WO2016180021A1 - 一种可切换双级和复叠的船用节能超低温制冷系统 - Google Patents

一种可切换双级和复叠的船用节能超低温制冷系统 Download PDF

Info

Publication number
WO2016180021A1
WO2016180021A1 PCT/CN2015/097554 CN2015097554W WO2016180021A1 WO 2016180021 A1 WO2016180021 A1 WO 2016180021A1 CN 2015097554 W CN2015097554 W CN 2015097554W WO 2016180021 A1 WO2016180021 A1 WO 2016180021A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
stage
valve
refrigeration system
low temperature
Prior art date
Application number
PCT/CN2015/097554
Other languages
English (en)
French (fr)
Inventor
谢晶
郭耀君
王金锋
李艺哲
徐旻晟
Original Assignee
上海海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海洋大学 filed Critical 上海海洋大学
Priority to EP15881416.0A priority Critical patent/EP3299747B1/en
Priority to JP2016548035A priority patent/JP6216077B2/ja
Priority to US15/185,025 priority patent/US10107526B2/en
Publication of WO2016180021A1 publication Critical patent/WO2016180021A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the invention belongs to the field of refrigeration and low temperature technology, and relates to a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system, in particular to a switchable two-stage and cascade ultra-low temperature low temperature with a cold fan hot fluorine defrost circuit. Cooling System.
  • the two-stage compression refrigeration system divides the compression process into two stages, that is, an intermediate pressure is added between the condensing pressure and the evaporation pressure; the low-pressure refrigerant vapor from the evaporator is first compressed from the evaporation pressure at the low-pressure stage of the compressor. After appropriate intermediate pressure, after intermediate cooling, it enters the high pressure stage where it is compressed from the intermediate pressure to the condensing pressure to form a two-stage compression.
  • the cascade refrigeration system is composed of two refrigeration systems, which are called high temperature part and low temperature part respectively, high temperature part uses medium temperature medium pressure refrigerant, low temperature part uses low temperature high pressure refrigerant; high and low temperature parts overlap each other is condensing evaporator It is both an evaporator of a high temperature portion and a condenser of a low temperature portion.
  • the refrigerant at a low temperature portion is condensed by vaporization endothermic heat of a medium temperature refrigerant at a high temperature portion.
  • the evaporation temperature when the evaporation temperature reaches below -25 °C, only the small refrigeration unit uses a single-stage compression refrigeration system to simplify the system, but the minimum can only reach -40 °C; in larger systems such as food freezing processing, etc.
  • a two-stage compression refrigeration system When preparing the evaporation temperature of -30 ° C ⁇ -60 ° C, a two-stage compression refrigeration system is generally used. When it is necessary to obtain an evaporation temperature of -60 ° C to -80 ° C, the two-stage compression refrigeration system is often due to the freezing point of the refrigerant. The system pressure ratio, evaporation pressure, operating economy and other factors are not sufficient to meet the requirements. In this case, a cascade refrigeration system is required. That is, the evaporating temperature adjustment of the two-stage compression refrigeration system is generally -30 ° C ⁇ -60 ° C, and the evaporating temperature adjustment of the cascade refrigeration system is generally -50 ° C ⁇ -80 °
  • the patent document published as CN202973641U discloses a -80 °C series-parallel automatic switching cascade refrigeration system, including a high temperature refrigeration system and a low temperature refrigeration system, and the high temperature compressor outlet is passed.
  • the high temperature condenser is connected to the liquid storage tank, and the liquid storage tank outlet is divided into two paths through the drying filter; the low temperature stage compressor outlet is divided into two paths, the expansion container outlet is connected with the low temperature compressor inlet, and the other is passed through the tube.
  • the exchanger is in communication with the low temperature evaporator, and the outlet of the low temperature evaporator is connected to the inlet of the low temperature compressor via an oil separator.
  • the system is operated by solenoid valve switching to achieve high temperature (room temperature to -40 ° C) and low temperature refrigeration (-40 ° C to -80 ° C) temperature control, thus achieving room temperature to -80 ° C temperature control, refrigeration interval
  • the range is large, which improves the operating efficiency of the compressor and reduces the operating cost.
  • the high temperature stage of the above refrigeration system uses a single stage compression refrigeration system, as described above, in the refrigeration engineering, when the evaporation temperature is lower than -25 ° C, the corresponding evaporation pressure is also relatively low, and the pressure ratio p k /p o
  • the actual compression process of the compressor deviates from the isentropic degree, so that the actual power consumption of the compressor increases and the efficiency decreases. If the pressure ratio is too large, the compressor exhaust temperature will increase, and the exhaust temperature will increase. Too high will cause the lubricant to become thinner or even charred. Therefore, instead of a single-stage compression refrigeration system.
  • the conventional cooling method of the air-cooling fan still uses the traditional electric heating and defrost.
  • the defrost time is controlled by the defrost controller, and the electric heating wire generates a radiant heat-melting frost layer.
  • the disadvantage of this method is that the defrost system consumes a large amount of power, and the electric heating system has many components, and the defrosting is insufficient, so that the product safety is lowered. In actual situations, it often causes large fluctuations in storage temperature, which affects the quality of food storage.
  • the present invention provides a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system according to the deficiencies and shortcomings of the prior art, and realizes two-stage compression of a hot fluorine defrost circuit with a cold air blower by designating a start and stop of a solenoid valve.
  • the refrigeration system is switched to the cascade refrigeration system, so that the evaporation temperature is continuously adjustable in the range of -30 ° C ⁇ -80 ° C and the energy saving effect of the hot air defrosting of the cold fan.
  • a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system including a high-temperature refrigeration system, a low-temperature refrigeration system, a high-temperature cold-air hot-melt defrost system, and a low-temperature grade.
  • the hot air blower system of the air blower is characterized in that the high temperature stage refrigeration system is also a single machine two-stage refrigeration system, and the high temperature stage refrigeration system comprises a high temperature stage compressor connected to the pipeline, a first oil separator, and a second electromagnetic Valve, water-cooled condenser, liquid receiver, high-temperature drying filter, first electronic expansion valve, intercooler, first regenerator, fourth solenoid valve, second electronic expansion valve, second check valve, high temperature Stage cooler, tenth solenoid valve, sixth check valve, fifth solenoid valve, third electronic expansion valve, condensing evaporator, fifth check valve, the high temperature compressor outlet and the first oil separator inlet Connected, the first oil separator outlet is divided into two ways, the first passage is connected to the water-cooled condenser inlet through the second electromagnetic valve, the water-cooled condenser outlet is connected to the liquid reservoir, and the liquid receiver outlet is cooled and filtered at a high temperature level.
  • the inlet is connected, and the outlet of the high-temperature drying filter is divided into two paths.
  • the first passage is connected to the high-temperature compressor via the first electronic expansion valve and the intermediate cooler, and the second passage is connected to the inlet of the first regenerator through the intercooler.
  • An outlet of the first regenerator is divided into two paths, the first passage is connected to the high temperature cooling fan via the fourth electromagnetic valve, the second electronic expansion valve, and the second one-way valve, and the high temperature cooling fan is passed through the tenth electromagnetic valve.
  • the sixth check valve and the first regenerator are connected to the high temperature compressor, and the second passage is connected to the low temperature passage of the condensing evaporator via the fifth electromagnetic valve and the third electronic expansion valve, and the fifth outlet of the condensing evaporator is discharged through the fifth stage.
