WO2016179863A1 - 过滤装置及其清洗方法 - Google Patents

过滤装置及其清洗方法 Download PDF

Info

Publication number
WO2016179863A1
WO2016179863A1 PCT/CN2015/080564 CN2015080564W WO2016179863A1 WO 2016179863 A1 WO2016179863 A1 WO 2016179863A1 CN 2015080564 W CN2015080564 W CN 2015080564W WO 2016179863 A1 WO2016179863 A1 WO 2016179863A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
chamber
power source
water
filter device
Prior art date
Application number
PCT/CN2015/080564
Other languages
English (en)
French (fr)
Other versions
WO2016179863A8 (zh
Inventor
李魁
李顺勇
王晨
黄燕
Original Assignee
艾欧史密斯(南京)水处理产品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(南京)水处理产品有限公司 filed Critical 艾欧史密斯(南京)水处理产品有限公司
Priority to US15/573,232 priority Critical patent/US10814283B1/en
Publication of WO2016179863A1 publication Critical patent/WO2016179863A1/zh
Publication of WO2016179863A8 publication Critical patent/WO2016179863A8/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • B01D61/081Apparatus therefor used at home, e.g. kitchen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/34Energy carriers
    • B01D2313/345Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/22Electrical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the invention relates to a purification device, in particular to a filtering device and a cleaning method thereof.
  • a water source is often subjected to a filtration treatment using a filtration device with a reverse osmosis membrane to remove heavy metals, microorganisms, ions, and the like from the water source, thereby obtaining pure water.
  • the existing reverse osmosis membrane elements are mainly used for the preparation of pure water through a reverse osmosis membrane under a certain pressure. Similar membrane elements and water treatment devices are disclosed in Chinese Patent Application No. 201510051209.5, 201410384072.0, and the like.
  • the technical problem to be solved by the present invention is to provide a filtering device and a cleaning method thereof, which can clean the reverse osmosis membrane element and remove the scale in the reverse osmosis membrane element.
  • a separator having an ion permeability, the spacer separating the membrane shell from the first chamber and the second chamber;
  • a second electrode is disposed in the second chamber.
  • the first electrode and the second electrode are respectively connected to two poles of a power source; the first chamber and the second chamber are in a water filled state, the first electrode and the second electrode An electrolytic cell is formed between them.
  • the spacer comprises a support member having a through hole and a diaphragm for blocking the through hole and having an ion permeability.
  • the support member has a sleeve shape, and the diaphragm is wound inside or outside the support member.
  • the first electrode is disposed on an inner surface of the support.
  • the second electrode is disposed on an outer surface of the support.
  • the membrane comprises one or more of an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, an ion exchange membrane or a bipolar membrane.
  • the filtering device has a cleaning state, and when the filtering device is in a cleaning state, the first electrode and the second electrode respectively communicate with positive and negative poles of the direct current power source, thereby making the water in the first chamber acidic or Alkaline.
  • the filtering device has a pickling state, and when the filtering device is in a pickling state, the first electrode is in communication with a positive electrode of a direct current power source, and the second electrode is in communication with a negative electrode of a direct current power source.
  • the pH of the water located in the first chamber is 1-4 when the filtration device is in the pickled state.
  • the filtering device has an alkaline washing state, and when the filtering device is in an alkaline washing state, the first electrode is in communication with a negative electrode of a direct current power source, and the second electrode is in communication with a positive electrode of a direct current power source.
  • the pH of the water located in the first chamber is 9-13 when the filtration device is in the alkaline wash state.
  • the filtering device has an acid picking state and an alkali washing state which are alternately performed.
  • the first electrode is in communication with a positive electrode of a direct current power source, and the second electrode is connected to a direct current power source.
  • the negative electrode is connected; when the filtering device is in an alkaline washing state, the first electrode is in communication with a negative electrode of the direct current power source, and the second electrode is in communication with a positive electrode of the direct current power source.
  • the conduction current between the first electrode and the second electrode is 0-3A.
  • the voltage of the DC power source is 0-36V.
  • the membrane element has a water inlet in communication with the first chamber and a waste water outlet in communication with the second chamber, the first chamber being in communication with a water source, the second chamber being drained
  • the pipeline is connected.
  • the wastewater outlet of the membrane element is provided with a flow control device, and the flow control device includes at least two states of a filtration flow rate and a cleaning flow rate, the filtration flow rate being greater than the cleaning flow rate; when the filtration device is in a filtration state The flow control device is in a filtered flow state; when the filtering device is in a cleaning state, the flow control device is in a purge flow state.
  • the second chamber has a water outlet
  • the flow control device is in communication with the water outlet of the second chamber.
  • the flow control device includes a throttling device 1 and a throttling device 2 that are in communication with the wastewater outlet of the membrane element and are connected in parallel with each other, and the flow rate of the throttling device 1 is the filtration flow rate, the throttling The flow rate of the device 2 is the cleaning flow rate.
  • the filtering device further comprises an on-off device for opening and closing the waste water outlet.
  • the membrane element is a rolled reverse osmosis membrane, the water inlet of the membrane element being located on the side of the membrane element, the waste water outlet of the membrane element being located at the end face of the membrane element.
  • the waste water outlet of the membrane element is adjacent to the water collection tube of the membrane element.
  • the invention also discloses a cleaning method for a filtering device, which comprises the following steps:
  • it comprises the steps of: electrically connecting the first electrode to the positive electrode of the direct current power source, and electrically connecting the second electrode to the negative electrode of the direct current power source to form an acidic liquid in the first chamber.
  • it comprises the steps of: electrically connecting the first electrode to the negative electrode of the direct current power source, and electrically connecting the second electrode to the positive electrode of the direct current power source to form an alkaline liquid in the first chamber.
  • the method includes the following steps: the first electrode is electrically connected to the negative electrode of the direct current power source, and the second electrode is electrically connected to the positive electrode of the direct current power source to form an alkaline liquid in the first chamber;
  • the first electrode is electrically connected to the positive electrode of the direct current power source
  • the second electrode is electrically connected to the negative electrode of the direct current power source to form an acidic liquid in the first chamber.
  • it comprises the step of closing the water pump in communication with the first chamber.
  • the water inlet of the filtering device is in communication with a water source, and the water outlet of the filtering device is connected to the drain line.
  • it comprises the step of reducing the flow rate of water within the filtration device by a flow control device in communication with the waste water outlet of the membrane element.
  • the filtering device can clean the membrane element with acidic water and/or alkaline water, pickling or alkaline washing, pickling can remove the inorganic salt scale in the reverse osmosis membrane element, and alkali washing can remove the reverse osmosis membrane element.
  • Organic salt in the soil can clean the membrane element with acidic water and/or alkaline water, pickling or alkaline washing, pickling can remove the inorganic salt scale in the reverse osmosis membrane element, and alkali washing can remove the reverse osmosis membrane element.
  • Organic salt in the soil can clean the membrane element with acidic water and/or alkaline water, pickling or alkaline washing, pickling can remove the inorganic salt scale in the reverse osmosis membrane element, and alkali washing can remove the reverse osmosis membrane element.
