CN109411712B - 一种铝氯混合离子电池 - Google Patents

一种铝氯混合离子电池 Download PDF

Info

Publication number
CN109411712B
CN109411712B CN201811047869.6A CN201811047869A CN109411712B CN 109411712 B CN109411712 B CN 109411712B CN 201811047869 A CN201811047869 A CN 201811047869A CN 109411712 B CN109411712 B CN 109411712B
Authority
CN
China
Prior art keywords
aluminum
ion battery
gic
graphite
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811047869.6A
Other languages
English (en)
Other versions
CN109411712A (zh
Inventor
李春亮
刘凯
高继超
张联齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201811047869.6A priority Critical patent/CN109411712B/zh
Publication of CN109411712A publication Critical patent/CN109411712A/zh
Application granted granted Critical
Publication of CN109411712B publication Critical patent/CN109411712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种铝氯混合离子电池,包括:正极、负极、电解液和介于正负极之间的隔膜,所述正极的材料为氯化物‑石墨层间化合物MClX‑GIC,所述电解液为金属氯化物和有机氯化物组成的离子液体。创新之处在于成功的将石墨层间化合物应用于离子电池中,运用混合化学的理论,把铝离子电池和氯离子电池体系融合起来,形成铝氯混合离子电池,所组成的铝氯混合离子电池体系电荷载体并不单一,真正嵌入混合电池正极的是Cl(也可能还有AlCl4 ),对铝负极的沉积/溶解过程起决定性作用的却是Al2Cl7 。在充放电过程中仅发生离子的嵌入和脱出,没有发生其它化学反应,电极结构并没有发生变化,因此具有较好的电化学稳定性。

