mounting unit that executes a mounting cycle in which a component is sampled from a predetermined sampling position by a sampling member and mounted on a substrate, and a plurality of components are moved from the initial position to the sampling position without returning to the initial position.
  • a mounting method using a mounting device including a delivery unit When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit. If there is a mounting cycle, the step of causing the mounting unit to perform a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit; Is included.
  • the recovery mounting process is performed in the mounting cycle until the next part is picked up from the delivery unit using the remaining parts. It is possible to suppress the mounting process.
  • various aspects of the mounting device described above may be adopted, and steps for realizing each function of the mounting device described above may be added.
  • FIG. 4 is an explanatory diagram illustrating an example of a schematic configuration of a mounting apparatus 11 of the mounting system 10.
  • FIG. The block diagram showing the electrical connection relation of the mounting apparatus.
  • the flowchart showing an example of a mounting process routine. Explanatory drawing of the timing setting of the recovery process after a mounting error. Explanatory drawing of the timing setting of the recovery process after a mounting error.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11 of the mounting system 10.
  • FIG. 2 is a block diagram showing an electrical connection relationship of the mounting apparatus 11.
  • the mounting system 10 is a system that executes a mounting process related to a process of mounting the component P on the board S, for example.
  • the mounting system 10 includes a mounting device 11 and a management computer (PC) 60.
  • PC management computer
  • a plurality of mounting apparatuses 11 that perform a mounting process for mounting the component P on the substrate S are arranged from upstream to downstream.
  • FIG. 1 only one mounting apparatus 11 is shown for convenience of explanation.
  • the management PC 60 manages information related to processing in the mounting apparatus 11. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the mounting apparatus 11 includes a board transfer unit 12, a mounting unit 13, a component supply unit 14, a parts camera 15, a mounting table 18, and a control device 50.
  • the substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position.
  • the substrate transport unit 12 has a pair of conveyor belts provided at intervals in the front-rear direction of FIG. 1 and spanned in the left-right direction. The board
  • substrate S is conveyed by this conveyor belt.
  • the mounting unit 13 collects the component P from the component supply unit 14 and arranges it on the substrate S fixed to the substrate transport unit 12.
  • the mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24.
  • the head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider.
  • the mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20.
  • One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22.
  • the suction nozzle 24 is a collection member that collects the component P using pressure, and is detachably attached to the mounting head 22.
  • the mounting head 22 incorporates a Z-axis motor, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor.
  • the mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component P sucked by the suction nozzle 24.
  • the mounting head 22 is equipped with a plurality of (for example, four or eight) suction nozzles 24.
  • the component supply unit 14 includes a multi-feeder (MF) unit 25 and a wafer supply unit 30.
  • the MF unit 25 has a plurality of feeders 27 each having a reel 26. A tape is wound around each reel 26, and a plurality of parts P are held on the tape along the longitudinal direction of the tape. The tape 26 is unwound from the reel 26 toward the rear, and is sent out to a sampling position where it is sucked by the suction nozzle 24 with the component P exposed.
  • the wafer supply unit 30 is a device that supplies wafer components to the sampling position of the mounting head 22, and includes a wafer pallet 31, a magazine unit 32, a sub robot 35, a flip unit 36, and a sub camera 39.
  • the wafer pallet 31 is a flat plate member in which a diced wafer W is fixed by an adhesive member, and a plurality of wafer pallets 31 are accommodated in the magazine portion 32.
  • the wafer pallet 31 is pulled out from the magazine portion 32 when mounting wafer components.
  • the sub robot 35 includes a suction nozzle (not shown), collects wafer parts on the wafer pallet 31, and places them on the reverse placement unit 37 of the flip unit 36.
  • the sub robot 35 moves along a guide 34 formed in the left-right direction (X-axis direction) of the apparatus.
  • the flip unit 36 is a device that inverts the wafer component and moves the wafer component from an initial position where the sub robot 35 can be placed to a sampling position where the mounting head 22 samples.
  • the flip unit 36 includes an inversion mounting unit 37 that mounts and inverts wafer components. One or more (for example, four) wafer parts can be placed on the inversion placement unit 37.
  • the reverse placement part 37 moves along a guide rail 38 formed in the front-rear direction of the apparatus.
  • the sub-robot 35 is provided with a sub-camera 39, and the position and orientation of the wafer part to be collected can be confirmed using the captured image of the sub-camera 39.
  • the parts camera 15 is disposed between the board transfer unit 12 and the component supply unit 14.
  • the imaging range of the parts camera 15 is above the parts camera 15.
  • the mounting table 18 is disposed between the substrate transport unit 12 and the component supply unit 14 and in the vicinity of the parts camera 15.
  • the mounting table 18 is supported so that the upper surface on which the component P is mounted is horizontal, and is used as a temporary mounting table for the component P.
  • control unit 50 is configured as a microprocessor centered on a CPU 51, and includes a ROM 52 that stores a processing program, an HDD 53 that stores various data, a RAM 54 that is used as a work area, an external device and an electrical device. An input / output interface 55 for exchanging signals is provided, and these are connected via a bus 56.
  • the control unit 50 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, and the parts camera 15, and inputs signals from the mounting unit 13, the component supply unit 14, and the parts camera 15.
  • FIG. 3 is a flowchart illustrating an example of a mounting process routine executed by the CPU 51 of the mounting apparatus 11. This routine is stored in the HDD 53 of the control unit 50, and is executed by a start instruction from the operator.
  • the wafer supply unit 30 mounts four wafer components on the reverse mounting portion 37 and mounts them with the mounting head 22 equipped with the four suction nozzles 24 will be described with reference to FIGS. To do.
  • FIGS. 4 and 5 are explanatory diagrams of timing settings for recovery processing after a mounting error.
  • 4A is a mounting condition
  • FIG. 4B is an explanatory diagram of recovery of a suction error of a feeder supply component
  • FIG. 4C is an explanatory diagram of recovery of a suction error of a flip supply component.
  • FIG. 5A is a mounting condition
  • FIG. 5B is an explanatory diagram of recovery of a suction error of the flip supply component.
  • the ellipse mark represents a component to be mounted
  • the vertical line represents the range of one mounting cycle
  • the number displayed in each ellipse mark represents the mounting order.
  • the flip supply components are shaded.
  • Four wafer parts are supplied to the inversion mounting portion 37, and the mounting head 22 is equipped with four suction nozzles 24. Therefore, in FIGS. 4 and 5, the basic mounting cycle is to pick, move, and arrange the four components.
  • the CPU 51 of the control unit 50 first acquires mounting condition information from the management PC 60 (step S100).
  • the mounting condition information includes information about the mounting order of the components P, the type of the component P to be mounted, the unit to be supplied, the suction nozzle that sucks the component P, and the like.
  • the CPU 51 carries the substrate S and fixes it (step S110), sets the component P to be picked up, and acquires the information from the mounting condition information (step S120).
  • the CPU 51 performs an adsorption and movement process for the component P (step S130).
  • the CPU 51 controls the mounting unit 13 so that the suction nozzle 24 corresponding to the component P to be collected is attached to the mounting head 22 as necessary, and the component P is collected from the component supply unit 14.
  • the component supply unit 14 drives the feeder 27 of the MF unit 25 to feed out the tape and move the component P to the sampling position. Further, the component supply unit 14 sends out the wafer pallet 31 from the magazine unit 32 for flip-fed wafer components, and the sub robot 35 collects the wafer components and places them on the reverse mounting unit 37.
  • the reverse mounting unit 37 moves the wafer part from the initial position to the sampling position while reversing the wafer part.
  • the mounting head 22 collects the component P from the sampling position of the feeder 27 or the reverse mounting portion 37 and passes it above the parts camera 15 and moves it to the arrangement position on the substrate S.
  • the mounting head 22 sucks the component P to all of the suction nozzles 24 mounted as much as possible.
  • the parts camera 15 takes an image of the component P sucked by the mounting head 22.
  • the CPU 51 determines whether or not there is a component P adsorption error (step S140).
  • processing for determining whether or not the suction position or shape of the component P is appropriate based on the imaging result is performed. This determination can be made based on, for example, whether or not the degree of matching between the image captured by the parts camera 15 and the appropriate image deviates from a predetermined value. This predetermined value can be obtained empirically.
  • the CPU 51 places the component P at the placement position (step S150), and determines whether or not the current board mounting process is completed (step S160).
  • the CPU 51 executes the processes after step S120. That is, the CPU 51 sets the next component P to be picked up, and performs a picking movement process for the component P.
  • step S140 determines whether or not the adsorption error has occurred in the flip supply (step S170).
  • the CPU 51 inserts the recovery mounting process of the component P in which the suction error has occurred at the end of the mounting cycle of the current substrate S (Step S180), and executes the processes after Step S120.
  • the CPU 51 may discard the component P with suction error among the components P sucked by the mounting head 22, and place the component P with no suction error on the substrate S.
  • the adsorption error includes a case where the adsorption itself is not performed. As shown in FIG.
  • the mounting apparatus 11 performs a recovery mounting process collectively in the rear mounting cycle including the last when a mounting error occurs such that the component P is not properly collected.
  • the CPU 51 determines whether or not the wafer part remains in the flip part 36 (step S190). For example, when the suction is stopped without securing a negative pressure, it can be determined that the part whose suction is stopped remains. If no wafer part is present in the suction nozzle 24 in the imaging result, it can be determined that the wafer part remains in the flip unit 36 without being picked up at the time of suction.
  • the CPU 51 executes the processes after step S180. That is, the current suction error recovery mounting process is inserted at the end of the mounting cycle of the current substrate S, and the mounting process is continued.
  • the CPU 51 When there is no wafer part remaining in the flip part 36 at the time of flip supply, there is no wafer part to be wasted, so the CPU 51 performs the rear mounting cycle including the last, as in the case of the feeder supply described above. By performing the recovery mounting process together, the mounting process is efficiently performed while the suction nozzle 24 is prevented from being vacant.
  • the CPU 51 sets the recovery mounting process using the wafer part remaining in the reverse mounting part 37 to the next mounting cycle (step S200).
  • the process after step S120 is performed.
  • the recovery mounting process is executed in the most recent mounting cycle using the wafer parts remaining on the reverse mounting portion 37.
  • the recovery mounting processing is performed by inserting the recovery mounting processing using only the wafer parts remaining in the reverse mounting portion 37 into the next mounting cycle. It is set (FIG. 4C).
  • the recovery mounting process for example, when there is an empty suction nozzle 24 capable of sucking the remaining wafer parts in the next mounting cycle (FIG.
  • the recovery processing is collectively performed at the end as in the case of the feeder supply described above. If this is performed, the part P to be picked up may change in the next mounting cycle, and the wafer part may have to be discarded.
  • the mounting apparatus 11 takes a sampling position when a mounting error occurs such that the uncollectable wafer parts are not properly collected. The recovery mounting process is performed in the next cycle using the remaining wafer parts. For this reason, in the mounting apparatus 11, it is possible to perform the mounting process while suppressing wasteful disposal of the wafer parts.
  • the CPU 51 repeatedly performs setting, suction, movement, and placement of the component P, and when there is a suction error, sets the recovery mounting process as appropriate.
  • the CPU 51 discharges the mounted board S (step S210), and determines whether the production is completed (step S210). S220).
  • the CPU 51 executes the processes after step S110. That is, the CPU 51 transports and fixes a new substrate S, and executes the processes after step S120.
  • the CPU 51 ends this routine as it is.
  • the mounting unit 13 of this embodiment corresponds to the mounting part of the present invention
  • the flip part 36 corresponds to the delivery part
  • the control part 50 corresponds to the control part
  • the suction nozzle 24 corresponds to the sampling member.
  • an example of the mounting method of the present invention is also clarified by describing the operation of the mounting apparatus 11.
  • the mounting apparatus 11 of the embodiment described above at least some of the components P to be collected by the suction nozzle 24 in one mounting cycle remain in the flip portion 36 (delivery unit).
  • the recovery mounting process is executed using the remaining components.
  • a mounting error occurs such as the component P being not properly collected
  • the sampling member is vacated by performing a recovery mounting process in a subsequent mounting cycle.
  • the mounting process is performed efficiently.
  • the wafer component remaining in the flip unit 36 may be discarded without being returned to the initial position.
  • the recovery mounting process is performed in the latest mounting cycle using the remaining wafer parts, so that the mounting process can be performed while suppressing the generation of wasted parts.
  • the recovery mounting process using the wafer components remaining in the flip part 36 is performed in the next mounting cycle, it is preferable not to leave the remaining parts caused by the suction error in the flip part 36.
  • the mounting apparatus 11 includes a flip unit that reverses and moves the wafer part from the initial position to the sampling position.
  • the flip unit 36 sets the recovery mounting process to the next mounting cycle. It is possible to perform the mounting process while suppressing generation of wasted wafer parts. Further, since it is a relatively expensive wafer part that is supplied to the flip part, there is a high demand for suppressing the generation of wasted parts.
  • the control unit 50 executes the recovery mounting process using only the wafer components remaining in the flip unit 36, the process can be further simplified. Further, when the mounting unit 13 has an empty suction nozzle 24 capable of collecting the remaining wafer parts in the next mounting cycle, the control unit 50 adds the wafer parts to the flip unit 36 and performs the recovery mounting process. Execute in the next mounting cycle. This process is more efficient because the new mounting cycle does not increase.
  • control unit 50 causes the mounting process of recovery to be executed in a subsequent mounting cycle when no wafer parts remain in the flip unit 36 at the time of a mounting error from the wafer supply unit 30.
  • this mounting apparatus 11 since the recovery is performed collectively in the subsequent mounting cycle, it is possible to efficiently perform the mounting process while preventing the suction nozzle 24 from becoming empty.
  • the control unit 50 causes a mounting error recovery mounting process to be executed in a subsequent mounting cycle when there is a mounting error of a component P not collected from the flip unit 36. In this mounting apparatus 11, since the recovery is performed collectively in the subsequent mounting cycle, it is possible to efficiently perform the mounting process while preventing the suction nozzle 24 from becoming empty.
  • the delivery unit has been described as the flip unit 36 that reverses and moves the wafer component.
  • the delivery unit may have the same configuration as the flip unit 36, and may be a shuttle unit that moves the component P without being reversed.
  • the delivery unit is the flip unit 36 that cannot be returned to the initial position.
  • the return unit may be physically returned, but the return process is complicated and the part P may not be returned to the initial position. It may be included.
  • the component P supplied from the tray or the feeder is once placed on the placement table 18, and then the placement table 18 when the component P is further collected from the placement table 18 and placed on the substrate S is used. It may be a delivery unit.
  • the recovery mounting process is not particularly limited to the next mounting cycle if the remaining wafer parts are used to perform the recovery mounting process.
  • the CPU 51 may execute the mounting process for recovery from the current mounting cycle in which the wafer part remains in the flip unit 36 at the time of a suction error until several cycles later.
  • the CPU 51 next transfers the wafer from the flip part 36 to the wafer. If there is a mounting cycle for collecting parts, the mounting process for recovery is executed by using the remaining wafer parts in the mounting cycle until “the next wafer part is collected from the flip part 36”. That's fine.
  • the wafer part generated based on the suction error is present in the flip part 36 for a while, but this remaining part is used before the wafer part is supplied from the flip part 36 next time. Therefore, it is possible to perform the mounting process while further suppressing the generation of wasted parts.
  • the wafer is next transferred from the flip part 36 to the wafer. If there is no mounting cycle for collecting components, the CPU 51 may execute the recovery mounting process using the components remaining until the final mounting cycle. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components.
  • the recovery mounting process is inserted in the last mounting cycle of the current board S in step S180.
  • the current board S It is not limited to the last cycle.
  • the CPU 51 may insert the recovery mounting process into the last mounting cycle in the mounting cycle group that is collectively performed under the unified condition (for example, the same sampling member).
  • the unified condition may be, for example, a condition using the same sampling member (suction nozzle 24).
  • the mounting apparatus 11 having a plurality of mounting heads and capable of automatically replacing the mounting heads, the conditions for using the same mounting head may be used. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components.
  • the component that performs recovery using the remaining component is the wafer component, but is not particularly limited thereto, and may be other than the wafer component. Even in this case, it is possible to perform the mounting process while suppressing the generation of wasted components. It is more preferable to apply the present invention to expensive parts.
  • the mounting head 22 includes the suction nozzle 24 as a sampling member.
  • the mounting head 22 is not particularly limited as long as the component P can be sampled, and may be a mechanical chuck that clamps and samples the component. .
  • the present invention has been described as the mounting apparatus 11.
  • a mounting method may be used, or a program that a computer executes the above-described processing may be used.
  • the present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.