  • the filtering device can control the time of water passing through the membrane element through the flow control device and the water pump to thoroughly clean the scale; at the same time, the influent water of the invention adopts the method of radial water feeding from the reverse osmosis membrane, so the cleaning is performed.
  • the filtering device causes acidic water/alkaline water to enter the membrane element from the water inlet of the membrane element, dissolves the inorganic salt/organic salt scale on the surface of the membrane, and then discharges from the wastewater outlet of the membrane element, and the acidic water/alkaline water is sufficiently correlated with the membrane surface. Contact, descaling is more thorough.
  • the filtering device can perform static cleaning, dynamic cleaning and dynamic-static combined cleaning on the reverse osmosis membrane.
  • the static cleaning can soak the reverse osmosis membrane, so that the acidic water or alkaline water can be more thoroughly combined with the reverse osmosis membrane;
  • the gas generated by the electrolysis reaction in the filtering device can be discharged into the filtering device; in the dynamic cleaning state, the cleaning effect is better.
  • Both the first electrode and the second electrode can be integrated on the support member, thereby reducing the volume of the filter device and reducing the installation difficulty.
  • FIG. 1A is a schematic structural view of a specific embodiment of a filtration device of the present invention.
  • FIG. 1B is a schematic view showing the structure of the filter device of FIG. 1A in a pickled state.
  • FIG. 1C is a schematic view showing the structure of the filter device of FIG. 1A in an alkali-washed state.
  • FIG. 2A is a schematic view showing the structure of another embodiment of the filtering device of the present invention.
  • Fig. 2B is a cross-sectional view taken along line A-A of Fig. 2A.
  • FIG. 2C is a partially enlarged schematic view of the portion D in FIG. 2B.
  • Figure 3 is a schematic view showing the structure of still another embodiment of the filtering device of the present invention.
  • the reference numerals of the above figures are: 1, the membrane shell; 11, the first chamber; 12, the second chamber; 13, the body; 14, the upper cover; 15, the lower cover; 2, the spacer; 22; diaphragm; 3, DC power supply; 4, first electrode; 5, second electrode; 6, membrane element; 61, pure water outlet; 62, waste water outlet; 7, flow valve; 81, throttling device 82, throttling device 2; 9, drainage pipeline.
  • FIG. 1A to 1C are schematic views showing the structure of a specific embodiment of the filtering device of the present application.
  • the filtering device includes a membrane casing 1, a separator 2, a membrane element 6, a first electrode 4, and a second electrode 5.
  • the spacer 2 isolates the membrane casing 1 from the first chamber 11 and the second chamber 12.
  • the membrane element 6 is placed in the first chamber 11.
  • the first electrode 4 is disposed in the first chamber 11.
  • the second electrode 5 is disposed in the second chamber 12.
  • the membrane casing 1 has a substantially hollow cylindrical shape and has an inner cavity.
  • the spacer 2 is also substantially hollow cylindrical.
  • the spacer 2 is placed inside the membrane casing 1 so that the inner cavity of the membrane casing 1 can be divided into the first chamber 11 and the second chamber 12.
  • the first chamber 11 and the second chamber 12 may be filled with water.
  • the membrane element 6 is located within the first chamber 11 and is capable of filtering the source of water entering the first chamber 11. As shown in FIG. 3, the membrane element 6 has a water inlet, a pure water outlet 61 and a waste water outlet 62.
  • the water inlet of the membrane element 6 is in communication with the first chamber 11.
  • the pure water outlet 61 and the waste water outlet 62 of the membrane element 6 can be led out of the membrane casing 1 to flow to different pipes, respectively.
  • the water inlet of the membrane element 6 is located on the side of the membrane element 6, the waste water outlet of the membrane element 6 is located at the end face of the membrane element 6, and the pure water outlet 61 of the membrane element 6 is in communication with a header.
  • the waste water outlet 62 of the membrane element 6 is adjacent to the water collection tube of the membrane element 6.
  • the first electrode 4 and the second electrode 5 of the membrane element 6 are placed in the first chamber 11 and the second chamber 12, respectively, that is, the first electrode 4 and the second electrode 5 are located on both sides of the separator 2.
  • the spacer 2 has a certain ion transmittance, and the first electrode 4 and the second electrode 5 are respectively connected to the two poles of the power source; the first chamber 11 and the second chamber 12 are filled with water.
  • an electrolytic cell is formed between the first electrode 4 and the second electrode 5.
  • electricity is electrolyzed during cleaning to generate acidic water or alkaline water in the vicinity of the two electrodes, so as to acidify the reverse osmosis membrane. Or alkaline washing.
  • the filtering device has a pickling state.
  • the first electrode 4 When the filtering device is in a pickling state, the first electrode 4 is in communication with the positive electrode of the direct current power source 3, and the second electrode 5 and the negative electrode of the direct current power source 3 are connected. It is connected so that H+ can be accumulated in the first chamber 11 and OH- can be accumulated in the second chamber 12.
  • H+ in the first chamber 11 When the H+ in the first chamber 11 is accumulated to a certain extent, the water in the first chamber 11 is correspondingly acidic. The higher the degree of H+ accumulation in the first chamber 11, the smaller the pH value in the first chamber 11. The acidic water in the first chamber 11 reacts with the inorganic salt scale remaining in the membrane element 6, thereby removing the inorganic scale to achieve the purpose of cleaning the membrane element 6.
  • the filtering device has an alkaline washing state, and when the filtering device is in an alkaline washing state, the first electrode 4 is in communication with a negative electrode of the direct current power source 3, and the second electrode 5 and a positive electrode of the direct current power source 3 are connected. It is connected so that OH- can be accumulated in the first chamber 11 and H+ can be accumulated in the second chamber 12.
  • the OH- in the first chamber 11 is accumulated to a certain extent, the water in the first chamber 11 is correspondingly alkaline. The higher the degree of OH-accumulation in the first chamber 11, the greater the pH in the first chamber 11.
  • the alkaline water in the first chamber 11 reacts with the organic salt scale remaining in the membrane element 6, thereby removing the organic salt scale to achieve the purpose of cleaning the membrane element 6.
  • the filtering device can It has a pickling state and an alkali washing state which can be alternately performed. Based on the actual situation and needs, the filtering device may first perform pickling and then alkali washing, that is, the first electrode 4 first communicates with the positive electrode of the direct current power source 3, and the second electrode 5 first communicates with the negative electrode of the direct current power source 3; After completion, the first electrode 4 is in communication with the negative electrode of the DC power source 3, and the second electrode 5 is in communication with the positive electrode of the DC power source 3.
  • the filtering device can also be subjected to alkaline washing and then pickling, and will not be described here.
  • the water inlet of the rolled membrane element 6 is on the side of the membrane element 6, and the waste water outlet 62 is located at the end face of the membrane element 6, and is close to the water collection tube of the membrane element 6.
  • the waste water outlet 62 is at the other end of the membrane.
  • the waste water outlet 62 of the membrane element 6 can be provided with a flow control device.
  • the flow control device includes at least two states of a filtered flow rate and a cleaned flow rate, and the filtered flow rate is greater than the cleaning flow rate.
  • the flow control device When the filtering device is in a filtering state, the flow control device is in a filtered flow state; when the filtering device is in a cleaning state, the flow control device is in a cleaning flow state.
  • the flow rate control device may be the flow rate valve 7.
  • the flow valve 7 can control the flow of liquid at the waste water outlet 62 of the membrane element 6.
  • the flow valve 7 can control the flow rate of the liquid at the waste water outlet 62 of the membrane element 6 to a relatively large flow state to reduce the time for water to pass through the membrane element 6, thereby improving the filtration efficiency of the filtration device.