  • the check valve and the first regenerator are connected to the high temperature compressor.
  • the low temperature refrigeration system includes a low temperature compressor connected to the pipeline, a precooler, a second oil separator, a ninth solenoid valve, a condensing evaporator, a low temperature drying filter, a second regenerator, a sight glass, and a a four-electron expansion valve, a fourth one-way valve, a low-temperature stage cooling fan, a seventh electromagnetic valve, an expansion container, the low-temperature stage compressor outlet is connected to the second oil separator inlet through a pre-cooler, and the second oil separator outlet Divided into two paths, the first passage is connected to the high temperature passage of the condensing evaporator via the ninth solenoid valve, the high temperature passage of the condensing evaporator is connected with the low temperature drying filter, and the outlet of the low temperature drying filter and the second regenerator An inlet is connected, and an outlet of the second regenerator is connected to the low temperature compressor by a sight glass, a fourth electronic expansion valve, a fourth one-way valve,
  • the high temperature cooling fan hot fluorine defrost system comprises a high temperature compressor connected to the pipeline, a first oil separator, a first electromagnetic valve, a high temperature cooling fan, a third electromagnetic valve, a first pressure reducing valve, a first gas liquid a separator, a first check valve, a first regenerator, the high temperature compressor outlet is connected to the first oil separator inlet, the first oil separator outlet is divided into two paths, and the second passage is through the first electromagnetic valve, The high temperature cooling fan, the third electromagnetic valve and the first pressure reducing valve are connected to the first gas-liquid separator, and the first gas-liquid separator outlet is connected to the high-temperature compressor via the first one-way valve and the first regenerator.
  • the low temperature grade cold fan hot fluorine defrost system comprises a low temperature compressor connected to the pipeline, a precooler, a second oil separator, an eighth electromagnetic valve, a low temperature cooling fan, a sixth electromagnetic valve, a second pressure reducing valve, a second gas-liquid separator, a third check valve, a second regenerator, an expansion vessel, the outlet of the low-temperature stage compressor is connected to the inlet of the second oil separator through a pre-cooler, and the outlet of the second oil separator is divided into two
  • the second passage is connected to the second gas-liquid separator via the eighth electromagnetic valve, the low-temperature cooling fan, the sixth electromagnetic valve, and the second pressure reducing valve, and the second gas-liquid separator outlet is connected to the third one-way valve,
  • the secondary regenerator is connected to the low temperature compressor.
  • High-temperature compressors and low-temperature compressors are variable-frequency screw compressors that enable stepless energy regulation and make the system energy efficient.
  • the high temperature refrigeration system is a single-stage two-stage refrigeration system that can be used as an independent refrigeration system.
  • the fifth solenoid valve can be activated to close the fourth solenoid valve, thereby switching the dual-stage compression refrigeration system to the cascade compression refrigeration system.
  • a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system characterized in that the condensing evaporator is a plate heat exchanger.
  • the utility model relates to a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system, characterized in that the high-temperature refrigeration system uses a refrigerant R404A, and the low-temperature refrigeration system uses a refrigerant R23.
  • the utility model relates to a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system, which realizes a two-stage compression refrigeration system with a cold-air hot-melt defrost circuit through a start and stop of a corresponding solenoid valve.
  • the switching to the cascade refrigeration system effectively expands the cooling temperature range of the cascade refrigeration system to reach the evaporating temperature continuously adjustable within the range of -30 °C ⁇ -80 °C, which improves the system performance, and has stable operation and obvious energy saving effect.
  • Advantages the advantages of cold-air hot-melt defrosting in the application of energy-saving and emission reduction are obvious.
  • FIG. 1 is a schematic view showing the structure of a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system according to the present invention, which is also a specific embodiment of the present invention.
  • the utility model relates to a switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system, which comprises a high-temperature refrigeration system, a low-temperature refrigeration system, a high-temperature cooling fan hot fluorine defrost system and a low-temperature cooling fan.
  • the hot fluorine defrost system is characterized in that the high temperature stage refrigeration system is also a single machine two-stage refrigeration system, and the high temperature stage refrigeration system comprises a high temperature stage compressor connected to the pipeline, a first oil separator 2, and a second electromagnetic Valve 4, water-cooled condenser 5, reservoir 6, high-temperature drying filter 7, first electronic expansion valve 8, intercooler 9, first regenerator 10, fourth solenoid valve 17, second electronic expansion valve 16.
  • the valve 38 is connected to the inlet of the first oil separator 2, and the outlet of the first oil separator 2 is divided into two paths.
  • the first passage is connected to the water-cooled condenser inlet 5 via the second electromagnetic valve 4, and is water-cooled.
  • the outlet of the condenser 5 is connected to the reservoir 6, and the outlet of the reservoir 6 is at a high temperature level.
  • the inlet of the drying filter 7 is connected, and the outlet of the high-temperature drying filter 7 is divided into two paths.
  • the first passage is connected to the high-temperature compressor 1 via the first electronic expansion valve 8, the intermediate cooler 9, and the second passage is passed through the intercooler 9.
  • one outlet of the first regenerator 10 is divided into two paths, and the first path passes through the fourth electromagnetic valve 17, the second electronic expansion valve 16, the second one-way valve 15 and the high temperature.
  • the stage cooling fan 41 is connected, and the high temperature stage cooling fan 41 is connected to the high temperature stage compressor 1 via the tenth electromagnetic valve 40, the sixth one-way valve 39, the first regenerator 10, and the second path is passed through the fifth electromagnetic valve 19,
  • the three-electron expansion valve 18 is connected to the low-temperature passage of the condensing evaporator 37, and the outlet of the low-temperature passage of the condensing evaporator 37 is connected to the high-temperature stage compressor 1 via the fifth check valve 38 and the first regenerator 10.
  • the low temperature refrigeration system includes a low temperature stage compressor 32 connected to the pipeline, a precooler 33, a second oil separator 35, a ninth solenoid valve 36, a condensing evaporator 37, a low temperature stage drying filter 20, and a second regenerator. 21, sight glass 22, fourth The electronic expansion valve 23, the fourth check valve 27, the low temperature stage cooling fan 29, the seventh electromagnetic valve 30, the expansion container 31, and the outlet of the low temperature stage compressor 32 are connected to the inlet of the second oil separator 35 through the precooler 33. The outlet of the second oil separator 35 is divided into two paths.
  • the first passage is connected to the high temperature passage of the condensing evaporator 37 via the ninth electromagnetic valve 36, and the high temperature passage of the condensing evaporator 37 is connected to the low temperature drying filter 20, and the low temperature drying filter
  • the outlet of 20 is connected to an inlet of the second regenerator 21, and an outlet of the second regenerator 21 passes through the sight glass 22, the fourth electronic expansion valve 23, the fourth check valve 27, the low temperature stage cooler 29, and the seventh.
  • the solenoid valve 30 is connected to the low temperature stage compressor 32.
  • the high temperature grade cold fan hot fluorine defrost system comprises a high temperature stage compressor connected to the pipeline 1, a first oil separator 2, a first solenoid valve 3, a high temperature stage cooler 41, a third solenoid valve 14, and a first pressure reducing valve. 13.
