WO2016180057A1 - 一种可充放电铝离子熔盐电池及其制备方法 - Google Patents

一种可充放电铝离子熔盐电池及其制备方法 Download PDF

Info

Publication number
WO2016180057A1
WO2016180057A1 PCT/CN2016/072866 CN2016072866W WO2016180057A1 WO 2016180057 A1 WO2016180057 A1 WO 2016180057A1 CN 2016072866 W CN2016072866 W CN 2016072866W WO 2016180057 A1 WO2016180057 A1 WO 2016180057A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
electrolyte
negative electrode
molten salt
dischargeable
Prior art date
Application number
PCT/CN2016/072866
Other languages
English (en)
French (fr)
Inventor
焦树强
焦汉东
王俊香
李海滨
徐阳
Original Assignee
北京科技大学
北京金吕能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学, 北京金吕能源科技有限公司 filed Critical 北京科技大学
Publication of WO2016180057A1 publication Critical patent/WO2016180057A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to a chargeable and dischargeable aluminum ion molten salt battery and a preparation method thereof, which can be used for energy storage and conversion utilization of renewable energy such as wind energy, solar energy and tidal energy.
  • the invention adopts graphite and metal aluminum with wide raw materials and low cost as the positive and negative electrodes of the battery, and uses the molten halide containing aluminum ions as the electrolyte, and can be effectively and widely applied to the storage and utilization of various renewable clean energy sources.
  • the invention provides a molten salt battery which can be used for energy storage and conversion of renewable energy such as wind energy, solar energy and tidal energy, and has outstanding charge and discharge specific capacity, excellent cycle performance, energy conversion efficiency and good safety. Cleanability makes it suitable for high-efficiency storage and conversion of a variety of green clean energy sources.
  • the present invention provides the following technical solutions:
  • the chargeable and dischargeable aluminum ion molten salt battery proposed by the invention has similar working principle with the existing lithium ion battery, sodium ion battery and normal temperature aluminum ion battery.
  • a chargeable and dischargeable aluminum ion molten salt battery characterized by comprising a positive electrode, a negative electrode and containing aluminum ions
  • a molten halide mixed salt electrolyte and an electrolytic cell device wherein the positive electrode graphite, the negative electrode is a solid, a liquid metal aluminum or an alloy thereof, and the electrolyte is a molten halide system containing aluminum ions.
  • the molten halide system is a molten halide having a temperature between 25 and 1000 ° C which is a mixture of one or more of an alkali metal, an alkaline earth metal chloride, a fluoride, a bromide and an iodide. system.
  • the carbon material having a content of the cathode graphite material of more than 10% is preferably a content of the graphite material of 50% to 100%.
  • the positive electrode or the solid negative electrode has a shape of a sheet, a rectangular parallelepiped, a cube, a cylindrical block or other irregular block having at least one plane.
  • the negative electrode is a binary or multi-component alloy formed of solid, liquid metal aluminum or solid, liquid aluminum and metallic copper, iron, nickel, lead, antimony, tin, silver, and the like.
  • the electrolytic cell with the sidewall insulation and the bottom conduction is used as the reaction container of the chargeable and dischargeable aluminum ion molten salt battery of the present invention
  • the battery After preparing the positive electrode, the negative electrode, and the molten halide electrolyte system containing aluminum ions, the battery is assembled, and then heated to the working temperature (when the electrolyte is in a liquid state);
  • the positive electrode graphite block is immersed in a molten halide electrolyte containing aluminum ions. At the same time, it is ensured that the positive electrode high temperature resistant conductive rod is not immersed in the electrolyte and the positive and negative electrodes are not shorted.
  • the positive electrode and the negative electrode The high temperature resistant conductive rod is made of iron, molybdenum, titanium, nickel, copper, aluminum, zirconium, hafnium or alloy.