Abstract

This mounting device (11) is provided with: a mounting unit (13) which executes a mounting cycle multiple times which involves collecting a component (P) from a prescribed collection position by means of a suction nozzle (24) and mounting said component (P) onto a substrate (S); a flip unit (36) which moves a plurality of components (P) from an initial position to a collection position without returning the components to the initial position; and a control unit in which, when at least some of the multiple components (P) to be collected by the suction nozzle (24) (the collection member) in one mounting cycle remain in the flip unit (36) (the transfer unit), in the case that there is subsequently a mounting cycle for collecting components (P) from the flip unit (36), then, in the mounting cycle up to the subsequent collection of components (P) from the flip unit (36), the mounting unit (13) is made to perform recovery mounting processing using said remaining components (P).

Description

実装装置及び実装方法Mounting apparatus and mounting method
 本発明は、実装装置及び実装方法に関する。 The present invention relates to a mounting apparatus and a mounting method.
 従来、実装装置としては、ダイ供給装置の突き上げユニットの周辺にカメラを設置し、突き上げユニットの突き上げピンを突き上げさせた状態で撮像し、突き上げピンの突き上げた嵩とXY方向の位置を計測し、突き上げピンの破損や曲がりを計測するものが提案されている(例えば、特許文献1参照)。この実装装置は、突き上げユニットで突き上げられたダイをサブロボットが採取し、反転ユニットで反転させてシャトル機構で採取位置へダイを移動させる。 Conventionally, as a mounting device, a camera is installed around the push-up unit of the die supply device, and images are taken in a state where the push-up pin of the push-up unit is pushed up, and the volume and the position in the XY direction of the push-up pin are measured. A device for measuring breakage or bending of a push-up pin has been proposed (see, for example, Patent Document 1). In this mounting apparatus, the sub robot picks up the die pushed up by the push-up unit, reverses it by the reversing unit, and moves the die to the picking position by the shuttle mechanism.
特開2013-45988号公報JP 2013-45988 A
 ところで、特許文献1の実装装置などでは、シャトル機構で複数のダイを移動したのち、吸着ノズルで吸着し、基板上へ実装処理することがある。このとき、実装装置は、吸着ノズルで吸着エラーなどが生じた場合に、シャトル機構の部品を廃棄しなければならないことがあった。 By the way, in the mounting apparatus of Patent Document 1, a plurality of dies are moved by a shuttle mechanism, and then sucked by a suction nozzle and mounted on a substrate in some cases. At this time, the mounting apparatus sometimes has to discard the components of the shuttle mechanism when a suction error or the like occurs in the suction nozzle.
 本発明は、このような課題に鑑みなされたものであり、無駄となる部品の発生をより抑制して実装処理を行うことができる実装装置及び実装方法を提供することを主目的とする。 The present invention has been made in view of such problems, and a main object of the present invention is to provide a mounting apparatus and a mounting method capable of performing mounting processing while suppressing generation of useless parts.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の実装装置は、
 所定の採取位置から部品を採取部材により採取して基板上へ実装する実装サイクルを複数回実行する実装部と、
 初期位置から前記採取位置まで複数の部品を該初期位置へ返却することなく移動する受渡部と、
 1回の前記実装サイクルにおいて前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがある場合には、次に前記受渡部から前記部品を採取するまでの前記実装サイクルにおいて該残存した部品を用いてリカバリの実装処理を前記実装部に実行させる制御部と、
 を備えたものである。
The mounting apparatus of the present invention is
A mounting unit that executes a mounting cycle in which components are sampled from a predetermined sampling position by a sampling member and mounted on a substrate; and
A delivery unit that moves from an initial position to the sampling position without returning a plurality of parts to the initial position;
When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit. When there is a mounting cycle, a control unit that causes the mounting unit to execute a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit;
It is equipped with.
 この実装装置は、1回の実装サイクルにおいて採取部材に採取されるべき複数の部品のうち少なくとも一部の部品が受渡部に残存しているときには、次に受渡部から部品を採取するまでの実装サイクルにおいて、この残存した部品を用いてリカバリの実装処理を実行する。一般に、実装装置では、部品の採取が適正に行われないなどの実装エラーが生じた際には、のちの実装サイクルでまとめてリカバリの実装処理を行うことにより、採取部材に空きが生じるのを抑えて効率よく実装処理を行うことがある。この場合、次の実装サイクルで他の部品を実装する場合などには、受渡部に残存した部品は、初期位置へ返却せずに廃棄されることになりうる。この実装装置では、リカバリの実装処理を、残存した部品を用いて次に受渡部から部品を採取するまでの実装サイクルで行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。ここで、「初期位置へ返却することなく移動する」とは、物理的に部品を初期位置に返却できない返却不能の場合のほか、物理的には返却可能であるが返却処理が煩雑であり部品を初期位置に返却しない場合も含むものとする。また、「前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているとき」とは、「前記受渡部から採取する部品の実装エラー時」としてもよい。 In this mounting apparatus, when at least a part of a plurality of parts to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the mounting is performed until the next part is sampled from the delivery unit. In the cycle, recovery mounting processing is executed using the remaining components. In general, in a mounting device, when a mounting error occurs, such as when parts are not properly collected, the recovery mounting process is performed collectively in a subsequent mounting cycle, so that a sampling member is left empty. In some cases, the mounting process can be performed efficiently. In this case, when other components are mounted in the next mounting cycle, the components remaining in the delivery unit may be discarded without being returned to the initial position. In this mounting device, the recovery mounting process is performed in the mounting cycle until the next part is picked up from the delivery unit using the remaining parts, so the mounting process is performed while suppressing the generation of wasted parts. Can do. Here, “move without returning to the initial position” means that the part cannot be physically returned to the initial position and cannot be returned. In addition, the part can be physically returned but the return process is complicated. Including the case where is not returned to the initial position. In addition, “when at least some of the plurality of parts to be collected by the collection member remain in the delivery unit” means “when a mounting error occurs in a part collected from the delivery unit” Also good.
 この実装装置において、前記制御部は、前記1回の実装サイクルにおいて採取部材に採取されるべき複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがない場合には、最終の実装サイクルまでに該残存した部品を用いてリカバリの実装処理を前記実装部に実行させるものとしてもよい。この実装装置においても、残存した部品を用いてリカバリの実装処理を行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。また、前記制御部は、1回の前記実装サイクルにおいて前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがある場合には、次の前記実装サイクル、又は直近の前記実装サイクルにおいて前記残存した部品を用いてリカバリの実装処理を実行させるものとしてもよい。この実装装置では、受渡部に残存した部品をすぐに用いるため、受渡部に部品を放置することがなく、好ましい。 In this mounting apparatus, the control unit next receives the receiving unit when at least a part of the plurality of components to be sampled by the sampling member remains in the delivery unit in the one mounting cycle. When there is no mounting cycle for collecting the component from the transfer unit, the mounting unit may be caused to execute a recovery mounting process using the remaining component until the final mounting cycle. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components. In addition, when at least a part of the plurality of parts to be sampled by the sampling member in the mounting cycle remains in the delivery unit, the control unit next performs the delivery unit. In the case where there is the mounting cycle for collecting the components from, the recovery mounting process may be executed using the remaining components in the next mounting cycle or the most recent mounting cycle. In this mounting apparatus, since the component remaining in the delivery unit is used immediately, it is preferable that the component is not left in the delivery unit.
 本発明の実装装置において、前記受渡部は、前記初期位置から前記採取位置まで部品を反転して移動するフリップ部及び前記初期位置から前記採取位置まで部品を載置して移動するシャトル部のうちいずれかであるものとしてもよい。この実装装置では、フリップ部やシャトル部を用いる実装装置において、無駄となる部品の発生をより抑制して実装処理を行うことができる。このとき、前記部品は、ウエハ部品であるものとしてもよい。ウエハ部品は、高価であるため、無駄となる部品の発生をより抑制する要望が高い。 In the mounting apparatus of the present invention, the delivery unit includes a flip unit that reverses and moves a component from the initial position to the sampling position, and a shuttle unit that moves by placing the component from the initial position to the sampling position. It may be either one. In this mounting apparatus, in the mounting apparatus using the flip part or the shuttle part, it is possible to perform the mounting process while suppressing generation of useless parts. At this time, the component may be a wafer component. Since wafer parts are expensive, there is a high demand for suppressing the generation of wasted parts.
 本発明の実装装置において、前記制御部は、前記受渡部に残存している部品のみを用いて前記リカバリの実装処理を前記実装部に実行させるものとしてもよい。また、本発明の実装装置において、前記制御部は、次の実装サイクルにおいて前記残存した部品を採取可能な前記採取部材の空きが前記実装部にある場合には、前記受渡部に前記部品を追加して前記リカバリの実装処理を次の実装サイクルで前記実装部に実行させるものとしてもよい。 In the mounting apparatus of the present invention, the control unit may cause the mounting unit to execute the recovery mounting process using only the components remaining in the delivery unit. In the mounting apparatus of the present invention, the control unit adds the component to the delivery unit when the mounting unit has an available sampling member that can collect the remaining component in the next mounting cycle. Then, the mounting process of the recovery may be executed by the mounting unit in the next mounting cycle.
