WO2016179786A1 - 制备铁盐的方法 - Google Patents
制备铁盐的方法 Download PDFInfo
- Publication number
- WO2016179786A1 WO2016179786A1 PCT/CN2015/078712 CN2015078712W WO2016179786A1 WO 2016179786 A1 WO2016179786 A1 WO 2016179786A1 CN 2015078712 W CN2015078712 W CN 2015078712W WO 2016179786 A1 WO2016179786 A1 WO 2016179786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- salt
- anolyte
- anode
- diaphragm
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/10—Halides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/14—Sulfates
Definitions
- the present invention belongs to the field of inorganic chemical and hydrometallurgy, and in particular to a method for preparing an iron salt.
- Titanium dioxide, circuit boards and stainless steel etching, steel and other industries produce tens of millions of tons of ferrous sulfate, ferrous chloride, and waste acid every year, which becomes a heavy environmental burden. It can be converted into industrial raw materials such as iron salt, pure iron and hydrogen by electrolysis to realize waste recycling.
- Iron salts that is, ferric salts
- ferric salts are classified into a normal iron salt, a basic iron salt, and an acid iron salt.
- the use of acid iron salts is less, and the iron salts and basic iron salts are large amounts of water purifying agents.
- iron ions encounter hydroxide ions to form precipitates that are poorly soluble in water, but if a specific method is adopted, a soluble basic iron salt containing a large amount of iron ions and a large amount of hydroxide ions (hydroxyl groups) can be obtained. And the solubility of this basic iron salt is very large.
- This basic iron salt is actually an inorganic high molecular polymer, so it is often called a polymeric iron, and its water purification performance is very excellent.
- the five iron salts of ferric sulphate, ferric chloride, polyferric sulphate, polyferric chloride, and polyaluminum sulphate occupies the majority of the iron salt used, and the amount of polyferric sulfate is the largest.
- the salt base and concentration of iron salts are the most important parameters for characterizing the properties of iron salts.
- Proper salt base is beneficial to improve the water purification capacity of iron salts, but excessive salt base can cause iron salts to be unstable.
- Increasing the concentration of iron salt products has a crucial impact on reducing the costs of evaporation, transportation, storage, etc. Therefore, controlling the base of the salt within the desired range and increasing the concentration as much as possible is the key to the iron salt preparation technology.
- the main disadvantages are: There is no control over the range of salt base; using a ferrous sulfate solution with a large amount of free acid as a raw material, it is necessary to neutralize a part of the free acid with scrap, and then neutralize the remaining with iron hydroxide after electrolysis.
- the free acid, and the cost of scrap steel and iron hydroxide are very high; using a low temperature process, the product concentration is low, and the iron ion concentration of the obtained anode product does not exceed 100 g/L.
- the iron salt is prepared by an electrolytic method, and the ferrous salt in the anodizing anolyte becomes an iron salt, and an anion exchange membrane separator is used to increase the salt base of the iron salt.
- the salt base is controlled by the pressure difference between the two sides of the diaphragm.
- the anolyte temperature is > 50 °C.
- the anolyte iron content is ⁇ 150 g/L
- the temperature is ⁇ 60 ° C, preferably ⁇ 80 °C.
- the cathode side pressure of the diaphragm > the pressure on the anode side of the diaphragm.
- the anode active material is a carbon material, preferably graphite; the anode base material is a good conductor material
- it is graphite.
- the catholyte is a solution containing one or more of sulfuric acid, hydrochloric acid, ferrous sulfate, ferrous chloride, and zinc sulfate.
- the catholyte chloride ion concentration is ⁇ 4 mol/L.
- Document 5 indicates that the free acid of the anode compartment will migrate to the cathode compartment. But the experiment found that when the anolyte free acid The content of the anion exchange membrane can catalyze the formation of a basic iron salt by iron ions, which increases the salt base degree of the iron salt in the anolyte. Under the same conditions of other electrolysis conditions, the greater the concentration of iron ions in the anolyte, the more obvious the catalytic promotion effect, and the more favorable the salt base degree of the iron salt, especially when the iron ion concentration is above 150g/L, the base. The increase in degrees is more rapid. This phenomenon is difficult to explain simply by the theory of hydrolysis of iron ions. The invention utilizes this phenomenon to achieve the purpose of preparing an iron salt with a certain salt base naturally by using an electrolysis process, and the preparation process is uniform and stable, and the local alkali is not excessively concentrated, and no other raw materials are needed.
- Excessive salt base is disadvantageous for the preparation of a positive iron salt and a low salt basic alkali iron salt, so that a larger amount of acid needs to be added for correction, and therefore it is desirable to control the salt base within a certain range.