  • step (2) of the above method for preparing a chargeable and dischargeable aluminum ion molten salt battery when the negative electrode is liquid aluminum or aluminum alloy, the side wall insulation is used, and the bottom conductive electrolytic cell is used as a reaction container; when the negative electrode is solid aluminum or aluminum alloy The conductivity of the reaction vessel is not required.
  • the aluminum ion-containing molten halide electrolyte system containing freely movable must have an alkali metal, an alkaline earth metal fluoride or a chloride having a purity of 99.5% or more. , bromides, iodides with one or more AlF 3, one kind of AlCl 3, AlBr 3, AlI 3 Na 3 AlF 6 or the like is mixed.
  • the assembly of the battery comprises grinding the obtained electrolyte into granules or powder in an oxygen-free and anhydrous environment when the negative electrode is liquid aluminum or aluminum alloy.
  • the diameter is between 0.001 and 50 mm.
  • the bottom is completely covered with a 5-500 mm thick (preferably 20-50 mm thick) aluminum block or an aluminum alloy block in the bottom of the electrically conductive reaction vessel, and the electrolyte thickness is between 20 and 500 mm ( It is preferably 50-100 mm thick).
  • the obtained electrolyte is ground into particles or powder (particle diameter between 0.001 and 50 mm) in an oxygen-free and anhydrous environment, and placed in a conductive non-required reaction vessel, and the electrolyte thickness is 100-5000 mm. Between (preferably 1000-2000 mm thick), the positive and negative electrodes of the battery are immersed in the electrolyte through the positive and negative conductive rods.
  • the present invention uses graphite as a positive electrode, liquid, solid metal aluminum or an alloy thereof as a negative electrode, and a molten halide containing aluminum ions as an electrolyte to constitute a chargeable and dischargeable aluminum ion molten salt battery.
  • the invention has the following characteristics: since the positive electrode graphite and the negative electrode aluminum element are rich in reserves in the earth's crust, the price is cheap, and the preparation cost of the battery is greatly reduced; the graphite has a layered structure, which facilitates the embedding and disengagement of the aluminum element, and the graphite has excellent properties.
  • Chemical stability and thermal stability can improve cycle stability, charge-discharge specific capacity and cycle efficiency of the chargeable and dischargeable aluminum ion molten salt battery of the present invention; molten salt as electrolyte, high conductivity, good thermal stability, and ion migration
  • the high rate and wide potential window can effectively reduce the internal resistance of the chargeable and dischargeable aluminum ion molten salt battery of the invention, thereby improving the energy conversion efficiency.
  • the chargeable and dischargeable aluminum ion molten salt battery of the invention can be safely and reliably, clean and environmentally friendly, and can be widely used for energy storage and conversion of renewable energy such as wind energy, solar energy and tidal energy.
  • FIG. 1 is a schematic view of a battery of Embodiment 1;
  • FIG. 2 is a schematic view of a battery of Embodiment 2;
  • FIG. 3 is a schematic view of a battery of Embodiment 3.
  • FIG. 1 is a schematic view of a battery of Embodiment 1;
  • FIG. 2 is a schematic view of a battery of Embodiment 2;
  • FIG. 3 is a schematic view of a battery of Embodiment 3.
  • a graphite block having a purity greater than 99% is taken and processed into a disk-shaped block having a diameter of 1000 mm and a thickness of 200 mm, and a thread having a depth of 100 mm and a diameter of 100 mm is machined at the center of the cross section of the sheet and is screwed.
  • a 60 mm diameter stainless steel rod was used as the conductive rod of the positive graphite.
  • the bottom of the masonry has an inner diameter of 1200 mm and a depth of 1000 mm.
  • the tubular electrolytic cell with a side wall insulation serves as a reaction vessel.
  • an aluminum ingot having a purity greater than 99% is pre-melted at the bottom of the reaction vessel to form a cylindrical aluminum ingot of about 100 mm thick covering the entire bottom of the reaction vessel.