  • the flow valve 7 can control the flow rate of the liquid at the waste water outlet 62 of the membrane element 6 to a relatively small flow state, thereby reducing the flow rate at the wastewater outlet 62 of the membrane element 6 to increase the acidic water.
  • the filtration device is improved Cleaning efficiency.
  • the pH of the water located in the first chamber 11 is 1-4 when the filtering device is in the pickling state.
  • the pH of the water located in the first chamber 11 is 9-13.
  • the water in the first chamber 11 in the static cleaning state has a relatively broad pH value, and the combination of the inorganic salt and the organic salt scale is better.
  • the membrane casing 1 may include a cylindrical body 13, an upper cover 14 disposed at an upper end of the body 13, and a lower cover 15 disposed at a lower end of the body 13.
  • the spacer 2 in the filtering device may include a support 21 and a diaphragm 22.
  • One or more through holes may be formed in the support member 21.
  • the diaphragm 22 may be correspondingly disposed at the through hole to block the through hole.
  • the support member 21 may be made of an insulating material such as plastic.
  • the separator 22 may be made of a material having an ion permeability, for example, one or more of an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, an ion exchange membrane, or a bipolar membrane.
  • the diaphragm 22 can be wound and fixed to the inner or outer surface of the support member 21 for ease of installation.
  • the first electrode 4 and the second electrode 5 may be fixedly connected to the support member 21, the first electrode 4 may be disposed on the inner surface of the support member 21, and the second electrode 5 may be disposed on the outer surface of the support member 21.
  • Fig. 3 is a schematic view showing the structure of another embodiment of the filtering device of the present application.
  • the waste water outlet 62 of the membrane element 6 may also be in communication with the second chamber 12 to communicate the first chamber 11 with the second chamber 12.
  • the wastewater generated by the filtration of the membrane element 6 can enter the second chamber 12.
  • water entering the first chamber 11 flows into the membrane element 6 from the water inlet of the membrane element 6, flows out of the membrane element 6 from the waste water outlet 62 of the membrane element 6, and enters the second chamber 12
  • the positive and negative ions are respectively accumulated in the first chamber 11 and the second chamber 12 through the first electrode 4 in the first chamber 11 and the second electrode 5 in the second chamber 12, respectively.
  • the water path setting is relatively simple, and the water path control logic is relatively simple.
  • the waste water outlet 62 of the membrane element 6 may be led out from the lower end of the membrane casing 1, the waste water outlet 62 may be in communication with the lower portion of the second chamber 12, and the water outlet of the second chamber 12 may be located in the second chamber. The upper part of the chamber 12.
  • the filtering device in the present embodiment may employ a dynamic cleaning method in which water filtered by the membrane element 6 may be discharged outward from the second chamber 12, thereby absorbing the membrane element 6.
  • the gas generated by the electrolysis reaction can also be discharged from the filtering device.
  • the filtering device further includes an on-off device for opening and closing the waste water outlet 62, thereby achieving static cleaning, dynamic cleaning, and dynamic-static combined cleaning.
  • Static cleaning refers to a closed-circuit cleaning mode in which the cleaning process is performed without external drainage.
  • the on-off device closes the waste water outlet, and the acidic solution or the alkaline solution is allowed to stand in the raw water flow passage for a certain period of time, thereby immersing the membrane element 6.
  • Dynamic cleaning is an open-circuit cleaning mode that drains outward during the cleaning process. During the dynamic cleaning process, the on/off device is opened so that the wastewater outlet can be communicated outwardly.
  • the second chamber 12 can have a water outlet in communication with the drain line 9 to drain the wastewater entering it into the second chamber 12.
  • the flow control device is in communication with the water outlet of the second chamber 12.
  • the flow control device can include at least two throttling devices.
  • the rated flow rate of the throttle device 81 is a filter flow having a large value
  • the rated flow rate of the throttle device 82 is a cleaning flow having a small value.
  • the throttle device 81 and the throttle device 82 are arranged in parallel.
  • the throttling device 81 When the filtering device is in the filtering state, the throttling device 81 is in communication with the water outlet of the second chamber 12, so that the liquid flow rate at the waste water outlet 62 of the membrane element 6 can be in a relatively large flow state.
  • the throttle device 82 communicates with the water outlet of the second chamber 12, so that the liquid flow rate of the membrane element 6 can be in a small flow state to increase the time of water passing through the membrane element 6. Thereby, the residence time of water in the membrane element 6 is prolonged, and the cleaning efficiency of the filtration device is improved.
  • the throttling device may be a wastewater ratio.
  • the water flux of the throttle device 81 is 1.5 L/MIN, and the water flux of the throttle device 82 is 100 ML/MIN.
  • the throttling device may also be other devices having a throttling effect such as a capillary tube.
  • the conduction current between the first electrode 4 and the second electrode 5 may be 0-3A, and the voltage of the DC power source 3 may be 0-36V. .
  • the present application also discloses a cleaning method for a filtering device, which comprises the steps of: respectively, the positive and negative electrodes of the direct current power source 3 and the first electrode 4 located in the first chamber 11 and the second electrode 5 located in the second chamber 12, respectively. Connecting, the first electrode 4 and the second electrode 5 and the water located in the first chamber 11 and the water in the second chamber 12 form an electrolytic cell, thereby generating acidic water or alkaline water in the first chamber 11. .
  • the second electrode 5 is electrically connected to the positive electrode of the DC power source 3, thereby forming an alkaline liquid in the first chamber 11.
  • the filtration device can be in an alternating state of caustic washing and pickling.
  • the pickling may be performed after the alkali washing is completed, that is, the first electrode 4 may be electrically connected to the negative electrode of the direct current power source 3, and the second electrode 5 is electrically connected to the positive electrode of the direct current power source 3, thereby being in the first chamber.
  • An alkaline liquid is formed in 11 to achieve an alkali-washing state; the first electrode 4 is electrically connected to the positive electrode of the DC power source 3, and the second electrode 5 is electrically connected to the negative electrode of the DC power source 3, thereby being in the first chamber 11
  • An acidic liquid is formed to achieve a pickling state.
  • the alkali washing may be performed, that is, the first electrode 4 is electrically connected to the positive electrode of the direct current power source 3, and the second electrode 5 is electrically connected to the negative electrode of the direct current power source 3, thereby being in the first chamber.
  • An acidic liquid is formed in 11 to achieve a pickling state; the first electrode 4 can be electrically connected to the negative electrode of the direct current power source 3, and the second electrode 5 and the direct current power source 3
  • the positive electrode is electrically connected to form an alkaline liquid in the first chamber 11 to achieve an alkali wash state.
  • the water pump in communication with the first chamber 11 can be closed to extend the time of the water entering the membrane element 6 passing through the membrane element 6 to improve the cleaning efficiency.
  • the flow rate of water in the filtration device can be further reduced by a flow control device in communication with the waste water outlet 62 of the membrane element 6, thereby extending the passage of water through the membrane element 6 into the membrane element 6. Time to improve cleaning efficiency.
  • the water inlet of the filter device is in communication with a source of water, and the outlet of the filter device is connected to the drain line 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种过滤装置及其方法,装置包括:膜壳(1);隔离件(2),隔离件(2)具有离子透过率,隔离件(2)将膜壳(1)隔离出第一腔室(11)和第二腔室(12);膜元件(6),其置于第一腔室(11)中;第一电极(4),其设置在第一腔室(11)中;第二电极(5),其设置在第二腔室(12)中。方法包括将直流电源(3)的正负两极分别与位于第一腔室(11)内的第一电极(4)和位于第二腔室(12)的第二电极(5)连接,使位于隔离件(2)两侧的第一电极(4)和第二电极(5)以及位于第一腔室内(11)的水、第二腔室(12)内的水形成电解池,从而在第一腔室(11)内电解产生酸性水或碱性水。采用酸性水和/或碱性水对膜元件进行清洗。