  • the first gas-liquid separator 12, the first one-way valve 11, and the first regenerator 10 the outlet of the high-temperature stage compressor 1 is connected to the inlet of the first oil separator 2, and the outlet of the first oil separator 2 is divided into Two paths, the second path is connected to the first gas-liquid separator 12 via the first electromagnetic valve 3, the high-temperature stage cooling fan 41, the third electromagnetic valve 14, and the first pressure reducing valve 13, and the first gas-liquid separator 12 is exported.
  • the first check valve 11 and the first regenerator 10 are connected to a high temperature stage compressor.
  • the low temperature stage cold fan hot fluorine defrost system comprises a low temperature stage compressor 32 connected to the pipeline, a precooler 33, a second oil separator 35, an eighth electromagnetic valve 34, a low temperature stage cooling fan 29, a sixth electromagnetic valve 28, a second pressure reducing valve 26, a second gas-liquid separator 25, a third one-way valve 24, a second regenerator 21, an expansion vessel 31, and the outlet of the low-temperature stage compressor 32 passes through the pre-cooler 33 and the second oil
  • the separator 35 is connected at the inlet, and the outlet of the second oil separator 35 is divided into two paths.
  • the second passage passes through the eighth electromagnetic valve 34, the low temperature stage cooling fan 29, the sixth electromagnetic valve 28, the second pressure reducing valve 26 and the second gas liquid.
  • the separators 25 are connected, and the outlet of the second gas-liquid separator 25 is connected to the low-temperature stage compressor 32 via the third check valve 24 and the second regenerator 21.
  • the working process of the high temperature refrigeration system is as follows, the first electromagnetic valve 3 is closed, the second electromagnetic valve 4 is opened, the high temperature compressor 1 is started, and the R404A vapor is discharged from the high temperature compressor 1 to form high temperature and high pressure steam, and enters the first oil separator. 2.
  • the lubricating oil and the refrigerant are separated, the refrigerant vapor enters the water-cooled condenser 5, and the refrigerant vapor is condensed into a liquid refrigerant in the water-cooled condenser 5, and then divided into two by the liquid receiver 6, the high-temperature drying filter 7
  • the road is connected to the intercooler 9 via the first electronic expansion valve 8, and the other is directly connected to the intercooler 9.
  • the intercooler 9 has two outlets of liquid and gaseous refrigerant, gaseous refrigerant and high temperature compressor 1
  • the refrigerant discharged from the low-pressure cylinder is mixed into the high-pressure cylinder, and the liquid refrigerant enters the first regenerator 10 and is supercooled by the R404A vapor from the high-temperature cooling fan.
  • the liquid refrigerant after the supercooling passes through the fourth solenoid valve 17, the second The electronic expansion valve 16 and the second check valve 15 enter the high temperature stage cooling fan 41 to realize the cooling of the high temperature stage cooling fan.
  • the switching of the two-stage compression refrigeration system to the cascade refrigeration system can be realized by the start and stop of the corresponding solenoid valve.
  • the switching process is as follows: under the premise of normal operation of the high temperature refrigeration system, the fifth electromagnetic valve 19 is opened.
  • the fourth solenoid valve 17 is closed to start the low temperature refrigeration system, and the R404A liquid refrigerant is completed in the condensing evaporator 37. Evaporate and provide cooling for R23 condensation.
  • the working process of the low temperature refrigeration system is as follows.
  • the eighth electromagnetic valve 34 is closed, the ninth electromagnetic valve 36 is opened, the low temperature compressor 32 is started, and the R23 vapor is discharged from the low temperature compressor 32 to form high temperature and high pressure steam, and enters the precooler 33.
  • the cold heat is released, and then enters the second oil separator 35, the lubricating oil is separated from the refrigerant, and the high temperature passage of the refrigerant vapor entering the condensing evaporator 37 is condensed by the R404A liquid refrigerant in the low temperature passage, and then passed through the low temperature stage drying filter 20
  • the second regenerator 21 is cooled and released, and the subcooled R23 liquid refrigerant enters the low temperature cooling fan 29 to evaporate and absorb heat through the liquid mirror 22, the fourth electronic expansion valve 23, and the fourth check valve 27. Realize the low temperature cooling fan 29 refrigeration.
  • the evaporating temperature of the marine energy-saving ultra-low temperature refrigeration system capable of switching two-stage and cascade can be continuously adjusted from -30 ° C to -80 ° C.
  • the hot-air fluoro-defrosting circuit of the air-cooling fan uses the high-temperature and high-pressure gas discharged from the compressor to directly pass through the heat exchanger of the chiller to melt the frost layer condensed thereon to achieve the purpose of defrosting;
  • the gas is heated inside the heat exchanger of the air cooler, so the defrost time is short, the power consumption is low, and it is safe and reliable.
  • the high temperature refrigeration system is defrosted as follows, the first electromagnetic valve 3 is activated, the second electromagnetic valve 4 is closed, the tenth electromagnetic valve 40 is closed, the third electromagnetic valve 14 is activated, the high temperature stage cooling fan 41 motor is turned off, and the high temperature stage variable frequency screw compression is started.
  • R404A vapor enters the high temperature stage variable frequency screw compressor 1, forms high temperature and high pressure steam, enters the oil separator 2, the lubricating oil and the refrigerant are separated, and the refrigerant vapor enters the high temperature stage cooling fan 41 through the first electromagnetic valve 3 to liquefy and absorb heat Start defrost, R404A liquid through the third solenoid valve 14, the first pressure reducing valve 13, the first gas-liquid separator 12, the first pressure reducing valve 11, and then enter the high-temperature variable frequency screw compressor 1 in gaseous form;
  • the low temperature refrigeration system is defrosted as follows, the eighth electromagnetic valve 34 is activated, the ninth electromagnetic valve 36 is closed, the seventh electromagnetic valve 30 is closed, the sixth electromagnetic valve 28 is activated, the low temperature stage variable frequency screw compressor 32 is started, and the low temperature cooling fan is turned off. 29 motor, R23 vapor enters the low temperature stage variable frequency screw compressor 32, forms high temperature and high pressure steam, enters the oil separator 35 through the precooler 33, the lubricating oil and the refrigerant are separated, and the refrigerant vapor enters the low temperature cold air through the eighth electromagnetic valve 34.
  • the liquefaction endotherm of the machine 29 starts to melt the frost, and the liquid of the R23 enters the low-temperature variable frequency screw compressor in a gaseous state through the sixth electromagnetic valve 28, the second pressure reducing valve 26, the low-temperature liquid separator 25, and the third check valve 24. 32.
  • the operation characteristics of the invention in the refrigeration process, different refrigeration systems can be switched according to different evaporation temperature requirements, the refrigeration effect is good, the temperature control is accurate, and the invention is in accordance with the startup characteristics of the conventional cascade refrigeration system, that is, the high temperature is started first.
  • the evaporating temperature of the high temperature portion is reduced enough to ensure that the condensing pressure of the low temperature portion does not exceed the allowable maximum safe pressure value
  • the low temperature portion can be activated; in the defrosting process, in order to ensure the safe operation of the system, the cooling ring is adopted.
  • the reverse circuit operates, that is, the high-temperature and high-pressure refrigerant vapor enters from the refrigerant vapor outlet of the air cooler. After the heat liquefaction, the liquid refrigerant exits from the liquid inlet of the refrigerant of the air cooler, and enters the compressor through the pressure reducing valve and the gas pressure separator. Mouth to avoid the phenomenon of air hammer.
  • the switchable two-stage and cascade marine energy-saving ultra-low temperature refrigeration system of the present invention improves the narrow temperature range of the cascade refrigeration system and improves the frosting of the cascade refrigeration system. It has obvious advantages of energy saving and high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Defrosting Systems (AREA)