  • Equimolar NaF and KF were used as supporting electrolytes, and 10% by mass of Na 3 AlF 6 was added to provide aluminum ions.
  • a uniformly mixed electrolyte was added to a reaction vessel covered with a 100 mm thick aluminum block at a bottom, and the thickness of the electrolyte was between 200 and 300 mm. After the assembly of the electrolysis device was completed, the electrolytic cell was heated to 800 ° C.
  • FIG. 1 is a schematic view of the battery of the present example.
  • a graphite block having a purity greater than 99% is taken and processed into a square piece having a side length of 1000 mm and a height of 200 mm, and a thread having a depth of 100 mm and a diameter of 100 mm is machined at the center of the cross section of the sheet and threaded.
  • a stainless steel rod having a diameter of 60 mm was connected as a conductive rod of the positive electrode graphite.
  • the masonry has a side length of 1200 mm, a depth of 1000 mm, and a rectangular parallelepiped electrolytic cell with a side wall insulation as a reaction vessel.
  • a copper aluminum ingot was pre-melted under the inert atmosphere to the bottom of the reaction vessel to form a cylindrical copper-like aluminum alloy ingot approximately 60 mm thick covering the entire bottom of the reaction vessel.
  • Equimolar LiF and KF were used as supporting electrolytes, and 8% by mass of AlCl 3 was added to provide aluminum ions.
  • a uniformly mixed electrolyte was added to a reaction vessel covered with a 60 mm thick copper-aluminum alloy at the bottom, and the thickness of the electrolyte was between 200 and 300 mm. After the assembly of the electrolysis device is completed, the electrolytic cell is heated to 700 ° C.
  • FIG. 2 is a schematic view of the battery of the present example.
  • the graphite block with a purity of more than 90% is processed into a square piece having a side length of 1000 mm and a thickness of 100 mm, and a thread having a depth of 200 mm and a diameter of 60 mm is machined on one side of the piece, and a stainless steel having a diameter of 60 mm is screwed.
  • the rod serves as a conductive rod for the cathode graphite.
  • a cubic electrolytic cell having a side length of 1200 mm and a depth of 1200 mm was used as a reaction vessel.
  • An aluminum ingot with a purity greater than 99% is selected and processed into a square piece having a side length of 1000 mm and a thickness of 50 mm, and a thread having a depth of 100 mm and a diameter of 30 mm is machined on one side of the sheet, and a stainless steel having a diameter of 30 mm is screwed.
  • the rod serves as a conductive rod for the negative aluminum sheet.
  • Equivalent moles of CaCl 2 and LiCl were used as supporting electrolytes, and 8% by mass of AlF 3 was added to provide aluminum ions.
  • a uniform electrolyte is added to the reaction vessel, and the thickness of the electrolyte is between 1100 and 1200 mm.
  • FIG. 3 is a schematic view of the battery of the present example.
  • the graphite block with a purity of more than 90% is processed into a square piece having a side length of 1000 mm and a thickness of 100 mm, and a thread having a depth of 200 mm and a diameter of 60 mm is machined on one side of the piece, and a stainless steel having a diameter of 60 mm is screwed.
  • the rod serves as a conductive rod for the cathode graphite.
  • a cubic electrolytic cell having a side length of 1200 mm and a depth of 1200 mm was used as a reaction vessel.
  • a copper-aluminum alloy ingot is selected and processed into a square piece having a side length of 1000 mm and a thickness of 50 mm, and a thread having a depth of 100 mm and a diameter of 30 mm is machined on one side of the sheet body, and a stainless steel rod having a diameter of 30 mm is screwed as a negative electrode.
  • Equimolar LiCl and KCl were used as supporting electrolytes, and 8% by mass of AlCl 3 was added to provide aluminum ions.
  • FIG. 4 is a schematic view of the battery of the present example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种可充放电铝离子熔盐电池及其制备方法,属于电池技术领域,用于风能、太阳能、潮汐能等可再生清洁能源的能量储存与转换利用。本发明的一种可充放电铝离子熔盐电池包含正极、负极、电解质,其中正极为石墨,负极为金属铝或其合金,电解质为含有铝离子的熔融卤化物体系。本发明所提出的可充放电铝离子熔盐电池具有可快速充放电、容量高、效率高、循环性能稳定、安全性高、清洁环保等特点。