Description

过滤装置及其清洗方法 技术领域
本发明涉及了一种净化设备,尤其涉及了一种过滤装置及其清洗方法。
背景技术
在现有技术中,常常使用带有反渗透膜的过滤装置对水源进行过滤处理,以去除水源中的重金属、微生物、离子等,从而得到纯水。目前已有的反渗透膜元件主要是在一定压力下通过反渗透膜达到纯水制备的目的。在中国专利文献,申请号为201510051209.5、201410384072.0等中国专利申请中公开了类似的膜元件和水处理装置。在使用反渗透膜元件对水源进行处理的实际过程中,发现反渗透膜元件内容易产生有机盐垢物和/或无机盐垢物,容易产生二次污染,还会降低反渗透膜元件的使用寿命。
发明内容
为了克服现有技术的上述缺陷,本发明所要解决的技术问题是提供了一种过滤装置及其清洗方法,其可以对反渗透膜元件进行清洗,去除反渗透膜元件内的垢物。
本发明的具体技术方案是:
一种过滤装置,其特征在于,它包括:
膜壳;
隔离件,所述隔离件具有离子透过率,所述隔离件将所述膜壳隔离出第一腔室和第二腔室;
膜元件,其置于所述第一腔室中;
第一电极,其设置在所述第一腔室中;
第二电极,其设置在所述第二腔室中。
优选地,所述第一电极和所述第二电极分别与电源的两极连通;所述第一腔室和所述第二腔室充水状态下,所述第一电极和所述第二电极之间形成电解池。
优选地,所述隔离件包括开设有贯通孔的支撑件和用于封堵所述贯通孔且具有离子透过率的隔膜。
优选地,所述支撑件呈套筒状,所述隔膜卷绕在所述支撑件内或外。
优选地,所述第一电极设置在所述支撑件内表面。
优选地,所述第二电极设置在所述支撑件外表面。
优选地,所述隔膜包括超滤膜、纳滤膜、反渗透膜、离子交换膜或者双极膜中的一种或几种。
优选地,该过滤装置具有清洗状态,当该过滤装置处于清洗状态时,所述第一电极和所述第二电极分别与直流电源正负两极连通,从而使得第一腔室内的水呈酸性或碱性。
优选地,该过滤装置具有酸洗状态,当该过滤装置处于酸洗状态时,所述第一电极与直流电源的正极连通,所述第二电极与直流电源的负极连通。
优选地,当该过滤装置处于酸洗状态时,位于第一腔室内的水的PH值为1-4。
优选地,该过滤装置具有碱洗状态,当该过滤装置处于碱洗状态时,所述第一电极与直流电源的负极连通,所述第二电极与直流电源的正极连通。
优选地,当该过滤装置处于碱洗状态时,位于第一腔室内的水的PH值为9-13。
优选地,该过滤装置具有能交替进行的酸洗状态和碱洗状态,当该过滤装置处于酸洗状态时,所述第一电极与直流电源的正极连通,所述第二电极与直流电源的负极连通;当该过滤装置处于碱洗状态时,所述第一电极与直流电源的负极连通,所述第二电极与直流电源的正极连通。
优选地,当该过滤装置处于清洗状态时,所述第一电极和所述第二电极之间的导通电流为0-3A。
优选地,当该过滤装置处于清洗状态时,直流电源的电压为0-36V。
优选地,所述膜元件具有与所述第一腔室连通的入水口以及与所述第二腔室连通的废水出口,所述第一腔室与水源连通,所述第二腔室与排水管路连通。
优选地,所述膜元件的废水出口设置有流量控制装置,所述流量控制装置至少包括过滤流量和清洗流量两种状态,所述过滤流量大于所述清洗流量;当所述过滤装置处于过滤状态时,所述流量控制装置处于过滤流量状态;当所述过滤装置处于清洗状态时,所述流量控制装置处于清洗流量状态。
优选地,所述第二腔室具有出水口,所述流量控制装置与所述第二腔室的出水口连通。
优选地,所述流量控制装置包括与所述膜元件的废水出口连通并且相互并联的节流装置一和节流装置二,所述节流装置一的流量为所述过滤流量,所述节流装置二的流量为所述清洗流量。
优选地,所述过滤装置还包括用于开闭所述废水出口的通断装置。
优选地,所述膜元件为卷制的反渗透膜,所述膜元件的入水口位于所述膜元件的侧面,所述膜元件的废水出口位于膜元件端面。
优选地,所述膜元件的废水出口靠近所述膜元件的集水管。
本发明还公开了一种过滤装置的清洗方法,它包括以下步骤:
将直流电源的正负两极分别与位于第一腔室内的第一电极和位于第二腔室的第二电极连接,使位于隔离件两侧的第一电极和第二电极以及位于第一腔室内的水、第二腔室内的水形成电解池,从而在第一腔室内产生酸性水或碱性水。
优选地,它包括以下步骤:第一电极与直流电源的正极电性连接,第二电极与直流电源的负极电性连接,从而在所述第一腔室内形成酸性液体。
优选地,它包括以下步骤:第一电极与直流电源的负极电性连接,第二电极与直流电源的正极电性连接,从而在所述第一腔室内形成碱性液体。
优选地,它包括以下步骤:第一电极与直流电源的负极电性连接,第二电极与直流电源的正极电性连接,从而在所述第一腔室内形成碱性液体;
第一电极与直流电源的正极电性连接,第二电极与直流电源的负极电性连接,从而在所述第一腔室内形成酸性液体。
优选地,它包括以下步骤:关闭与第一腔室连通的水泵。
优选地,它包括以下步骤:所述过滤装置的入水口与水源连通,所述过滤装置的出水口接排水管路。
优选地,它包括以下步骤:通过与所述膜元件的废水出口连通的流量控制装置降低所述过滤装置内水的流速。
本发明采用以上结构以及方法,具有以下优点:
1、该过滤装置可以采用酸性水和/或碱性水对膜元件进行清洗,酸洗或碱洗,酸洗可以去除反渗透膜元件中的无机盐垢物,碱洗可以去除反渗透膜元件中的有机盐垢物。
2、该过滤装置可以通过流量控制装置以及水泵来控制水通过膜元件的时间,以彻底的清洗积垢;同时,本发明的进水采用从反渗透膜径向进水的方式,因此在清洗时,酸洗水或碱性水可以在整个原水流道内迂回流动,覆盖了较大的膜表面积,从而对整个原水流道进行彻底清洗,解决了从反渗透膜两端进水无法清洗到反渗透膜的中间区域。该过滤装置使酸性水/碱性水从膜元件的入水口进入膜元件,溶解膜表面的无机盐/有机盐垢,然后从膜元件的废水出口排出,酸性水/碱性水充分与膜表面接触,除垢更彻底。