- control is bidirectional, which means that the control salt base becomes large, and the control salt base becomes small, and the control should not be construed as merely inhibition.
- diaphragm anode side pressure - diaphragm cathode side pressure combined force on both sides of the diaphragm / diaphragm area
- P ⁇ 0 is advantageous for the design and manufacture of a large electrolytic cell because the anode side is easy to design a support structure to support the film.
- the viscosity of the iron salt solution increases rapidly as the concentration and the basicity of the salt increase, and the increase in viscosity is very disadvantageous for the electrolysis process.
- the viscosity is large, the anode current efficiency decreases rapidly, the side reaction is severe, and the electric energy is wasted.
- the side reaction generates an acidic substance, which seriously interferes with the control of the salt base.
- An increase in viscosity also causes a decrease in electrical conductivity and an increase in power consumption.
- the viscosity of the iron salt solution For iron salt solutions, increasing the temperature reduces the viscosity of the solution, but this effect is not linear. In the range of 0-100 ° C, the viscosity of the iron salt solution first drops rapidly, and the tendency to decrease after 50 ° C tends to be slow, so for a higher concentration of the anolyte, the preferred electrolysis temperature should be above 50 ° C.
- the volume of anolyte does not change much during the electrolysis process. Therefore, the iron content in the anolyte before electrolysis basically determines the iron content of the final anolyte product. The only difference is that it is mainly ferrous iron before electrolysis, and mainly after electrolysis. Price iron.
- the use of high temperature electrolysis, using a highly active anode active material can suppress side reactions.
- the anode material functionally mainly includes a matrix material and an active material, and selection of a suitable anode active material plays a key role in suppressing side reactions and thereby increasing product concentration.
- the base material and the active material may be the same, for example, a graphite plate is used as the anode base material and the active material is a graphite plate; or may be different, for example, a titanium-based anode and graphite particles 7 and 8, respectively .
- a graphite plate electrode may be immersed in an organic material to increase corrosion resistance; graphite may be formed into a plate shape, a granular shape, or a filament shape to change a specific surface area. None of these changes the type of the main anode active material, and thus such anode active materials are still within the scope of the claims of the present invention.
- Electrolytic conditions such as concentration, temperature, P H , and current density of such a cathode process have practical value in a considerable range.
- concentration, temperature, P H , and current density of such a cathode process have practical value in a considerable range.
- ferrous sulfate there is practical application value in a wide range of pH ⁇ 5.5, concentration from close to 0 to saturation, and temperature from room temperature to boiling.
- the catholyte works at a high temperature to reduce power consumption, and a large current density of 1 ⁇ can be used, but the temperature resistance requirement of the anion exchange membrane is increased.
- the temperature resistance of the anion exchange membrane should be compatible with the temperature range used.
- the catholyte may have a large temperature difference with the anolyte. Obviously, a smaller temperature difference helps to reduce energy consumption.
- the current density of the cathode process is primarily limited by the requirements of the cathode product and the performance of the anion exchange membrane. Excessive current density will shorten the life of the membrane.
- Electrodes Part I. Experiments with oxygen evolution or matte oxidation at the anode,
- Electrodes Part II. Copper electrowinning with ferrous ion oxidation as the anodic reaction, Metallurgical and Materials Transactions. B[J], 2002, 33 (5), 677-683
- the invention simultaneously utilizes the electric energy of the two electrodes of the cathode and the anode, and can effectively control the salt base degree of the iron salt product, and the iron salt product can have an iron content of more than 150 g/L.
- 1 is a trend curve in which the viscosity of ferric chloride and ferric sulfate decreases as the temperature increases.
- the electrolyte can circulate.
- the anode chamber is a closed structure.
- the control of P can also be achieved by using the difference in the level of the two chambers.
- the anode is made of a graphite plate of 1 cm thickness or a mesh glass of 0.5 cm thickness of 45 PPI.
- the surface of the graphite plate has a small groove with a cross-sectional area of 2 mm*2 mm as a guide groove, and the groove pitch is 5 mm.
- the cathode is made of 304 stainless steel. The reagents used were of analytical grade.
- Catholyte 1200 g of ferrous sulfate, 160 g of ammonium sulfate, and added to 2 L of water.
- Anolyte 600 g of ferrous sulfate, 300 g of water was added to prepare a suspension as an anolyte, -20 kPa ⁇ P ⁇ -30 kPa, and the temperature of the anolyte was 80 °C.
- Graphite plate anode 1200 g of ferrous sulfate, 160 g of ammonium sulfate, and added to 2 L of water.