Description

一种铝氯混合离子电池
技术领域
本发明涉及电化学储能领域,主要涉及到一种铝氯混合离子电池。
背景技术
铝离子电池是一种颇具潜力的新一代储能系统,具有诸多突出的优点。首先,铝元素是地壳中含量最丰富的金属元素,仅次于氧和硅元素,占据地壳总质量的8.23%,来源广泛,廉价易得。其次,金属铝具有非常强的电荷存储能力,它的体积比容量可达8.04 Ah/cm3,是金属锂体积比容量(2.06 Ah/cm3)的四倍。另外,铝金属还具有优异的导电、导热和延展性等。
在过去的几十年中,研究人员一直致力于可充电铝离子电池的商业化,却未尝所愿,究其原因,正极是问题的关键所在:由于电荷密度较大,铝离子(Al3+)难以在电极材料内部可逆地嵌入/脱出,导致铝离子电池缺乏兼具高比能量和长循环寿命的正极材料;目前,Al3+只能在三氯化铝(AlCl3)和有机氯化物(如氯化1-乙基-3-甲基咪唑[EMIm]Cl)组成的离子液体中可逆地沉积/溶解,而这类离子液体对电极材料、集流体和包装外壳等都有很强的腐蚀性。上述不利因素阻碍了铝离子电池的推广应用。
2015年4月6日, Nature 在线发表了美国斯坦福大学戴宏杰教授团队关于铝离子电池的论文“An ultrafast rechargeable aluminium-ion battery, Nature, 2015,520, 325” ,文中报道的铝离子电池以金属铝为负极,其正极材料为石墨(三维石墨泡沫)。该电池具有非常优异的循环稳定性(7500次充放电后无容量衰减),突出的倍率性能(充放电倍率可达75 C,充满电只需不到一分钟),可媲美超级电容器的功率密度(接近3000 W/kg)。尽管该电池的能量密度较低(~40 Wh/kg,与铅酸电池相近),有待提升,却充分地展现了铝离子电池所蕴藏的巨大潜力。而H. Dai等人的铝离子电池体系中的电荷载体并不单一。真正嵌入石墨正极的是AlCl4 -,对铝负极的沉积/溶解过程起定性作用的却是Al2Cl7 -。因此,H. Dai等人的铝离子电池体系更像是一种混合离子电池。这说明,铝离子电池正极材料的选择不必仅限于那些能够嵌入/脱出Al3+的物质,鉴于以Al3+为电荷载体的正极材料的研发困难重重,将其他电池体系的电极材料引入铝离子电池,组成混合型铝离子电池,也是一个合理的选择。
发明内容
本发明解决的技术问题在于提供一种混合型铝氯混合离子电池,本发明成功地将氯化物-石墨层间化合物(MClX-GIC)应用于铝电池中,运用混合化学的理论,把铝离子电池和氯离子电池体系融合起来,形成铝氯混合离子电池。
本发明提供了一种铝氯混合型离子电池,包括正极、负极、电解液和介于正负极间的隔膜,所述正极材料为金属氯化物-石墨层间化合物MClX-GIC,所述负极为铝金属,所述电解液为金属氯化物和有机氯化物组成的离子液体。
优选的,所述正极的材料为CuCl2-GIC或FeCl3-GIC、MnCl2-GIC、CoCl2-GIC、NiCl2-GIC中的一种。
优选的,所述正极材料MClX-GIC的制备方法为:于手套箱中称取一定质量的天然鳞片石墨、MClX,然后放入石英试管中密封,密封好的石英试管放入马弗炉中加热,在420℃~600 ℃中加热1 h~12 h,将产物依次进行洗涤和干燥后即为所需要的MClX-GIC。
优选的,所述电解液的有机氯化物为[EMIm]Cl或[BMIm]Cl。
优选的,电解液的配制方法是:在手套箱中称取[EMIm]Cl和AlCl3,将AlCl3缓慢加入到[EMIm]Cl中,待离子液体呈透明色即为配制成的电解液[EMIm]Cl-AlCl3
优选的,所述离子电解液摩尔配比[EMIm]Cl : AlCl3=0.5-1 : 1-2。进一步优选的,所述离子电解液摩尔配比[EMIm]Cl : AlCl3=1 :1.5。
优选的,所述电解液的浓度为1~1.5M。
优选的,所述负极为铝金属。