3、该过滤装置可以对反渗透膜进行静态清洗、动态清洗和动-静结合清洗,静态清洗可以对反渗透膜进行浸泡,从而能够使得酸性水或碱性水与反渗透膜结合更加彻底;在动态和动-静结合状态下,可以将过滤装置中因电解反应产生的气体排出该过滤装置中;在动态清洗状态下,清洗效果更佳。
4、第一电极和第二电极都可以集成在支撑件上,从而缩小该过滤装置的体积和降低安装难度。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1A为本发明中过滤装置的一个具体实施方式的结构示意图。
图1B为图1A中过滤装置处于酸洗状态的结构原理示意图。
图1C为图1A中过滤装置处于碱洗状态的结构原理示意图。
图2A为本发明中过滤装置的另一个具体实施方式的结构示意图。
图2B为图2A中的A-A向剖视图。
图2C为图2B中的D处局部放大示意图。
图3为本发明中过滤装置的又一个具体实施方式的结构示意图。
以上附图的附图标记为:1、膜壳;11、第一腔室;12、第二腔室;13、本体;14、上盖;15、下盖;2、隔离件;21、支撑件;22、隔膜;3、直流电源;4、第一电极;5、第二电极;6、膜元件;61、纯水出口;62、废水出口;7、流量阀;81、节流装置一;82、节流装置二;9、排水管路。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。
图1A至图1C示出了本申请中过滤装置的一个具体实施方式的结构示意图。参照图 1所示,过滤装置包括膜壳1、隔离件2、膜元件6、第一电极4和第二电极5。所述隔离件2将所述膜壳1隔离出第一腔室11和第二腔室12。膜元件6置于第一腔室11中。第一电极4设置在第一腔室11中。第二电极5设置在第二腔室12中。
具体的,膜壳1大致呈中空的圆筒状,其具有内腔。隔离件2也大致呈中空的圆筒状。隔离件2安置在膜壳1内,从而能够将膜壳1的内腔分隔成第一腔室11和第二腔室12。第一腔室11和第二腔室12内可以填充水。膜元件6位于第一腔室11内,可以对进入第一腔室11内的水源进行过滤。结合图3所示,膜元件6具有入水口、纯水出口61和废水出口62。膜元件6的入水口与第一腔室11连通。膜元件6的纯水出口61和废水出口62可以从膜壳1中导出,从而分别流向不同的管道。膜元件6的入水口位于所述膜元件6的侧面,所述膜元件6的废水出口位于膜元件6端面,膜元件6的纯水出口61与一集水管连通。所述膜元件6的废水出口62靠近所述膜元件6的集水管。膜元件6第一电极4和第二电极5分别置于第一腔室11和第二腔室12中,即第一电极4和第二电极5位于隔离件2的两侧。隔离件2具有一定的离子透过率,所述第一电极4和所述第二电极5可以分别与电源的两极连通;所述第一腔室11和所述第二腔室12充水状态下,所述第一电极4和所述第二电极5之间形成电解池。当第一电极4和第二电极5分别与直流电源3的正负端连接,在清洗时通电进行电解,从而在两电极附近分别产生酸性水或碱性水,以便于对反渗透膜进行酸性或碱洗。参照图1B所示,该过滤装置具有酸洗状态,当该过滤装置处于酸洗状态时,所述第一电极4与直流电源3的正极连通,所述第二电极5与直流电源3的负极连通,从而能够在第一腔室11内聚积H+,在第二腔室12内聚积OH-。当第一腔室11内的H+聚积至一定程度后,第一腔室11内的水相应呈酸性。第一腔室11内的H+聚积程度越高,第一腔室11内的PH值越小。第一腔室11内呈酸性的水与存留在膜元件6中的无机盐垢物产生反应,从而去除该无机盐垢物,以达到清洗膜元件6的目的。
参照图1C所示,该过滤装置具有碱洗状态,当该过滤装置处于碱洗状态时,所述第一电极4与直流电源3的负极连通,所述第二电极5与直流电源3的正极连通,从而能够在第一腔室11内聚积OH-,在第二腔室12内聚积H+。当第一腔室11内的OH-聚积至一定程度后,第一腔室11内的水相应呈碱性。第一腔室11内的OH-聚积程度越高,第一腔室11内的PH值越大。第一腔室11内呈碱性的水与存留在膜元件6中的有机盐垢物产生反应,从而去除该有机盐垢物,以达到清洗膜元件6的目的。
为了去除膜元件6中的有机盐垢物,又去除膜元件6中的无机盐垢物,过滤装置可 以具有能交替进行的酸洗状态和碱洗状态。基于实际情况和需要,过滤装置可以先进行酸洗再进行碱洗,即第一电极4先与直流电源3的正极连通,所述第二电极5先与直流电源3的负极连通;当酸洗完毕后,所述第一电极4与直流电源3的负极连通,所述第二电极5与直流电源3的正极连通。当然的,该过滤装置也可以先进行碱洗再进行酸洗,在此不再累述。
卷制的膜元件6的入水口在膜元件6的侧面,废水出口62位于膜元件6端面,且靠近膜元件6的集水管。废水出口62在膜的另一端,清洗时,酸性水/碱性水从膜元件6入水口流经整个膜表面然后从废水出口62排出膜元件6,酸性水/碱性水充分与膜表面接触,除垢更彻底。
膜元件6的废水出口62可以设置有流量控制装置。所述流量控制装置至少包括过滤流量和清洗流量两种状态,所述过滤流量大于所述清洗流量。当所述过滤装置处于过滤状态时,所述流量控制装置处于过滤流量状态;当所述过滤装置处于清洗状态时,所述流量控制装置处于清洗流量状态。在本实施方式中,流量控制装置可以为流量阀7。该流量阀7可以对膜元件6的废水出口62处的液体流量进行控制。当所述过滤装置处于过滤状态时,流量阀7可以将膜元件6的废水出口62处的液体流量控制在较大流量状态,以减少水通过膜元件6的时间,提高该过滤装置的过滤效率。当所述过滤装置处于清洗状态时,流量阀7可以将膜元件6的废水出口62处的液体流量控制在较小流量状态,从而降低膜元件6的废水出口62处的流速,以增加酸性水/碱性水通过膜元件6的时间,从而延长酸性水/碱性水在该膜元件6中的停留时间,使酸性水/碱性水能够充分溶解无机盐/有机盐垢,提高该过滤装置的清洗效率。
经过测试得知,当该过滤装置处于酸洗状态时,位于第一腔室11内的水的PH值为1-4。当该过滤装置处于碱洗状态时,位于第一腔室11内的水的PH值为9-13。