Abstract

一种可切换双级和复叠的船用节能超低温制冷系统,包括高温级制冷系统、低温级制冷系统、高温级冷风机热氟融霜系统和低温级冷风机热氟融霜系统。高温级冷风机热氟融霜系统包括高温级压缩机(1),其出口通过第一油分离器(2)分为两路,第二路经第一电磁阀(3)、高温级冷风机(41)、第三电磁阀(14)、第一减压阀(13)、第一气液分离器(12)、第一单向阀(11)、第一回热器(10)与高温级压缩机(1)吸气口相连;低温级冷风机热氟融霜系统包括低温级压缩机(32),其出口通过预冷器(33)、第二油分离器(35)分为两路,第二路经过第八电磁阀(34)、低温级冷风机(29)、第六电磁阀(28)、第二减压阀(26)、第二气液分离器(25)、第三单向阀(24)、第二回热器(21)与低温级压缩机(32)吸气口相连。该系统制冷区间大,降温速率快,融霜彻底。

Description

一种可切换双级和复叠的船用节能超低温制冷系统 技术领域
本发明属于制冷及低温技术领域,涉及一种可切换双级和复叠的船用节能超低温制冷系统,尤其涉及一种带有冷风机热氟融霜回路的可切换双级和复叠的超低温低温制冷系统。
背景技术
双级压缩制冷系统是把压缩过程分为两个阶段进行,即在冷凝压力和蒸发压力之间增加了一个中间压力;来自蒸发器的低压制冷剂蒸气先在压缩机的低压级从蒸发压力压缩至适当的中间压力,经过中间冷却后,再进入高压级,在此从中间压力压缩至冷凝压力,从而形成双级压缩。复叠式制冷系统是由两个制冷系统组成,分别称为高温部分和低温部分,高温部分使用中温中压制冷剂,低温部分使用低温高压制冷剂;高低温部分相互重合的装置是冷凝蒸发器,它既是高温部分的蒸发器,也是低温部分冷凝器,在冷凝蒸发器中,通过高温部分的中温制冷剂汽化吸热来使低温部分的制冷剂冷凝。
在制冷工程中,当蒸发温度达到-25℃以下时,只有小型制冷装置为了简化系统仍采用单级压缩制冷系统,但最低也只能达到-40℃;在较大的系统如食品冷冻加工等,制取-30℃~-60℃的蒸发温度时,普遍采用双级压缩制冷系统,当需要制取-60℃~-80℃的蒸发温度时,双级压缩制冷系统往往因为制冷剂凝固点、系统压力比、蒸发压力、运行经济性等因素的限制而不能满足要求,此时需采用复叠式制冷系统。即:双级压缩制冷系统的蒸发温度调节一般为-30℃~-60℃,复叠式制冷系统的蒸发温度调节一般为-50℃~-80℃。
为了扩大复叠制冷系统制冷温度区间,公开号为CN202973641U的专利文献公开了一种-80℃串并联自动切换复叠制冷系统,包括高温级制冷系统和低温级制冷系统,高温级压缩机出口通过高温冷凝器与储液罐连通,储液罐出口经干燥过滤器分为两路;低温级压缩机出口分为两路,所述膨胀容器出口一路与低温级压缩机进口连通,另一路通过管式交换器与低温蒸发器连通,低温蒸发器出口经油分离器与低温级压缩机进口连通。该系统运行时通过电磁阀的切换分别实现高温级(室温至-40℃)和低温级制冷(-40℃至-80℃)的温度控制,从而实现室温至-80℃的温度控制,制冷区间范围大,提高了压缩机运行效率,降低运行成本。但是,由于上述制冷系统的高温级采用单级压缩制冷系统,如前所述,在制冷工程中,当蒸发温度低于-25℃时,相应的蒸发压力也比较低,压力比pk/po过大,往往导致压缩机实际压缩过程偏离等熵程度较大,使压缩机的实际功耗增大,效率下降;压力比过大还将导致 压缩机排气温度升高,而排气温度过高将导致润滑油变稀,甚至炭化。因此而不采用单级压缩制冷系统。
目前常规的冷风机融霜方式仍采用传统的电加热融霜,融霜时间由融霜控制器控制,电加热丝产生辐射热融化霜层。这种方法的缺点是:融霜系统消耗的功率大,并且电加热系统元件多,除霜不充分,从而使产品安全性降低。在实际情况中,往往会造成库温波动大,影响食品贮藏品质。
发明内容
本发明针对现有技术的不足和缺陷,提供一种可切换双级和复叠的船用节能超低温制冷系统,通过指定电磁阀的启停,实现带有冷风机热氟融霜回路的双级压缩式制冷系统向复叠制冷系统的切换,从而达到蒸发温度在-30℃~-80℃区间内连续可调以及冷风机热氟融霜的节能效果。
本发明解决上述技术问题的技术方案是:一种可切换双级和复叠的船用节能超低温制冷系统,包括高温级制冷系统、低温级制冷系统、高温级冷风机热氟融霜系统和低温级冷风机热氟融霜系统,其特征在于,所述高温级制冷系统还是单机双级制冷系统,所述高温级制冷系统包括管路上连接的高温级压缩机、第一油分离器、第二电磁阀、水冷冷凝器、贮液器、高温级干燥过滤器、第一电子膨胀阀、中间冷却器、第一回热器、第四电磁阀、第二电子膨胀阀、第二单向阀、高温级冷风机、第十电磁阀、第六单向阀、第五电磁阀、第三电子膨胀阀、冷凝蒸发器、第五单向阀,所述高温级压缩机出口与第一油分离器入口相连,第一油分离器出口分两路,第一路经第二电磁阀与水冷冷凝器入口相连,水冷冷凝器出口与贮液器相连,贮液器出口与高温级干燥过滤器入口相连,高温级干燥过滤器出口分为两路,第一路经第一电子膨胀阀、中间冷却器与高温级压缩机连通,第二路通过中间冷却器和第一回热器一个进口相连,第一回热器的一个出口分为两路,第一路经第四电磁阀、第二电子膨胀阀、第二单向阀与高温级冷风机相连,高温级冷风机经第十电磁阀、第六单向阀、第一回热器与高温级压缩机相连,第二路经第五电磁阀、第三电子膨胀阀与冷凝蒸发器低温通道相连,冷凝蒸发器低温通道出口经第五单向阀、第一回热器与高温级压缩机相连。
低温级制冷系统包括管路上连接的低温级压缩机、预冷器、第二油分离器、第九电磁阀、冷凝蒸发器、低温级干燥过滤器、第二回热器、视液镜、第四电子膨胀阀、第四单向阀、低温级冷风机、第七电磁阀、膨胀容器,所述低温级压缩机出口通过预冷器与第二油分离器入口相连,第二油分离器出口分两路,第一路经第九电磁阀与冷凝蒸发器高温通道相连,冷凝蒸发器高温通道与低温级干燥过滤器相连,低温级干燥过滤器的出口与第二回热器 一个进口相连,第二回热器一个出口经视液镜、第四电子膨胀阀、第四单向阀、低温级冷风机、第七电磁阀与低温级压缩机相连。
高温级冷风机热氟融霜系统包括管路上连接的高温级压缩机、第一油分离器、第一电磁阀、高温级冷风机、第三电磁阀、第一减压阀、第一气液分离器、第一单向阀、第一回热器,所述高温级压缩机出口与第一油分离器入口相连,第一油分离器出口分两路,第二路经第一电磁阀、高温级冷风机、第三电磁阀、第一减压阀与第一气液分离器相连,第一气液分离器出口经第一单向阀、第一回热器与高温级压缩机相连。
低温级冷风机热氟融霜系统包括管路上连接的低温级压缩机、预冷器、第二油分离器、第八电磁阀、低温级冷风机、第六电磁阀、第二减压阀、第二气液分离器、第三单向阀、第二回热器、膨胀容器,所述低温级压缩机出口通过预冷器与第二油分离器入口相连,第二油分离器出口分两路,第二路经第八电磁阀、低温级冷风机、第六电磁阀、第二减压阀与第二气液分离器相连,第二气液分离器出口经第三单向阀、第二回热器与低温级压缩机相连。
高温级压缩机和低温级压缩机是变频螺杆压缩机,可以实现无级能量调节,使系统高效节能。
高温级制冷系统是单机双级制冷系统,可以作为独立制冷系统。
高温级制冷系统中可通过启动第五电磁阀,关闭第四电磁阀,实现双级压缩制冷系统向复叠压缩制冷系统的切换。
一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的冷凝蒸发器为板式换热器。
一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的高温级制冷系统应用制冷剂R404A,低温级制冷系统应用制冷剂R23。
综合上述特点,本发明所述的一种可切换双级和复叠的船用节能超低温制冷系统,通过对应电磁阀的启停,实现带有冷风机热氟融霜回路的双级压缩式制冷系统向复叠制冷系统的切换,有效扩大了复叠制冷系统制冷温度区间达到了蒸发温度在-30℃~-80℃区间内连续可调,提高了系统系统性能,具有运行稳定、节能效果明显的优点,冷风机热氟融霜在节能减排的应用上,优势明显。
附图说明
图1是本发明一种可切换双级和复叠的船用节能超低温制冷系统结构示意图,也是本发明的一个具体实施例。