- Anolyte 600 g of ferrous sulfate, 300 g of water was added to prepare a suspension as an anolyte, -20 kPa ⁇ P ⁇ -30 kPa, and the temperature of the anolyte was 80 °C.
- Graphite plate anode Graphite plate anode.
- Catholyte ferrous sulfate 1.5 mol/L, 600 mL.
- Catholyte Ferrous sulfate 1.8 mol/L, 1 L.
- Anode solution Ferrous sulfate 2.88mol/L, 0.62 5L, temperature controlled at 80-100°C, -70kPa ⁇ P ⁇ - 100kPao graphite plate anode.
- Electrolytic electrolysis until the ferrous liquid content of the anolyte is ⁇ 0.05mol/L, and the anolyte is further added with 150g of ferrous sulfate heptahydrate, and then energized until the ferrous ion content of the anolyte is ⁇ 0.01mol/L, a total of 57g of pure iron is obtained, and the obtained polysulfate is obtained.
- Catholyte 2.0 mol/L hydrochloric acid, 1 L.
- Anolyte 305 g of ferrous sulfate and 310 g of water were added to prepare an anolyte at a temperature of 80 ° C and 100 Pa ⁇ P ⁇ 200 Pa.
- Graphite plate anode. Electrolytic electrolysis until the ferrous liquid content of the anolyte is ⁇ 0.05 mo 1 / L, the ionic liquid iron ion content is 130 g / L, B 1.3%, and the cathode product is hydrogen.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
一种电解法制备硫酸铁、氯化铁、聚合硫酸铁、聚合氯化铁、聚合氯化硫酸铁等铁盐的方法,产品的盐基度可以利用电解过程方便地加以控制。在以阴离子交换膜为电解隔膜的电解槽中,阳极室产出铁盐产品的同时,阴极室产出电解纯铁、氢气、锌等产品。所需的硫酸亚铁、氯化亚铁、废盐酸、废硫酸等原料来源于钛白粉、电路板及不锈钢蚀刻、钢铁等行业的副产物或废物。
Description
制备铁盐的方法
技术领域
[0001] 本发明属于无机化工和湿法冶金领域,特别涉及制备铁盐的方法。
背景技术
[0002] 钛白粉、 电路板和不锈钢刻蚀、 钢铁等行业每年产生数千万吨的硫酸亚铁、 氯 化亚铁、 废酸, 成为沉重的环境负担。 利用电解过程可以将其转化成铁盐、 纯 铁、 氢气等工业原料, 实现废物的回收利用。
[0003] 铁盐, 即三价铁盐, 分为正铁盐、 碱式铁盐、 酸式铁盐。 酸式铁盐的用途较少 , 正铁盐和碱式铁盐是用量很大的净水剂。 众所周知, 铁离子遇到氢氧根离子 容易形成难溶于水的沉淀, 但是如果采取特定的方法却能够制得同吋含有大量 铁离子和大量氢氧根离子 (羟基)的可溶性碱式铁盐, 而且这种碱式铁盐的溶解度 非常大。 这种碱式铁盐实际是一种无机高分子聚合物,因此常称之为聚合铁, 净 水性能非常优良。 硫酸铁、 氯化铁、 聚合硫酸铁、 聚合氯化铁、 聚合氯化硫酸 铁这五种铁盐占据了铁盐使用量的绝大部分,其中又以聚合硫酸铁的用量最大。
[0004] 在铁盐领域弓 I入了盐基度的概念, 盐基度的数值等于铁盐中氢氧根离子 (羟基) 所带电荷数量绝对值与全部铁离子所带电荷数量绝对值之比。 由于盐基度的测 定普遍采用酸碱滴定法, 酸式盐的盐基度可以表示为负值, 这样就可以统一用 盐基度 B定量表示铁盐的各种状态: B=0为正铁盐, B>0为碱式铁盐, B<0为酸式 铁盐。 在净水剂领域, 铁盐的盐基度和浓度成为表征铁盐性能的最重要的参数 。 适当的盐基度有利于提高铁盐的净水能力, 但是过高的盐基度会导致铁盐不 稳定。 提高铁盐产品浓度对于降低蒸发、 运输、 储存等方面成本有至关重要影 响, 因此控制盐基度在期望的范围之内并尽量提高浓度是铁盐制备技术的关键 所在。
[0005] 化学氧化法制备铁盐技术已经有了较为全面的总结 ^4, 这类方法需要消耗亚 铁盐之外的原料; 通过调整酸量或者碱量来控制盐基度, 容易引入杂质离子,容 易发生碱的局部过浓导致沉淀产生。