与现有技术相比,本发明采用的正极材料为石墨层间化合物(CuCl2-GIC、FeCl3-GIC、MnCl2-GIC、CoCl2-GIC、NiCl2-GIC等)。电解液为金属氯化物和有机氯化物组成的离子液体。本发明中的正极材料均为层状结构,MClx-GIC能够充分实现MClx与石墨的融合和优势互补,MClx的引入能够增加石墨的活性位点,提高石墨正极的比容量,拓展石墨的活性电位。反过来,石墨层间,特别是沿着石墨烯片层的方向,有很大的空间,可以有效缓冲MClx的体积膨胀;石墨的限域效应能够抑制MClx的团聚、溶出,充分发挥和保持MClx的储氯活性;石墨烯片层之间的范德华力能够保证MClx-GIC可逆的膨胀收缩,保持其结构的稳定性;石墨可以为MClx提供一个优异的导电网络,提升MClx的倍率性能。所组成的铝氯混合离子电池体系电荷载体并不单一,真正嵌入混合离子电池正极的是Cl-(也可能还有AlCl4 -),对铝负极的沉积/溶解过程起决定性作用的却是Al2Cl7 -。同时,在充放电过程中仅发生离子的嵌入和脱出,没有发生其它化学反应,电极结构并没有发生变化,因此具有较好的电化学稳定性。
附图说明
图1 是铝氯混合离子电池的构成及充放电过程示意图
图2是铝氯混合离子电池正极材料MClx-GIC的结构示意图;
图3是石墨、CuCl2-GIC和FeCl3-GIC的XRD图谱;
图4是实施例一的铝氯混合离子电池充放电曲线图;
图5是实施例二的铝氯混合离子电池充放电曲线图;
图6是实施例三的铝氯混合离子电池充放电曲线图;
图7是实施例四的铝氯混合离子电池充放电曲线图;
图8是实施例五的铝氯混合离子电池充放电曲线图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种铝氯混合离子电池,包括:正极、负极、电解液和介于正负极之间的隔膜,所述正极的材料为CuCl2-GIC、FeCl3-GIC、MnCl2-GIC、CoCl2-GIC、NiCl2-GIC等石墨层间化合物,所述电解液为金属氯化物和有机氯化物组成的离子液体。本发明实施例成功的将石墨层间化合物应用于离子电池中,运用混合化学的理论,把铝离子电池和氯离子电池体系融合起来,形成铝氯混合离子电池,所组成的铝氯混合离子电池体系电荷载体并不单一,真正嵌入混合电池正极的是Cl-(也可能还有AlCl4 -),对铝负极的沉积/溶解过程起决定性作用的却是Al2Cl7 -。所提供的铝氯混合离子电池是以一种全新的思路对铝电池进行地设计。铝氯混合离子电池的构成及充放电过程如图1所示。
按照本发明,为了得到功率密度和能量密度更高的离子电池,本发明正极材料选用一阶CuCl2-GIC、FeCl3-GIC、MnCl2-GIC、CoCl2-GIC、NiCl2-GIC。
由于本发明采用的正极材料为金属氯化物石墨层间化合物,结构图如图2所示,其优越性在于MClx廉价易得,理论储氯比容量高,是比较理想的Al3+/Cl-混合离子电池的正极材料。但MClx多为不良导体,且易溶于电解液中,循环稳定性差。与之相对的是,石墨电极的导电性极佳,但比容量低。因此,MClx与石墨互补性极强,能够将二者融为一体,发挥协同效应,制备出高性能Al3+/Cl-混合离子电池正极材料。
需要进一步说明的是,由于本发明混合离子电池的正极材料都是层状结构,MClx的引入能够增加石墨的活性位点,提高石墨正极的比容量,拓展石墨的活性电位。反过来,石墨层间,特别是沿着石墨烯片层的方向,有很大的空间,可以有效缓冲MClx的体积膨胀;石墨的限域效应能够抑制MClx的团聚、溶出,充分发挥和保持MClx的储氯活性;石墨烯片层之间的范德华力能够保证MClx-GIC可逆的膨胀收缩,保持其结构的稳定性;石墨可以为MClx提供一个优异的导电网络,提升MClx的倍率性能。因此铝氯混合离子电池具有较好的循环寿命。
为了提高铝氯混合离子电池的性能,还需要对铝氯混合离子电池的电解液进行严格限定。本发明中的电解液为金属氯化物和有机氯化物组成的离子液体。优选的为三氯化铝(AlCl3)和有机氯化物(如氯化1-乙基-3-甲基咪唑[EMIm]Cl)。本发明的电解液的浓度为1~1.5M。因此在电解液中存在的铝离子、氯离子较多,能够为电解液中提供较多的自由离子。以下实施例在电解液的配置中,以氯代1-丁基-3-甲基咪唑[BMIm]Cl代替[EMIm]Cl,得到相同的技术效果。
为了进一步理解本发明,下面结合实施例对本发明提供的铝氯混合离子电池进行详细说明,本发明的保护范围不受以下实施例的限制。
具体实施实例一
以金属铝为负极,以AlCl3- [EMIm]Cl为电解液,以CuCl2-GIC为正极材料,组装成铝氯混合离子电池。
电解液的配制方法是:在手套箱中称取7.31 g[EMIm]Cl,然后称取8.64 g AlCl3,将AlCl3缓慢加入到[EMIm]Cl中,待离子液体呈透明色即为配制成的电解液。