其中:1、高温级压缩机;2、第一油分离器;3、第一电磁阀;4、第二电磁阀;5、水冷冷凝器;6、贮液器;7、高温级干燥过滤器;8、第一电子膨胀阀;9、中间冷却器;10、第一回热器;11、第一单向阀;12、第一气液分离器;13、第一减压阀;14、第三电磁阀;15、第二单向阀;16、第二电子膨胀阀;17、第四电磁阀;18、第三电子膨胀阀;19、第五电磁阀;20、低温级干燥过滤器;21、第二回热器;22、视液镜;23、第四电子膨胀阀;24、第三单向阀;25、第二气液分离器;26、第二减压阀;27、第四单向阀;28、第六电磁阀;29、低温级冷风机;30、第七电磁阀;31、膨胀箱;32、低温级压缩机;33、预冷器;34、第八电磁阀;35、第二油分离器;36、第九电磁阀;37、冷凝蒸发器;38、第五单向阀;39、第六单向阀;40、第十电磁阀;41、高温级冷风机。
具体实施方式
为使本发明实现的操作流程与创作特征易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1所示,本发明的一种可切换双级和复叠的船用节能超低温制冷系统,包括高温级制冷系统、低温级制冷系统、高温级冷风机热氟融霜系统和低温级冷风机热氟融霜系统,其特征在于,所述高温级制冷系统还是单机双级制冷系统,所述高温级制冷系统包括管路上连接的高温级压缩机1、第一油分离器2、第二电磁阀4、水冷冷凝器5、贮液器6、高温级干燥过滤器7、第一电子膨胀阀8、中间冷却器9、第一回热器10、第四电磁阀17、第二电子膨胀阀16、第二单向阀15、高温级冷风机41、第十电磁阀40、第六单向阀39、第五电磁阀19、第三电子膨胀阀18、冷凝蒸发器37、第五单向阀38,所述高温级压缩机1出口与第一油分离器2入口相连,第一油分离器2出口分两路,第一路经第二电磁阀4与水冷冷凝器入口5相连,水冷冷凝器5出口与贮液器6相连,贮液器6出口与高温级干燥过滤器7入口相连,高温级干燥过滤器7出口分为两路,第一路经第一电子膨胀阀8、中间冷却器9与高温级压缩机1连通,第二路通过中间冷却器9和第一回热器10一个进口相连,第一回热器10的一个出口分为两路,第一路经第四电磁阀17、第二电子膨胀阀16、第二单向阀15与高温级冷风机41相连,高温级冷风机41经第十电磁阀40、第六单向阀39、第一回热器10与高温级压缩机1相连,第二路经第五电磁阀19、第三电子膨胀阀18与冷凝蒸发器37低温通道相连,冷凝蒸发器37低温通道出口经第五单向阀38、第一回热器10与高温级压缩机1相连。
低温级制冷系统包括管路上连接的低温级压缩机32、预冷器33、第二油分离器35、第九电磁阀36、冷凝蒸发器37、低温级干燥过滤器20、第二回热器21、视液镜22、第四 电子膨胀阀23、第四单向阀27、低温级冷风机29、第七电磁阀30、膨胀容器31,所述低温级压缩机32出口通过预冷器33与第二油分离器35入口相连,第二油分离器35出口分两路,第一路经第九电磁阀36与冷凝蒸发器37高温通道相连,冷凝蒸发器37高温通道与低温级干燥过滤器20相连,低温级干燥过滤器20的出口与第二回热器21一个进口相连,第二回热器21一个出口经视液镜22、第四电子膨胀阀23、第四单向阀27、低温级冷风机29、第七电磁阀30与低温级压缩机32相连。
高温级冷风机热氟融霜系统包括管路上连接的高温级压缩机1、第一油分离器2、第一电磁阀3、高温级冷风机41、第三电磁阀14、第一减压阀13、第一气液分离器12、第一单向阀11、第一回热器10,所述高温级压缩机1出口与第一油分离器2入口相连,第一油分离器2出口分两路,第二路经第一电磁阀3、高温级冷风机41、第三电磁阀14、第一减压阀13与第一气液分离器12相连,第一气液分离器12出口经第一单向阀11、第一回热器10与高温级压缩机相连。
低温级冷风机热氟融霜系统包括管路上连接的低温级压缩机32、预冷器33、第二油分离器35、第八电磁阀34、低温级冷风机29、第六电磁阀28、第二减压阀26、第二气液分离器25、第三单向阀24、第二回热器21、膨胀容器31,所述低温级压缩机32出口通过预冷器33与第二油分离器35入口相连,第二油分离器35出口分两路,第二路经第八电磁阀34、低温级冷风机29、第六电磁阀28、第二减压阀26与第二气液分离器25相连,第二气液分离器25出口经第三单向阀24、第二回热器21与低温级压缩机32相连。
高温级制冷系统工作过程如下,关闭第一电磁阀3,打开第二电磁阀4,启动高温级压缩机1,R404A蒸气从高温级压缩机1排出并形成高温高压蒸气,进入第一油分离器2,润滑油和制冷剂分离,制冷剂蒸气进入水冷冷凝器5,制冷剂蒸气在水冷冷凝器5内被冷凝为液态制冷剂,然后经贮液器6、高温级干燥过滤器7分为两路,一路经第一电子膨胀阀8与中间冷却器9连通,另一路直接与中间冷却器9连通,中间冷却器9有液态和气态制冷剂两个出口,气态制冷剂和高温级压缩机1低压气缸排出的制冷剂混合后进入高压气缸,液态制冷剂进入第一回热器10被来自高温级冷风机的R404A蒸气过冷,过冷后的液态制冷剂经第四电磁阀17、第二电子膨胀阀16、第二单向阀15进入高温级冷风机41实现高温级冷风机的制冷。
根据设置制冷温度的不同,通过相应电磁阀的启停可实现双级压缩制冷系统向复叠制冷系统的切换,切换过程如下:在高温级制冷系统正常工作前提下,打开第五电磁阀19,关闭第四电磁阀17,启动低温级制冷系统,R404A液态制冷剂在冷凝蒸发器37内完成 蒸发并为R23冷凝提供冷量。
低温级制冷系统工作过程如下,关闭第八电磁阀34,打开第九电磁阀36,启动低温级压缩机32,R23蒸气从低温级压缩机32排出,形成高温高压蒸气,进入预冷器33预冷放热,然后进入第二油分离器35,润滑油和制冷剂分离,制冷剂蒸气进入冷凝蒸发器37的高温通道被低温通道中的R404A液态制冷剂冷凝,而后经低温级干燥过滤器20进入第二回热器21被过冷放热,过冷后的R23液态制冷剂经液视镜22、第四电子膨胀阀23、第四单向阀27进入低温级冷风机29蒸发吸热,实现低温级冷风机29制冷。从而达到可切换双级和复叠的船用节能超低温制冷系统的蒸发温度在-30℃~-80℃连续可调。
冷风机热氟融霜回路就是利用压缩机排出的高温高压气体,直接通过冷风机的换热器中,以融化凝结在其上的霜层而实现融霜的目的;这种融霜系统由于高温气体在冷风机的换热器内部加热,所以融霜时间短、功率消耗低、安全可靠。
高温级制冷系统融霜如下,启动第一电磁阀3、关闭第二电磁阀4,关闭第十电磁阀40、启动第三电磁阀14,关闭高温级冷风机41电机,启动高温级变频螺杆压缩机1,R404A蒸气进入高温级变频螺杆压缩机1,形成高温高压蒸气,进入油分离器2,润滑油和制冷剂分离,制冷剂蒸气经第一电磁阀3进入高温级冷风机41液化吸热开始融霜,R404A液态经第三电磁阀14、第一减压阀13、第一气液分离器12、第一减压阀11后以气态形式进入高温级变频螺杆压缩机1;
低温级制冷系统融霜如下,启动第八电磁阀34、关闭第九电磁阀36,关闭第七电磁阀30、启动第六电磁阀28,启动低温级变频螺杆压缩机32,关闭低温级冷风机29电机,R23蒸气进入低温级变频螺杆压缩机32,形成高温高压蒸气,经预冷器33进入油分离器35,润滑油和制冷剂分离,制冷剂蒸气经第八电磁阀34进入低温级冷风机29液化吸热开始融霜,R23液态经第六电磁阀28、第二减压阀26、气低温级液分离器25、第三单向阀24后以气态形式进入低温级变频螺杆压缩机32。
本发明的运行特点:在制冷过程中,可根据不同的蒸发温度需要而切换不同的制冷系统,制冷效果好,控温精确,同时本发明又符合常规复叠制冷系统启动特点,即先启动高温部分,当高温部分的蒸发温度降到足以保证低温部分的冷凝压力不超过允许的最大安全压力值时,才可以启动低温部分;在融霜过程中,为保证系统运行安全,采用了与制冷环路相反的回路运行,即高温高压制冷剂蒸气从冷风机制冷剂蒸气出口进入,吸热液化后液态制冷剂从冷风机制冷剂液态进口离开,经减压阀和气压分离器进入压缩机吸气口,避免产生气锤现象。
从以上分析可知,本发明的一种可切换双级和复叠的船用节能超低温制冷系统,在改善复叠式制冷系统制冷温度区间窄的问题,以及改善复叠式制冷系冷风机融霜方面具有明显节能高效优势。