[0006] 方一鹤等 5研究了硫酸亚铁体系的电解过程, 为酸洗废液的利用提供了一个新 的方法, 不引入杂质离子。 主要缺点是: 没有对盐基度的范围进行控制; 采用 带有大量游离酸的硫酸亚铁溶液作为原料, 需要先用废钢中和掉一部分游离酸 , 电解后再用氢氧化铁中和掉剩余的游离酸, 而废钢和氢氧化铁的成本都很高 ; 采用低温工艺, 产品浓度低, 所得阳极产品铁离子浓度不超过 100g/L。
[0007] 有文献公幵了浸铜所得氯化亚铁废液的电解过程 6, 但主要专注于阴极过程,阳 极过程没有详细公幵, 更没有涉及对盐基度的控制。 由于采用低温工艺, 所得 阳极产品浓度低, 铁离子浓度低于 130g/L。
[0008] 已有文献都没有公幵阴离子交换膜会使得铁盐的盐基度增大的现象, 更没有对 其进行利用和控制, 尤其没有公幵制备高浓度铁盐的电解过程中的盐基度控制 问题。
技术问题
[0009] 电解法制备具有期望盐基度的铁盐产品是本发明要解决的最主要的问题。
问题的解决方案
技术解决方案
[0010] 本发明所采用的技术方案是:
[0011] 采用电解法制备铁盐, 阳极氧化阳极电解液中的亚铁盐成为铁盐, 利用阴离子 交换膜隔膜来增加铁盐的盐基度。
[0012] 进- 步地, 利用隔膜两侧压强差对盐基度进行控制。
[0013] 进- 步地, 阳极电解液温度〉 50°C。
[0014] 进- 步地, 阳极电解液铁含量≥150g/L,温度≥60°C, 优选为≥80°C。
[0015] 进- 步地, 隔膜阴极侧压强〉隔膜阳极侧压强。
[0016] 进- 步地, 阳极活性材料为碳材料, 优选为石墨; 阳极基体材料为良导体材料
, 优选为石墨。
[0017] 进一步地, 阴极电解液为含有硫酸、 盐酸、 硫酸亚铁、 氯化亚铁、 硫酸锌中一 种或几种的溶液。
[0018] 进一步地, 阴极电解液氯离子浓度≥4mol/L。
[0019] 文献 5指出阳极室的游离酸会迁移到阴极室。 但是实验发现, 当阳极液游离酸
含量较少或者不含游离酸吋, 阴离子交换膜能够催化促进铁离子形成碱式铁盐 , 即增加了阳极液中铁盐的盐基度。 在其他电解条件相同的情况下, 阳极液铁 离子浓度越大, 这种催化促进作用越明显, 越有利于提高铁盐的盐基度, 尤其 当铁离子浓度在 150g/L以上吋, 盐基度的增加更为迅速。 这种现象难以单纯用铁 离子的水解理论进行解释。 本发明利用这种现象达到了利用电解过程自然而然 制备带有一定盐基度铁盐的目的, 制备过程均匀稳定, 避免了局部碱过浓, 而 且无须使用其他原料。
[0020] 过大的盐基度对于制备正铁盐和低盐基度碱式铁盐不利, 以至于需要加入较大 量的酸进行校正, 因此希望将盐基度控制在一定范围之内。 本发明中控制一词 是双向的, 既指控制盐基度变大, 也指控制盐基度变小, 而不应将控制仅仅理 解为抑制。
[0021] 隔膜两侧的压强会对盐基度产生影响。 定义:
[0022] =隔膜阳极侧压强-隔膜阴极侧压强 =隔膜两面的合力 /隔膜面积
[0023] 实验表明 的数值与盐基度具有正相关关系, 数值越大, 越有利于增加盐 基度, 反之则利于减小盐基度。
[0024] P<0有利于大型电解槽的设计制造, 因为阳极侧容易设计支撑结构对膜进行支 撑。
[0025] 实验发现提高阴极电解液氯离子浓度也有利于减小盐基度。 当氯离子浓度超过 4mol/L吋, 这种作用变得非常突出, 可以制备盐基度接近于正铁盐的产品。
[0026] 铁盐溶液的粘度随着浓度和盐基度的升高而迅速增加,而粘度的增加对于电解过 程非常不利。 当粘度较大吋, 阳极电流效率迅速下降, 副反应剧烈, 浪费电能
。 而且副反应生成酸性物质, 严重干扰对于盐基度的控制。 粘度的增加还导致 电导率下降, 电耗上升。
[0027] 对于铁盐溶液, 升高温度能降低溶液的粘度, 但是这种影响不是线性的。 在 0- 100°C的范围内, 铁盐溶液的粘度先是迅速下降, 到 50°C后下降趋势趋于缓慢, 因此对于浓度较高的阳极液, 优选的电解温度应该在 50°C以上。 电解过程中阳极 液的体积变化不大, 因此电解前阳极电解液中的含铁量基本决定了最终阳极液 产品的含铁量, 区别仅在于电解前主要是二价铁, 电解后主要是三价铁。
[0028] 采用高温电解、 采用高活性的阳极活性材料可抑制副反应。
[0029] 阳极材料从功能上主要包括基体材料和活性材料两部分, 选择合适的阳极活性 材料对于抑制副反应进而提高产品浓度有关键性作用。 基体材料和活性材料可 以相同, 例如采用石墨板作为阳极吋基体材料和活性材料都是石墨板; 也可以 不同, 例如分别采用钛基阳极和石墨颗粒 7,8。
[0030] 大量实验表明碳材料对亚铁离子氧化有优秀电化学活性, 这主要是因为碳元素 的本身特性。 无定形碳、 石墨、 玻璃碳均有较好的电化学活性, 但是无定形碳 导电性能差, 玻璃碳过于昂贵。 为了抗腐蚀、 增加比表面积、 增加亲水性等目 的, 碳阳极活性材料经常添加其他成分、 改变物理或者几何形态、 进行物理的 或者化学的处理等等, 此吋活性材料的存在形式虽然有所不同, 但起主要电化 学活性作用的仍是碳材料。 本发明的权利主张不因为这种存在形式的不同而受 到限制。 例如, 石墨板电极可采用浸入有机物的方法增加耐腐蚀性; 石墨可以 制成板状、 颗粒状、 丝状以求改变比表面积。 这些都没有改变主要阳极活性材 料的种类,因而这类阳极活性材料仍然在本发明的权利主张范围之内。