CuCl2-GIC正极材料的制备方法:于手套箱中称取0.12 g的天然鳞片石墨,1.11 g的CuCl2,其中石墨与氯化物的摩尔比为2 : 3,将其放入石英管内抽真空5 min后进行熔封。将密封好的石英试管放入马弗炉中,以5 ℃/min升温至380 ℃,恒温2 h后自然冷却至室温。取出样品后用去离子水洗至没有颜色,并于70 ℃干燥箱中干燥后即得产物。特征XRD衍射峰图3证明CuCl2-GIC能够成功制备。
按照所述组装成铝氯混合离子电池后进行电化学性能测试。以CuCl2-GIC为正极的Al3+/Cl-混合离子电池在1 C的倍率下,在0.5 V-2.6 V电压范围内进行充放电。充放电曲线见图4。
具体实施实例二
以金属铝为负极,AlCl3和[EMIm]Cl为电解液,以FeCl3-GIC为正极材料,组装成铝氯混合离子电池。电解液的摩尔配比[EMIm]Cl:AlCl3=1 : 1.5。配制方法如实施例一。
FeCl3-GIC正极材料的制备方法为:于手套箱中称取0.164 g天然鳞片石墨,0.406g的FeCl3,其中天然鳞片石墨与FeCl3的摩尔比为5.44 : 1,然后放入石英试管中熔封。熔封好的石英试管放入马弗炉中加热,在450 ℃中加热1 h,将产物用去离子水洗涤至没有颜色,并于70 ℃干燥箱中干燥后即得产物。特征XRD衍射峰图2证明FeCl3-GIC正极材料成功制备。按照所述组装成铝氯混合离子电池后进行电化学性能测试。以FeCl3-GIC为正极的Al3 +/Cl-混合离子电池在1 C的倍率下,在0.5 V-2.6 V电压范围内进行充放电。充放电曲线见图5。
具体实施实例三
以金属铝为负极,以三氯化铝AlCl3和[EMIm]Cl为电解液,以CoCl2-GIC为正极材料,组装成铝氯混合离子电池。电解液的摩尔配比[EMIm]Cl : AlCl3=1 : 1。配制方法如实施例一。
CoCl2-GIC正极材料的制备方法为:CoCl2-GIC是采用天然鳞片石墨和无水CoCl2熔盐法合成的,CoCl2和石墨的摩尔比为1 : 4n(n为阶数),反应温度为660 ℃,反应时间为12h,实验过程是:先将反应物装入耐热石英玻璃管内,充分混合后抽真空5 min,然后进行熔封,反应完成后用液氮冷却反应管液化其中的气体,取出后进行洗涤并干燥即得产物。按照所述组装成铝氯混合离子电池后进行电化学性能测试。以CoCl2-GIC为正极的Al3+/Cl-混合离子电池在1 C的倍率下,在0.5 V-2.6 V电压范围内进行充放电。充放电曲线见图6。
具体实施实例四
以金属铝为负极,以AlCl3 [EMIm]Cl为电解液,以MnCl2-GIC为正极材料,组装成铝氯混合离子电池。电解液的摩尔配比[EMIm]Cl : AlCl3=1 : 1.3。配制方法如实施例一。
MnCl2-GIC正极材料的制备方法为:MnCl2-GIC是采用天然鳞片石墨和无水MnCl2熔盐法合成的,MnCl2和石墨的摩尔比为1 : 5n,(n为阶数),反应温度为575 ℃,反应时间为8h,具体实验过程是于手套箱中称取0.12 g天然鳞片石墨,0.25 g的MnCl2,然后放入石英玻璃管中熔封,熔封好的石英试管放入马弗炉中加热,在575 ℃下维持8 h,将产物用去离子水洗涤至没有颜色,并于70 ℃干燥箱中干燥后即得产物。按照所述组装成铝氯混合离子电池后进行电化学性能测试。以MnCl2-GIC为正极的Al3+/Cl-混合离子电池在1 C的倍率下,在0.5 V-2.6 V电压范围内进行充放电。充放电曲线见图7。
具体实施实例五
以金属铝为负极,以AlCl3和 [EMIm]Cl为电解液,以NiCl2-GIC为正极材料,组装成铝氯混合离子电池。电解液的摩尔配比[EMIm]Cl : AlCl3=1 : 1.5。配制方法如实施例一。
NiCl2-GIC正极材料的制备方法为:NiCl2-GIC是采用天然鳞片石墨和无水NiCl2熔盐法合成的,NiCl2和石墨的摩尔比为1 : 3n(n为阶数),反应温度为660 ℃,反应时间为4h,操作流程是于手套箱中称取0.12 g天然鳞片石墨,0.20 g的NiCl2,然后放入石英玻璃管中熔封,熔封好的石英试管放入马弗炉中加热,在660 ℃下维持4 h,将产物用去离子水洗涤至没有颜色,并于70 ℃干燥箱中干燥后即得产物。按照所述组装成铝氯混合离子电池后进行电化学性能测试。以NiCl2-GIC为正极的Al3+/Cl-混合离子电池在1 C的倍率下,在0.5V-2.6 V电压范围内进行充放电。充放电曲线见图8。