 本発明の実装装置において、前記制御部は、前記受渡部から採取する部品の実装エラー時において、前記受渡部に部品が残存していないときには前記実装エラーのリカバリの実装処理を後方の実装サイクルで前記実装部に実行させるものとしてもよい。この実装装置では、受渡部に部品が残存しているときにはこの部品を用いてリカバリを行う一方、受渡部に部品が残存していないときには後方の実装サイクルでまとめてリカバリを行う。このため、この実装装置では、無駄となる部品の発生をより抑制して実装処理を行うことができる一方、後方の実装サイクルでまとめてリカバリを行うことにより、採取部材に空きが生じるのを抑えて効率よく実装処理を行うことができる。ここで「後方の実装サイクル」とは、例えば、「次に受渡部から部品を採取する実装サイクル」よりもあとのサイクルであるものとし、例えば、実装サイクルのすべてのうちの最後方の実装サイクルとしてもよい。なお、「後方の実装サイクル」とは、最後方の実装サイクルでまとめてリカバリの実装処理を行う際に、このリカバリの実装処理内で実装順番を変更してもよい趣旨である。 In the mounting apparatus of the present invention, the control unit performs mounting processing for recovery of the mounting error in a backward mounting cycle when no component remains in the delivery unit at the time of mounting error of the component collected from the delivery unit. The mounting unit may be executed. In this mounting apparatus, when a part remains in the delivery part, recovery is performed using this part, while when no part remains in the delivery part, recovery is performed collectively in the rear mounting cycle. For this reason, in this mounting apparatus, it is possible to perform the mounting process while further suppressing the generation of wasted components, while performing recovery collectively in the rear mounting cycle to prevent the sampling member from being vacant. Can be implemented efficiently. Here, the “backward mounting cycle” is, for example, a cycle later than “the next mounting cycle for collecting parts from the delivery unit”. For example, the last mounting cycle of all the mounting cycles It is good. The “backward mounting cycle” means that the mounting order may be changed in the recovery mounting process when the recovery mounting process is collectively performed in the last mounting cycle.
 本発明の実装装置において、前記制御部は、前記受渡部から採取しない部品の実装エラー時において、前記実装エラーのリカバリの実装処理を後方の実装サイクルで前記実装部に実行させるものとしてもよい。この実装装置では、実装エラー時において、受渡部に部品が残存しているときにはこの部品を用いて次の実装サイクルでリカバリを行う一方、受渡部を用いない部品においては、後方の実装サイクルでまとめてリカバリを行う。このため、この実装装置では、無駄となる部品の発生をより抑制して実装処理を行うことができる一方、後方の実装サイクルでまとめてリカバリを行うことにより、採取部材に空きが生じるのを抑えて効率よく実装処理を行うことができる。 In the mounting apparatus of the present invention, the control unit may cause the mounting unit to execute mounting processing for recovery of the mounting error in a backward mounting cycle when a component mounting error is not collected from the delivery unit. In this mounting device, when a component is left in the delivery unit in the event of a mounting error, recovery is performed in the next mounting cycle using this component, while in a component not using the delivery unit, the components are collected in the rear mounting cycle. Recovery. For this reason, in this mounting apparatus, it is possible to perform the mounting process while further suppressing the generation of wasted components, while performing recovery collectively in the rear mounting cycle to prevent the sampling member from being vacant. Can be implemented efficiently.
 本発明の実装方法は、
 所定の採取位置から部品を採取部材により採取して基板上へ実装する実装サイクルを複数回実行する実装部と、初期位置から前記採取位置まで複数の部品を該初期位置へ返却することなく移動する受渡部と、を備えた実装装置を利用する実装方法であって、
 1回の前記実装サイクルにおいて前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがある場合には、次に前記受渡部から前記部品を採取するまでの前記実装サイクルにおいて該残存した部品を用いてリカバリの実装処理を前記実装部に実行させるステップ、
 を含むものである。
The mounting method of the present invention is:
A mounting unit that executes a mounting cycle in which a component is sampled from a predetermined sampling position by a sampling member and mounted on a substrate, and a plurality of components are moved from the initial position to the sampling position without returning to the initial position. A mounting method using a mounting device including a delivery unit,
When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit. If there is a mounting cycle, the step of causing the mounting unit to perform a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit;
Is included.
 この方法では、上述した実装装置と同様に、リカバリの実装処理を、残存した部品を用いて、次に受渡部から部品を採取するまでの実装サイクルで行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。なお、この実装方法において、上述した実装装置の種々の態様を採用してもよいし、また、上述した実装装置の各機能を実現するようなステップを追加してもよい。 In this method, similar to the mounting apparatus described above, the recovery mounting process is performed in the mounting cycle until the next part is picked up from the delivery unit using the remaining parts. It is possible to suppress the mounting process. In this mounting method, various aspects of the mounting device described above may be adopted, and steps for realizing each function of the mounting device described above may be added.
実装システム10の実装装置11の構成の概略の一例を表す説明図。4 is an explanatory diagram illustrating an example of a schematic configuration of a mounting apparatus 11 of the mounting system 10. FIG. 実装装置11の電気的な接続関係を表すブロック図。The block diagram showing the electrical connection relation of the mounting apparatus. 実装処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a mounting process routine. 実装エラー後のリカバリ処理のタイミング設定の説明図。Explanatory drawing of the timing setting of the recovery process after a mounting error. 実装エラー後のリカバリ処理のタイミング設定の説明図。Explanatory drawing of the timing setting of the recovery process after a mounting error.
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は、実装システム10の実装装置11の構成の概略の一例を表す説明図である。図2は、実装装置11の電気的な接続関係を表すブロック図である。実装システム10は、例えば、部品Pを基板Sに実装する処理に関する実装処理を実行するシステムである。この実装システム10は、実装装置11と、管理コンピュータ(PC)60とを備えている。実装システム10は、部品Pを基板Sに実装する実装処理を実施する複数の実装装置11が上流から下流に配置されている。図1では、説明の便宜のため実装装置11を1台のみ示している。管理PC60は、実装装置11での処理に関する情報を管理する。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。 Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11 of the mounting system 10. FIG. 2 is a block diagram showing an electrical connection relationship of the mounting apparatus 11. The mounting system 10 is a system that executes a mounting process related to a process of mounting the component P on the board S, for example. The mounting system 10 includes a mounting device 11 and a management computer (PC) 60. In the mounting system 10, a plurality of mounting apparatuses 11 that perform a mounting process for mounting the component P on the substrate S are arranged from upstream to downstream. In FIG. 1, only one mounting apparatus 11 is shown for convenience of explanation. The management PC 60 manages information related to processing in the mounting apparatus 11. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
 実装装置11は、図1~3に示すように、基板搬送ユニット12と、実装ユニット13と、部品供給ユニット14と、パーツカメラ15と、載置台18と、制御装置50とを備えている。基板搬送ユニット12は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板搬送ユニット12は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。基板Sはこのコンベアベルトにより搬送される。 As shown in FIGS. 1 to 3, the mounting apparatus 11 includes a board transfer unit 12, a mounting unit 13, a component supply unit 14, a parts camera 15, a mounting table 18, and a control device 50. The substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position. The substrate transport unit 12 has a pair of conveyor belts provided at intervals in the front-rear direction of FIG. 1 and spanned in the left-right direction. The board | substrate S is conveyed by this conveyor belt.
 実装ユニット13は、部品Pを部品供給ユニット14から採取し、基板搬送ユニット12に固定された基板Sへ配置するものである。実装ユニット13は、ヘッド移動部20と、実装ヘッド22と、吸着ノズル24とを備えている。ヘッド移動部20は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備えている。実装ヘッド22は、スライダに取り外し可能に装着されており、ヘッド移動部20によりXY方向へ移動する。実装ヘッド22の下面には、1以上の吸着ノズル24が取り外し可能に装着されている。吸着ノズル24は、圧力を利用して部品Pを採取する採取部材であり、実装ヘッド22に取り外し可能に装着される。実装ヘッド22は、Z軸モータを内蔵しており、このZ軸モータによってZ軸に沿って吸着ノズル24の高さを調整する。また、実装ヘッド22は、図示しない駆動モータによって吸着ノズル24を回転(自転)させる回転装置を備え、吸着ノズル24に吸着された部品Pの角度を調整可能となっている。この実装ヘッド22は、複数(例えば4個や8個など)の吸着ノズル24を装着する。 The mounting unit 13 collects the component P from the component supply unit 14 and arranges it on the substrate S fixed to the substrate transport unit 12. The mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24. The head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider. The mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20. One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22. The suction nozzle 24 is a collection member that collects the component P using pressure, and is detachably attached to the mounting head 22. The mounting head 22 incorporates a Z-axis motor, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor. The mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component P sucked by the suction nozzle 24. The mounting head 22 is equipped with a plurality of (for example, four or eight) suction nozzles 24.
 部品供給ユニット14は、マルチフィーダ(MF)ユニット25と、ウエハ供給ユニット30とを備えている。MFユニット25は、リール26を備えた複数のフィーダ27を有している。各リール26には、テープが巻き付けられ、テープには、複数の部品Pがテープの長手方向に沿って保持されている。このテープ26は、リール26から後方に向かって巻きほどかれ、部品Pが露出した状態で、吸着ノズル24で吸着される採取位置に送り出される。 The component supply unit 14 includes a multi-feeder (MF) unit 25 and a wafer supply unit 30. The MF unit 25 has a plurality of feeders 27 each having a reel 26. A tape is wound around each reel 26, and a plurality of parts P are held on the tape along the longitudinal direction of the tape. The tape 26 is unwound from the reel 26 toward the rear, and is sent out to a sampling position where it is sucked by the suction nozzle 24 with the component P exposed.
 ウエハ供給ユニット30は、ウエハ部品を実装ヘッド22の採取位置に供給する装置であり、ウエハパレット31と、マガジン部32と、サブロボット35と、フリップ部36と、サブカメラ39とを備えている。ウエハパレット31は、ダイシングされたウエハWを粘着部材により固定した平板状の部材であり、マガジン部32に複数収容されている。このウエハパレット31は、ウエハ部品を実装する際にマガジン部32から引き出される。サブロボット35は、図示しない吸着ノズルを備えており、ウエハパレット31上のウエハ部品を採取してフリップ部36の反転載置部37へ載置させる。このサブロボット35は、装置の左右方向(X軸方向)に形成されたガイド34に沿って移動する。フリップ部36は、ウエハ部品を反転させると共に、サブロボット35が載置可能な初期位置から実装ヘッド22が採取する採取位置までウエハ部品を移動する装置である。このフリップ部36は、ウエハ部品を載置して反転させる反転載置部37を備えている。反転載置部37には、1以上(例えば4個など)のウエハ部品を載置することができる。反転載置部37は、装置の前後方向に形成されたガイドレール38に沿って移動する。ウエハ部品は、ウエハパレット31上のウエハWから引き剥がされると、このウエハパレット31へは返却できず、フリップ部36は、ウエハ部品を初期位置から採取位置までの一方向に移動させる。サブロボット35は、サブカメラ39が配設されており、このサブカメラ39の撮像画像を用いて、採取するウエハ部品の位置及び姿勢を確認することができる。 The wafer supply unit 30 is a device that supplies wafer components to the sampling position of the mounting head 22, and includes a wafer pallet 31, a magazine unit 32, a sub robot 35, a flip unit 36, and a sub camera 39. . The wafer pallet 31 is a flat plate member in which a diced wafer W is fixed by an adhesive member, and a plurality of wafer pallets 31 are accommodated in the magazine portion 32. The wafer pallet 31 is pulled out from the magazine portion 32 when mounting wafer components. The sub robot 35 includes a suction nozzle (not shown), collects wafer parts on the wafer pallet 31, and places them on the reverse placement unit 37 of the flip unit 36. The sub robot 35 moves along a guide 34 formed in the left-right direction (X-axis direction) of the apparatus. The flip unit 36 is a device that inverts the wafer component and moves the wafer component from an initial position where the sub robot 35 can be placed to a sampling position where the mounting head 22 samples. The flip unit 36 includes an inversion mounting unit 37 that mounts and inverts wafer components. One or more (for example, four) wafer parts can be placed on the inversion placement unit 37. The reverse placement part 37 moves along a guide rail 38 formed in the front-rear direction of the apparatus. When the wafer part is peeled off from the wafer W on the wafer pallet 31, it cannot be returned to the wafer pallet 31, and the flip unit 36 moves the wafer part in one direction from the initial position to the sampling position. The sub-robot 35 is provided with a sub-camera 39, and the position and orientation of the wafer part to be collected can be confirmed using the captured image of the sub-camera 39.