[0031] 阴极过程, 尤其是氢离子和亚铁离子的阴极过程已经进行了相当深入的研究。
这类阴极过程的浓度、 温度、 PH、 电流密度等电解条件在相当大范围内变化吋 都有实用价值。 例如对于硫酸亚铁, 在 pH<5.5, 浓度从接近于 0到饱和, 温度从 室温到沸腾的广大范围内都有实际应用价值。
[0032] 相对于低温电解 9, 阴极电解液工作于高温下有利于降低电耗,可以采用较大的 电流密度 1β, 但对阴离子交换膜的耐温性要求提高。 阴离子交换膜的耐温性能应 该与所采用的温度范围相适应。 为了制备特殊性能的纯铁产品, 阴极电解液可 能与阳极电解液存在较大温差。 显然, 较小的温差利于降低能量消耗。 阴极过 程的电流密度主要受到阴极产品要求和阴离子交换膜性能的约束, 过高的电流 密度将缩短膜的寿命。
[0033] 参考文献:
[0034] [1]杜昕芳, 陈玉涌, 硫酸铁试制及应用, 应用化工 [J], 2011, (7), 1301-1302 [0035] [2] Clair; Rene (Martigues, FR), Gallet; Alain (Lavera, FR), Production of
concentrated aqueous solutions of ferric chloride [P], US5527515,1995
[0036] [3]潘碌亭, 吴锦峰, 聚合硫酸铁制备技术的研究与进展, 工业水处理杂志 [J], 2009 (9), 1-5
[0037] [4]白强, 无机高分子絮凝剂聚合氯化铁的制备与应用, 中国环保产业 [J], 2009
, (2),38-41
[0038] [5]方一鹤, 梁圣飞, 李自强, 阴离子交换膜电解处理硫酸酸洗废液, 钢铁 [J],
1983, (8), 42-45
[0039] [6]湘东钨矿, 中南矿冶学院, 三氯化铁浸铜副产品 -电解铁粉, 有色金属 (选冶 部分) [J], 1978, (2), 64-65
[0040] [7]V. Jiricny, A. Roy ,J. W. Evans ,Copper electrowinning using spouted-bed
electrodes: Part I. Experiments with oxygen evolution or matte oxidation at the anode,
Metallurgical and Materials Transactions. B[J] ,2002,33(5),669-676
[0041] [8]V. Jiricny, A. Roy ,J. W. Evans ,Copper electrowinning using spouted-bed
electrodes: Part II. Copper electrowinning with ferrous ion oxidation as the anodic reaction,Metallurgical and Materials Transactions. B[J], 2002, 33 (5),677-683
[0042] [9]W. M. Shafer ,C. R. Harr,Electrolytic Iron Powders -Production and
Properties, Journal of The Electrochemical Society[J],1958, 105(7), 413-417
[0043] [10]Mostad E,Rolseth S.,Thonstad J., Electrowinning of iron from sulphate solutions,
Hydrometallurgy , 2008, 90(2-4), 213-220
发明的有益效果
有益效果
[0044] 本发明同时利用了阴极和阳极两个电极的电能, 能对铁盐产品的盐基度进行有 效控制, 铁盐产品含铁量可达 150g/L以上。
对附图的简要说明
附图说明
[0045] 图 1为氯化铁和硫酸铁的粘度随着温度升高而降低的趋势曲线。
实施该发明的最佳实施例
本发明的最佳实施方式
更正页 (细则第 91条) ISA/CN
[0046] 采用带有阴离子交换膜作为隔膜的双室电解槽, 电解液能够循环。 为便于实现 P<0 , 阳极室为密闭结构。 也可利用两室的液面高度差来实现对 P的控制。 阳 极采用 lcm厚度的石墨板或者 0.5cm厚度 45PPI的网状玻璃碳, 石墨板表面开有截 面积为 2mm*2mm的小槽作为导流槽, 槽间距 5mm。 阴极采用 304不锈钢板。 所 用试剂均为分析纯。
[0047] 实施例 1