Claims (8)

  1. 一种可切换双级和复叠的船用节能超低温制冷系统,包括高温级制冷系统、低温级制冷系统、高温级冷风机热氟融霜系统和低温级冷风机热氟融霜系统,其特征在于:
    (1)所述高温级制冷系统是单机双级制冷系统;
    (2)所述高温级制冷系统包括管路上连接的高温级压缩机(1)、第一油分离器(2)、第二电磁阀(4)、水冷冷凝器(5)、贮液器(6)、高温级干燥过滤器(7)、第一电子膨胀阀(8)、中间冷却器(9)、第一回热器(10)、第四电磁阀(17)、第二电子膨胀阀(16)、第二单向阀(15)、高温级冷风机(41)、第十电磁阀(40)、第六单向阀(39)、第五电磁阀(19)、第三电子膨胀阀(18)、冷凝蒸发器(37)、第五单向阀(38);
    (3)所述高温级压缩机(1)出口与第一油分离器(2)入口相连,第一油分离器(2)出口分两路,第一路经第二电磁阀(4)与水冷冷凝器入口(5)相连,水冷冷凝器(5)出口与贮液器(6)相连,贮液器(6)出口与高温级干燥过滤器(7)入口相连,高温级干燥过滤器(7)出口分为两路,第一路经第一电子膨胀阀(8)、中间冷却器(9)与高温级压缩机(1)连通,第二路通过中间冷却器(9)和第一回热器(10)一个进口相连,第一回热器(10)的一个出口分为两路,第一路经第四电磁阀(17)、第二电子膨胀阀(16)、第二单向阀(15)与高温级冷风机(41)相连,高温级冷风机(41)经第十电磁阀(40)、第六单向阀(39)、第一回热器(10)与高温级压缩机(1)相连,第二路经第五电磁阀(19)、第三电子膨胀阀(18)与冷凝蒸发器(37)低温通道相连,冷凝蒸发器(37)低温通道出口经第五单向阀(38)、第一回热器(10)与高温级压缩机(1)相连;
    (4)所述低温级制冷系统包括管路上连接的低温级压缩机(32)、预冷器(33)、第二油分离器(35)、第九电磁阀(36)、冷凝蒸发器(37)、低温级干燥过滤器(20)、第二回热器(21)、视液镜(22)、第四电子膨胀阀(23)、第四单向阀(27)、低温级冷风机(29)、第七电磁阀(30)、膨胀容器(31);
    (5)所述低温级压缩机(32)出口通过预冷器(33)与第二油分离器(35)入口相连,第二油分离器(35)出口分两路,第一路经第九电磁阀(36)与冷凝蒸发器(37)高温通道相连,冷凝蒸发器(37)高温通道与低温级干燥过滤器(20)相连,低温级干燥过滤器(20)的出口与第二回热器(21)一个进口相连,第二回热器(21)一个出口经视液镜(22)、第四电子膨胀阀(23)、第四单向阀(27)、低温级冷风机(29)、第七电磁阀(30)与低温级压缩机(32)相连。
  2. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述高温级冷风机热氟融霜系统包括管路上连接的高温级压缩机(1)、第一油分离器 (2)、第一电磁阀(3)、高温级冷风机(41)、第三电磁阀(14)、第一减压阀(13)、第一气液分离器(12)、第一单向阀(11)、第一回热器(10),所述高温级压缩机(1)出口与第一油分离器(2)入口相连,第一油分离器(2)出口分两路,第二路经第一电磁阀(3)、高温级冷风机(41)、第三电磁阀(14)、第一减压阀(13)与第一气液分离器(12)相连,第一气液分离器(12)出口经第一单向阀(11)、第一回热器(10)与高温级压缩机相连。
  3. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述低温级冷风机热氟融霜系统包括管路上连接的低温级压缩机(32)、预冷器(33)、第二油分离器(35)、第八电磁阀(34)、低温级冷风机(29)、第六电磁阀(28)、第二减压阀(26)、第二气液分离器(25)、第三单向阀(24)、第二回热器(21)、膨胀容器(31),所述低温级压缩机(32)出口通过预冷器(33)与第二油分离器(35)入口相连,第二油分离器(35)出口分两路,第二路经第八电磁阀(34)、低温级冷风机(29)、第六电磁阀(28)、第二减压阀(26)与第二气液分离器(25)相连,第二气液分离器(25)出口经第三单向阀(24)、第二回热器(21)与低温级压缩机(32)相连。
  4. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的高温级压缩机(54)和低温级压缩机(43)是变频螺杆压缩机。
  5. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的高温级制冷系统是单机双级制冷系统,可以作为独立制冷系统。
  6. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的高温级制冷系统中可通过启动第五电磁阀(19),关闭第四电磁阀(17),实现双级压缩制冷系统向复叠压缩制冷系统的切换。
  7. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的冷凝蒸发器(37)为板式换热器。
  8. 根据权利要求1所述的一种可切换双级和复叠的船用节能超低温制冷系统,其特征在于,所述的高温级制冷系统应用制冷剂R404A,低温级制冷系统应用制冷剂R23。
PCT/CN2015/097554 2015-05-12 2015-12-16 一种可切换双级和复叠的船用节能超低温制冷系统 WO2016180021A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15881416.0A EP3299747B1 (en) 2015-05-12 2015-12-16 Switchable two-stage cascade energy-saving ultralow-temperature refrigeration system for ships
JP2016548035A JP6216077B2 (ja) 2015-05-12 2015-12-16 二段・カスケードを変換可能な船用省エネ超低温冷凍システム
US15/185,025 US10107526B2 (en) 2015-05-12 2016-06-17 Switchable two-stage and cascade marine energy-saving ultralow-temperature refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015102360449 2015-05-12
CN201510236044.9A CN104807231A (zh) 2015-05-12 2015-05-12 一种可切换双级和复叠的船用节能超低温制冷系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/185,025 Continuation US10107526B2 (en) 2015-05-12 2016-06-17 Switchable two-stage and cascade marine energy-saving ultralow-temperature refrigeration system