 パーツカメラ15は、基板搬送ユニット12と部品供給ユニット14との間に配設されている。このパーツカメラ15の撮像範囲はパーツカメラ15の上方である。パーツカメラ15は、部品Pを吸着した吸着ノズル24がパーツカメラ15の上方を通過する際、吸着ノズル24に吸着された部品Pを下方から撮像し、その画像を制御部50へ出力する。 The parts camera 15 is disposed between the board transfer unit 12 and the component supply unit 14. The imaging range of the parts camera 15 is above the parts camera 15. When the suction nozzle 24 that sucks the part P passes above the part camera 15, the parts camera 15 captures the part P sucked by the suction nozzle 24 from below and outputs the image to the control unit 50.
 載置台18は、基板搬送ユニット12と部品供給ユニット14との間で且つパーツカメラ15の近傍に配設されている。この載置台18は、部品Pが載置される上面が水平になるよう支持されており、部品Pの仮置き台として用いられる。 The mounting table 18 is disposed between the substrate transport unit 12 and the component supply unit 14 and in the vicinity of the parts camera 15. The mounting table 18 is supported so that the upper surface on which the component P is mounted is horizontal, and is used as a temporary mounting table for the component P.
 制御部50は、図2に示すように、CPU51を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM52、各種データを記憶するHDD53、作業領域として用いられるRAM54、外部装置と電気信号のやり取りを行うための入出力インタフェース55などを備えており、これらはバス56を介して接続されている。この制御部50は、基板搬送ユニット12、実装ユニット13、部品供給ユニット14、パーツカメラ15へ制御信号を出力し、実装ユニット13や部品供給ユニット14、パーツカメラ15からの信号を入力する。 As shown in FIG. 2, the control unit 50 is configured as a microprocessor centered on a CPU 51, and includes a ROM 52 that stores a processing program, an HDD 53 that stores various data, a RAM 54 that is used as a work area, an external device and an electrical device. An input / output interface 55 for exchanging signals is provided, and these are connected via a bus 56. The control unit 50 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, and the parts camera 15, and inputs signals from the mounting unit 13, the component supply unit 14, and the parts camera 15.
 次に、こうして構成された本実施形態の実装システム10の動作、特に、MFユニット25からの供給部品(フィーダ供給)及びウエハ供給ユニット30からの供給部品(フリップ供給)を基板S上に配置する処理について説明する。図3は、実装装置11のCPU51により実行される実装処理ルーチンの一例を表すフローチャートである。このルーチンは、制御部50のHDD53に記憶され、作業者による開始指示により実行される。ここでは、ウエハ供給ユニット30が4つのウエハ部品を反転載置部37に載置し、4つの吸着ノズル24を装着した実装ヘッド22で実装する場合を具体例として図4、5を用いて説明する。 Next, the operation of the mounting system 10 of the present embodiment configured as described above, in particular, the supply component (feeder supply) from the MF unit 25 and the supply component (flip supply) from the wafer supply unit 30 are arranged on the substrate S. Processing will be described. FIG. 3 is a flowchart illustrating an example of a mounting process routine executed by the CPU 51 of the mounting apparatus 11. This routine is stored in the HDD 53 of the control unit 50, and is executed by a start instruction from the operator. Here, a case where the wafer supply unit 30 mounts four wafer components on the reverse mounting portion 37 and mounts them with the mounting head 22 equipped with the four suction nozzles 24 will be described with reference to FIGS. To do.
 図4、5は、実装エラー後のリカバリ処理のタイミング設定の説明図である。図4(a)が実装条件、図4(b)がフィーダ供給部品の吸着エラーのリカバリ、図4(c)がフリップ供給部品の吸着エラーのリカバリの説明図である。また、図5(a)が実装条件、図5(b)がフリップ供給部品の吸着エラーのリカバリの説明図である。図4、5において、楕円マークは実装する部品、縦線は1回の実装サイクルの範囲を表し、各楕円マーク内に表示された数字は実装順番を表す。また、フリップ供給の部品は網掛けで示されている。反転載置部37は4つのウエハ部品が供給され、実装ヘッド22は4つの吸着ノズル24を装着している。したがって、図4、5では、4つの部品を吸着、移動及び配置するのが基本的な1回の実装サイクルになる。 4 and 5 are explanatory diagrams of timing settings for recovery processing after a mounting error. 4A is a mounting condition, FIG. 4B is an explanatory diagram of recovery of a suction error of a feeder supply component, and FIG. 4C is an explanatory diagram of recovery of a suction error of a flip supply component. FIG. 5A is a mounting condition, and FIG. 5B is an explanatory diagram of recovery of a suction error of the flip supply component. 4 and 5, the ellipse mark represents a component to be mounted, the vertical line represents the range of one mounting cycle, and the number displayed in each ellipse mark represents the mounting order. Also, the flip supply components are shaded. Four wafer parts are supplied to the inversion mounting portion 37, and the mounting head 22 is equipped with four suction nozzles 24. Therefore, in FIGS. 4 and 5, the basic mounting cycle is to pick, move, and arrange the four components.
 実装処理ルーチンを開始すると、制御部50のCPU51は、まず、実装条件情報を管理PC60から取得する(ステップS100)。実装条件情報には、部品Pの実装順、実装する部品Pの種別、供給するユニット、部品Pを吸着する吸着ノズルの情報などが含まれている。次に、CPU51は、基板Sの搬送及び固定処理を行い(ステップS110)、吸着する部品Pを設定し、その情報を実装条件情報から取得する(ステップS120)。 When the mounting process routine is started, the CPU 51 of the control unit 50 first acquires mounting condition information from the management PC 60 (step S100). The mounting condition information includes information about the mounting order of the components P, the type of the component P to be mounted, the unit to be supplied, the suction nozzle that sucks the component P, and the like. Next, the CPU 51 carries the substrate S and fixes it (step S110), sets the component P to be picked up, and acquires the information from the mounting condition information (step S120).
 次に、CPU51は、部品Pの吸着、移動処理を行う(ステップS130)。このとき、CPU51は、採取する部品Pに応じた吸着ノズル24を、必要に応じて実装ヘッド22に装着させ、部品供給ユニット14から部品Pを採取するよう実装ユニット13を制御する。部品供給ユニット14は、フィーダ供給の部品Pでは、MFユニット25のフィーダ27を駆動してテープを送り出し、部品Pを採取位置に移動させる。また、部品供給ユニット14は、フリップ供給のウエハ部品では、マガジン部32からウエハパレット31を送り出し、サブロボット35がウエハ部品を採取して反転載置部37へ載置する。フリップ部36では、反転載置部37がウエハ部品を反転させながら初期位置から採取位置へ移動させる。実装ヘッド22は、フィーダ27又は反転載置部37の採取位置から部品Pを採取し、パーツカメラ15の上方を通過させて基板S上の配置位置まで移動させる。ここでは、実装ヘッド22は、装着されている吸着ノズル24のできるだけすべてに部品Pを吸着させる。パーツカメラ15は、実装ヘッド22に吸着された部品Pを撮像する。続いて、CPU51は、部品Pの吸着エラーがあったか否かを判定する(ステップS140)。吸着エラーの判定では、撮像結果に基づいてその部品Pの吸着位置や形状などが適正であるか否かを判定する処理を行う。この判定は、例えば、パーツカメラ15での撮像画像と適正画像との適合度が所定値を外れるか否かに基づいて行うことができる。この所定値は、経験的に求めることができる。吸着エラーがないときには、CPU51は、部品Pを配置位置に配置させ(ステップS150)、現基板の実装処理が完了したか否かを判定する(ステップS160)。現基板の実装処理が完了していないときには、CPU51は、ステップS120以降の処理を実行する。即ち、CPU51は、次に吸着する部品Pを設定し、その部品Pの吸着移動処理を行う。 Next, the CPU 51 performs an adsorption and movement process for the component P (step S130). At this time, the CPU 51 controls the mounting unit 13 so that the suction nozzle 24 corresponding to the component P to be collected is attached to the mounting head 22 as necessary, and the component P is collected from the component supply unit 14. For the component P supplied by the feeder, the component supply unit 14 drives the feeder 27 of the MF unit 25 to feed out the tape and move the component P to the sampling position. Further, the component supply unit 14 sends out the wafer pallet 31 from the magazine unit 32 for flip-fed wafer components, and the sub robot 35 collects the wafer components and places them on the reverse mounting unit 37. In the flip unit 36, the reverse mounting unit 37 moves the wafer part from the initial position to the sampling position while reversing the wafer part. The mounting head 22 collects the component P from the sampling position of the feeder 27 or the reverse mounting portion 37 and passes it above the parts camera 15 and moves it to the arrangement position on the substrate S. Here, the mounting head 22 sucks the component P to all of the suction nozzles 24 mounted as much as possible. The parts camera 15 takes an image of the component P sucked by the mounting head 22. Subsequently, the CPU 51 determines whether or not there is a component P adsorption error (step S140). In the determination of the suction error, processing for determining whether or not the suction position or shape of the component P is appropriate based on the imaging result is performed. This determination can be made based on, for example, whether or not the degree of matching between the image captured by the parts camera 15 and the appropriate image deviates from a predetermined value. This predetermined value can be obtained empirically. When there is no suction error, the CPU 51 places the component P at the placement position (step S150), and determines whether or not the current board mounting process is completed (step S160). When the current board mounting process is not completed, the CPU 51 executes the processes after step S120. That is, the CPU 51 sets the next component P to be picked up, and performs a picking movement process for the component P.
 一方、ステップS140で吸着エラーがあると判定されたときには、CPU51は、吸着エラーがフリップ供給で起きたか否かを判定する(ステップS170)。吸着エラーがフリップ供給で起きていないときには、CPU51は、吸着エラーした部品Pのリカバリ実装処理を現基板Sの実装サイクルの最後に挿入し(ステップS180)、ステップS120以降の処理を実行する。このとき、CPU51は、実装ヘッド22に吸着されている部品Pのうち、吸着エラーの部品Pは、廃棄処理を行い、吸着エラーでない部品Pは基板Sに配置するものとしてもよい。なお、吸着エラーには、吸着自体が行われていない場合も含む。図4(b)に示すように、実装装置11は、部品Pの採取が適正に行われないなどの実装エラーが生じた際には、最後を含む後方の実装サイクルでまとめてリカバリの実装処理を行うことによって、吸着ノズル24に空きが生じるのを抑えて効率よく実装処理を行う。 On the other hand, when it is determined in step S140 that there is an adsorption error, the CPU 51 determines whether or not the adsorption error has occurred in the flip supply (step S170). When the suction error does not occur in the flip supply, the CPU 51 inserts the recovery mounting process of the component P in which the suction error has occurred at the end of the mounting cycle of the current substrate S (Step S180), and executes the processes after Step S120. At this time, the CPU 51 may discard the component P with suction error among the components P sucked by the mounting head 22, and place the component P with no suction error on the substrate S. The adsorption error includes a case where the adsorption itself is not performed. As shown in FIG. 4B, the mounting apparatus 11 performs a recovery mounting process collectively in the rear mounting cycle including the last when a mounting error occurs such that the component P is not properly collected. By performing the above, it is possible to efficiently perform the mounting process while preventing the suction nozzle 24 from being vacant.