Description

一种可充放电铝离子熔盐电池及其制备方法 技术领域
本发明属于一种可充放电铝离子熔盐电池及其制备方法,可用于风能、太阳能、潮汐能等可再生清洁能源的能量储存与转换利用。
背景技术
近年来,随着煤炭、石油、天然气的不断减少及其使用带来的环境压力,开发并利用清洁可再生能源成为了当前研究的热点。其中电能因为其处于多种能源转换的核心阶段而成为了整个可再生清洁能源发展与利用的关键因素。然而,要实现这些电能的高效利用,则涉及到电能的储存问题。二次电池的可充放性是当前解决电能储存最有效也是最有希望的方式。当前,二次电池仍然以锂离子电池为主,锂离子电池因为其较高的能量密度及高电压平台而广泛应用于手机、电脑等电子产品以及其他便携式电子产品上。但受全球锂储量的影响,要将锂离子电池大规模应用于风能、太阳能以及潮汐能等绿色环保能源的能量转换与储存几乎是不能可能完成的任务。另外,锂离子电池因负极枝状晶的生成所存在的安全隐患使得人们一直在寻求新的电池体系。近来,高温熔盐二次电池进入了人们的视线。相对于常温离子电池,高温熔融盐二次电池离子迁移率快,电极极化小、有利于能量的高效率储存与转换。本发明采用原料广泛且成本低廉的石墨和金属铝作为电池正、负极,采用含铝离子的熔融卤化物为电解质,可有效并大规模应用于多种可再生清洁能源的储存于利用。
发明内容
本发明提供一种可用于风能、太阳能、潮汐能等可再生清洁能源的能量储存与转换利用的熔盐电池,突出的充放电比容量,优异的循环性能、能量转换效率以及较好的安全性、清洁性使得其可大规模应用于多种绿色清洁能源的高效率储存与转换。
为实现上述目的,本发明提供以下技术方案:
本发明提出的可充放电铝离子熔盐电池,其工作原理与已有的锂离子电池、钠离子电池以及常温铝离子电池的工作原理有相似之处。
一种可充放电铝离子熔盐电池,其特征在于包含正极、负极和含有铝离子的 熔融卤化物混合盐电解质及电解池装置,其中正极石墨,负极为固态、液态金属铝或其合金,电解质为含有铝离子的熔融卤化物体系。
所述熔融卤化物体系由碱金属、碱土金属氯化物、氟化物、溴化物以及碘化物中的一种或一种以上按一定比例混合而成的温度在25-1000℃之间的熔融卤化物体系。
所述铝离子由以下包含但不仅限于此的含铝卤化物、铝酸盐提供,具体如:AlF3、AlCl3、AlBr3、AlI3、或Na3AlF6等。
所述正极石墨质材料含量大于10%的碳材料,优选石墨质材料含量为50%-100%。
所述正极或固态负极形状为片状、长方体状、立方体状,圆筒状块体或其它具有至少一个平面的不规则块体。
所述负极为固态、液态金属铝或固态、液态的铝与金属铜、铁、镍、铅、铋、锡、银等形成的二元或多元合金。
所述可充放电铝离子熔盐电池具体制备步骤:
1)将石墨块体与正极耐高温导电杆采用螺纹、夹具、钩挂、镶嵌或耐高温金属丝捆绑等方式连接作为正极;
2)液态铝或铝合金做负极时,采用侧壁绝缘,底部导通的电解池作为本发明可充放电铝离子熔盐电池的反应容器;
3)当液态铝或铝合金做负极时,取一定量的金属铝或铝合金置于上述可底部导电的反应容器,并加热至熔融,随后冷却于反应容器底部作为负极。当固态铝或铝合金做负极时,将固态铝或铝合金采用螺纹、夹具、钩挂、镶嵌或耐高温金属丝捆绑等方式与负极导电杆连接作为负极;
4)配制含有可自由移动的铝离子熔融卤化物电解质体系;