Publications (1)

Publication Number Publication Date
WO2016180021A1 true WO2016180021A1 (zh) 2016-11-17

Family

ID=53692284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097554 WO2016180021A1 (zh) 2015-05-12 2015-12-16 一种可切换双级和复叠的船用节能超低温制冷系统

Country Status (5)

Country Link
US (1) US10107526B2 (zh)
EP (1) EP3299747B1 (zh)
JP (1) JP6216077B2 (zh)
CN (1) CN104807231A (zh)
WO (1) WO2016180021A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108716785A (zh) * 2018-07-20 2018-10-30 天津商业大学 具有中温蒸发器的一次节流中间完全冷却的制冷系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112275A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat pump
CN104807231A (zh) * 2015-05-12 2015-07-29 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷系统
CN104976831A (zh) * 2015-07-30 2015-10-14 武汉研润科技发展有限公司 复叠式制冷机蒸发冷凝器
US10655895B2 (en) * 2017-05-04 2020-05-19 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system
CN108954999A (zh) * 2017-05-17 2018-12-07 上海通用富士冷机有限公司 电子膨胀阀热气化霜系统压缩冷凝机组
CN107116992B (zh) * 2017-05-27 2023-04-07 中原工学院 一种具有快速梯级降温的高效车载空调系统
CN107388613A (zh) * 2017-08-29 2017-11-24 东莞市伟煌试验设备有限公司 复叠式节能型制冷系统
CN107796142B (zh) * 2017-11-02 2023-07-21 珠海格力电器股份有限公司 空气源热泵系统及其控制方法
CN107726656A (zh) * 2017-11-08 2018-02-23 郑州云宇新能源技术有限公司 可以进行单双级转换的制冷剂热泵系统
CN108088076B (zh) * 2017-12-19 2023-10-31 云南仨得科技有限公司 一种高效智能空气能热风机组及其控制方法
CN108266915A (zh) * 2018-03-05 2018-07-10 天津商业大学 一种使用单一工质co2作制冷剂的复叠制冷系统
CN108266916B (zh) * 2018-03-21 2023-11-07 天津商业大学 多循环变流量热泵系统
CN108378128B (zh) * 2018-04-20 2024-03-19 浙江青风环境股份有限公司 一种多级控温调湿的冷却系统
CN109210816B (zh) * 2018-09-29 2024-03-01 南京五洲制冷集团有限公司 具有防冷媒迁移功能的双热源融霜油气回收机组
CN109481000B (zh) * 2018-12-26 2023-11-21 上海导向医疗系统有限公司 用于冷冻治疗的可压力调节的制冷装置与冷冻治疗系统
CN110001913B (zh) * 2019-04-19 2024-01-12 合肥天鹅制冷科技有限公司 一种基于plc控制系统的舰船全自动冷藏装置
CN110260560A (zh) * 2019-07-19 2019-09-20 北京金茂绿建科技有限公司 一种大功率单机双级涡旋式超低温空气源热泵
CN110631320A (zh) * 2019-10-31 2019-12-31 江苏精英冷暖设备工程有限公司 一种热气化霜系统
CN110701664B (zh) * 2019-11-11 2023-05-05 江苏天舒电器有限公司 宽环温多级出水变频空气能复叠式热机系统及其工作方法
CN110849009B (zh) * 2019-12-11 2023-10-13 郑州长城科工贸有限公司 复叠式制冷系统及其降低启动负荷的方法
CN110920647A (zh) * 2019-12-23 2020-03-27 甘肃一德新能源设备有限公司 杀菌二氧化碳热泵机车空调冷机组及其使用方法
CN111111251A (zh) * 2020-01-19 2020-05-08 无锡冠亚恒温制冷技术有限公司 气体冷凝回收装置
CN111735224A (zh) * 2020-01-21 2020-10-02 天津冷源工程设计院 一种适用于多种负荷工况的制冷系统
US11371756B2 (en) * 2020-02-27 2022-06-28 Heatcraft Refrigeration Products Llc Cooling system with oil return to accumulator
US11384969B2 (en) * 2020-02-27 2022-07-12 Heatcraft Refrigeration Products Llc Cooling system with oil return to oil reservoir
CN114593535A (zh) * 2020-12-07 2022-06-07 浙江盾安冷链系统有限公司 多温区制冷与制热集成系统及其控制方法
CN112556241B (zh) * 2020-12-21 2024-02-20 珠海格力电器股份有限公司 一种压缩机组件、控制方法和空调器
CN112984850A (zh) * 2021-03-23 2021-06-18 上海理工大学 一种节能高低温环境试验箱制冷系统
CN113638863A (zh) * 2021-07-20 2021-11-12 新科环保科技有限公司 一种多联机快速充注冷油的方法和制冷系统
CN114030582B (zh) * 2021-10-19 2024-01-26 中国舰船研究设计中心 一种集成式机舱海水冷却系统
CN113883600B (zh) * 2021-11-01 2023-02-10 湖北璞瑞斯节能技术服务有限公司 一种空调双压缩机制冷系统及空调
CN114183951B (zh) * 2021-12-16 2022-12-09 珠海格力电器股份有限公司 一种制冷剂净化回收装置及制冷剂净化系统
CN114484936B (zh) * 2022-01-05 2023-07-21 浙江态能动力技术有限公司 一种基于超高温热泵储能运行控制系统
CN114353380B (zh) * 2022-01-05 2023-02-07 浙江态能动力技术有限公司 一种基于再压缩循环的超高温热泵储能系统
CN114608212A (zh) * 2022-02-25 2022-06-10 南通亚泰工程技术有限公司 一种复叠制冷装置
CN114699789B (zh) * 2022-03-16 2023-05-09 南京都乐制冷设备有限公司 一种油轮码头油气回收装置
CN115031421A (zh) * 2022-04-14 2022-09-09 江阴市索创工业精密制冷设备有限公司 加氢机低温撬装冷冻机组
CN114777355A (zh) * 2022-04-28 2022-07-22 浙江中广电器集团股份有限公司 一种新型使用evi(补气增焓)技术的超高温节能热泵
CN115289709A (zh) * 2022-08-11 2022-11-04 舟山英诺远投冷链科技有限公司 船用二氧化碳速冻系统
CN116123744A (zh) * 2023-03-24 2023-05-16 哈尔滨工业大学 一种超低温单双级混合式空气源热泵机组
CN116123747A (zh) * 2023-04-14 2023-05-16 云南道精制冷科技有限责任公司 一种复叠式冷热源机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201062909Y (zh) * 2007-07-13 2008-05-21 广西壮族自治区农业科学院种质库 种质库热氟冲霜装置
CN202973641U (zh) 2012-11-16 2013-06-05 郑州长城科工贸有限公司 -80℃串并联自动切换复叠制冷系统
CN103884130A (zh) * 2014-04-09 2014-06-25 浙江海洋学院 一种吸收余热辅助制冷的船舶冷库系统
CN104132473A (zh) * 2014-07-31 2014-11-05 上海理工大学 两级压缩不间断制热装置及两级压缩不间断制热融霜方法
CN104807231A (zh) * 2015-05-12 2015-07-29 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷系统
CN204730506U (zh) * 2015-05-12 2015-10-28 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590595A (en) * 1969-06-03 1971-07-06 Thermotron Corp Cascade refrigeration system with refrigerant bypass
JPS5474546A (en) * 1977-11-26 1979-06-14 Sanden Corp Refrigeration system
JPS6142045Y2 (zh) * 1979-09-28 1986-11-29
US4402189A (en) * 1981-02-18 1983-09-06 Frick Company Refrigeration system condenser heat recovery at higher temperature than normal condensing temperature
US4550574A (en) * 1983-06-02 1985-11-05 Sexton-Espec, Inc. Refrigeration system with liquid bypass line
EP0179225B1 (en) * 1984-09-19 1988-10-19 Kabushiki Kaisha Toshiba Heat pump system
US5477697A (en) * 1994-09-02 1995-12-26 Forma Scientific, Inc. Apparatus for limiting compressor discharge temperatures
EP1200780B1 (en) * 2000-05-30 2011-03-30 Brooks Automation, Inc. A low temperature refrigeration system
US6843065B2 (en) * 2000-05-30 2005-01-18 Icc-Polycold System Inc. Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities
US7478540B2 (en) * 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
EP1805471B1 (en) * 2004-10-07 2019-03-06 Brooks Automation, Inc. Method for exchanging heat
EP2150755A4 (en) * 2007-04-23 2011-08-24 Carrier Corp CO <SB> 2 </ SB> REFRIGERANT SYSTEM WITH INTENSIFIER CIRCUIT
US20100147006A1 (en) * 2007-06-04 2010-06-17 Taras Michael F Refrigerant system with cascaded circuits and performance enhancement features
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
KR20110056061A (ko) * 2009-11-20 2011-05-26 엘지전자 주식회사 히트 펌프식 급탕장치
EP2783171A4 (en) * 2011-11-21 2015-09-16 Hill Phoenix Inc CO2 REFRIGERATION SYSTEM WITH HOT GAS DEFROSTING
KR101873595B1 (ko) * 2012-01-10 2018-07-02 엘지전자 주식회사 캐스케이드 히트펌프 장치 및 그 구동 방법
KR101350611B1 (ko) * 2012-02-14 2014-01-24 이정석 이원 냉매 사이클 및 단단 냉매 사이클을 이용한 냉난방 히트펌프
JP5941990B2 (ja) * 2012-09-28 2016-06-29 パナソニックヘルスケアホールディングス株式会社 二元冷凍装置
FR3016206B1 (fr) * 2014-01-08 2016-02-05 Alstom Transport Sa Dispositif de climatisation d'un compartiment, notamment pour un vehicule ferroviaire
WO2016112275A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat pump
KR102480701B1 (ko) * 2015-07-28 2022-12-23 엘지전자 주식회사 냉장고
US9845973B2 (en) * 2015-12-15 2017-12-19 WinWay Tech. Co., Ltd. Cascade refrigeration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201062909Y (zh) * 2007-07-13 2008-05-21 广西壮族自治区农业科学院种质库 种质库热氟冲霜装置
CN202973641U (zh) 2012-11-16 2013-06-05 郑州长城科工贸有限公司 -80℃串并联自动切换复叠制冷系统
CN103884130A (zh) * 2014-04-09 2014-06-25 浙江海洋学院 一种吸收余热辅助制冷的船舶冷库系统
CN104132473A (zh) * 2014-07-31 2014-11-05 上海理工大学 两级压缩不间断制热装置及两级压缩不间断制热融霜方法
CN104807231A (zh) * 2015-05-12 2015-07-29 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷系统
CN204730506U (zh) * 2015-05-12 2015-10-28 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299747A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108716785A (zh) * 2018-07-20 2018-10-30 天津商业大学 具有中温蒸发器的一次节流中间完全冷却的制冷系统
CN108716785B (zh) * 2018-07-20 2023-09-26 天津商业大学 具有中温蒸发器的一次节流中间完全冷却的制冷系统