 一方、ステップS170で、吸着エラーがフリップ供給で起きたときには、CPU51は、フリップ部36にウエハ部品が残存しているか否かを判定する(ステップS190)。ウエハ部品の残存の有無の判定は、例えば、負圧が確保できずに吸着を中止した場合は、その吸着中止した部品が残存すると判定することができる。また、撮像結果において吸着ノズル24にウエハ部品が存在していない場合は、吸着時に吸着できずにフリップ部36にウエハ部品が残っているものと判定することができる。フリップ部36にウエハ部品が残存していないときには、CPU51は、ステップS180以降の処理を実行する。即ち、今回の吸着エラーのリカバリ実装処理を現基板Sの実装サイクルの最後に挿入し、実装処理を継続する。フリップ供給時において、フリップ部36にウエハ部品が残存していない場合は、無駄に廃棄するウエハ部品がないため、CPU51は、上述のフィーダ供給の場合と同様に、最後を含む後方の実装サイクルでまとめてリカバリの実装処理を行うことにより、吸着ノズル24に空きが生じるのを抑えて効率よく実装処理を行う。 On the other hand, when a suction error occurs in the flip supply in step S170, the CPU 51 determines whether or not the wafer part remains in the flip part 36 (step S190). For example, when the suction is stopped without securing a negative pressure, it can be determined that the part whose suction is stopped remains. If no wafer part is present in the suction nozzle 24 in the imaging result, it can be determined that the wafer part remains in the flip unit 36 without being picked up at the time of suction. When the wafer part does not remain in the flip part 36, the CPU 51 executes the processes after step S180. That is, the current suction error recovery mounting process is inserted at the end of the mounting cycle of the current substrate S, and the mounting process is continued. When there is no wafer part remaining in the flip part 36 at the time of flip supply, there is no wafer part to be wasted, so the CPU 51 performs the rear mounting cycle including the last, as in the case of the feeder supply described above. By performing the recovery mounting process together, the mounting process is efficiently performed while the suction nozzle 24 is prevented from being vacant.
 一方、ステップS190で、フリップ部にウエハ部品が残存しているときには、CPU51は、反転載置部37に残存するウエハ部品を用いたリカバリ実装処理を次の実装サイクルに設定し(ステップS200)、ステップS120以降の処理を行う。即ち、反転載置部37に残存するウエハ部品を用いてリカバリの実装処理を直近の実装サイクルで実行する。リカバリ実装処理は、例えば、次の実装サイクルに吸着ノズル24の空きがない場合は、反転載置部37に残存しているウエハ部品のみを用いるリカバリ実装処理を次の実装サイクルに挿入することにより設定される(図4(c))。また、リカバリ実装処理は、例えば、次の実装サイクルにおいて、残存したウエハ部品を吸着可能な吸着ノズル24の空きがある場合には(図5(a))、残存したウエハ部品のほか、反転載置部37に次の実装サイクルのウエハ部品を追加することで設定される(図5(b))。実装装置11では、例えば、実装ヘッド22によっては、吸着エラーすると、吸着ノズル24での負圧を確保できなくなるなどの不都合があり、部品Pの都合以外でも部品Pの吸着を行うべきでないケースがある。また、ウエハ部品をフリップ供給する場合は、事前にその実装サイクルで吸着する予定数のウエハ部品を反転載置部37に用意し、フリップして実装ヘッド22へ供給する。ウエハ部品をこのように用意したにもかかわらず、吸着の負圧確保ができない関係でウエハ部品の吸着を行わなかった場合に、上記フィーダ供給の場合などのように最後にまとめてリカバリの実装処理を行うことにすると、次の実装サイクルで吸着する部品Pが変わったりすることがあり、ウエハ部品を廃棄しなければならなくなる場合がある。ここでは、図4(c)、図5(b)に示すように、実装装置11は、返却不能なウエハ部品の採取が適正に行われないなどの実装エラーが生じた際には、採取位置に残存したウエハ部品を用いて次のサイクルにリカバリの実装処理を行う。このため、実装装置11では、ウエハ部品を無駄に廃棄することをより抑制して実装処理を行うことができる。 On the other hand, when the wafer part remains in the flip part in step S190, the CPU 51 sets the recovery mounting process using the wafer part remaining in the reverse mounting part 37 to the next mounting cycle (step S200). The process after step S120 is performed. In other words, the recovery mounting process is executed in the most recent mounting cycle using the wafer parts remaining on the reverse mounting portion 37. For example, when there is no empty suction nozzle 24 in the next mounting cycle, the recovery mounting processing is performed by inserting the recovery mounting processing using only the wafer parts remaining in the reverse mounting portion 37 into the next mounting cycle. It is set (FIG. 4C). Further, in the recovery mounting process, for example, when there is an empty suction nozzle 24 capable of sucking the remaining wafer parts in the next mounting cycle (FIG. 5A), in addition to the remaining wafer parts, reverse mounting is performed. It is set by adding a wafer part of the next mounting cycle to the mounting portion 37 (FIG. 5B). In the mounting apparatus 11, for example, depending on the mounting head 22, there is a disadvantage that a negative pressure cannot be secured at the suction nozzle 24 if a suction error occurs. is there. In addition, when flip-feeding wafer parts, a predetermined number of wafer parts to be attracted in the mounting cycle are prepared in the reverse placement unit 37 and flipped and supplied to the mounting head 22. Even if the wafer parts are prepared in this way, if the wafer parts are not sucked because the negative suction pressure cannot be secured, the recovery processing is collectively performed at the end as in the case of the feeder supply described above. If this is performed, the part P to be picked up may change in the next mounting cycle, and the wafer part may have to be discarded. Here, as shown in FIG. 4C and FIG. 5B, the mounting apparatus 11 takes a sampling position when a mounting error occurs such that the uncollectable wafer parts are not properly collected. The recovery mounting process is performed in the next cycle using the remaining wafer parts. For this reason, in the mounting apparatus 11, it is possible to perform the mounting process while suppressing wasteful disposal of the wafer parts.
 上述のように、CPU51は、部品Pの設定、吸着、移動、配置を繰り返し行い、吸着エラーがあった場合には、適宜リカバリの実装処理を設定する。そして、リカバリの実装処理も含めて、ステップS160で現基板の実装処理が完了したときには、CPU51は、実装完了した基板Sを排出させ(ステップS210)、生産完了したか否かを判定する(ステップS220)。生産完了していないときには、CPU51は、ステップS110以降の処理を実行する。即ち、CPU51は、新たな基板Sを搬送、固定し、ステップS120以降の処理を実行する。一方、ステップS210で生産完了したときには、CPU51は、そのままこのルーチンを終了する。 As described above, the CPU 51 repeatedly performs setting, suction, movement, and placement of the component P, and when there is a suction error, sets the recovery mounting process as appropriate. When the current board mounting process is completed in step S160, including the recovery mounting process, the CPU 51 discharges the mounted board S (step S210), and determines whether the production is completed (step S210). S220). When the production is not completed, the CPU 51 executes the processes after step S110. That is, the CPU 51 transports and fixes a new substrate S, and executes the processes after step S120. On the other hand, when the production is completed in step S210, the CPU 51 ends this routine as it is.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の実装ユニット13が本発明の実装部に相当し、フリップ部36が受渡部に相当し、制御部50が制御部に相当し、吸着ノズル24が採取部材に相当する。なお、本実施形態では、実装装置11の動作を説明することにより本発明の実装方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The mounting unit 13 of this embodiment corresponds to the mounting part of the present invention, the flip part 36 corresponds to the delivery part, the control part 50 corresponds to the control part, and the suction nozzle 24 corresponds to the sampling member. In the present embodiment, an example of the mounting method of the present invention is also clarified by describing the operation of the mounting apparatus 11.
 以上説明した実施形態の実装装置11では、1回の実装サイクルにおいて吸着ノズル24に採取されるべき複数の部品Pのうち少なくとも一部の部品Pがフリップ部36(受渡部)に残存しているときにはリカバリの実装処理をこの残存した部品を用いて実行する。一般に、実装装置では、部品Pの採取が適正に行われないなどの実装エラーが生じた際には、のちの実装サイクルでまとめてリカバリの実装処理を行うことにより、採取部材に空きが生じるのを抑えて効率よく実装処理を行うことがある。この場合、次の実装サイクルで他の部品Pを実装する場合などには、フリップ部36に残存したウエハ部品は、初期位置へ返却せずに廃棄されることになりうる。この実装装置11では、リカバリの実装処理を、残存したウエハ部品を用いて直近の実装サイクルで行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。また、実装装置11では、フリップ部36に残存したウエハ部品を用いたリカバリ実装処理を次の実装サイクルで行うため、吸着エラーにより生じた残存部品をフリップ部36に放置させず、好ましい。 In the mounting apparatus 11 of the embodiment described above, at least some of the components P to be collected by the suction nozzle 24 in one mounting cycle remain in the flip portion 36 (delivery unit). Sometimes the recovery mounting process is executed using the remaining components. In general, in a mounting apparatus, when a mounting error occurs such as the component P being not properly collected, the sampling member is vacated by performing a recovery mounting process in a subsequent mounting cycle. In some cases, the mounting process is performed efficiently. In this case, when another component P is mounted in the next mounting cycle, the wafer component remaining in the flip unit 36 may be discarded without being returned to the initial position. In this mounting apparatus 11, the recovery mounting process is performed in the latest mounting cycle using the remaining wafer parts, so that the mounting process can be performed while suppressing the generation of wasted parts. Further, in the mounting apparatus 11, since the recovery mounting process using the wafer components remaining in the flip part 36 is performed in the next mounting cycle, it is preferable not to leave the remaining parts caused by the suction error in the flip part 36.
 また、実装装置11は、初期位置から採取位置までウエハ部品を反転して移動するフリップ部を備えており、このフリップ供給時にリカバリの実装処理を次の実装サイクルに設定するため、フリップ部36で無駄となるウエハ部品の発生をより抑制して実装処理を行うことができる。また、フリップ部に供給されるのは、比較的高価であるウエハ部品であるため、無駄となる部品の発生をより抑制する要望が高い。更に、制御部50は、フリップ部36に残存しているウエハ部品のみを用いてリカバリの実装処理を実行させるため、処理をより簡略化することができる。また、制御部50は、次の実装サイクルにおいて残存したウエハ部品を採取可能な吸着ノズル24の空きが実装ユニット13にある場合には、フリップ部36にウエハ部品を追加してリカバリの実装処理を次の実装サイクルで実行させる。この処理では、新たな実装サイクルが増えないため、より効率がよい。 Further, the mounting apparatus 11 includes a flip unit that reverses and moves the wafer part from the initial position to the sampling position. At the time of supplying the flip, the flip unit 36 sets the recovery mounting process to the next mounting cycle. It is possible to perform the mounting process while suppressing generation of wasted wafer parts. Further, since it is a relatively expensive wafer part that is supplied to the flip part, there is a high demand for suppressing the generation of wasted parts. Furthermore, since the control unit 50 executes the recovery mounting process using only the wafer components remaining in the flip unit 36, the process can be further simplified. Further, when the mounting unit 13 has an empty suction nozzle 24 capable of collecting the remaining wafer parts in the next mounting cycle, the control unit 50 adds the wafer parts to the flip unit 36 and performs the recovery mounting process. Execute in the next mounting cycle. This process is more efficient because the new mounting cycle does not increase.