[0048] 阴极液: 硫酸亚铁 1200g, 硫酸铵 160g,加水至 2L。 阳极液: 硫酸亚铁 600g, 加 水 300g制得悬浮液作为阳极液, -20kPa< P<-30kPa, 阳极液温度 80°C。 石墨板 阳极。 通电电解直到阳极液亚铁离子含量 <0.05mol/L, 得到阳极液的铁离子含量 175g/L,B=5.0%,阴极析出纯铁 57g。
本发明的实施方式
[0049] 实施例 2
[0050] 阴极液: 硫酸亚铁 1.5mol/L,600mL。 阳极液: 氯化亚铁 202g, 加水至 500mL,温 度 80-85°C,
石墨板阳极。 通电电解直到阳极液亚铁离子含量 <0.05mol/L, 得到阳极液的铁离子含量 105g/L,B=l .1 %。
[0051] 实施例 3
[0052] 阴极液: 硫酸亚铁 1.8mol/L, 1L。 阳极液: 200ml聚合硫酸铁溶液 (铁离子浓度 4 .16mol/L,B=7.7%) , 加入 200g水和 400g硫酸亚铁, 200Pa< P<300Pa, 阳极液温度 60-80°C。 石墨板阳极。 通电电解直到阳极液亚铁离子含量 <0.05mol/L, 阳极液 铁离子含量 253g/L,B=12.8<¾。
[0053] 实施例 4
[0054] 阴极液: 硫酸亚铁 1.5mol/L, 2L, pH=2.5。 阳极液: 硫酸亚铁 2.88mol/L, 0.62 5L, 温度控制在 80- 100°C, -70kPa<^P<- 100kPao 石墨板阳极。 通电电解直到阳 极液亚铁离子含量 <0.05mol/L, 阳极液再加入七水硫酸亚铁 150g, 再通电直到阳 极液亚铁离子含量 <0.01mol/L, 总共得纯铁 57g,所得聚合硫酸铁密度为 1.502g/cm 3, B=5.0<¾。
[0055] 实施例 5
更正页 (细则第 91条) ISA/CN
[0056] 阴极液 :2.2mol/L硫酸, 1L。 阳极液:硫酸亚铁 310g加水 300g制得阳极液, 温度 8 0°C, 100Pa< P<200Pa。 网状玻璃碳阳极。 通电电解直到阳极液亚铁离子含量 <0 •05mol/L, 阳极液铁离子含量 125g/L,B=3.0%, 阴极产物为氢气。
[0057] 实施例 6
[0058] 阴极液 :2.0mol/L盐酸, 1L。 阳极液:硫酸亚铁 305g加水 310g制得阳极液, 温度 80 °C, 100Pa< P<200Pa。 石墨板阳极。 通电电解直到阳极液亚铁离子含量 <0.05mo 1/L, 阳极液铁离子含量 130g/L,B=1.3%, 阴极产物为氢气。
[0059] 实施例 7
[0060] 阴极液: 氯化亚铁溶液 3.5mol/L,pH=0.5。 阳极液:氯化亚铁 4.1mol/L, 400mL,温 度 70-80°C, -250Pa<^P<-350Pa, 石墨板阳极。 通电电解直到阳极液亚铁离子含 量<0. lmol/L, 测得氯化铁溶液含铁 162g/L,B=0。
[0061] 实施例 8
[0062] 阴极液: 0.5mol氯化亚铁和 0.5mol硫酸锌加水至 0.5L, pH=1.5。 阳极液: 125g 硫酸亚铁加水至 0.2L,40°C, -50Pa<^P<50Pa, 空气搅拌。 通电电解直到阳极液亚 铁离子含量 <0. lmol/L, 阳极液铁离子含量 120g/L,B=5.2<¾。
更正页 (细则第 91条) ISA/CN
Claims
权利要求书
[权利要求 1] 制备铁盐的方法, 所述方法采用阳极氧化法氧化阳极电解液中的亚铁 离子, 其特征在于: 利用阴离子交换膜作为电解隔膜来增加铁盐的盐
[权利要求 2] 如权利要求 1所述的方法, 其特征在于: 利用隔膜两侧压强差对盐基 度进行控制。
[权利要求 3] 如权利要求 1所述的方法, 其特征在于: 阳极电解液温度〉 50°C。 权利要求 4] 如权利要求 1所述的方法, 其特征在于: 阳极电解液铁含量≥150g/L, 温度≥60°C, 优选为≥80°C。
权利要求 5] 如权利要求 1所述的方法, 其特征在于: 隔膜阴极侧压强〉隔膜阳极 侧压强。
权利要求 6] 如权利要求 2所述的方法, 其特征在于: 阳极电解液温度〉 50°C。 权利要求 7] 如权利要求 2所述的方法, 其特征在于: 阳极电解液铁含量≥150g/L, 温度≥60°C, 优选为≥80°C。
权利要求 8] 如权利要求 2所述的方法, 其特征在于: 隔膜阴极侧压强〉隔膜阳极 侧压强。
:权利要求 9] 如权利要求 3所述的方法, 其特征在于:
温度≥60°C, 优选为≥80°C。
权利要求 10] 如权利要求 3所述的方法, 其特征在于: 隔膜阴极侧压强〉隔膜阳极 侧压强。
权利要求 11] 如权利要求 4所述的方法, 其特征在于: 隔膜阴极侧压强〉隔膜阳极 侧压强。
权利要求 12] 如权利要求 1-11中任一项所述的方法, 其特征在于: 阴极电解液为含 有硫酸、 盐酸、 硫酸亚铁、 氯化亚铁、 硫酸锌中至少一种物质的溶液 权利要求 13] 如权利要求 1-11中任一项所述的方法, 其特征在于: 阳极活性材料为 碳材料, 优选为石墨; 阳极基体材料为良导体材料, 优选为石墨。 权利要求 14] 如权利要求 12所述的方法, 其特征在于: 阳极活性材料为碳材料, 优