Also Published As

Publication number Publication date
CN104807231A (zh) 2015-07-29
JP2017519171A (ja) 2017-07-13
US20160334143A1 (en) 2016-11-17
EP3299747A4 (en) 2019-01-23
EP3299747A1 (en) 2018-03-28
EP3299747B1 (en) 2020-02-12
US10107526B2 (en) 2018-10-23
JP6216077B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2016180021A1 (zh) 一种可切换双级和复叠的船用节能超低温制冷系统
CN103148629B (zh) 用于双温直冷式电冰箱的气液两相流喷射器增效制冷系统
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
CN103512257B (zh) 用于双温电冰箱的非共沸碳氢混合物自复叠制冷循环系统
CN204373252U (zh) 转换式co2跨临界循环制冷系统
CN108759138B (zh) 二次节流中间不完全冷却制冷系统的运行方法及系统
CN107560253B (zh) 一种空气源热泵的节能化霜系统及其控制方法
WO2017194035A1 (zh) 一种提高制冷或热泵系统效率的方法及运行方法
CN105004088A (zh) 一种中温、低温两用的复叠式冷水机组
CN109737624A (zh) 一种双温制冷系统及其控制方法
CN110762875A (zh) 一种大温差变组分浓度自复叠热泵机组
CN105758045A (zh) 一种超低温复叠式三联供热泵机组
CN204730506U (zh) 一种可切换双级和复叠的船用节能超低温制冷装置
CN109520163B (zh) 一种具有快速脉冲融霜功能的宽温区小型冷冻冷藏机组
CN205783233U (zh) 一种超低温复叠式供暖机组
CN108759139B (zh) 具有中温蒸发器的一次节流中间不完全冷却的制冷系统
CN108240722B (zh) 一种多循环变流量制冷系统
KR102477314B1 (ko) 냉동싸이클 시스템의 수액기 냉매액 온도저감 방법 및 증발기 냉각성능 개선방법
CN206593361U (zh) 一种车载节能冰箱
CN212253259U (zh) 利用热氟气体自动控制融霜系统的压缩冷凝机组
CN211120091U (zh) 一种带过冷和喷射降压的复叠式制冷系统
CN211943310U (zh) 一种具有新风预冷功能的轨道车辆制冷系统
CN210425610U (zh) 制冷系统
CN210089171U (zh) 双工况制冷系统
WO2006017959A1 (fr) Refrigerateur composite possedant un systeme de refrigeration a cycles multiples et son procede de controle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016548035

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015881416

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015881416

Country of ref document: EP