 また、制御部50は、ウエハ供給ユニット30からの実装エラー時において、フリップ部36にウエハ部品が残存していないときにはリカバリの実装処理をのちの実装サイクルで実行させる。この実装装置11では、のちの実装サイクルでまとめてリカバリを行うため、吸着ノズル24に空きが生じるのを抑えて効率よく実装処理を行うことができる。更に、制御部50は、フリップ部36から採取しない部品Pの実装エラー時において、実装エラーのリカバリの実装処理をのちの実装サイクルで実行させる。この実装装置11では、のちの実装サイクルでまとめてリカバリを行うため、吸着ノズル24に空きが生じるのを抑えて効率よく実装処理を行うことができる。 Also, the control unit 50 causes the mounting process of recovery to be executed in a subsequent mounting cycle when no wafer parts remain in the flip unit 36 at the time of a mounting error from the wafer supply unit 30. In this mounting apparatus 11, since the recovery is performed collectively in the subsequent mounting cycle, it is possible to efficiently perform the mounting process while preventing the suction nozzle 24 from becoming empty. Furthermore, the control unit 50 causes a mounting error recovery mounting process to be executed in a subsequent mounting cycle when there is a mounting error of a component P not collected from the flip unit 36. In this mounting apparatus 11, since the recovery is performed collectively in the subsequent mounting cycle, it is possible to efficiently perform the mounting process while preventing the suction nozzle 24 from becoming empty.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、受渡部をウエハ部品を反転して移動させるフリップ部36として説明したが、初期位置から採取位置まで複数の部品Pを初期位置へ返却することなく移動するものとすれば、特にこれに限定されない。例えば、受渡部は、フリップ部36と同様の構成であって、反転せずに部品Pを移動させるシャトル部であるものとしてもよい。また、上述した実施形態では、受渡部は、初期位置へ返却不能なフリップ部36としたが、物理的には返却可能であるが返却処理が煩雑であり部品Pを初期位置に返却しない場合も含むものとしてもよい。例えば、実装装置11において、トレイやフィーダから供給された部品Pを載置台18に一旦載置させたのち、更に載置台18から部品Pを採取して基板Sへ配置する場合の載置台18を受渡部としてもよい。 For example, in the above-described embodiment, the delivery unit has been described as the flip unit 36 that reverses and moves the wafer component. However, it is assumed that the plurality of components P are moved from the initial position to the sampling position without being returned to the initial position. For example, it is not limited to this. For example, the delivery unit may have the same configuration as the flip unit 36, and may be a shuttle unit that moves the component P without being reversed. In the above-described embodiment, the delivery unit is the flip unit 36 that cannot be returned to the initial position. However, the return unit may be physically returned, but the return process is complicated and the part P may not be returned to the initial position. It may be included. For example, in the mounting apparatus 11, the component P supplied from the tray or the feeder is once placed on the placement table 18, and then the placement table 18 when the component P is further collected from the placement table 18 and placed on the substrate S is used. It may be a delivery unit.
 上述した実施形態では、フリップ部36に残存する部品Pがある場合に、残存部品のみを用いたリカバリ実装処理を設定するか、次に空きの吸着ノズル24があるときに、これに加えたリカバリ実装処理を設定するかの両方を行うものとしたが、いずれか一方を行うものとしてもよい。この実装装置11においても、無駄となる部品Pの発生をより抑制して実装処理を行うことができる。 In the embodiment described above, when there is a part P remaining in the flip part 36, a recovery mounting process using only the remaining part is set, or when there is an empty suction nozzle 24 next, the recovery added to this is performed. It is assumed that both of the setting of the mounting process are performed, but either one of them may be performed. In this mounting apparatus 11 as well, it is possible to perform mounting processing while further suppressing the generation of wasted components P.
 上述した実施形態では、吸着エラー時など、1回の実装サイクルにおいて吸着ノズル24に採取されるべき複数のウエハ部品のうち少なくとも一部のウエハ部品がフリップ部36に残存しているときには、次の実装サイクルでリカバリの実装処理を実行するものとして説明したが、残存しているウエハ部品を利用してリカバリの実装処理を行うものとすれば、特に次の実装サイクルに限定されない。例えば、CPU51は、吸着エラー時にフリップ部36にウエハ部品が残存した現実装サイクルから数サイクル後までの間にリカバリの実装処理を実行するものとしてもよい。あるいは、CPU51は、1回の実装サイクルにおいて吸着ノズル24に採取されるべき複数のウエハ部品のうち少なくとも一部のウエハ部品がフリップ部36に残存しているときに、次にフリップ部36からウエハ部品を採取する実装サイクルがある場合には、この「次にフリップ部36からウエハ部品を採取する」までの実装サイクルにおいて、この残存したウエハ部品を用いてリカバリの実装処理を実行させるものとすればよい。この実装装置では、吸着エラーに基づいて生じたウエハ部品が、しばらくフリップ部36に存在することになるが、次にフリップ部36からウエハ部品が供給される前に、この残存部品が利用されるため、無駄となる部品の発生をより抑制して実装処理を行うことができる。この実装装置において、1回の実装サイクルにおいて吸着ノズル24に採取されるべき複数のウエハ部品のうち少なくとも一部のウエハ部品がフリップ部36に残存しているときに、次にフリップ部36からウエハ部品を採取する実装サイクルがない場合には、CPU51は、最終の実装サイクルまでに残存した部品を用いてリカバリの実装処理を実行させるものとしてもよい。この実装装置においても、残存した部品を用いてリカバリの実装処理を行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。 In the above-described embodiment, when at least a part of the plurality of wafer parts to be picked up by the suction nozzle 24 in one mounting cycle such as at the time of a suction error remains in the flip part 36, the following Although it has been described that the recovery mounting process is executed in the mounting cycle, the recovery mounting process is not particularly limited to the next mounting cycle if the remaining wafer parts are used to perform the recovery mounting process. For example, the CPU 51 may execute the mounting process for recovery from the current mounting cycle in which the wafer part remains in the flip unit 36 at the time of a suction error until several cycles later. Alternatively, when at least a part of the wafer parts among the plurality of wafer parts to be picked up by the suction nozzle 24 in one mounting cycle remains in the flip part 36, the CPU 51 next transfers the wafer from the flip part 36 to the wafer. If there is a mounting cycle for collecting parts, the mounting process for recovery is executed by using the remaining wafer parts in the mounting cycle until “the next wafer part is collected from the flip part 36”. That's fine. In this mounting apparatus, the wafer part generated based on the suction error is present in the flip part 36 for a while, but this remaining part is used before the wafer part is supplied from the flip part 36 next time. Therefore, it is possible to perform the mounting process while further suppressing the generation of wasted parts. In this mounting apparatus, when at least a part of a plurality of wafer parts to be picked up by the suction nozzle 24 in one mounting cycle remains in the flip part 36, the wafer is next transferred from the flip part 36 to the wafer. If there is no mounting cycle for collecting components, the CPU 51 may execute the recovery mounting process using the components remaining until the final mounting cycle. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components.
 上述した実施形態では、ステップS180において、現基板Sの最後の実装サイクルにリカバリの実装処理を挿入するものとして説明したが、効率よくまとめてリカバリの実装処理を行うものとすれば、現基板Sの最後のサイクルに限定されない。例えば、CPU51は、リカバリの実装処理を、統一条件(例えば同一の採取部材)でまとめて行われる実装サイクル群のうちの最後方の実装サイクルに挿入するものとしてもよい。この統一条件とは、例えば、同一の採取部材(吸着ノズル24)を用いる条件としてもよい。また、複数の実装ヘッドを有し、実装ヘッドを自動交換可能な実装装置11においては、同一の実装ヘッドを用いる条件としてもよい。この実装装置においても、残存した部品を用いてリカバリの実装処理を行うため、無駄となる部品の発生をより抑制して実装処理を行うことができる。 In the above-described embodiment, it is described that the recovery mounting process is inserted in the last mounting cycle of the current board S in step S180. However, if the recovery mounting process is efficiently performed collectively, the current board S It is not limited to the last cycle. For example, the CPU 51 may insert the recovery mounting process into the last mounting cycle in the mounting cycle group that is collectively performed under the unified condition (for example, the same sampling member). The unified condition may be, for example, a condition using the same sampling member (suction nozzle 24). Further, in the mounting apparatus 11 having a plurality of mounting heads and capable of automatically replacing the mounting heads, the conditions for using the same mounting head may be used. Also in this mounting apparatus, since the mounting process for recovery is performed using the remaining components, the mounting process can be performed while suppressing the generation of wasted components.
 上述した実施形態では、残存したものを利用したリカバリを行う部品をウエハ部品であるものとしたが、特にこれに限定されず、ウエハ部品以外としてもよい。こうしても、無駄となる部品の発生をより抑制して実装処理を行うことができる。なお、高価な部品に本発明を適用することがより好ましい。 In the above-described embodiment, the component that performs recovery using the remaining component is the wafer component, but is not particularly limited thereto, and may be other than the wafer component. Even in this case, it is possible to perform the mounting process while suppressing the generation of wasted components. It is more preferable to apply the present invention to expensive parts.
 上述した実施形態では、実装ヘッド22は、採取部材として吸着ノズル24を備えるものとしたが、部品Pを採取可能であれば特に限定されず、部品を挟持して採取するメカニカルチャックなどとしてもよい。 In the embodiment described above, the mounting head 22 includes the suction nozzle 24 as a sampling member. However, the mounting head 22 is not particularly limited as long as the component P can be sampled, and may be a mechanical chuck that clamps and samples the component. .
 上述した実施形態では、本発明を実装装置11として説明したが、例えば、実装方法としてもよいし、上述した処理をコンピュータが実行するプログラムとしてもよい。 In the above-described embodiment, the present invention has been described as the mounting apparatus 11. However, for example, a mounting method may be used, or a program that a computer executes the above-described processing may be used.
 本発明は、部品を基板上に配置する実装処理を行う装置に利用可能である。 The present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.
10 実装システム、11 実装装置、12 基板搬送ユニット、13 実装ユニット、14 部品供給ユニット、15 パーツカメラ、18 載置台、20 ヘッド移動部、22 実装ヘッド、24 吸着ノズル、25 MFユニット、26 リール、27 フィーダ、30 ウエハ供給ユニット、31 ウエハパレット、32 マガジン部、34 ガイド、35 サブロボット、36 フリップ部、37 反転載置部、38 ガイドレール、39 サブカメラ、50 制御部、51 CPU、52 ROM、53 HDD、54 RAM、55 入出力インタフェース、56 バス、60 管理コンピュータ、P 部品、S 基板、W ウエハ。 10 mounting system, 11 mounting device, 12 substrate transport unit, 13 mounting unit, 14 component supply unit, 15 parts camera, 18 mounting table, 20 head moving unit, 22 mounting head, 24 suction nozzle, 25 MF unit, 26 reel, 27 feeder, 30 wafer supply unit, 31 wafer pallet, 32 magazine section, 34 guide, 35 sub robot, 36 flip section, 37 reverse mounting section, 38 guide rail, 39 sub camera, 50 control section, 51 CPU, 52 ROM 53 HDD, 54 RAM, 55 I / O interface, 56 bus, 60 management computer, P component, S substrate, W wafer.