5)准备好正极、负极以及含有铝离子的熔融卤化物电解质体系后,组装电池,随后加热至工作温度(此时电解质呈液态);
6)上述电解池达到工作温度后,将正极石墨块体浸入含有铝离子的熔融卤化物电解质中。同时保证正极耐高温导电杆未浸入电解质以及正负极未发生短接。
上述可充放电铝离子熔盐电池制备方法步骤(1)、(3)中,所述正极、负极 耐高温导电杆为铁、钼、钛、镍、铜、铝、锆、铪金属或合金制成。
上述可充放电铝离子熔盐电池制备方法步骤(2)中,所述负极为液态铝或铝合金时,采用侧壁绝缘,底部导电的电解池作为反应容器;负极为固态铝或铝合金时,反应容器的导电性无要求。
上述可充放电铝离子熔盐电池制备方法步骤(4)中,所述含有可自由移动的铝离子熔融卤化物电解质体系必须由纯度均在99.5%以上的碱金属、碱土金属氟化物、氯化物、溴化物、碘化物中的一种或一种以上配合AlF3、AlCl3、AlBr3、AlI3或Na3AlF6等中的一种混合而成。
上述可充放电铝离子熔盐电池制备方法步骤(5)中,所述电池的组装包含当负极为液态铝或铝合金时,将所得电解质在无氧无水环境中磨成颗粒或粉末(粒径在0.001-50mm之间)置于底部完全覆盖了5-500mm厚(优选20-50mm厚)的铝块或铝合金块的底部可导电的反应容器中,电解质厚度在20-500mm之间(优选50-100mm厚)。当负极为固态铝或铝合金时,所得电解质在无氧无水环境中磨成颗粒或粉末(粒径在0.001-50mm之间)置于导电无要求的反应容器中,电解质厚度在100-5000mm之间(优选1000-2000mm厚),电池的正、负极通过正负极导电杆悬挂浸泡在电解质中。
本发明使用石墨为正极,液态、固态金属铝或其合金作为负极,含有铝离子的熔融卤化物为电解质构成了一种可充放电铝离子熔盐电池。本发明具有以下特点:由于正极石墨和负极铝元素在地壳的储量丰富,价格便宜,大大降低了电池的制备成本;石墨具备层状结构,利于铝元素的嵌入与脱出,同时石墨在具备优良的化学稳定性和热稳定性可提高本发明的可充放电铝离子熔盐电池的循环稳定性、充放电比容量以及循环效率;熔融盐作为电解质,导电率高,热稳定性好,同时离子迁移率较高并具备较宽的电势窗口,可有效降低本发明可充放电铝离子熔盐电池内阻,从而提高能量转换效率。基于以上特点,本发明可充放电铝离子熔盐电池可安全可靠、清洁环保可大规模用于风能、太阳能、潮汐能等可再生清洁能源的能量储存与转换利用。
附图说明
图1为实施例1的电池示意图;图2为实施例2的电池示意图;图3为实施例3的电池示意图;图4为实施例4的电池示意图.
其中编号1为正极耐高温导电杆;2为正极石墨片;3为含铝电解质;4为液态铝负极;5为液态铜铝合负极;6为负极耐高温导电杆;7为负极固态铝;8为负极固态铜铝合金。
具体实施方式
本发明下面将通过具体实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
实施例1