选为石墨; 阳极基体材料为良导体材料, 优选为石墨。
[权利要求 15] 如权利要求 12所述的方法, 其特征在于: 阴极电解液氯离子含量≥4m ol/L。
[权利要求 16] 如权利要求 13所述的方法, 其特征在于: 阴极电解液氯离子含量≥401 ol/L。
[权利要求 17] 如权利要求 14所述的方法, 其特征在于: 阴极电解液氯离子含量≥4m ol/Lo
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580036889.1A CN106660824B (zh) | 2015-05-11 | 2015-05-11 | 制备铁盐的方法 |
PCT/CN2015/078712 WO2016179786A1 (zh) | 2015-05-11 | 2015-05-11 | 制备铁盐的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/078712 WO2016179786A1 (zh) | 2015-05-11 | 2015-05-11 | 制备铁盐的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016179786A1 true WO2016179786A1 (zh) | 2016-11-17 |
Family
ID=57248479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/078712 WO2016179786A1 (zh) | 2015-05-11 | 2015-05-11 | 制备铁盐的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106660824B (zh) |
WO (1) | WO2016179786A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114735765A (zh) * | 2022-03-10 | 2022-07-12 | 成都盛威兴科新材料研究院合伙企业(有限合伙) | 一种电池级硫酸镍的生产工艺 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113477639B (zh) * | 2021-06-25 | 2022-06-10 | 武钢集团昆明钢铁股份有限公司 | 一种三氯化铁污渍的清洗方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113911A (en) * | 1960-09-06 | 1963-12-10 | Armour Pharma | Process of preparing aluminum chlorhydroxides and aluminum hydroxide |
CN1186773A (zh) * | 1997-12-19 | 1998-07-08 | 中国科学院生态环境研究中心 | 电渗析法制备聚合氯化铝 |
CN101437753A (zh) * | 2006-01-06 | 2009-05-20 | 耐克斯特凯姆股份有限公司 | 聚氯化铝和碱式氯化铝,方法和组成:高碱度和超高碱度产品 |
CN101475276A (zh) * | 2008-12-31 | 2009-07-08 | 莫一平 | 氧化铁生产废水的处理方法 |
-
2015
- 2015-05-11 WO PCT/CN2015/078712 patent/WO2016179786A1/zh active Application Filing
- 2015-05-11 CN CN201580036889.1A patent/CN106660824B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113911A (en) * | 1960-09-06 | 1963-12-10 | Armour Pharma | Process of preparing aluminum chlorhydroxides and aluminum hydroxide |
CN1186773A (zh) * | 1997-12-19 | 1998-07-08 | 中国科学院生态环境研究中心 | 电渗析法制备聚合氯化铝 |
CN101437753A (zh) * | 2006-01-06 | 2009-05-20 | 耐克斯特凯姆股份有限公司 | 聚氯化铝和碱式氯化铝,方法和组成:高碱度和超高碱度产品 |
CN101475276A (zh) * | 2008-12-31 | 2009-07-08 | 莫一平 | 氧化铁生产废水的处理方法 |
Non-Patent Citations (2)
Title |
---|