Claims (7)

  1.  所定の採取位置から部品を採取部材により採取して基板上へ実装する実装サイクルを複数回実行する実装部と、
     初期位置から前記採取位置まで複数の部品を該初期位置へ返却することなく移動する受渡部と、
     1回の前記実装サイクルにおいて前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがある場合には、次に前記受渡部から前記部品を採取するまでの前記実装サイクルにおいて該残存した部品を用いてリカバリの実装処理を前記実装部に実行させる制御部と、
     を備えた実装装置。
    A mounting unit that executes a mounting cycle in which components are sampled from a predetermined sampling position by a sampling member and mounted on a substrate; and
    A delivery unit that moves from an initial position to the sampling position without returning a plurality of parts to the initial position;
    When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit. When there is a mounting cycle, a control unit that causes the mounting unit to execute a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit;
    Mounting device.
  2.  前記受渡部は、前記初期位置から前記採取位置まで部品を反転して移動するフリップ部及び前記初期位置から前記採取位置まで部品を載置して移動するシャトル部のうちいずれかである、請求項1に記載の実装装置。 The delivery unit is any one of a flip unit that reverses and moves a part from the initial position to the sampling position and a shuttle part that moves by placing the part from the initial position to the sampling position. The mounting apparatus according to 1.
  3.  前記制御部は、前記受渡部に残存している部品のみを用いて前記リカバリの実装処理を前記実装部に実行させる、請求項1又は2に記載の実装装置。 The mounting device according to claim 1 or 2, wherein the control unit causes the mounting unit to execute the recovery mounting process using only components remaining in the delivery unit.
  4.  前記制御部は、次の実装サイクルにおいて前記残存した部品を採取可能な前記採取部材の空きが前記実装部にある場合には、前記受渡部に前記部品を追加して前記リカバリの実装処理を次の実装サイクルで前記実装部に実行させる、請求項1~3のいずれか1項に記載の実装装置。 The control unit adds the component to the delivery unit to perform the recovery mounting process when the mounting unit has a vacant sampling member that can collect the remaining component in the next mounting cycle. The mounting apparatus according to any one of claims 1 to 3, wherein the mounting unit is caused to execute in the mounting cycle.
  5.  前記制御部は、前記受渡部から採取する部品の実装エラー時において、前記受渡部に部品が残存していないときには前記実装エラーのリカバリの実装処理を後方の実装サイクルで前記実装部に実行させる、請求項1~4のいずれか1項に記載の実装装置。 The control unit causes the mounting unit to execute mounting processing for recovery of the mounting error in a rear mounting cycle when no component remains in the transfer unit at the time of mounting error of the component collected from the delivery unit. The mounting apparatus according to any one of claims 1 to 4.
  6.  前記制御部は、前記受渡部から採取しない部品の実装エラー時において、前記実装エラーのリカバリの実装処理を後方の実装サイクルで前記実装部に実行させる、請求項1~5のいずれか1項に記載の実装装置。 6. The control unit according to claim 1, wherein the control unit causes the mounting unit to execute a mounting process for recovery of the mounting error in a rear mounting cycle when a mounting error of a component not collected from the delivery unit occurs. The mounting apparatus described.
  7.  所定の採取位置から部品を採取部材により採取して基板上へ実装する実装サイクルを複数回実行する実装部と、初期位置から前記採取位置まで複数の部品を該初期位置へ返却することなく移動する受渡部と、を備えた実装装置を利用する実装方法であって、
     1回の前記実装サイクルにおいて前記採取部材に採取されるべき前記複数の部品のうち少なくとも一部の部品が前記受渡部に残存しているときに、次に前記受渡部から前記部品を採取する前記実装サイクルがある場合には、次に前記受渡部から前記部品を採取するまでの前記実装サイクルにおいて該残存した部品を用いてリカバリの実装処理を前記実装部に実行させるステップ、
     を含む実装方法。
    A mounting unit that executes a mounting cycle in which a component is sampled from a predetermined sampling position by a sampling member and mounted on a substrate, and a plurality of components are moved from the initial position to the sampling position without returning to the initial position. A mounting method using a mounting device including a delivery unit,
    When at least a part of the plurality of components to be sampled by the sampling member in one mounting cycle remains in the delivery unit, the component is next sampled from the delivery unit. If there is a mounting cycle, the step of causing the mounting unit to perform a recovery mounting process using the remaining components in the mounting cycle until the component is next collected from the delivery unit;
    Implementation method including
PCT/JP2015/063343 2015-05-08 2015-05-08 Mounting device and mounting method WO2016181439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/063343 WO2016181439A1 (en) 2015-05-08 2015-05-08 Mounting device and mounting method
JP2017517464A JP6630726B2 (en) 2015-05-08 2015-05-08 Mounting device and mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063343 WO2016181439A1 (en) 2015-05-08 2015-05-08 Mounting device and mounting method