如下表1所示,处于静态清洗状态下的第一腔室11内的水的酸碱值较为宽泛,对无机盐和有机盐垢物的结合更好。
Figure PCTCN2015080564-appb-000001
表1
图2A至图2C示出了本申请中过滤装置的另一个具体实施方式的结构示意图。参照图2A所示,膜壳1可以包括呈筒状的本体13、设置在本体13上端的上盖14和设置在本体13下端的下盖15。参照图2B和图2C所示,过滤装置中的隔离件2可以包括支撑件21和隔膜22。支撑件21上可以开设有一个或多个贯通孔。隔膜22可以对应设置在贯通孔处,以封堵贯通孔。支撑件21可以由塑料等绝缘材料制成。隔膜22可以由具有离子透过率的材料制成,例如可以由超滤膜、纳滤膜、反渗透膜、离子交换膜或双极性膜的一种或者几种。在一个优选的实施方式中,为了安装方便,隔膜22可以卷绕固定在支撑件21内表面或外表面。第一电极4和第二电极5可以分别与支撑件21相固定连接,第一电极4可以设置在所述支撑件21内表面,第二电极5可以设置在所述支撑件21外表面。
图3示出了本申请中过滤装置的另一个具体实施方式的结构示意图。参照图3所示,膜元件6的废水出口62也可以与第二腔室12连通,从而将第一腔室11与第二腔室12连通。在该过滤装置处于过滤状态时,膜元件6过滤产生的废水可以进入第二腔室12中。在该过滤装置处于清洗状态时,进入第一腔室11内的水自膜元件6的入水口流入膜元件6,从膜元件6的废水出口62流出膜元件6,并进入第二腔室12中,通过第一腔室11内的第一电极4和第二腔室12内的第二电极5分别在第一腔室11和第二腔室12中分别聚积正负离子。采用该种结构,不必将第二腔室12与水源连通,水路设置较为简单,水路控制逻辑较为简易。参照图3所示,膜元件6的废水出口62可以自膜壳1的下端导出,该废水出口62可以与第二腔室12的下部连通,第二腔室12的出水口可以位于第二腔室12的上部。因而采用该种结构,可以缩小该过滤装置的体积。
在本实施方式中的过滤装置可以采用动态清洗方法,即对膜元件6进行过滤后的水可以自第二腔室12向外排出,从而对膜元件6起到冲刷作用。在该过程中,还可以将因电解反应产生的气体排出该过滤装置。
在本实施方式中,所述过滤装置还包括用于开闭所述废水出口62的通断装置,从而实现静态清洗、动态清洗以及动-静结合清洗状态。静态清洗是指在进行清洗过程,不向外排水的一种闭路清洗模式。当处于静态清洗时,该通断装置将废水出口封闭,将酸性溶液或碱性溶液在原水流道内静置一段时间,进而对膜元件6起到浸泡作用。动态清洗是指在进行清洗过程中,向外排水的一种开路清洗模式。在处于动态清洗过程中,该通断装置打开,从而使的废水出口能够向外连通。当然的,也可以对通断装置进行通断控制,从而实现动-静结合的清洗状态。
在一个优选的实施方式中,第二腔室12可以具有与排水管路9连通的出水口,以将进入其内的废水排出第二腔室12。流量控制装置与第二腔室12的出水口连通。流量控制装置可以包括至少两个节流装置。节流装置一81的额定流量为数值较大的过滤流量,节流装置二82的额定流量为数值较小的清洗流量。节流装置一81和节流装置二82并联设置。
当所述过滤装置处于过滤状态时,节流装置一81与第二腔室12的出水口连通,从而可以将膜元件6的废水出口62处的液体流量处于较大流量状态。当所述过滤装置处于清洗状态时,节流装置二82与第二腔室12的出水口连通,从而可以将膜元件6的液体流量处于较小流量状态,以增加水通过膜元件6的时间,从而延长水在该膜元件6中的停留时间,提高该过滤装置的清洗效率。在本实施方式中,节流装置可以为废水比。其中节流装置一81的水通量为1.5L/MIN,节流装置二82的水通量为100ML/MIN。当然的,在其他实施方式中,节流装置还可以为诸如毛细管等其他具有节流效果的装置。
在本实施方式中,当该过滤装置处于清洗状态时,所述第一电极4和所述第二电极5之间的导通电流可以为0-3A,直流电源3的电压可以为0-36V。
本申请还公开了过滤装置的清洗方法,它包括以下步骤:将直流电源3的正负两极分别与位于第一腔室11内的第一电极4和位于第二腔室12的第二电极5连接,使第一电极4和第二电极5以及位于第一腔室11内的水、第二腔室12内的水形成电解池,从而在第一腔室11内产生酸性水或碱性水。
当第一电极4与直流电源3的正极电性连接,第二电极5与直流电源3的负极电性连接,可以在所述第一腔室11内形成酸性液体。
当第一电极4与直流电源3的负极电性连接,第二电极5与直流电源3的正极电性连接,从而在所述第一腔室11内形成碱性液体。
在一个优选的实施方式中,该过滤装置可以处于碱洗和酸洗的交替状态。例如,在碱洗完成之后可以进行酸洗,即第一电极4可以与直流电源3的负极电性连接,第二电极5与直流电源3的正极电性连接,从而在所述第一腔室11内形成碱性液体以实现碱洗状态;第一电极4与直流电源3的正极电性连接,第二电极5与直流电源3的负极电性连接,从而在所述第一腔室11内形成酸性液体以实现酸洗状态。
又例如,在酸洗之后还可以进行碱洗,即第一电极4与直流电源3的正极电性连接,第二电极5与直流电源3的负极电性连接,从而在所述第一腔室11内形成酸性液体以实现酸洗状态;第一电极4可以与直流电源3的负极电性连接,第二电极5与直流电源3 的正极电性连接,从而在所述第一腔室11内形成碱性液体以实现碱洗状态。
在一个优选的实施方式中,在该过滤装置处于清洗状态时,可以关闭与第一腔室11连通的水泵,延长进入膜元件6的水通过膜元件6的时间,以提高清洗效率。
在另一个优选的实施方式中,还可以通过与所述膜元件6的废水出口62连通的流量控制装置进一步降低所述过滤装置内水的流速,从而延长进入膜元件6的水通过膜元件6的时间,以提高清洗效率。
在一个优选的实施方式中,过滤装置的入水口与水源连通,所述过滤装置的出水口接排水管路9。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (29)