取纯度大于99%的石墨块体,并将其加工为直径1000mm,厚200mm的圆片状块体,并在片体的横截面中心位置加工出深100mm,直径100mm的螺纹,并通过螺纹连接一根直径60mm的不锈钢棒作为正极石墨的导电杆。砌筑内径1200mm,深1000mm的底部导电,侧壁绝缘的筒状电解池作为反应容器。在惰性气氛保护下选取纯度大于99%的铝锭预熔于反应容器底部,形成大约100mm厚覆盖整个反应容器底部的类圆柱状铝锭。以等摩尔的NaF和KF为支持电解质,并添加质量分数10%的Na3AlF6以提供铝离子。组装电池时,将混合均匀的电解质添加在底部覆盖了100mm厚铝块的反应容器中,电解质的厚度在200-300mm之间。电解装置组装完成后,将电解池加热升温至800℃。最后,通过调节正极导电杆调剂正极块体位置,使其浸入电解质中10mm深并浸泡一定时间,至此完成本发明可充放电铝离子熔盐电池。图1为本实例的电池示意图。
实施例2
取纯度大于99%的石墨块体,并将其加工为边长1000mm,高200mm的方片状块体,并在片体的横截面中心位置加工出深100mm,直径100mm的螺纹,并通过螺纹连接一根直径60mm的不锈钢棒作为正极石墨的导电杆。砌筑边长1200mm,深1000mm的底部导电,侧壁绝缘的长方体电解池作为反应容器。在惰性气氛保护下选取铜铝锭预熔于反应容器底部,形成大约60mm厚覆盖整个反应容器底部的类圆柱状铜铝合金锭。以等摩尔的LiF和KF为支持电解质,并添加质量分数8%的AlCl3以提供铝离子。组装电池时,混合均匀的电解质添加在底部覆盖了60mm厚铜铝合金的反应容器中,电解质的厚度在200-300mm之间。电解装置组装完成后,将电解池加热升温至700℃。最后,通过调节正极导电杆调剂正极块体位置,使其浸入电解质中10mm深并浸泡一定时间,至此完成本发明可充放电铝离子熔 盐电池。图2为本实例的电池示意图。
实施例3
将纯度大于90%的石墨块体加工为边长1000mm,厚100mm的方片状块体,并在片体的一边加工出深200mm,直径60mm的螺纹,并通过螺纹连接一根直径60mm的不锈钢棒作为正极石墨的导电杆。砌筑边长1200mm,深1200mm的立方体电解池作为反应容器。选取纯度大于99%的铝锭,将其加工为边长1000mm,厚50mm的方片状,并在片体的一边加工出深100mm,直径30mm的螺纹,并通过螺纹连接一根直径30mm的不锈钢棒作为负极铝片的导电杆。以等摩尔的CaCl2和LiCl为支持电解质,并添加质量分数8%的AlF3以提供铝离子。组装电池时,混合均匀的电解质添加反应容器中,电解质的厚度在1100-1200mm之间。电解装置组装完成后,将电解池加热升温至600℃。最后,通过调节正极导电杆调剂正极块体位置,使其浸入电解质中1000mm深并浸泡一定时间,至此完成本发明可充放电铝离子熔盐电池。图3为本实例的电池示意图。
实施例4
将纯度大于90%的石墨块体加工为边长1000mm,厚100mm的方片状块体,并在片体的一边加工出深200mm,直径60mm的螺纹,并通过螺纹连接一根直径60mm的不锈钢棒作为正极石墨的导电杆。砌筑边长1200mm,深1200mm的立方体电解池作为反应容器。选取铜铝合金锭,将其加工为边长1000mm,厚50mm的方片状,并在片体的一边加工出深100mm,直径30mm的螺纹,并通过螺纹连接一根直径30mm的不锈钢棒作为负极铜铝片的导电杆。以等摩尔的LiCl和KCl为支持电解质,并添加质量分数8%的AlCl3以提供铝离子。组装电池时,混合均匀的电解质添加反应容器中,电解质的厚度在1100-1200mm之间。电解装置组装完成后,将电解池加热升温至400℃。最后,通过调节正极导电杆调剂正极块体位置,使其浸入电解质中1000mm深并浸泡一定时间,至此完成本发明可充放电铝离子熔盐电池。图4为本实例的电池示意图。