Publications (1)

Publication Number Publication Date
WO2016181439A1 true WO2016181439A1 (en) 2016-11-17

Family

ID=57247962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063343 WO2016181439A1 (en) 2015-05-08 2015-05-08 Mounting device and mounting method

Country Status (2)

Country Link
JP (1) JP6630726B2 (en)
WO (1) WO2016181439A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433898A (en) * 2017-12-07 2020-07-17 株式会社富士 Information management apparatus and information management method
CN112425278A (en) * 2018-07-19 2021-02-26 株式会社富士 Component mounting system
WO2023084647A1 (en) * 2021-11-10 2023-05-19 株式会社Fuji Component mounter and component mounting system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044501A (en) * 2009-08-19 2011-03-03 Juki Corp Surface mounting device
JP2014060363A (en) * 2012-09-19 2014-04-03 Yamaha Motor Co Ltd Electronic component mounting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737953B2 (en) * 2011-01-07 2015-06-17 富士機械製造株式会社 Component mounting equipment
JP5713441B2 (en) * 2011-05-13 2015-05-07 富士機械製造株式会社 Component mounting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044501A (en) * 2009-08-19 2011-03-03 Juki Corp Surface mounting device
JP2014060363A (en) * 2012-09-19 2014-04-03 Yamaha Motor Co Ltd Electronic component mounting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433898A (en) * 2017-12-07 2020-07-17 株式会社富士 Information management apparatus and information management method
CN111433898B (en) * 2017-12-07 2023-06-23 株式会社富士 Information management apparatus and information management method
CN112425278A (en) * 2018-07-19 2021-02-26 株式会社富士 Component mounting system
CN112425278B (en) * 2018-07-19 2022-05-13 株式会社富士 Component mounting system
WO2023084647A1 (en) * 2021-11-10 2023-05-19 株式会社Fuji Component mounter and component mounting system

Also Published As

Publication number Publication date
JPWO2016181439A1 (en) 2018-02-22
JP6630726B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6319818B2 (en) Method for managing board-to-board working system and mounting order of components of board-to-board working system
US11864324B2 (en) Moving work management device, moving work device, mounting system, and moving work management method
KR101489703B1 (en) Mounting method of electronic component and surface mounting apparatus
WO2016181439A1 (en) Mounting device and mounting method
WO2016143058A1 (en) Mounting device, image processing method and imaging unit
JP6053572B2 (en) Mounting apparatus and mounting method
JP6448766B2 (en) Mounting apparatus and mounting method
JP7220237B2 (en) Management device, mounting device, mounting system and management method
US20210315140A1 (en) Moving work management device, mounting system, moving work device, and moving work management method
JP6556071B2 (en) Suction nozzle setup method for surface mounting system and surface mounting system
JP7197705B2 (en) Mounting equipment, mounting system, and inspection mounting method
JP6673900B2 (en) Mounting device and mounting method
US20150382520A1 (en) Die supply apparatus
JP7220238B2 (en) Management device, mobile work device, mounting device, mounting system, and management method
US11968785B2 (en) Mounting device and control method for same
JP6423193B2 (en) Mounting apparatus and mounting method
WO2022101992A1 (en) Management device, management method, and work device
JP7295334B2 (en) Management device, implementation system, management method
JP7249489B2 (en) Component mounter
JP6866250B2 (en) Determining device, determining method, surface mounter
JPWO2017037865A1 (en) Required accuracy setting device
JP6760790B2 (en) Surface mounter
JP2016219608A (en) Mounting apparatus and control method thereof
WO2020016978A1 (en) Component supply device
JP2022088797A (en) Mounting method and mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891765

Country of ref document: EP

Kind code of ref document: A1