  1. 一种过滤装置,其特征在于,它包括:
    膜壳;
    隔离件,所述隔离件具有离子透过率,所述隔离件将所述膜壳隔离出第一腔室和第二腔室;
    膜元件,其置于所述第一腔室中;
    第一电极,其设置在所述第一腔室中;
    第二电极,其设置在所述第二腔室中。
  2. 根据权利要求1所述的过滤装置,其特征在于,所述第一电极和所述第二电极分别与电源的两极连通;所述第一腔室和所述第二腔室充水状态下,所述第一电极和所述第二电极之间形成电解池。
  3. 根据权利要求1所述的过滤装置,其特征在于,所述隔离件包括开设有贯通孔的支撑件和用于封堵所述贯通孔且具有离子透过率的隔膜。
  4. 根据权利要求3所述的过滤装置,其特征在于,所述支撑件呈套筒状,所述隔膜卷绕在所述支撑件内或外。
  5. 根据权利要求3所述的过滤装置,其特征在于,所述第一电极设置在所述支撑件内表面。
  6. 根据权利要求3所述的过滤装置,其特征在于,所述第二电极设置在所述支撑件外表面。
  7. 根据权利要求3所述的过滤装置,其特征在于,所述隔膜包括超滤膜、纳滤膜、反渗透膜、离子交换膜或者双极膜中的一种或几种。
  8. 根据权利要求1所述的过滤装置,其特征在于,该过滤装置具有清洗状态,当该过滤装置处于清洗状态时,所述第一电极和所述第二电极分别与直流电源正负两极连通,从而使得第一腔室内的水呈酸性或碱性。
  9. 根据权利要求8所述的过滤装置,其特征在于,该过滤装置具有酸洗状态,当该过滤装置处于酸洗状态时,所述第一电极与直流电源的正极连通,所述第二电极与直流电源的负极连通。
  10. 根据权利要求9所述的过滤装置,其特征在于,当该过滤装置处于酸洗状态时,位于第一腔室内的水的PH值为1-4。
  11. 根据权利要求8所述的过滤装置,其特征在于,该过滤装置具有碱洗状态,当 该过滤装置处于碱洗状态时,所述第一电极与直流电源的负极连通,所述第二电极与直流电源的正极连通。
  12. 根据权利要求11所述的过滤装置,其特征在于,当该过滤装置处于碱洗状态时,位于第一腔室内的水的PH值为9-13。
  13. 根据权利要求8所述的过滤装置,其特征在于,该过滤装置具有能交替进行的酸洗状态和碱洗状态,当该过滤装置处于酸洗状态时,所述第一电极与直流电源的正极连通,所述第二电极与直流电源的负极连通;当该过滤装置处于碱洗状态时,所述第一电极与直流电源的负极连通,所述第二电极与直流电源的正极连通。
  14. 根据权利要求8所述的过滤装置,其特征在于,当该过滤装置处于清洗状态时,所述第一电极和所述第二电极之间的导通电流为0-3A。
  15. 根据权利要求8所述的过滤装置,其特征在于,当该过滤装置处于清洗状态时,直流电源的电压为0-36V。
  16. 根据权利要求1所述的过滤装置,其特征在于,所述膜元件具有与所述第一腔室连通的入水口以及与所述第二腔室连通的废水出口,所述第一腔室与水源连通,所述第二腔室与排水管路连通。
  17. 根据权利要求16所述的过滤装置,其特征在于,所述膜元件的废水出口设置有流量控制装置,所述流量控制装置至少包括过滤流量和清洗流量两种状态,所述过滤流量大于所述清洗流量;当所述过滤装置处于过滤状态时,所述流量控制装置处于过滤流量状态;当所述过滤装置处于清洗状态时,所述流量控制装置处于清洗流量状态。
  18. 根据权利要求17所述的过滤装置,其特征在于,所述过滤装置还包括用于开闭所述废水出口的通断装置。
  19. 根据权利要求17所述的过滤装置,其特征在于,所述第二腔室具有出水口,所述流量控制装置与所述第二腔室的出水口连通。
  20. 根据权利要求17所述的过滤装置,其特征在于,所述流量控制装置包括与所述膜元件的废水出口连通并且相互并联的节流装置一和节流装置二,所述节流装置一的流量为所述过滤流量,所述节流装置二的流量为所述清洗流量。
  21. 根据权利要求16所述的过滤装置,其特征在于,所述膜元件为卷制的反渗透膜,所述膜元件的入水口位于所述膜元件的侧面,所述膜元件的废水出口位于膜元件端面。
  22. 根据权利要求21所述的过滤装置,其特征在于,所述膜元件的废水出口靠近 所述膜元件的集水管。
  23. 一种过滤装置的清洗方法,其特征在于,它包括以下步骤:
    将直流电源的正负两极分别与位于第一腔室内的第一电极和位于第二腔室的第二电极连接,使位于隔离件两侧的第一电极和第二电极以及位于第一腔室内的水、第二腔室内的水形成电解池,从而在第一腔室内电解产生酸性水或碱性水。
  24. 根据权利要求23所述的清洗方法,其特征在于,它包括以下步骤:
    第一电极与直流电源的正极电性连接,第二电极与直流电源的负极电性连接,从而在所述第一腔室内形成酸性液体。
  25. 根据权利要求23所述的清洗方法,其特征在于,它包括以下步骤:
    第一电极与直流电源的负极电性连接,第二电极与直流电源的正极电性连接,从而在所述第一腔室内形成碱性液体。
  26. 根据权利要求23所述的清洗方法,其特征在于,它包括以下步骤:
    第一电极与直流电源的负极电性连接,第二电极与直流电源的正极电性连接,从而在所述第一腔室内形成碱性液体;
    第一电极与直流电源的正极电性连接,第二电极与直流电源的负极电性连接,从而在所述第一腔室内形成酸性液体。
  27. 根据权利要求23所述的清洗方法,其特征在于,它包括以下步骤:关闭与第一腔室连通的水泵。
  28. 根据权利要求27所述的清洗方法,其特征在于,它包括以下步骤:
    所述过滤装置的入水口与水源连通,所述过滤装置的出水口接排水管路。
  29. 根据权利要求28所述的清洗方法,其特征在于,它包括以下步骤:
    通过与所述膜元件的废水出口连通的流量控制装置降低所述过滤装置内水的流速。
PCT/CN2015/080564 2015-05-11 2015-06-02 过滤装置及其清洗方法 WO2016179863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/573,232 US10814283B1 (en) 2015-05-11 2015-06-02 Filter device and washing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510235774.7 2015-05-11
CN201510235774.7A CN104843912B (zh) 2015-05-11 2015-05-11 过滤装置及其清洗方法