Claims (10)

  1. 一种可充放电铝离子熔盐电池,其特征在于包含正极、负极和含有铝离子的熔融卤化物混合盐电解质及电解池装置,其中正极为石墨,负极为固态、液态金属铝或其合金,电解质为含有铝离子的熔融卤化物体系。
  2. 如权利要求1所述可充放电铝离子熔盐电池,其特征在于所述熔融卤化物体系由碱金属、碱土金属氯化物、氟化物、溴化物以及碘化物中的一种或一种以上混合而成的温度在25-1000℃之间的熔融卤化物体系。
  3. 如权利要求1所述可充放电铝离子熔盐电池,其特征在于所述铝离子由含铝卤化物、铝酸盐提供,包括:AlF3、AlCl3、AlBr3、AlI3或Na3AlF6
  4. 如权利要求1所述可充放电铝离子熔盐电池,其特征在于所述正极石墨质材料碳含量为50%~100%。
  5. 如权利要求1所述的可充放电铝离子熔盐电池,其特征在于所述正极或固态负极形状为片状、长方体状、立方体状,圆筒状块体或其它具有至少一个平面的不规则块体。
  6. 如权利要求1所述可充放电铝离子熔盐电池,其特征在于所述负极为固态、液态金属铝或固态、液态的金属铝与金属铜、铁、镍、铅、铋、锡、银形成的二元或多元合金。
  7. 根据权利要求1所述的可充放电铝离子熔盐电池的制备方法,其特征在于,包括以下的制备步骤:
    1)将石墨块体与正极耐高温导电杆采用螺纹、夹具、钩挂、镶嵌或耐高温金属丝捆绑方式连接作为正极;
    2)当液态铝或铝合金做负极时,采用侧壁绝缘,底部导电的电解池作为本发明可充放电铝离子熔盐电池的反应容器;当固态铝或铝合金做负极时,反应容器导电性无要求;
    3)当液态铝或铝合金做负极时,取金属铝或铝合金置于步骤2)所述底部导电的反应容器,并加热至熔融,随后冷却于反应容器底部作为负极;当固态铝或铝合金做负极时,将固态铝或铝合金采用螺纹、夹具、钩挂、镶嵌或耐高温金属丝捆绑方式与负极导电杆连接作为负极;
    4)配制含有铝离子熔融卤化物电解质体系;
    5)准备好正极、负极以及含有铝离子的熔融卤化物电解质体系后,组装电 池,随后加热至工作温度,此时电解质呈液态;
    6)步骤5)所述电解池达到工作温度后,将正极石墨块体浸入含有铝离子的熔融卤化物电解质中;同时保证正极耐高温导电杆未浸入电解质以及正负极未发生短接。
  8. 根据权利要求7所述的可充放电铝离子熔盐电池的制备方法,其特征在于,步骤1)、3)中,所述正极、负极耐高温导电杆为铁、钼、钛、镍、铜、铝、锆、铪金属或合金制成。
  9. 根据权利要求7所述的可充放电铝离子熔盐电池的制备方法,其特征在于,步骤4)中,含有可自由移动的铝离子熔融卤化物电解质体系是由碱金属、碱土金属氟化物、氯化物、溴化物、碘化物中的一种或一种以上配合AlF3、AlCl3、AlBr3、AlI3或Na3AlF6中的一种混合得到。
  10. 根据权利要求7所述的可充放电铝离子熔盐电池的制备方法,其特征在于,步骤5)中,当负极为液态铝或铝合金时,电池的组装是将所得电解质在无氧无水环境中磨成颗粒或粉末,颗粒或粉末粒径在0.001-50mm之间,置于底部完全覆盖了5-500mm厚的铝块或铝合金块的底部可导电的反应容器中,电解质厚度在20-500mm之间;当负极为固态铝或铝合金时,电池的组装是将所得电解质在无氧无水环境中磨成颗粒或粉末,颗粒或粉末粒径在0.001-50mm之间,置于导电性无要求的反应容器中,电解质厚度在100-5000mm之间,电池的正、负极通过正负极导电杆悬挂浸泡在电解质中。
PCT/CN2016/072866 2015-05-13 2016-01-29 一种可充放电铝离子熔盐电池及其制备方法 WO2016180057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510243839.2A CN104868179B (zh) 2015-05-13 2015-05-13 一种可充放电铝离子熔盐电池及其制备方法
CN201510243839.2 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016180057A1 true WO2016180057A1 (zh) 2016-11-17

Family

ID=53913847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072866 WO2016180057A1 (zh) 2015-05-13 2016-01-29 一种可充放电铝离子熔盐电池及其制备方法

Country Status (2)

Country Link
CN (1) CN104868179B (zh)
WO (1) WO2016180057A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086695A (zh) * 2019-06-13 2020-12-15 中国科学院物理研究所 Sn(AlCl4)2熔盐的应用以及熔盐电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868179B (zh) * 2015-05-13 2017-11-17 北京科技大学 一种可充放电铝离子熔盐电池及其制备方法
CN105632780A (zh) * 2016-01-05 2016-06-01 北京金吕能源科技有限公司 一种低温无机熔盐铝离子超级电容电池及其制备方法
US10418663B2 (en) 2016-05-17 2019-09-17 Industrial Technology Research Institute Metal-ion battery
TWI611618B (zh) 2016-12-16 2018-01-11 財團法人工業技術研究院 金屬離子電池
CN107658423B (zh) * 2017-08-07 2020-06-02 云南靖创液态金属热控技术研发有限公司 液态金属合金极片及制作方法、锂离子电池及制作方法
CN109962185B (zh) * 2019-03-27 2021-01-19 西安交通大学 一种小容量金属石墨中温储能电池及其制备方法
CN111354903B (zh) * 2020-03-13 2020-09-11 烟台三新新能源科技有限公司 电解质膜、其生产设备和制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104494A (zh) * 1986-06-06 1988-01-27 利利怀特公司 电化学电池
CN104241596A (zh) * 2014-08-22 2014-12-24 北京科技大学 一种可充电铝离子电池及其制备方法
CN204289603U (zh) * 2014-12-12 2015-04-22 芶富均 一种液态金属电池装置
CN104868179A (zh) * 2015-05-13 2015-08-26 北京科技大学 一种可充放电铝离子熔盐电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445288A (en) * 1966-01-03 1969-05-20 Standard Oil Co Aluminum anode electrical energy storage device
US3650834A (en) * 1970-01-28 1972-03-21 Standard Oil Co Ohio Aluminum bromide fused salt battery
US10128543B2 (en) * 2013-07-08 2018-11-13 Eos Energy Storage, Llc Molten metal rechargeable electrochemical cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104494A (zh) * 1986-06-06 1988-01-27 利利怀特公司 电化学电池
CN104241596A (zh) * 2014-08-22 2014-12-24 北京科技大学 一种可充电铝离子电池及其制备方法
CN204289603U (zh) * 2014-12-12 2015-04-22 芶富均 一种液态金属电池装置
CN104868179A (zh) * 2015-05-13 2015-08-26 北京科技大学 一种可充放电铝离子熔盐电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086695A (zh) * 2019-06-13 2020-12-15 中国科学院物理研究所 Sn(AlCl4)2熔盐的应用以及熔盐电池

Also Published As

Publication number Publication date
CN104868179A (zh) 2015-08-26
CN104868179B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2016180057A1 (zh) 一种可充放电铝离子熔盐电池及其制备方法
CN102332572B (zh) 一种负极材料及其制造方法、锂离子电池及其负极片
WO2017117838A1 (zh) 一种低温无机熔盐铝离子超级电容电池及其制备方法
CN101944612B (zh) 钛酸锂负极材料及其制备方法以及使用该钛酸锂负极材料的锂离子电池
CN111106310A (zh) 一种复合锂金属负极的制备方法及含复合锂金属负极的电池
CN104993130A (zh) 一种非水溶液铝离子二次电池及其制备方法
CN204230347U (zh) 一种液态金属电池装置
CN107221677A (zh) 一种高能量密度的液态金属电池
CN109411712B (zh) 一种铝氯混合离子电池
CN108899482A (zh) 铝离子电池及其正极材料
WO2016102373A1 (en) Molten salt electrochemical flow cell
CN105633327B (zh) 一种TiS2为正极的铝离子二次电池及其制备工艺
CN102660697A (zh) 一种动力用铅酸蓄电池板栅合金
CN109950640B (zh) 金属石墨中温储能电池及其制备方法
CN106711462A (zh) 一种钠-卤化物电池集流体及含该集流体的钠-卤化物电池
CN108110233A (zh) 一种硅碳复合材料及其制备方法、负极片、锂电池
CN111705337B (zh) 一种熔盐原电池法制备铅钙母合金的方法
Nitta et al. Development of molten salt electrolyte battery
CN108270006A (zh) 一种钠基双离子电池
CN207504101U (zh) 一种石墨烯方形锂离子电池
CN104124444B (zh) 一种用于液固金属电池的正极材料
Tsuda et al. Graphene nanoplatelet-polysulfone composite cathodes for high-power aluminum rechargeable batteries
CN110289444A (zh) 一种采用液态金属镓为负极的铝离子电池
CN109244533B (zh) 固态铝离子电池
CN103456927A (zh) 含氧钒钛基贮氢电极合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16791907

Country of ref document: EP

Kind code of ref document: A1