FANG, YIHE ET AL.: "Electrolytic treatment of waste sulfuric acid pickling solution with anion exchange membrane", IRON AND STEEL, vol. 18, no. 8, 31 August 1983 (1983-08-31), pages 42 - 45 * |
ZHENG, XI: "Electrochemical production of FeO42-flocculent and its using in treatment of dye wastewater", JOURNAL OF FUJIAN TEACHERS UNIVERSITY ( NATURAL SCIENCE, vol. 18, no. 3, 30 September 2002 (2002-09-30), pages 54 - 57 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114735765A (zh) * | 2022-03-10 | 2022-07-12 | 成都盛威兴科新材料研究院合伙企业(有限合伙) | 一种电池级硫酸镍的生产工艺 |
CN114735765B (zh) * | 2022-03-10 | 2023-09-01 | 成都盛威兴科新材料研究院合伙企业(有限合伙) | 一种电池级硫酸镍的生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN106660824A (zh) | 2017-05-10 |
CN106660824B (zh) | 2019-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201390683Y (zh) | 一种用于处理含氰废水的多级电解装置 | |
CN102303917B (zh) | 印刷电路板酸性蚀刻废液与微蚀废液混合处理方法 | |
CN102912375B (zh) | 从酸性蚀刻液中回收铜的方法及其专用装置 | |
CN104911683A (zh) | 一种侧线脱除硫酸锌电镀液中铁离子的方法 | |
CN108503167B (zh) | 一种利用钢铁酸洗废液合成净水剂的方法 | |
CN102839389B (zh) | 一种膜法金属氯化物电积精炼生产方法 | |
Song et al. | Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt | |
CS218296B1 (en) | Method of continuous regeneration of the iron trichloride solution | |
CN110002546B (zh) | 一种活化(Cu-Fe-Ce)/Al2O3纳米粒子电极的制备及其应用 | |
TW546416B (en) | Process for the production of nickel hydroxides | |
CN103060842B (zh) | 一种大流量下制备电积钴的方法 | |
WO2016179786A1 (zh) | 制备铁盐的方法 | |
CN103422122B (zh) | 一种二氧化钛直接制备金属钛的方法 | |
CN113562891A (zh) | 一种仲钨酸铵生产废水的处理方法 | |
CN102828205A (zh) | 一种新型金属电积精炼工艺 | |
Pan et al. | Cleaner production of ammonium poly-vanadate by membrane electrolysis of sodium vanadate solution: The effect of membrane materials and electrode arrangements | |
CN103205575B (zh) | 一种从草酸稀土沉淀废水中回收盐酸和稀土的方法 | |
CN109609974A (zh) | 利于降低锌电积槽电压和能耗的方法 | |
CN112759040B (zh) | 复合电絮凝剂及电絮凝处理冷轧乳化液废水的方法 | |
CN102051635B (zh) | 一种采用高电流密度硫酸电解质生产金属钴的方法 | |
CN102766885B (zh) | 离子膜电解槽电化学还原三价铬制取高纯铬粉的方法 | |
CN102642906A (zh) | 离子交换膜电解技术处理含氯溶液中应用的添加剂 | |
CN102021601B (zh) | 一种稀废盐酸的混合液电解法 | |
WO2022141147A1 (zh) | 一种化学镀镍废液的资源化处理方法 | |
CN103979625A (zh) | 印刷电路板酸、碱性蚀刻废液与硝酸剥挂废液混合处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15891489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15891489 Country of ref document: EP Kind code of ref document: A1 |