Publications (2)

Publication Number Publication Date
WO2016179863A1 true WO2016179863A1 (zh) 2016-11-17
WO2016179863A8 WO2016179863A8 (zh) 2016-12-08

Family

ID=53843959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080564 WO2016179863A1 (zh) 2015-05-11 2015-06-02 过滤装置及其清洗方法

Country Status (3)

Country Link
US (1) US10814283B1 (zh)
CN (1) CN104843912B (zh)
WO (1) WO2016179863A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021546B (zh) * 2016-02-02 2023-04-11 艾欧史密斯(南京)水处理产品有限公司 膜元件
TWI673236B (zh) * 2018-08-03 2019-10-01 聖約翰科技大學 一種可反電性清洗之微流孔海水淡化裝置
CN111559786A (zh) * 2020-05-28 2020-08-21 佛山市顺德区美的饮水机制造有限公司 净水装置和净水器
CN115490301B (zh) * 2021-09-23 2023-09-12 青岛海尔施特劳斯水设备有限公司 一种过滤装置、自清洁方法及净水机
CN113813793B (zh) * 2021-10-25 2024-05-10 湖南沁森高科新材料有限公司 一种反渗透膜系统的清洗方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182346A (ja) * 1992-12-21 1994-07-05 Toshiba Corp 電気透析装置
CN2278690Y (zh) * 1997-04-16 1998-04-15 希昭济 连续式强氧化离子水生成器
CN103083697A (zh) * 2012-12-26 2013-05-08 王玉华 一种应用电功能酸性离子水进行清洗消毒的系统及方法
CN104084048A (zh) * 2014-06-27 2014-10-08 艾欧史密斯(上海)水处理产品有限公司 膜元件、水处理装置及水处理方法
CN104096483A (zh) * 2014-08-06 2014-10-15 艾欧史密斯(上海)水处理产品有限公司 一种膜元件、使用该膜元件的装置及水处理方法
CN204107340U (zh) * 2014-06-27 2015-01-21 艾欧史密斯(上海)水处理产品有限公司 膜元件及水处理装置
CN204159229U (zh) * 2014-08-06 2015-02-18 艾欧史密斯(上海)水处理产品有限公司 一种膜元件和使用该膜元件的装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776530A (en) * 1971-03-25 1973-12-04 Lau Inc Electrodialytic demineralizing unit for humidification purposes
JP2832173B2 (ja) * 1995-05-31 1998-12-02 信越半導体株式会社 半導体基板の洗浄装置および洗浄方法
JPH1071393A (ja) * 1996-06-27 1998-03-17 Yoshiya Okazaki 連続通水式電解水生成装置の洗浄・殺菌方法及びこの方法を実施する機構を備えた連続通水式電解水生成装置
JP3189034B2 (ja) * 1996-09-26 2001-07-16 紀陽 田仲 ダイアライザーの再生方法及び再生装置
EP1174177A3 (en) * 2000-07-18 2002-12-04 Nitto Denko Corporation Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor
EP1945577A1 (en) * 2005-10-06 2008-07-23 Pionetics, Inc. Electrochemical ion exchange treatment of fluids
JP4216892B1 (ja) * 2007-04-13 2009-01-28 優章 荒井 電解水の製造装置、電解水の製造方法および電解水
WO2009023186A2 (en) * 2007-08-10 2009-02-19 Freije Treatment Systems, Inc. Method and apparatus for treating a fluid
CN104411385B (zh) * 2012-06-26 2018-07-20 康韦德塑料制品有限公司 使用低能量进料间隔件的膜过滤
JP5688109B2 (ja) * 2013-01-31 2015-03-25 中国電機製造株式会社 水素含有水生成用電極の製造方法及び水素含有水生成用電極
JP6182346B2 (ja) * 2013-04-18 2017-08-16 Tdk株式会社 発振器、整流器および送受信装置
CN203355625U (zh) * 2013-07-29 2013-12-25 温燕红 自清洗净水机
CN204058142U (zh) * 2014-09-02 2014-12-31 艾欧史密斯(上海)水处理产品有限公司 自清洗水处理系统
CN104671536A (zh) 2015-01-30 2015-06-03 艾欧史密斯(上海)水处理产品有限公司 膜元件和水处理装置
CN204661443U (zh) * 2015-05-11 2015-09-23 艾欧史密斯(上海)水处理产品有限公司 过滤装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182346A (ja) * 1992-12-21 1994-07-05 Toshiba Corp 電気透析装置
CN2278690Y (zh) * 1997-04-16 1998-04-15 希昭济 连续式强氧化离子水生成器
CN103083697A (zh) * 2012-12-26 2013-05-08 王玉华 一种应用电功能酸性离子水进行清洗消毒的系统及方法
CN104084048A (zh) * 2014-06-27 2014-10-08 艾欧史密斯(上海)水处理产品有限公司 膜元件、水处理装置及水处理方法
CN204107340U (zh) * 2014-06-27 2015-01-21 艾欧史密斯(上海)水处理产品有限公司 膜元件及水处理装置
CN104096483A (zh) * 2014-08-06 2014-10-15 艾欧史密斯(上海)水处理产品有限公司 一种膜元件、使用该膜元件的装置及水处理方法
CN204159229U (zh) * 2014-08-06 2015-02-18 艾欧史密斯(上海)水处理产品有限公司 一种膜元件和使用该膜元件的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, YING ET AL.: "Dirt cleaning for ultrafiltration membranes after oily wastewater dispose", JOURNAL OF CHINA UNIVERSITY OF PETROLEUM (EDITION OF NATURAL SCIENCE, vol. 21, no. 04, 31 August 1997 (1997-08-31), pages 71 - 72, ISSN: 1673-5005 *

Also Published As

Publication number Publication date
US10814283B1 (en) 2020-10-27
CN104843912B (zh) 2020-03-13
WO2016179863A8 (zh) 2016-12-08
CN104843912A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016179863A1 (zh) 过滤装置及其清洗方法
CN112744964A (zh) 一种净水装置、自清洗过滤系统和方法
JP2017536233A (ja) 水浄化装置および該水浄化装置を用いた水ろ過方法
CN109956590A (zh) 一种基于多级循环净化的大流量净水器
CN204661443U (zh) 过滤装置
CN106861265A (zh) 一种净水系统及反洗方法
KR100894558B1 (ko) 냉,온 이온수기
CN103073076A (zh) 新型净水壶
CN204874077U (zh) 双重净化净水器
CN205616657U (zh) 一种自清洗净水器装置
CN106040005B (zh) 卷式膜组件
KR100666559B1 (ko) 이온수기
CN204173993U (zh) 一种家用终端中央净水器
CN205023922U (zh) 一种净水器重金属处理装置
CN203461890U (zh) 无泵无电器纯水机
KR20040084044A (ko) 전기(분해식) 냉.온 정수기
CN212576019U (zh) 一种超滤净水器
CN206751440U (zh) 一种家用陶瓷膜净水装置
CN203095771U (zh) 新型净水壶
KR100644945B1 (ko) 이온수기 제어방법 및 전해조 세척방법
CN217627909U (zh) 一种具有清洗功能的反渗透水处理设备
CN206150210U (zh) 一种水池净化系统
JP3057199U (ja) 水処理装置
CN216155498U (zh) 一种可以去除异味的净水装置
CN211226477U (zh) 一种不耗电自动清洗净水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891566

Country of ref document: EP

Kind code of ref document: A1