Claims (6)

1.一种铝氯混合离子电池,包括:正极、负极、电解液和介于正负极之间的隔膜,其特征在于,所述正极为金属氯化物-石墨层间化合物MClX-GIC,所述负极为铝金属,所述电解液为金属氯化物和有机氯化物组成的离子液体;
正极材料MClX-GIC通过以下方法得到:
于手套箱中称取天然鳞片石墨、MClX,然后放入石英试管中密封,密封好的石英试管放入马弗炉中加热,在420 ℃~600 ℃中加热1 h~12 h,将产物依次进行洗涤和干燥后即为所需要的MClX-GIC;
正极材料MClX-GIC分别为CuCl2-GIC、FeCl3-GIC、MnCl2-GIC、CoCl2-GIC、NiCl2-GIC时,天然鳞片石墨与MClX的摩尔比例关系分别为天然鳞片石墨与CuCl2的摩尔比为2 : 3;天然鳞片石墨与FeCl3的摩尔比为5.44 : 1;CoCl2与天然鳞片石墨的摩尔比为1 : 4n;MnCl2与天然鳞片石墨的摩尔比为1 : 5n;NiCl2与天然鳞片石墨的摩尔比为1 : 3n;其中n为阶数。
2.根据权利要求1所述的铝氯混合离子电池,其特征在于:电解液的配制方法是:在手套箱中称取[EMIm]Cl和AlCl3,将AlCl3缓慢加入到[EMIm]Cl中,待离子液体呈透明色即为配制成的电解液[EMIm]Cl-AlCl3;离子电解液的摩尔配比[EMIm]Cl:AlCl3=0.5-1 : 1-2。
3.根据权利要求2所述的铝氯混合离子电池,其特征在于:离子电解液的摩尔配比[EMIm]Cl : AlCl3=1 :1.5。
4.根据权利要求2所述的铝氯混合离子电池,其特征在于,[EMIm]Cl由[BMIm]Cl替代。
5.根据权利要求1或2所述的铝氯混合离子电池,其特征在于,所述电解液的浓度为1~1.5M。
6.根据权利要求1所述的铝氯混合离子电池,其特征在于,所述负极为铝金属。
CN201811047869.6A 2018-09-10 2018-09-10 一种铝氯混合离子电池 Active CN109411712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811047869.6A CN109411712B (zh) 2018-09-10 2018-09-10 一种铝氯混合离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811047869.6A CN109411712B (zh) 2018-09-10 2018-09-10 一种铝氯混合离子电池

Publications (2)

Publication Number Publication Date
CN109411712A CN109411712A (zh) 2019-03-01
CN109411712B true CN109411712B (zh) 2021-09-03

Family

ID=65464660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811047869.6A Active CN109411712B (zh) 2018-09-10 2018-09-10 一种铝氯混合离子电池

Country Status (1)

Country Link
CN (1) CN109411712B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888241B (zh) * 2019-03-11 2020-09-04 浙江大学 氧化物-石墨层间化合物及其制备方法与电极和电池
US20220246995A1 (en) * 2019-07-03 2022-08-04 The Board Of Trustees Of The Leland Stanford Junior University Safe and non-flammable sodium metal batteries based on chloroaluminate electrolytes with additives
CN113078312B (zh) * 2021-03-26 2022-04-22 南京工业大学 氯化铋@多孔碳复合氯离子电池正极材料及其制备方法
CN113307261B (zh) * 2021-04-21 2022-07-12 浙江大学 一种适用于快充锂离子电池的石墨层间化合物负极材料的制备方法及其产品和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810544A (zh) * 2015-04-20 2015-07-29 北京科技大学 一种可充电铝离子电池及其制备方法
CN107045904A (zh) * 2016-09-19 2017-08-15 江苏华联电力器材有限公司 一种石墨插层间CuCl2、FeCl3化合物复合电极材料的制备方法
CN107331838A (zh) * 2017-06-21 2017-11-07 南京工业大学 一种氯离子电池纳米复合电极材料及其制备方法
CN108899482A (zh) * 2018-05-29 2018-11-27 绿业中试低碳科技(镇江)有限公司 铝离子电池及其正极材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120082904A1 (en) * 2010-09-30 2012-04-05 Brown Gilbert M High energy density aluminum battery
US10950861B2 (en) * 2017-02-13 2021-03-16 Global Graphene Group, Inc. Aluminum secondary battery having a high-capacity and high energy cathode and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810544A (zh) * 2015-04-20 2015-07-29 北京科技大学 一种可充电铝离子电池及其制备方法
CN107045904A (zh) * 2016-09-19 2017-08-15 江苏华联电力器材有限公司 一种石墨插层间CuCl2、FeCl3化合物复合电极材料的制备方法
CN107331838A (zh) * 2017-06-21 2017-11-07 南京工业大学 一种氯离子电池纳米复合电极材料及其制备方法
CN108899482A (zh) * 2018-05-29 2018-11-27 绿业中试低碳科技(镇江)有限公司 铝离子电池及其正极材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Advanced rechargeable aluminium ion battery;Di-Yan Wang et al.;《NATURE COMMUNICATIONS》;20170213;第8卷;全文 *
Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithium-Ion Batteries;Fei Wang et al.;《ADVANCED ENERGY MATERIALS》;20140131;第4卷(第2期);第1、5页 *
Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries;Jiantie Xu et al.;《Advanced Science》;20170623;第4卷(第10期);第1-12页 *

Also Published As

Publication number Publication date
CN109411712A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Huang et al. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries
CN109411712B (zh) 一种铝氯混合离子电池
Ye et al. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes
Ruan et al. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries
Choi et al. Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery
Cheng et al. Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries
CN112909224A (zh) 一种锂离子电池电极材料及其制备方法
Darwiche et al. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery
Jiao et al. A rechargeable Al–Te battery
CN108899482B (zh) 铝离子电池及其正极材料
CN109713369B (zh) 一种低成本铝基电解液及其铝电池应用
WO2017117838A1 (zh) 一种低温无机熔盐铝离子超级电容电池及其制备方法
Warrier et al. Silicon clathrates for lithium ion batteries: A perspective
Wang et al. Synthesizing nitrogen-doped porous carbon@ sulfur cathode for high-performance and stable cycling Li-S batteries
Plichta et al. The Rechargeable Li x TiS2/LiAlCl4/Li1− x CoO2 Solid‐State Cell
CN105633327B (zh) 一种TiS2为正极的铝离子二次电池及其制备工艺
Pu et al. Trapping polysulfides catholyte in carbon nanofiber sponges for improving the performances of sulfur batteries
Li et al. Phosphorene oxides as a promising cathode material for sealed non-aqueous Li–oxygen batteries
Akgenc et al. Aluminum and lithium sulfur batteries: a review of recent progress and future directions
Zhao et al. Constructing porous nanosphere structure current collector by nitriding for lithium metal batteries
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
Xie et al. Electrochemical lithiation and delithiation of FeSb2 anodes for lithium-ion batteries
Monconduit et al. Na-ion batteries
CN109950640B (zh) 金属石墨中温储能电池及其制备方法
Tsuda et al. Graphene nanoplatelet-polysulfone composite cathodes for high-power aluminum rechargeable batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared