WO2016179779A1 - 基于半正交传输的通信方法和设备 - Google Patents

基于半正交传输的通信方法和设备 Download PDF

Info

Publication number
WO2016179779A1
WO2016179779A1 PCT/CN2015/078672 CN2015078672W WO2016179779A1 WO 2016179779 A1 WO2016179779 A1 WO 2016179779A1 CN 2015078672 W CN2015078672 W CN 2015078672W WO 2016179779 A1 WO2016179779 A1 WO 2016179779A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
information
downlink control
data signal
power allocation
Prior art date
Application number
PCT/CN2015/078672
Other languages
English (en)
French (fr)
Inventor
郭志恒
吴海
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2017559051A priority Critical patent/JP6512643B2/ja
Priority to EP15891482.0A priority patent/EP3273735B1/en
Priority to CN201580065009.3A priority patent/CN107005982B/zh
Priority to PCT/CN2015/078672 priority patent/WO2016179779A1/zh
Publication of WO2016179779A1 publication Critical patent/WO2016179779A1/zh
Priority to US15/805,386 priority patent/US10588118B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a communication method and apparatus based on semi-orthogonal transmission.
  • the downlink multiple access method usually adopts Orthogonal Frequency Division Multiplexing Access (OFDMA). )the way.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • the main feature of the orthogonal frequency division multiple access method is that different users use different time-frequency resources to ensure that the received signals between different users are free from interference, thereby achieving simple reception on the user side.
  • the utilization of time-frequency resources is low, resulting in a limitation of the overall transmission rate of the communication system.
  • the Non-orthogonal Multiplexing Access (NOMA) transmission method can transmit information of multiple users on a single Resource Element (RE). Compared to OFDMA, NOMA increases the overall transmission rate of the system. Further, in the semi-orthogonal multiplexing access (SOMA) transmission mode, the Gray coding characteristic of the existing modulation (or constellation) method is utilized, so that the user receiver can adopt a simple receiving algorithm. This further improves system performance.
  • NOMA Non-orthogonal Multiplexing Access
  • Embodiments of the present invention provide a communication method and device based on semi-orthogonal transmission, and provide a solution for transmitting downlink control parameters in a SOMA communication process.
  • an embodiment of the present invention provides a communication method based on semi-orthogonal transmission, including:
  • the first user equipment receives the downlink control information sent by the base station, where the downlink control information includes the downlink control parameter of the first user equipment, the pairing layer information of the first user equipment, the modulation mode information of the second user equipment, the power allocation information, and the first user. At least one of the identity identifier and the pairing information of the device, the pairing layer information of the first user equipment includes a spatial layer of the first user equipment and a second user equipment.
  • the pairing relationship, the first user equipment and the second user equipment are an associated user equipment group, the identity information is used to indicate that the first user equipment is a cell center user equipment, and the pairing information is used to indicate whether the first user equipment is a paired user equipment;
  • the first user equipment receives the data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes the data signal of the first user equipment and the data signal of the second user equipment;
  • the first user equipment determines the data signal of the first user equipment according to the downlink control information and the data signal of the associated user equipment group.
  • the downlink control parameter of the first user equipment includes a modulation mode of the first user equipment, and the first user equipment is configured according to the downlink control information and the data signal of the associated user equipment group. Determining the data signal of the first user equipment, including:
  • the allocation comparison table includes a correspondence between a power allocation ratio and a modulation mode combination, wherein each modulation mode combination corresponds to a plurality of power allocation ratios, the power allocation information is used to indicate a currently used power allocation ratio, and the modulation mode combination includes the first user equipment. a combination of the modulation mode and the modulation mode of the second user equipment;
  • the first user equipment determines the data signal of the first user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the downlink control parameter of the first user equipment includes a modulation mode of the first user equipment, and the first user equipment is configured according to the downlink control information and the associated user.
  • the data signal of the device group determines the data signal of the first user equipment, including:
  • the pre-configured power allocation comparison table includes Corresponding relationship between the power distribution ratio and the modulation mode combination, wherein each modulation mode combination corresponds to a power allocation ratio, and the modulation mode combination includes a combination relationship between the modulation mode of the first user equipment and the modulation mode of the second user equipment;
  • the first user equipment determines the data signal of the first user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • a third implementation manner of the first aspect Determining, by the user equipment, the data signal of the first user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, including:
  • the first user equipment determines, according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, the data signal corresponding to the spatial layer of the first user equipment indicated by the pairing layer information.
  • the downlink control information further includes a transmission mode indication, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD. .
  • the precoding information in the downlink control parameter includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a communication method based on semi-orthogonal transmission, including:
  • the base station sends the downlink control information to the first user equipment, where the downlink control information includes the downlink control parameter of the first user equipment, the pairing layer information of the first user equipment, the modulation mode information of the second user equipment, the power allocation information, and the first user equipment.
  • the pairing layer information of the first user equipment includes a pairing relationship between the spatial layer of the first user equipment and the second user equipment, where the first user equipment and the second user equipment are an associated user equipment
  • the group identity is used to indicate that the first user equipment is a cell center user equipment
  • the pairing information is used to indicate whether the first user equipment is a paired user equipment.
  • the base station sends a data signal of the associated user equipment group to the first user equipment, where the data signal of the associated user equipment group includes the data signal of the first user equipment and the data signal of the second user equipment.
  • the base station sends the data signal of the associated user equipment group to the second user equipment.
  • the downlink control information further includes a transmission mode indication
  • the method before the base station sends the downlink control information to the first user equipment, the method further includes:
  • the base station determines, according to the transmission mode of the second user equipment, a transmission mode indication of the first user equipment, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a user equipment, including:
  • the receiving unit is configured to receive downlink control information sent by the base station, where the downlink control information includes a downlink control parameter of the user equipment, a pairing layer information of the user equipment, a modulation mode information of the second user equipment, power allocation information, and an identity identifier of the user equipment.
  • the pairing layer information of the user equipment includes a pairing relationship between the spatial layer of the user equipment and the second user equipment, where the user equipment and the second user equipment are an associated user equipment group, and the identity identifier is used to indicate that the user equipment is The cell center user equipment, the pairing information is used to indicate whether the user equipment is a paired user equipment;
  • the receiving unit is further configured to receive a data signal of the associated user equipment group sent by the base station, where the data signal of the associated user equipment group includes a data signal of the user equipment and a data signal of the second user equipment;
  • the processing unit is configured to determine a data signal of the user equipment according to the downlink control information and the data signal of the associated user equipment group.
  • the downlink control parameter of the user equipment includes a modulation mode of the user equipment, and the processing unit is specifically configured to:
  • the data signal of the user equipment is determined according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the downlink control parameter of the user equipment includes a modulation mode of the user equipment
  • the processing unit is specifically configured to:
  • the pre-configured power allocation comparison table includes a power allocation ratio and a modulation mode a combined correspondence, wherein each modulation mode combination corresponds to a power allocation ratio, and the modulation mode combination includes a combination relationship between a modulation mode of the user equipment and a modulation mode of the second user equipment;
  • the data signal of the user equipment is determined according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the processing unit is specifically configured to: determine, according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, the pairing layer information indication The data layer corresponding to the spatial layer of the user equipment.
  • the downlink control information further includes a transmission mode indication, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD. .
  • the precoding information in the downlink control parameter includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • an embodiment of the present invention provides a base station, including:
  • a sending unit configured to send downlink control information to the first user equipment, where the downlink control information includes a downlink control parameter of the first user equipment, a pairing layer information of the first user equipment, a modulation mode information of the second user equipment, and power allocation information, At least one of the identity information and the pairing information of the first user equipment, the pairing layer information of the first user equipment includes a pairing relationship between the spatial layer of the first user equipment and the second user equipment, where the first user equipment and the second user equipment are An associated user equipment group, the identity identifier is used to indicate that the first user equipment is a cell center user equipment, and the pairing information is used to indicate whether the first user equipment is a paired user equipment;
  • the sending unit is further configured to send, to the first user equipment, a data signal of the associated user equipment group, where the data signal of the associated user equipment group includes the data signal of the first user equipment and the data signal of the second user equipment.
  • the sending unit is further configured to send the data signal of the associated user equipment group to the second user equipment.
  • the downlink control information further includes a transmission mode indication
  • the base station further includes a processing unit
  • the processing unit is configured to determine, according to a transmission manner of the second user equipment, a transmission mode indication of the first user equipment, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the first user equipment may demodulate its own signal from the received superposed signal according to the downlink control information. Therefore, the embodiment of the present invention provides a solution for transmitting downlink control parameters in a SOMA communication process.
  • FIG. 1 is a structural diagram of a communication system applied to a communication method based on semi-orthogonal transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a semi-orthogonal transmission based communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a communication method based on semi-orthogonal transmission according to another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a device based on semi-orthogonal transmission according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal (Mobile), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc.
  • the user equipment may be A Radio Access Network (RAN) communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, a user equipment. It can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • a user equipment or a UE For convenience of description, it is collectively referred to herein as a user equipment or a UE.
  • the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in WCDMA, or may be an evolution in LTE.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • the type of base station (Evolutional Node B, ENB or e-NodeB) may also be a base station in other evolved networks, and the present invention is not limited thereto. However, for convenience of description, this document is collectively referred to as a base station or a BS.
  • base station 101 can implement communication with user equipment (102a, 102b) based on SOMA techniques.
  • the user equipment 102a is a cell-center UE
  • the user equipment 102b is a cell-edge UE.
  • the base station may determine whether the user equipment is a cell-center UE or a cell-edge UE according to information such as a signal-to-noise ratio, a path loss, or a geographical location, which is not limited in this embodiment of the present invention.
  • the cell-center UE is a relative concept to the cell-edge UE, rather than a geographically absolute concept.
  • a first user equipment ie, a cell-center UE
  • a second user equipment ie, a cell-edge UE
  • the base station 101 can pair the user equipment 102a with the user equipment 102b into a group, that is, an associated user equipment group.
  • the base station 101 combines the transmission signals of the user equipment 102a and the user equipment 102b into one signal for transmission. That is to say, the signal transmitted by the base station 101 includes the signal of the user equipment 102a and the signal of the user equipment 102b, and the signal power of the user equipment 102a and the user equipment 102b is different.
  • multiple UEs may be grouped into one associated user equipment group.
  • the number of user equipments in the associated user equipment group is not limited in this embodiment of the present invention. For convenience of description, the following description will be made by taking pairing by two user equipments as an example.
  • the user equipment 102b After the user equipment 102b receives the signal sent by the base station 101, the signal power of the user equipment 102a is small, and the user equipment 102b can directly perform accurate demodulation of its own signal according to the normal procedure. After receiving the signal sent by the base station 101, the user equipment 102a needs to combine the modulation mode information of the second user equipment and its modulation mode information to determine the demodulation mode to be finally used, and then demodulate the self-received data signal from the received data signal. Data signal.
  • the first two symbols are the data of the first user equipment 102a
  • the last two symbols are the data of the second user equipment 102b.
  • the second user equipment 102b and the first user equipment 102a both use the modulation mode of the QPSK.
  • the first user equipment 102a can demodulate the first two symbols using the 16QAM demodulation method to obtain its own data signal.
  • the embodiment of the invention provides a communication method based on semi-orthogonal transmission, which uses Downlink Control Information (DCI) to transmit parameters used in the SOMA communication process.
  • DCI Downlink Control Information
  • FIG. 2 is a schematic flow chart of a semi-orthogonal transmission based communication method according to an embodiment of the present invention. This method can be applied to the network scenario shown in FIG.
  • the first user equipment receives downlink control information sent by the base station.
  • the downlink control information includes at least one of a downlink control parameter of the first user equipment, pairing layer information of the first user equipment, modulation mode information of the second user equipment, power allocation information, an identity identifier of the first user equipment, and pairing information.
  • the pairing layer information of the first user equipment includes a pairing relationship between the spatial layer of the first user equipment and the second user equipment.
  • the first user equipment and the second user equipment are an associated user equipment group.
  • the identity identifier is used to indicate that the first user equipment is a cell center user equipment.
  • the pairing information is used to indicate whether the first user equipment is a paired user equipment, that is, whether the first user equipment is currently paired.
  • the first user equipment can detect and receive downlink control information by means of blind detection.
  • the downlink control parameter may be a downlink control parameter included in the DCI1 format, the DCI2 format, or the DCI2A format.
  • the pairing layer information is used to indicate which spatial layer of the first user equipment is paired with the second user equipment.
  • the DCI1 format includes a resource allocation type, a resource block allocation, a modulation and coding scheme, a hybrid automatic repeat request (HARQ) process number, a new data indication, a redundancy version, and a physical uplink control channel (Physical Uplink Control Channel, PUCCH). ) Transmission power control commands and star allocation indexes.
  • the DCI2 format includes resource allocation type, resource block allocation, power control command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new data indication, redundancy version, and precoding information.
  • the DCI2A format includes resource allocation type, resource block allocation, Transmitter Power Control (TPC) command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new Data indication, redundancy version and precoding information.
  • TPC Transmitter Power Control
  • the user equipment may determine whether it is the first user equipment, the second user equipment, or the unpaired user equipment according to the format of the received downlink control information or the information included. For example, the identifier information is added to the downlink control information to identify whether it is a near-end user, or when the downlink control information in the format shown in the embodiment of the present invention is received, it is determined to be the first user equipment. Similarly, whether the second user device or the unpaired user device is determined according to the foregoing method, to avoid repetition, details are not described herein again. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the first user equipment receives a data signal of an associated user equipment group sent by the base station.
  • the data signal of the associated user equipment group includes a data signal of the first user equipment and a data signal of the second user equipment.
  • the base station can combine the first user equipment and the second user equipment into one data signal in a preset manner.
  • the first two symbols in the data signal may be the data signals of the first user equipment, and the last two symbols are the data signals of the second user equipment.
  • the first user equipment determines a data signal of the first user equipment according to the downlink control information and the data signal of the associated user equipment group.
  • the first user equipment determines a demodulation mode used when demodulating the data of the first user equipment according to the modulation mode of the first user equipment and the modulation mode of the second user equipment in the downlink control information. For example, when the first user equipment uses the modulation mode of the QPSK and the second user equipment uses the modulation mode of the QPSK, the data signal corresponding to the first user equipment may be demodulated by using a demodulation method corresponding to the 16QAM.
  • the first user equipment may demodulate its own signal from the received superposed signal according to the downlink control information. Therefore, the embodiment of the present invention provides a solution for transmitting downlink control parameters in a SOMA communication process.
  • the pairing layer information indicates the spatial layer pairing of the second user equipment and the first user equipment, and the multiple input multiple output (MIMO) spatial layer pairing of the second user equipment and the first user equipment may be controlled. , improved the flexibility of pairing.
  • MIMO multiple input multiple output
  • the downlink control information and the data of the associated user equipment group And determining, by the first user equipment, the first user equipment and the second user equipment according to the modulation mode information of the second user equipment in the downlink control information and the pre-configured power allocation comparison table.
  • the power distribution ratio according to the downlink control information and the data of the associated user equipment group And determining, by the first user equipment, the first user equipment and the second user equipment according to the modulation mode information of the second user equipment in the downlink control information and the pre-configured power allocation comparison table.
  • the pre-configured power allocation comparison table includes a correspondence between a power allocation ratio and a modulation mode combination.
  • the modulation mode combination includes a combination relationship between the modulation mode of the first user equipment and the modulation mode of the second user equipment.
  • each combination of modulation modes may correspond to one power allocation ratio, or may correspond to multiple power allocation ratios.
  • the first user equipment may directly determine the first user according to the modulation mode information of the second user equipment and the pre-configured power allocation comparison table in the downlink control information.
  • the downlink control information needs to include power allocation information, where the power allocation information is used to indicate the currently used power allocation ratio, and the first user equipment is configured according to the downlink control information.
  • the modulation mode information, the power allocation information, and the pre-configured power allocation comparison table of the second user equipment determine a power allocation ratio of the first user equipment and the second user equipment. Then, the first user equipment determines the data signal of the first user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the power allocation comparison table may be notified to the user through Radio Resource Control (RRC) signaling or Media Access Control (MAC) signaling, or may be defined by a protocol.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the power allocation comparison table can also be in other forms, such as a multi-user power ratio. This embodiment of the present invention does not limit this.
  • the power allocation ratio of the current first user equipment and the second user equipment is determined by using the power allocation comparison table, which can reduce the length of the downlink control information, thereby reducing the signaling overhead.
  • the downlink control information further includes a power allocation ratio of the first user equipment and the second user equipment.
  • the first user equipment can directly determine the data signal of the first user equipment according to the downlink control information and the data signal of the associated user equipment group, without having to pre-store and consult the power allocation comparison table.
  • the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group when determining the data signal of the first user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, the downlink control information, the power allocation ratio, and the associated user equipment may be used.
  • the data signal of the group determines a data signal corresponding to a spatial layer of the first user equipment indicated by the pairing layer information.
  • the downlink control information further includes a transmission mode indication, and the transmission side
  • the formula includes Close Loop Spatial Multiplexing (CLSM), Open Loop Spatial Multiplexing (OLSM), or Transmit Diversity (TXD).
  • the base station can set the transmission mode of the first user equipment in real time according to the transmission mode of the second user equipment.
  • the method of adding the transmission mode indication bit in the downlink control information may be used, and the precoding information in the DCI 2 may also be used to indicate the transmission mode of the first user equipment.
  • the first user equipment can be paired with the second user equipment using different transmission modes, which improves the pairing success rate.
  • an index of a precoding vector or matrix can be used to represent different transmission modes.
  • the precoding information in the downlink control parameter includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the second user equipment can employ a MIMO transmission mode of CLSM, OLSM, or TXD.
  • the pre-coded PM information in the system can be used to indicate the MIMO transmission mode used by the user, so that the user equipment can mutually convert between the MIMO transmission modes of the CLSM, OLSM, and TXD to improve the pairing success rate.
  • an index of a precoding vector or matrix can be used to represent different transmission modes.
  • the downlink control information may include an identity identifier of the first user equipment.
  • the identity identifier is used to indicate that the first user equipment is a cell center user equipment.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the joint coding mode can further reduce the length of the first downlink control information, thereby reducing signaling overhead.
  • information such as power allocation, layer pairing, and modulation mode of the second user equipment may multiplex existing bits in the downlink control information to further reduce the number of bits of the downlink control information.
  • the new data indication and the transport block to code block mapping flag bits in the downlink control parameters are multiplexed.
  • FIG. 3 is a schematic flowchart of a communication method based on semi-orthogonal transmission according to another embodiment of the present invention. This method can be applied to the network scenario shown in FIG.
  • the base station sends downlink control information to the first user equipment.
  • the downlink control information includes at least one of a downlink control parameter of the first user equipment, pairing layer information of the first user equipment, modulation mode information of the second user equipment, power allocation information, an identity identifier of the first user equipment, and pairing information.
  • the pairing layer information of the first user equipment includes a space layer of the first user equipment and a second user equipment Prepared pairing relationship.
  • the first user equipment and the second user equipment are an associated user equipment group.
  • the identity identifier is used to indicate that the first user equipment is a cell center user equipment.
  • the pairing information is used to indicate whether the first user equipment is a paired user equipment.
  • the downlink control parameter may be a downlink control parameter included in the DCI1 format, the DCI2 format, or the DCI2A format.
  • the pairing layer information is used to indicate which spatial layer of the first user equipment is paired with the second user equipment.
  • the DCI1 format includes a resource allocation type, a resource block allocation, a modulation and coding scheme, a number of HARQ processes, a new data indication, a redundancy version, a PUCCH transmission power control command, and a star space allocation index.
  • the DCI2 format includes resource allocation type, resource block allocation, power control command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new data indication, redundancy version, and precoding information.
  • the DCI2A format includes resource allocation type, resource block allocation, TPC command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new data indication, redundancy version, and precoding information. .
  • the base station sends a data signal of the associated user equipment group to the first user equipment.
  • the data signal of the associated user equipment group includes a data signal of the first user equipment and a data signal of the second user equipment.
  • the base station can combine the first user equipment and the second user equipment into one data signal in a preset manner.
  • the first two symbols in the data signal are the data signals of the first user equipment, and the last two symbols are the data signals of the second user equipment.
  • the first user equipment may demodulate its own signal from the received superposed signal according to the downlink control information. Therefore, the embodiment of the present invention provides a solution for transmitting downlink control parameters in a SOMA communication process.
  • the pairing layer information indicates the spatial layer pairing of the second user equipment and the first user equipment, and the multiple input multiple output (MIMO) spatial layer pairing of the second user equipment and the first user equipment may be controlled. , improved the flexibility of pairing.
  • MIMO multiple input multiple output
  • the base station may further send a data signal of the associated user equipment group to the second user equipment.
  • the second user equipment demodulates the data signal of the first user equipment as an interference signal and directly demodulates its own data signal from the overall signal of the associated user equipment group.
  • the downlink control information further includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the transmission mode indication of the first user equipment may be determined according to the transmission mode of the second user equipment.
  • the base station can set the transmission mode of the first user equipment in real time according to the transmission mode of the second user equipment.
  • the method of adding the transmission mode indication bit in the downlink control information may be used, and the precoding information in the DCI 2 may also be used to indicate the transmission mode of the first user equipment.
  • the second user equipment can employ a MIMO transmission mode of CLSM, OLSM or TXD.
  • the pre-coded PM information in the system can be used to indicate the MIMO transmission mode used by the user, so that the user equipment can mutually convert between the MIMO transmission modes of the CLSM, OLSM, and TXD to improve the pairing success rate.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the joint coding mode can further reduce the length of the first downlink control information, thereby reducing signaling overhead.
  • the first user equipment When multiple users are paired to perform communication based on semi-orthogonal technology, the first user equipment needs to know the following information explicitly or implicitly: the power allocation ratio of the second user equipment and the first user equipment, and the modulation mode information of the second user equipment. And information of which layer of the first user equipment is paired with the first user equipment and identity information identifying the first user equipment.
  • the identity information identifying the first user equipment may be set as implicit information.
  • the identity of the user equipment may be indicated by the format of the downlink control information or the information content contained. Specifically, when the downlink control information includes the modulation mode information of the second user equipment, it may be determined that it is the first user equipment. When the downlink control information does not include the modulation mode information of the second user equipment, it may be determined that it is the second user equipment. Alternatively, the indication information may be added to the downlink control information to identify the identity of the first user equipment. This embodiment of the present invention does not limit this.
  • the information about the power allocation ratio of the second user equipment and the first user equipment, the modulation mode information of the second user equipment, and the layer of the second user equipment and the first user equipment may be transmitted in the form of downlink control information.
  • the format of the downlink control information may be as shown in Table 1:
  • the M bits are used to carry the downlink control parameters of the first user equipment.
  • the downlink control parameter may be a downlink control parameter included in the DCI1 format, the DCI2 format, or the DCI2A format.
  • the N bits are used to carry the power allocation ratio, the modulation mode information of the second user equipment, and the pairing layer information.
  • the power allocation ratio and the modulation mode information of the second user equipment may be indicated by a message. Alternatively, the power allocation ratio is associated with the modulation mode of the first user equipment and the layer pairing information to reduce the number of bits used.
  • power allocation candidate values there are different power allocation candidate values depending on the combination of each modulation method. As shown in Table 2, it is assumed that the combination of each modulation mode may correspond to four power allocation candidate values. It should be understood that the combination mode shown in Table 2 is only an example, and the embodiment of the present invention does not limit the type of the power allocation candidate value and the combination of the power allocation candidate values.
  • the paired second user equipment has two modulation modes.
  • the second user equipment is paired with the first user equipment, the second user equipment is paired with the first layer of the first user equipment, and the second user equipment is paired with the second layer of the first user equipment or the second user equipment. Pairing with the two layers of the first user device.
  • it is also required to indicate whether the current user is the first user device or the second user device, whether it is currently paired, and the like. Thus, there are a total of 33 states.
  • the number of states can be further reduced, thereby reducing the number of bits required.
  • each modulation mode combination can have four power distribution ratios. In this way, only 6 bits are needed to represent the modulation mode used by all current second user equipments and the combined state of the power allocation ratio and the layer pairing relationship.
  • P1 is the power of the first user equipment
  • P2 is the power of the second user equipment
  • P is the total power of the signal.
  • P00, P01, ..., P33 respectively indicate the size of the power distribution ratio.
  • a default power allocation can be used, each combination of modulation modes corresponding to a power allocation ratio. In this case, only 4 bits are needed to indicate the combination of the modulation mode and power allocation ratio and layer pairing used by all current second user equipments and the first user equipment.
  • the second user equipment is limited to Z modulation modes, and the power allocation of each modulation mode combination has Y levels, and there are two types of layer pairing relationships (near user layer + far user layer, near user layer 2 + far user 1) One layer + far user 2 layer).
  • the modulation mode that the far user can adopt is 16QAM.
  • the total number of bits required V is:
  • Y Z, QPSK, far are the power allocation levels used by the near-far users to combine the Z-modulation modes (the far-user uses the QPSK method)
  • Y 16QAM, far is the power allocation level when the far-user uses the 16QAM pairing combination. Number (assuming that the far-user uses the QPSK method, no power allocation value is required).
  • L is the number of configuration state combinations for the layer.
  • the near and far users adopt different DCI formats, that is, the near users can be converted into the remote user state and the single user state, the far user can be converted into the near user state and the single user state, and the first user device and the second user device are required at this time.
  • the number of bits is V near and V far :
  • the number of bits required by the first user equipment and the second user equipment are V near and V far :
  • the user equipment 40 includes a receiving unit 401 and a processing unit 402.
  • the receiving unit 401 is configured to receive downlink control information sent by the base station.
  • the downlink control information includes at least one of a downlink control parameter of the user equipment, pairing layer information of the user equipment, modulation mode information of the second user equipment, power allocation information, an identity identifier of the user equipment, and pairing information.
  • the pairing layer information of the user equipment includes a pairing relationship between the space layer of the user equipment and the second user equipment.
  • the user equipment and the second user equipment are an associated user equipment group.
  • the identity is used to indicate that the user equipment is a cell center user equipment.
  • the pairing information is used to indicate whether the user equipment is a paired user equipment.
  • the user equipment 40 can detect and receive downlink control information by means of blind detection.
  • the downlink control parameter may be a downlink control parameter included in the DCI1 format, the DCI2 format, or the DCI2A format.
  • the pairing layer information is used to indicate which spatial layer of the user equipment 40 the second user equipment is paired with.
  • the DCI1 format includes a resource allocation type, a resource block allocation, a modulation and coding scheme, a hybrid automatic repeat request (HARQ) process number, a new data indication, a redundancy version, and a physical uplink control channel (Physical Uplink Control Channel, PUCCH). ) Transmission power control commands and star allocation indexes.
  • the DCI2 format includes a resource allocation type, a resource block allocation, a power control command for a PUCCH, a downlink allocation index, a number of HARQ processes, and a transport block to Code block mapping flag bits, modulation coding scheme, new data indication, redundancy version, and precoding information.
  • the DCI2A format includes resource allocation type, resource block allocation, Transmitter Power Control (TPC) command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new Data indication, redundancy version and precoding information.
  • TPC Transmitter Power Control
  • the user equipment may determine whether it is the user equipment 40, the second user equipment, or the unpaired user equipment according to the format of the received downlink control information or the information included. For example, the identifier information is added to the downlink control information to identify whether it is a near-end user, or when the downlink control information in the format shown in the embodiment of the present invention is received, it is determined to be the user equipment 40. Similarly, whether the second user device or the unpaired user device is determined according to the foregoing method, to avoid repetition, details are not described herein again. It should be understood that the examples are only intended to assist those skilled in the art to understand the embodiments of the invention, and not to limit the scope of the embodiments of the invention.
  • the receiving unit 401 is further configured to receive a data signal of the associated user equipment group sent by the base station.
  • the data signal of the associated user equipment group includes a data signal of the user equipment and a data signal of the second user equipment.
  • the base station can combine the first user equipment and the second user equipment into one data signal in a preset manner.
  • the first two symbols in the data signal may be the data signals of the first user equipment, and the last two symbols are the data signals of the second user equipment.
  • the processing unit 402 is configured to determine a data signal of the user equipment according to the downlink control information and the data signal of the associated user equipment group.
  • the user equipment 40 determines a demodulation method used when demodulating the data of the user equipment 40 according to the modulation mode of the user equipment 40 and the modulation mode of the second user equipment in the downlink control information. For example, when the user equipment 40 uses the modulation mode of the QPSK and the second user equipment uses the modulation mode of the QPSK, the data signal corresponding to the user equipment 40 can be demodulated using the demodulation method corresponding to the 16QAM.
  • the user equipment may demodulate its own signal from the received superposed signal according to the downlink control information. Therefore, the embodiment of the present invention provides a solution for transmitting downlink control parameters in a SOMA communication process.
  • the pairing layer information indicates the spatial layer pairing of the second user equipment and the first user equipment, and the multiple input multiple output (MIMO) spatial layer pairing of the second user equipment and the first user equipment may be controlled. , improved the flexibility of pairing.
  • MIMO multiple input multiple output
  • the processing unit 402 is specifically configured to determine, according to the modulation mode information of the second user equipment in the downlink control information, and the pre-configured power allocation comparison table, determine power allocation of the user equipment and the second user equipment. proportion.
  • the pre-configured power allocation comparison table includes a correspondence between a power allocation ratio and a modulation mode combination.
  • the modulation mode combination includes a combination relationship between the modulation mode of the user equipment and the modulation mode of the second user equipment.
  • each combination of modulation modes may correspond to one power allocation ratio, or may correspond to multiple power allocation ratios.
  • the processing unit 402 may directly determine the first user equipment according to the modulation mode information of the second user equipment and the pre-configured power allocation comparison table in the downlink control information. The ratio of power allocation to the second user equipment.
  • the downlink control information needs to include power allocation information, the power allocation information is used to indicate the currently used power allocation ratio, and the processing unit 402 is configured according to the downlink control information.
  • the modulation mode information, the power allocation information, and the pre-configured power allocation comparison table of the second user equipment determine the power allocation ratio of the first user equipment and the second user equipment. Then, the processing unit 402 determines the data signal of the user equipment according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the power allocation comparison table may be notified to the user through Radio Resource Control (RRC) signaling or Media Access Control (MAC) signaling, or may be defined by a protocol.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the power allocation comparison table can also be in other forms, such as a multi-user power ratio. This embodiment of the present invention does not limit this.
  • the power allocation ratio of the current first user equipment and the second user equipment is determined by using the power allocation comparison table, which can reduce the length of the downlink control information, thereby reducing the signaling overhead.
  • the downlink control information further includes a power allocation ratio of the user equipment and the second user equipment.
  • the first user equipment can directly determine the data signal of the first user equipment according to the downlink control information and the data signal of the associated user equipment group, without having to pre-store and consult the power allocation comparison table.
  • the processing unit 402 is specifically configured to determine, according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, the data signal corresponding to the spatial layer of the user equipment indicated by the pairing layer information.
  • the downlink control information further includes a transmission mode indication, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the base station can set the transmission mode of the first user equipment in real time according to the transmission mode of the second user equipment.
  • the method of adding the transmission mode indication bit in the downlink control information may be used, and the precoding information in the DCI 2 may also be used to indicate the transmission mode of the first user equipment.
  • the first user equipment can be paired with the second user equipment using different transmission modes, which improves the pairing success rate.
  • an index of a precoding vector or matrix can be used to represent different transmission modes.
  • the precoding information in the downlink control parameter includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the second user equipment can employ a MIMO transmission mode of CLSM, OLSM, or TXD.
  • the pre-coded PM information in the system can be used to indicate the MIMO transmission mode used by the user, so that the user equipment can mutually convert between the MIMO transmission modes of the CLSM, OLSM, and TXD to improve the pairing success rate.
  • an index of a precoding vector or matrix can be used to represent different transmission modes.
  • the downlink control information may include an identity identifier of the user equipment, where the identity identifier is used to indicate that the user equipment is a cell center user equipment.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the joint coding mode can further reduce the length of the first downlink control information, thereby reducing signaling overhead.
  • information such as power allocation, layer pairing, and modulation mode of the second user equipment may multiplex existing bits in the downlink control information to further reduce the number of bits of the downlink control information.
  • the new data indication and the transport block to code block mapping flag bits in the downlink control parameters are multiplexed.
  • FIG. 5 is a schematic block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 5, the base station 50 includes a transmitting unit 501 and a processing unit 502.
  • the sending unit 501 is configured to send downlink control information to the first user equipment.
  • the downlink control information includes at least one of a downlink control parameter of the first user equipment, pairing layer information of the first user equipment, and modulation mode information of the second user equipment, power allocation information, an identity identifier of the first user equipment, and pairing information.
  • the pairing layer information of the first user equipment includes a pairing relationship between the spatial layer of the first user equipment and the second user equipment.
  • the first user equipment and the second user equipment are an associated user equipment group.
  • the identity identifier is used to indicate that the first user equipment is a cell center user equipment.
  • the pairing information is used to indicate whether the first user equipment is a paired user equipment.
  • the downlink control parameter may be a downlink control parameter included in the DCI1 format, the DCI2 format, or the DCI2A format.
  • the pairing layer information is used to indicate which spatial layer of the first user equipment is paired with the second user equipment.
  • the DCI1 format includes a resource allocation type, a resource block allocation, a modulation and coding scheme, a number of HARQ processes, a new data indication, a redundancy version, a PUCCH transmission power control command, and a star space allocation index.
  • the DCI2 format includes resource allocation type, resource block allocation, power control command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new data indication, redundancy version, and precoding information.
  • the DCI2A format includes resource allocation type, resource block allocation, TPC command for PUCCH, downlink allocation index, number of HARQ processes, transport block to code block mapping flag, modulation and coding scheme, new data indication, redundancy version, and precoding information. .
  • the sending unit 501 is further configured to send, to the first user equipment, a data signal of the associated user equipment group.
  • the data signal of the associated user equipment group includes a data signal of the first user equipment and a data signal of the second user equipment.
  • the base station can combine the first user equipment and the second user equipment into one data signal in a preset manner.
  • the first two symbols in the data signal are the data signals of the first user equipment, and the last two symbols are the data signals of the second user equipment.
  • the first user equipment may demodulate its own signal from the received superposed signal according to the downlink control information. Therefore, the embodiment of the present invention provides a solution for transmitting downlink control parameters in a SOMA communication process.
  • the pairing layer information indicates the spatial layer pairing of the second user equipment and the first user equipment, and the multiple input multiple output (MIMO) spatial layer pairing of the second user equipment and the first user equipment may be controlled. , improved the flexibility of pairing.
  • MIMO multiple input multiple output
  • the sending unit 501 is further configured to send, to the second user equipment, a data signal of the associated user equipment group.
  • the second user equipment demodulates the data signal of the first user equipment as an interference signal and directly demodulates its own data signal from the overall signal of the associated user equipment group.
  • the downlink control information further includes a transmission mode indication.
  • the base station also includes a processing unit 502.
  • the processing unit 502 is configured to determine, according to a transmission manner of the second user equipment, a transmission mode indication of the first user equipment. Transmission methods include closed-loop spatial multiplexing CLSM, open-loop spatial multiplexing OLSM, or transmit diversity TXD.
  • the base station may set the first user equipment in real time according to the transmission mode of the second user equipment.
  • the way of transmission Specifically, the method of adding the transmission mode indication bit in the downlink control information may be used, and the precoding information in the DCI 2 may also be used to indicate the transmission mode of the first user equipment.
  • the second user equipment can employ a MIMO transmission mode of CLSM, OLSM or TXD.
  • the pre-coded PM information in the system can be used to indicate the MIMO transmission mode used by the user, so that the user equipment can mutually convert between the MIMO transmission modes of the CLSM, OLSM, and TXD to improve the pairing success rate.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the joint coding mode can further reduce the length of the first downlink control information, thereby reducing signaling overhead.
  • FIG. 6 is a schematic block diagram of a device based on semi-orthogonal transmission according to an embodiment of the present invention.
  • the device 60 of FIG. 6 can be used to implement the steps and methods in the above method embodiments.
  • the device 60 of FIG. 6 includes an antenna 601, a transmitter 602, a receiver 603, a processor 604, and a memory 605.
  • Processor 604 controls the operation of device 60 and can be used to process signals.
  • Memory 605 can include read only memory and random access memory and provides instructions and data to processor 604.
  • Transmitter 602 and receiver 603 can be coupled to antenna 601.
  • the various components of device 60 are coupled together by a bus system 606, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 606 in the figure.
  • the device 60 may be a user equipment, for example, the user equipment shown in FIG.
  • the memory 605 is for storing a program, and the processor 604 executes the program for performing the following operations:
  • the downlink control information includes at least a downlink control parameter of the user equipment, a pairing layer information of the user equipment, a modulation mode information of the second user equipment, power allocation information, an identity identifier of the user equipment, and pairing information.
  • the pairing layer information of the user equipment includes a pairing relationship between the space layer of the user equipment and the second user equipment, where the user equipment and the second user equipment are an associated user equipment group, and the identity identifier is used to indicate that the user equipment is a cell center user equipment.
  • the pairing information is used to indicate whether the user equipment is a paired user equipment;
  • the downlink control parameter of the user equipment includes a modulation mode of the user equipment
  • the processor 604 is specifically configured to:
  • the data signal of the user equipment is determined according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the downlink control parameter of the user equipment includes a modulation mode of the user equipment
  • the processor 604 is specifically configured to:
  • the pre-configured power allocation comparison table includes a power allocation ratio and a modulation mode a combined correspondence, wherein each modulation mode combination corresponds to a power allocation ratio, and the modulation mode combination includes a combination relationship between a modulation mode of the user equipment and a modulation mode of the second user equipment;
  • the data signal of the user equipment is determined according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group.
  • the processor 604 is specifically configured to determine, according to the downlink control information, the power allocation ratio, and the data signal of the associated user equipment group, the data signal corresponding to the spatial layer of the user equipment indicated by the pairing layer information.
  • the downlink control information further includes a transmission mode indication, where the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the transmission mode includes a closed loop spatial multiplexing CLSM, an open loop spatial multiplexing OLSM, or a transmit diversity TXD.
  • the precoding information in the downlink control parameter includes a transmission mode indication, where the transmission mode includes a CLSM, an OLSM, or a TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the device 60 may be a base station, for example, may be the base station shown in FIG.
  • the memory 605 is for storing a program, and the processor 604 executes the program for performing the following operations:
  • the downlink control information includes the first user equipment At least one of the downlink control parameter, the pairing layer information of the first user equipment, the modulation mode information of the second user equipment, the power allocation information, the identity identifier of the first user equipment, and the pairing information, where the pairing layer information of the first user equipment includes a pairing relationship between the spatial layer of the first user equipment and the second user equipment, where the first user equipment and the second user equipment are an associated user equipment group, and the identity identifier is used to indicate that the first user equipment is a cell center user equipment, and the pairing information is used. Instructing whether the first user equipment is a paired user equipment;
  • the processor 604 is further configured to send, to the second user equipment, a data signal of the associated user equipment group.
  • the downlink control information further includes a transmission mode indication
  • the processor 604 is further configured to determine, according to the transmission manner of the second user equipment, the transmission mode indication of the first user equipment, where the transmission mode includes a closed loop spatial multiplexing CLSM and an open loop space. Multiplexing OLSM or transmit diversity TXD.
  • the information included in the downlink control information is encoded by means of joint coding.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于半正交传输的通信方法和设备。该方法包括:第一用户设备接收基站发送的下行控制信息,下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个;第一用户设备接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号;第一用户设备根据下行控制信息和关联用户设备组的数据信号,确定第一用户设备的数据信号。本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。

Description

基于半正交传输的通信方法和设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种基于半正交传输的通信方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)/长期演进高级(Long Term Evolution Advanced,LTE-A)通信系统中,下行多址接入方式通常采用正交频分多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)方式。正交频分多址方式的主要特点是不同用户使用不同的时频资源,确保不同用户之间的接收信号无干扰,进而实现用户侧的简单接收。然而,在使用正交频分多址的方式进行通信时,时频资源的利用率较低,导致通信系统的整体传输速率受到了限制。
非正交多址(Non-orthogonal Multiplexing Access,NOMA)的传输方式能够在单个资源单元(Resource Element,RE)上传输多个用户的信息。与OFDMA相比,NOMA提升了系统的整体传输速率。进一步地,在半正交多址(Semi-orthogonal Multiplexing Access,SOMA)的传输方式中,利用了现有调制(或星座图)方式的格雷编码特性,使得用户接收机可以采用简单的接收算法,从而进一步提升了系统性能。
然而,在LTE系统下的SOMA通信过程中,需要一种与SOMA通信相适应的下行控制参数传输方法。
发明内容
本发明实施例提供了一种基于半正交传输的通信方法和设备,提供了一种SOMA通信过程中传输下行控制参数的解决方案。
第一方面,本发明实施例提供了一种基于半正交传输的通信方法,包括:
第一用户设备接收基站发送的下行控制信息,下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个,第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备 的配对关系,第一用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示第一用户设备为小区中心用户设备,配对信息用于指示第一用户设备是否为配对用户设备;
第一用户设备接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号;
第一用户设备根据下行控制信息和关联用户设备组的数据信号,确定第一用户设备的数据信号。
结合第一方面,在第一方面的第一种实现方式中,第一用户设备的下行控制参数包括第一用户设备的调制方式,第一用户设备根据下行控制信息和关联用户设备组的数据信号,确定第一用户设备的数据信号,包括:
第一用户设备根据下行控制信息中的第二用户设备的调制方式信息、功率分配信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应多种功率分配比例,功率分配信息用于指示当前使用的功率分配比例,调制方式组合包括第一用户设备的调制方式与第二用户设备的调制方式的组合关系;
第一用户设备根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定第一用户设备的数据信号。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,第一用户设备的下行控制参数包括第一用户设备的调制方式,第一用户设备根据下行控制信息和关联用户设备组的数据信号,确定第一用户设备的数据信号,包括:
第一用户设备根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应一种功率分配比例,调制方式组合包括第一用户设备的调制方式与第二用户设备的调制方式的组合关系;
第一用户设备根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定第一用户设备的数据信号。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,第 一用户设备根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定第一用户设备的数据信号,包括:
第一用户设备根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定配对层信息指示的第一用户设备的空间层对应的数据信号。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,下行控制信息还包括传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,下行控制参数中的预编码信息包括传输方式指示,传输方式包括CLSM、OLSM或TXD。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第二方面,本发明实施例提供了一种基于半正交传输的通信方法,包括:
基站向第一用户设备发送下行控制信息,下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个,第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备的配对关系,第一用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示第一用户设备为小区中心用户设备,配对信息用于指示第一用户设备是否为配对用户设备;
基站向第一用户设备发送关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
结合第二方面,在第二方面的第一种实现方式中,基站向第二用户设备发送关联用户设备组的数据信号。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,下行控制信息还包括传输方式指示,在基站向第一用户设备发送下行控制信息之前,该方法还包括:
基站根据第二用户设备的传输方式,确定第一用户设备的传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第三方面,本发明实施例提供了一种用户设备,包括:
接收单元,用于接收基站发送的下行控制信息,下行控制信息包括用户设备的下行控制参数、用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、用户设备的身份标识和配对信息中的至少一个,用户设备的配对层信息包括用户设备的空间层与第二用户设备的配对关系,用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示用户设备为小区中心用户设备,配对信息用于指示用户设备是否为配对用户设备;
接收单元,还用于接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括用户设备的数据信号和第二用户设备的数据信号;
处理单元,用于根据下行控制信息和关联用户设备组的数据信号,确定用户设备的数据信号。
结合第三方面,在第三方面的第一种实现方式中,用户设备的下行控制参数包括用户设备的调制方式,处理单元具体用于,
根据下行控制信息中的第二用户设备的调制方式信息、功率分配信息和预配置的功率分配对照表,确定用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应多种功率分配比例,功率分配信息用于指示当前使用的功率分配比例,调制方式组合包括用户设备的调制方式与第二用户设备的调制方式的组合关系;
根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定用户设备的数据信号。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,用户设备的下行控制参数包括用户设备的调制方式,处理单元具体用于,
根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应一种功率分配比例,调制方式组合包括用户设备的调制方式与第二用户设备的调制方式的组合关系;
根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定用户设备的数据信号。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,处理单元具体用于,根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定配对层信息指示的用户设备的空间层对应的数据信号。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,下行控制信息还包括传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,下行控制参数中的预编码信息包括传输方式指示,传输方式包括CLSM、OLSM或TXD。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
第四方面,本发明实施例提供了一种基站,包括:
发送单元,用于向第一用户设备发送下行控制信息,下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个,第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备的配对关系,第一用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示第一用户设备为小区中心用户设备,配对信息用于指示第一用户设备是否为配对用户设备;
发送单元,还用于向第一用户设备发送关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
结合第四方面,在第四方面的第一种实现方式中,发送单元,还用于向第二用户设备发送关联用户设备组的数据信号。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,下行控制信息还包括传输方式指示,基站还包括处理单元,
处理单元,用于根据第二用户设备的传输方式,确定第一用户设备的传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,下行控制信息所包括的信息采用联合编码的方式进行编码。
基于上述技术方案,在本发明实施例中,第一用户设备可以根据下行控制信息,从接收到的叠加信号中解调出自身的信号。因而,本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的基于半正交传输的通信方法应用的通信系统架构图。
图2是本发明一个实施例的基于半正交传输的通信方法的示意性流程图。
图3是本发明另一实施例的基于半正交传输的通信方法的示意性流程图。
图4是本发明一个实施例的用户设备的示意性框图。
图5是本发明一个实施例的基站的示意性框图。
图6是本发明另一实施例的基于半正交传输的设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、 LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。为描述方便,本文中统一称为用户设备或UE。
在本发明实施例中,基站(Base Station,BS)可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),也可以是LTE中的演进型基站(Evolutional Node B,ENB或e-NodeB),还可以是其他演进网络中的基站,本发明并不限定。但为描述方便,本文中统一称为基站或BS。
图1是本发明实施例的基于半正交传输的通信方法应用的通信系统架构图。如图1所示,基站101可以基于SOMA技术实现与用户设备(102a,102b)的通信。其中,用户设备102a为小区中心(cell-center)UE,用户设备102b为小区边缘(cell-edge)UE。具体地,基站可以根据信噪比、路损或地理位置等信息来确定用户设备为cell-center UE还是cell-edge UE,本发明实施例对此不作限定。另外,cell-center UE与cell-edge UE是相对的概念,而非地理上的绝对概念。为避免歧义,下文以第一用户设备(即cell-center UE)和第二用户设备(即cell-edge UE)为例进行描述。
在通信过程中,基站101可以将用户设备102a与用户设备102b配对为一组,即关联用户设备组。这样,基站101将用户设备102a与用户设备102b的传输信号合为一个信号进行发送。也就是说,基站101发送的信号中包括用户设备102a的信号和用户设备102b的信号,且用户设备102a与用户设备102b的信号功率不同。应理解,可以将多个UE组成一个关联用户设备组,本发明实施例对关联用户设备组中的用户设备数量不做限定。为描述方便,下文将以两个用户设备进行配对为例进行描述。
用户设备102b接收到基站101发送的信号后,用户设备102a的信号功率较小,用户设备102b可以直接按照正常流程就可以实现自身信号的准确解调。用户设备102a接收到基站101发送的信号后,需要结合第二用户设备的调制方式信息和自身的调制方式信息,确定最终使用的解调方式,进而从接收到的数据信号中解调出自己的数据信号。
例如,假设接收到的数据信号中,前两个符号为第一用户设备102a的数据,后两个符号为第二用户设备102b的数据。其中,第二用户设备102b和第一用户设备102a均使用QPSK的调制方式。这样,第一用户设备102a可以使用16QAM的解调方式解调前两个符号,得到自身的数据信号。
本发明实施例提供了一种基于半正交传输的通信方法,通过下行控制信息(Downlink Control Information,DCI)来传输SOMA通信过程中使用的参数。下面结合具体例子对本发明实施例做更加详细的描述。
图2是本发明一个实施例的基于半正交传输的通信方法的示意性流程图。该方法可以被应用于图1所示的网络场景。
201,第一用户设备接收基站发送的下行控制信息。下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个。第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备的配对关系。第一用户设备与第二用户设备为一个关联用户设备组。身份标识用于表示第一用户设备为小区中心用户设备。配对信息用于指示第一用户设备是否为配对用户设备,即第一用户设备当前是否配对。
例如,第一用户设备可以通过盲检测的方式,检测并接收下行控制信息。其中,下行控制参数可以为DCI1格式、DCI2格式或DCI2A格式中包括的下行控制参数。配对层信息用于指示第二用户设备与第一用户设备的哪一个空间层进行配对。
DCI1格式包括资源分配类型、资源块分配、调制编码方案、混合自动请求重传(Hybrid Automatic Repeat Request,HARQ)进程数、新数据指示、冗余版本、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输功率控制命令和星空分配索引。DCI2格式包括资源分配类型、资源块分配、用于PUCCH的功控命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。 DCI2A格式包括资源分配类型、资源块分配、用于PUCCH的发射机功率控制(Transmitter Power Control,TPC)命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。
应理解,用户设备可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为第一用户设备、第二用户设备或无配对的用户设备。例如,在下行控制信息中增加身份标识信息以标识是否为近端用户,或者当接收到本发明实施例所示格式的下行控制信息时,确定自己为第一用户设备。类似地,可以按照前述方法确定自身是否为第二用户设备或无配对的用户设备,为避免重复,在此不再赘述。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
202,第一用户设备接收基站发送的关联用户设备组的数据信号。其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
例如,基站可以按照预设的方式将第一用户设备和第二用户设备合为一个数据信号。具体地,可以将数据信号中的前两个符号为第一用户设备的数据信号,后两个符号为第二用户设备的数据信号。
203,第一用户设备根据下行控制信息和关联用户设备组的数据信号,确定第一用户设备的数据信号。
例如,第一用户设备根据下行控制信息中第一用户设备的调制方式和第二用户设备的调制方式,确定解调第一用户设备的数据时使用的解调方式。例如,当第一用户设备使用QPSK的调制方式,第二用户设备使用QPSK的调制方式时,可以使用16QAM对应的解调方式解调第一用户设备对应的数据信号。
基于上述技术方案,在本发明实施例中,第一用户设备可以根据下行控制信息,从接收到的叠加信号中解调出自身的信号。因而,本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。
另外,通过配对层信息指示第二用户设备与第一用户设备的空间层配对情况,可以控制第二用户设备与第一用户设备的不同多输入多输出(Multiple Input Multiple Output,MIMO)空间层配对,提高了配对灵活度。
可选地,作为一个实施例,根据下行控制信息和关联用户设备组的数据 信号,确定第一用户设备的数据信号时,第一用户设备可以根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例。
其中,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系。调制方式组合包括第一用户设备的调制方式与第二用户设备的调制方式的组合关系。
可选地,每一种调制方式组合可以对应一种功率分配比例,也可以对应多种功率分配比例。在每一种调制方式组合对应一种功率分配比例的情况下,第一用户设备可以直接根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例。在每一种调制方式组合对应多种功率分配比例的情况下,下行控制信息中需要包括功率分配信息,功率分配信息用于指示当前使用的功率分配比例,第一用户设备根据下行控制信息中的第二用户设备的调制方式信息、功率分配信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例。然后,第一用户设备根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定第一用户设备的数据信号。
具体地,功率分配对照表可以通过无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)信令告知用户,也可通过协议定义。功率分配对照表也可以为其他形式,如多用户功率比值等。本发明实施例对此不做限定。
这样,使用功率分配对照表的方式确定当前第一用户设备与第二用户设备的功率分配比例,可以减少下行控制信息的长度,进而降低了信令开销。
可选地,作为一个实施例,下行控制信息还包括第一用户设备与第二用户设备的功率分配比例。这种情况下,第一用户设备可以直接根据下行控制信息和关联用户设备组的数据信号确定第一用户设备的数据信号,而不必预存并查阅功率分配对照表。
可选地,作为另一实施例,根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定第一用户设备的数据信号时,可以根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定配对层信息指示的第一用户设备的空间层对应的数据信号。
可选地,作为另一实施例,下行控制信息还包括传输方式指示,传输方 式包括闭环空间复用(Close Loop Spatial Multiplexing,CLSM)、开环空间复用(Open Loop Spatial Multiplexing,OLSM)或发射分集(Transmit Diversity,TXD)。
例如,基站可以根据第二用户设备的传输方式,实时设置第一用户设备的传输方式。具体地,可以通过在下行控制信息中增加传输方式指示位的方法,也可以利用DCI2中的预编码信息来指示第一用户设备的传输方式。这样,可以使第一用户设备使用不同的传输模式同第二用户设备配对,提高了配对成功率。具体地,可以使用预编码向量或矩阵的索引来表示不同的传输方式。
可选地,作为另一实施例,下行控制参数中的预编码信息包括传输方式指示,传输方式包括CLSM、OLSM或TXD。
例如,第二用户设备可以采用CLSM、OLSM或TXD的MIMO传输模式。这种情况下,可以使用系统中的预编码PM信息指示本用户使用的MIMO传输方式,以便用户设备可以在CLSM、OLSM和TXD的MIMO传输模式之间相互转换,以提高配对成功率。具体地,可以使用预编码向量或矩阵的索引来表示不同的传输方式。
可选地,作为另一实施例,下行控制信息可以包括第一用户设备的身份标识。该身份标识用于表示第一用户设备为小区中心用户设备。
可选地,作为另一实施例,下行控制信息所包括的信息采用联合编码的方式进行编码。通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
可选地,作为另一实施例,功率分配、层配对和第二用户设备的调制方式等信息可以复用下行控制信息中现有的比特,以进一步减小下行控制信息的比特数。例如,将下行控制参数中的新数据指示和传输块到码块映射标志位复用。
图3是本发明另一实施例的基于半正交传输的通信方法的示意性流程图。该方法可以被应用于图1所示的网络场景。
301,基站向第一用户设备发送下行控制信息。下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个。第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设 备的配对关系。第一用户设备与第二用户设备为一个关联用户设备组。身份标识用于表示第一用户设备为小区中心用户设备。配对信息用于指示第一用户设备是否为配对用户设备。
其中,下行控制参数可以为DCI1格式、DCI2格式或DCI2A格式中包括的下行控制参数。配对层信息用于指示第二用户设备与第一用户设备的哪一个空间层进行配对。
DCI1格式包括资源分配类型、资源块分配、调制编码方案、HARQ进程数、新数据指示、冗余版本、PUCCH传输功率控制命令和星空分配索引。DCI2格式包括资源分配类型、资源块分配、用于PUCCH的功控命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。DCI2A格式包括资源分配类型、资源块分配、用于PUCCH的TPC命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。
302,基站向第一用户设备发送关联用户设备组的数据信号。其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
例如,基站可以按照预设的方式将第一用户设备和第二用户设备合为一个数据信号。又如,数据信号中的前两个符号为第一用户设备的数据信号,后两个符号位第二用户设备的数据信号。
基于上述技术方案,在本发明实施例中,第一用户设备可以根据下行控制信息,从接收到的叠加信号中解调出自身的信号。因而,本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。
另外,通过配对层信息指示第二用户设备与第一用户设备的空间层配对情况,可以控制第二用户设备与第一用户设备的不同多输入多输出(Multiple Input Multiple Output,MIMO)空间层配对,提高了配对灵活度。
可选地,作为一个实施例,基站还可以向第二用户设备发送关联用户设备组的数据信号。这样,第二用户设备将第一用户设备的数据信号当作干扰信号,直接从关联用户设备组的整体信号中解调得到自身的数据信号。
可选地,作为一个实施例,下行控制信息还包括传输方式指示,传输方式包括CLSM、OLSM或TXD。这种情况下,在发送下行控制信息之前,可以根据第二用户设备的传输方式,确定第一用户设备的传输方式指示。
例如,基站可以根据第二用户设备的传输方式,实时设置第一用户设备的传输方式。具体地,可以通过在下行控制信息中增加传输方式指示位的方法,也可以利用DCI2中的预编码信息来指示第一用户设备的传输方式。
这样,第二用户设备可以采用CLSM、OLSM或TXD的MIMO传输模式。这种情况下,可以使用系统中的预编码PM信息指示本用户使用的MIMO传输方式,以便用户设备可以在CLSM、OLSM和TXD的MIMO传输模式之间相互转换,以提高配对成功率。
可选地,作为另一实施例,下行控制信息所包括的信息采用联合编码的方式进行编码。通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
下面将结合具体的例子详细描述本发明实施例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
当多个用户配对进行基于半正交技术的通信时,第一用户设备需要明确或暗含地获知以下信息:第二用户设备与第一用户设备的功率分配比例、第二用户设备的调制方式信息、第二用户设备与第一用户设备的哪层配对的信息以及标识第一用户设备的身份信息。
其中,可以将标识第一用户设备的身份信息设置为隐式信息。例如,可以用下行控制信息的格式或包含的信息内容来指示用户设备的身份。具体地,当下行控制信息包括第二用户设备的调制方式信息时,可以确定自身为第一用户设备。当下行控制信息不包括第二用户设备的调制方式信息时,可以确定自身为第二用户设备。或者,也可以在下行控制信息中增加指示信息来标识第一用户设备的身份。本发明实施例对此不做限定。
而第二用户设备与第一用户设备的功率分配比例、第二用户设备的调制方式信息、第二用户设备与第一用户设备的哪层配对的信息可以通过下行控制信息的形式进行传输。具体地,下行控制信息的格式可以如表一所示:
表一
Figure PCTCN2015078672-appb-000001
Figure PCTCN2015078672-appb-000002
如表一所示,其中M比特用于承载第一用户设备的下行控制参数。其中,下行控制参数可以为DCI1格式、DCI2格式或DCI2A格式中包括的下行控制参数。N比特用于承载功率分配比例、第二用户设备的调制方式信息、和配对层信息。其中,功率分配比例和第二用户设备的调制方式信息可以用一个信息来指示。或者,将功率分配比例与第一用户设备的调制方式以及层配对信息组合关联,以减小使用的比特数目。
例如,根据每种调制方式组合不同,有不同的功率分配候选值。如表二所示,假设每种调制方式的组合可能对应有4种功率分配候选值。应理解,表二所示的组合方式仅是一个示例,本发明实施例对功率分配候选值的种类以及与功率分配候选值的组合方式不做限定。
表二
Figure PCTCN2015078672-appb-000003
如表二所示,有4种功率分配比例,配对的第二用户设备有两种调制方式。第二用户设备与第一用户设备配对的方式有3种,第二用户设备与第一用户设备的第一层配对,第二用户设备与第一用户设备的第二层配对或者第二用户设备与第一用户设备的两层配对。另外,还需要表示当前用户为第一用户设备还是第二用户设备,当前是否配对等。这样,总共有33种状态数。
进一步地,如果使用功率与调制方式组合的方式来表示功率分配比例和第二用户设备的调制方式,可以进一步减少状态数,进而减少所需的比特数。
表三
Index 近UE+远UE 合成星座 P1/P,P2/P P1/P,P2/P P1/P,P2/P P1/P,P2/P
0 QPSK+QPSK 16QAM P00 P01 P02 P03
1 16QAM+QPSK 64QAM P10 P11 P12 P13
2 64QAM+QPSK 256QAM P20 P21 P22 P23
3 16QAM+16QAM 256QAM P30 P31 P32 P33
如表三所示,每一种调制方式组合可以有4种功率分配比例。这样,只需要6比特即可表示所有当前第二用户设备使用的调制方式和功率分配比例和层配对关系的组合状态。其中P1为第一用户设备的功率,P2为第二用户设备的功率,P为信号总功率。其中,P00,P01,…,P33分别表示功率分配比例的大小。
表四
Index 近UE+远UE 合成星座 P1/P P2/P
0 QPSK+QPSK 16QAM 0.2 0.8
1 16QAM+QPSK 64QAM 0.2381 0.7619
2 64QAM+QPSK 256QAM 0.2471 0.7529
3 16QAM+16QAM 256QAM 0.0588 0.9412
或者,如表四所示,可以使用默认的功率分配,每一种调制方式组合对应于一种功率分配比例。这种情况下,只需要4比特即可表示所有当前第二用户设备与第一用户设备使用的调制方式和功率分配比例和层配对的组合状态。
假设第二用户设备限制为Z种调制方式,每种调制方式组合的功率分配有Y种级别,层配对关系有2种(近用户一层+远用户一层,近用户两层+远用户1一层+远用户2一层)。其中,远用户可以采用的调制方式为16QAM。这种情况下,总共需要的比特数V为:
Figure PCTCN2015078672-appb-000004
其中,YZ,QPSK,far为远近用户采用第Z种调制方式组合时所使用的功率分配级数(远用户使用QPSK方式),Y16QAM,far为远用户采用16QAM配对组合时的功率分配级数(假设远用户采用QPSK方式时,不需要功率分配值)。L 为层配置状态组合数。
当远近用户采用不同的DCI格式,也即近用户可以转换为远用户状态和单用户状态,远用户可以转换为近用户状态和单用户状态,此时第一用户设备和第二用户设备需要的比特数目分别为Vnear和Vfar
Figure PCTCN2015078672-appb-000005
Figure PCTCN2015078672-appb-000006
总共需要的比特数为:
Figure PCTCN2015078672-appb-000007
或者,远近用户使用相同的DCI格式时,第一用户设备和第二用户设备需要的比特数目分别为Vnear和Vfar
Figure PCTCN2015078672-appb-000008
Figure PCTCN2015078672-appb-000009
图4是本发明一个实施例的用户设备的示意性框图。如图4所示,用户设备40包括接收单元401和处理单元402。
接收单元401,用于接收基站发送的下行控制信息。下行控制信息包括用户设备的下行控制参数、用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、用户设备的身份标识和配对信息中的至少一个。用户设备的配对层信息包括用户设备的空间层与第二用户设备的配对关系。用户设备与第二用户设备为一个关联用户设备组。身份标识用于表示用户设备为小区中心用户设备。配对信息用于指示用户设备是否为配对用户设备。
例如,用户设备40可以通过盲检测的方式,检测并接收下行控制信息。其中,下行控制参数可以为DCI1格式、DCI2格式或DCI2A格式中包括的下行控制参数。配对层信息用于指示第二用户设备与用户设备40的哪一个空间层进行配对。
DCI1格式包括资源分配类型、资源块分配、调制编码方案、混合自动请求重传(Hybrid Automatic Repeat Request,HARQ)进程数、新数据指示、冗余版本、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输功率控制命令和星空分配索引。DCI2格式包括资源分配类型、资源块分配、用于PUCCH的功控命令、下行分配索引、HARQ进程数、传输块到 码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。DCI2A格式包括资源分配类型、资源块分配、用于PUCCH的发射机功率控制(Transmitter Power Control,TPC)命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。
应理解,用户设备可以根据接收到的下行控制信息的格式或包含的信息等,确定自身是否为用户设备40、第二用户设备或无配对的用户设备。例如,在下行控制信息中增加身份标识信息以标识是否为近端用户,或者当接收到本发明实施例所示格式的下行控制信息时,确定自己为用户设备40。类似地,可以按照前述方法确定自身是否为第二用户设备或无配对的用户设备,为避免重复,在此不再赘述。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
接收单元401,还用于接收基站发送的关联用户设备组的数据信号。其中,关联用户设备组的数据信号包括用户设备的数据信号和第二用户设备的数据信号。
例如,基站可以按照预设的方式将第一用户设备和第二用户设备合为一个数据信号。具体地,可以将数据信号中的前两个符号为第一用户设备的数据信号,后两个符号为第二用户设备的数据信号。
处理单元402,用于根据下行控制信息和关联用户设备组的数据信号,确定用户设备的数据信号。
例如,用户设备40根据下行控制信息中用户设备40的调制方式和第二用户设备的调制方式,确定解调用户设备40的数据时使用的解调方式。例如,当用户设备40使用QPSK的调制方式,第二用户设备使用QPSK的调制方式时,可以使用16QAM对应的解调方式解调用户设备40对应的数据信号。
基于上述技术方案,在本发明实施例中,用户设备可以根据下行控制信息,从接收到的叠加信号中解调出自身的信号。因而,本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。
另外,通过配对层信息指示第二用户设备与第一用户设备的空间层配对情况,可以控制第二用户设备与第一用户设备的不同多输入多输出(Multiple Input Multiple Output,MIMO)空间层配对,提高了配对灵活度。
可选地,作为一个实施例,处理单元402具体用于,根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定用户设备与第二用户设备的功率分配比例。
其中,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系。调制方式组合包括用户设备的调制方式与第二用户设备的调制方式的组合关系。
可选地,每一种调制方式组合可以对应一种功率分配比例,也可以对应多种功率分配比例。在每一种调制方式组合对应一种功率分配比例的情况下,处理单元402可以直接根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例。在每一种调制方式组合对应多种功率分配比例的情况下,下行控制信息中需要包括功率分配信息,功率分配信息用于指示当前使用的功率分配比例,处理单元402根据下行控制信息中的第二用户设备的调制方式信息、功率分配信息和预配置的功率分配对照表,确定第一用户设备与第二用户设备的功率分配比例。然后,处理单元402根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定用户设备的数据信号。
具体地,功率分配对照表可以通过无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)信令告知用户,也可通过协议定义。功率分配对照表也可以为其他形式,如多用户功率比值等。本发明实施例对此不做限定。
这样,使用功率分配对照表的方式确定当前第一用户设备与第二用户设备的功率分配比例,可以减少下行控制信息的长度,进而降低了信令开销。
可选地,作为另一实施例,下行控制信息还包括用户设备与第二用户设备的功率分配比例。这种情况下,第一用户设备可以直接根据下行控制信息和关联用户设备组的数据信号确定第一用户设备的数据信号,而不必预存并查阅功率分配对照表。
可选地,作为另一实施例,处理单元402具体用于,根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定配对层信息指示的用户设备的空间层对应的数据信号。
可选地,作为另一实施例,下行控制信息还包括传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
例如,基站可以根据第二用户设备的传输方式,实时设置第一用户设备的传输方式。具体地,可以通过在下行控制信息中增加传输方式指示位的方法,也可以利用DCI2中的预编码信息来指示第一用户设备的传输方式。这样,可以使第一用户设备使用不同的传输模式同第二用户设备配对,提高了配对成功率。具体地,可以使用预编码向量或矩阵的索引来表示不同的传输方式。
可选地,作为另一实施例,下行控制参数中的预编码信息包括传输方式指示,传输方式包括CLSM、OLSM或TXD。
例如,第二用户设备可以采用CLSM、OLSM或TXD的MIMO传输模式。这种情况下,可以使用系统中的预编码PM信息指示本用户使用的MIMO传输方式,以便用户设备可以在CLSM、OLSM和TXD的MIMO传输模式之间相互转换,以提高配对成功率。具体地,可以使用预编码向量或矩阵的索引来表示不同的传输方式。
可选地,作为另一实施例,下行控制信息可以包括用户设备的身份标识,身份标识用于表示用户设备为小区中心用户设备。
可选地,作为另一实施例,下行控制信息所包括的信息采用联合编码的方式进行编码。通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
可选地,作为另一实施例,功率分配、层配对和第二用户设备的调制方式等信息可以复用下行控制信息中现有的比特,以进一步减小下行控制信息的比特数。例如,将下行控制参数中的新数据指示和传输块到码块映射标志位复用。
图5是本发明一个实施例的基站的示意性框图。如图5所示,基站50包括发送单元501和处理单元502。
发送单元501,用于向第一用户设备发送下行控制信息。下行控制信息包括第一用户设备的下行控制参数、第一用户设备的配对层信息和第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个。第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备的配对关系。第一用户设备与第二用户设备为一个关联用户设备组。身份标识用于表示第一用户设备为小区中心用户设备。配对信息用于指示第一用户设备是否为配对用户设备。
其中,下行控制参数可以为DCI1格式、DCI2格式或DCI2A格式中包括的下行控制参数。配对层信息用于指示第二用户设备与第一用户设备的哪一个空间层进行配对。
DCI1格式包括资源分配类型、资源块分配、调制编码方案、HARQ进程数、新数据指示、冗余版本、PUCCH传输功率控制命令和星空分配索引。DCI2格式包括资源分配类型、资源块分配、用于PUCCH的功控命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。DCI2A格式包括资源分配类型、资源块分配、用于PUCCH的TPC命令、下行分配索引、HARQ进程数、传输块到码块映射标志位、调制编码方案、新数据指示、冗余版本和预编码信息。
发送单元501,还用于向第一用户设备发送关联用户设备组的数据信号。其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
例如,基站可以按照预设的方式将第一用户设备和第二用户设备合为一个数据信号。又如,数据信号中的前两个符号为第一用户设备的数据信号,后两个符号位第二用户设备的数据信号。
基于上述技术方案,在本发明实施例中,第一用户设备可以根据下行控制信息,从接收到的叠加信号中解调出自身的信号。因而,本发明实施例提供了一种SOMA通信过程中传输下行控制参数的解决方案。
另外,通过配对层信息指示第二用户设备与第一用户设备的空间层配对情况,可以控制第二用户设备与第一用户设备的不同多输入多输出(Multiple Input Multiple Output,MIMO)空间层配对,提高了配对灵活度。
可选地,作为一个实施例,发送单元501,还用于向第二用户设备发送关联用户设备组的数据信号。这样,第二用户设备将第一用户设备的数据信号当作干扰信号,直接从关联用户设备组的整体信号中解调得到自身的数据信号。
可选地作为另一实施例,下行控制信息还包括传输方式指示。基站还包括处理单元502。处理单元502,用于根据第二用户设备的传输方式,确定第一用户设备的传输方式指示。传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
例如,基站可以根据第二用户设备的传输方式,实时设置第一用户设备 的传输方式。具体地,可以通过在下行控制信息中增加传输方式指示位的方法,也可以利用DCI2中的预编码信息来指示第一用户设备的传输方式。
这样,第二用户设备可以采用CLSM、OLSM或TXD的MIMO传输模式。这种情况下,可以使用系统中的预编码PM信息指示本用户使用的MIMO传输方式,以便用户设备可以在CLSM、OLSM和TXD的MIMO传输模式之间相互转换,以提高配对成功率。
可选地,作为另一实施例,下行控制信息所包括的信息采用联合编码的方式进行编码。通过联合编码的方式,可以进一步减小第一下行控制信息的长度,进而降低了信令开销。
图6是本发明实施例的基于半正交传输的设备的示意性框图。
图6的设备60可用于实现上述方法实施例中各步骤及方法。图6的设备60包括天线601、发射机602、接收机603、处理器604和存储器605。处理器604控制设备60的操作,并可用于处理信号。存储器605可以包括只读存储器和随机存取存储器,并向处理器604提供指令和数据。发射机602和接收机603可以耦合到天线601。设备60的各个组件通过总线系统606耦合在一起,其中总线系统606除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统606。
在本发明一个实施例中,该设备60可以为用户设备,例如,可以为图4所示的用户设备。存储器605用于存储程序,处理器604执行该程序,用于执行以下操作:
接收基站发送的下行控制信息,下行控制信息包括用户设备的下行控制参数、用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、用户设备的身份标识和配对信息中的至少一个,用户设备的配对层信息包括用户设备的空间层与第二用户设备的配对关系,用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示用户设备为小区中心用户设备,配对信息用于指示用户设备是否为配对用户设备;
接收基站发送的关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括用户设备的数据信号和第二用户设备的数据信号;
根据下行控制信息和关联用户设备组的数据信号,确定用户设备的数据信号。
可选地,用户设备的下行控制参数包括用户设备的调制方式,处理器604具体用于,
根据下行控制信息中的第二用户设备的调制方式信息、功率分配信息和预配置的功率分配对照表,确定用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应多种功率分配比例,功率分配信息用于指示当前使用的功率分配比例,调制方式组合包括用户设备的调制方式与第二用户设备的调制方式的组合关系;
根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定用户设备的数据信号。
可选地,用户设备的下行控制参数包括用户设备的调制方式,处理器604具体用于,
根据下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定用户设备与第二用户设备的功率分配比例,预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应一种功率分配比例,调制方式组合包括用户设备的调制方式与第二用户设备的调制方式的组合关系;
根据下行控制信息、功率分配比例和关联用户设备组的数据信号确定用户设备的数据信号。
可选地,处理器604具体用于,根据下行控制信息、功率分配比例和关联用户设备组的数据信号,确定配对层信息指示的用户设备的空间层对应的数据信号。
可选地,下行控制信息还包括传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
可选地,下行控制参数中的预编码信息包括传输方式指示,传输方式包括CLSM、OLSM或TXD。
可选地,下行控制信息所包括的信息采用联合编码的方式进行编码。
在本发明另一个实施例中,该设备60可以为基站,例如,可以为图5所示的基站。存储器605用于存储程序,处理器604执行该程序,用于执行以下操作:
向第一用户设备发送下行控制信息,下行控制信息包括第一用户设备的 下行控制参数、第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、第一用户设备的身份标识和配对信息中的至少一个,第一用户设备的配对层信息包括第一用户设备的空间层与第二用户设备的配对关系,第一用户设备与第二用户设备为一个关联用户设备组,身份标识用于表示第一用户设备为小区中心用户设备,配对信息用于指示第一用户设备是否为配对用户设备;
向第一用户设备发送关联用户设备组的数据信号,其中,关联用户设备组的数据信号包括第一用户设备的数据信号和第二用户设备的数据信号。
可选地,处理器604还用于向第二用户设备发送关联用户设备组的数据信号。
可选地,下行控制信息还包括传输方式指示,处理器604还用于根据第二用户设备的传输方式,确定第一用户设备的传输方式指示,传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
可选地,下行控制信息所包括的信息采用联合编码的方式进行编码。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种基于半正交传输的通信方法,其特征在于,包括:
    第一用户设备接收基站发送的下行控制信息,所述下行控制信息包括所述第一用户设备的下行控制参数、所述第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、所述第一用户设备的身份标识和配对信息中的至少一个,所述第一用户设备的配对层信息包括所述第一用户设备的空间层与所述第二用户设备的配对关系,所述第一用户设备与所述第二用户设备为一个关联用户设备组,所述身份标识用于表示所述第一用户设备为小区中心用户设备,所述配对信息用于指示所述第一用户设备是否为配对用户设备;
    所述第一用户设备接收基站发送的关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一用户设备的数据信号和所述第二用户设备的数据信号;
    所述第一用户设备根据所述下行控制信息和所述关联用户设备组的数据信号,确定所述第一用户设备的数据信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一用户设备的下行控制参数包括所述第一用户设备的调制方式,所述第一用户设备根据所述下行控制信息和所述关联用户设备组的数据信号,确定所述第一用户设备的数据信号,包括:
    所述第一用户设备根据所述下行控制信息中的第二用户设备的调制方式信息、所述功率分配信息和预配置的功率分配对照表,确定所述第一用户设备与所述第二用户设备的功率分配比例,所述预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应多种功率分配比例,所述功率分配信息用于指示当前使用的功率分配比例,所述调制方式组合包括所述第一用户设备的调制方式与所述第二用户设备的调制方式的组合关系;
    所述第一用户设备根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号确定所述第一用户设备的数据信号。
  3. 根据权利要求1所述的方法,其特征在于,所述第一用户设备的下行控制参数包括所述第一用户设备的调制方式,所述第一用户设备根据所述下行控制信息和所述关联用户设备组的数据信号,确定所述第一用户设备的 数据信号,包括:
    所述第一用户设备根据所述下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定所述第一用户设备与所述第二用户设备的功率分配比例,所述预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应一种功率分配比例,所述调制方式组合包括所述第一用户设备的调制方式与所述第二用户设备的调制方式的组合关系;
    所述第一用户设备根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号确定所述第一用户设备的数据信号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一用户设备根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号确定所述第一用户设备的数据信号,包括:
    所述第一用户设备根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号,确定所述配对层信息指示的所述第一用户设备的空间层对应的数据信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述下行控制信息还包括传输方式指示,所述传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行控制参数中的预编码信息包括传输方式指示,所述传输方式包括CLSM、OLSM或TXD。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  8. 一种基于半正交传输的通信方法,其特征在于,包括:
    基站向第一用户设备发送下行控制信息,所述下行控制信息包括所述第一用户设备的下行控制参数、所述第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、所述第一用户设备的身份标识和配对信息中的至少一个,所述第一用户设备的配对层信息包括所述第一用户设备的空间层与所述第二用户设备的配对关系,所述第一用户设备与所述第二用户设备为一个关联用户设备组,所述身份标识用于表示所述第一用户设备为小区中心用户设备,所述配对信息用于指示所述第一用户设备是否为配对用户 设备;
    所述基站向所述第一用户设备发送关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一用户设备的数据信号和所述第二用户设备的数据信号。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述基站向所述第二用户设备发送所述关联用户设备组的数据信号。
  10. 根据权利要求8或9所述的方法,其特征在于,所述下行控制信息还包括传输方式指示,在所述基站向第一用户设备发送下行控制信息之前,所述方法还包括:
    所述基站根据所述第二用户设备的传输方式,确定所述第一用户设备的所述传输方式指示,所述传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  12. 一种用户设备,其特征在于,包括:
    接收单元,用于接收基站发送的下行控制信息,所述下行控制信息包括所述用户设备的下行控制参数、所述用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、所述用户设备的身份标识和配对信息中的至少一个,所述用户设备的配对层信息包括所述用户设备的空间层与所述第二用户设备的配对关系,所述用户设备与所述第二用户设备为一个关联用户设备组,所述身份标识用于表示所述用户设备为小区中心用户设备,所述配对信息用于指示所述用户设备是否为配对用户设备;
    所述接收单元,还用于接收基站发送的关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述用户设备的数据信号和所述第二用户设备的数据信号;
    处理单元,用于根据所述下行控制信息和所述关联用户设备组的数据信号,确定所述用户设备的数据信号。
  13. 根据权利要求12所述的用户设备,其特征在于,所述用户设备的下行控制参数包括所述用户设备的调制方式,所述处理单元具体用于,
    根据所述下行控制信息中的第二用户设备的调制方式信息、所述功率分配信息和预配置的功率分配对照表,确定所述用户设备与所述第二用户设备 的功率分配比例,所述预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应多种功率分配比例,所述功率分配信息用于指示当前使用的功率分配比例,所述调制方式组合包括所述用户设备的调制方式与所述第二用户设备的调制方式的组合关系;
    根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号确定所述用户设备的数据信号。
  14. 根据权利要求12所述的用户设备,其特征在于,所述用户设备的下行控制参数包括所述用户设备的调制方式,所述处理单元具体用于,
    根据所述下行控制信息中的第二用户设备的调制方式信息和预配置的功率分配对照表,确定所述用户设备与所述第二用户设备的功率分配比例,所述预配置的功率分配对照表包括功率分配比例与调制方式组合的对应关系,其中每一种调制方式组合对应一种功率分配比例,所述调制方式组合包括所述用户设备的调制方式与所述第二用户设备的调制方式的组合关系;
    根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号确定所述用户设备的数据信号。
  15. 根据权利要求13或14所述的用户设备,其特征在于,所述处理单元具体用于,根据所述下行控制信息、所述功率分配比例和所述关联用户设备组的数据信号,确定所述配对层信息指示的所述用户设备的空间层对应的数据信号。
  16. 根据权利要求12至15中任一项所述的用户设备,其特征在于,所述下行控制信息还包括传输方式指示,所述传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
  17. 根据权利要求12至16中任一项所述的用户设备,其特征在于,所述下行控制参数中的预编码信息包括传输方式指示,所述传输方式包括CLSM、OLSM或TXD。
  18. 根据权利要求12至17中任一项所述的用户设备,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
  19. 一种基站,其特征在于,包括:
    发送单元,用于向第一用户设备发送下行控制信息,所述下行控制信息包括所述第一用户设备的下行控制参数、所述第一用户设备的配对层信息、第二用户设备的调制方式信息、功率分配信息、所述第一用户设备的身份标 识和配对信息中的至少一个,所述第一用户设备的配对层信息包括所述第一用户设备的空间层与所述第二用户设备的配对关系,所述第一用户设备与所述第二用户设备为一个关联用户设备组,所述身份标识用于表示所述第一用户设备为小区中心用户设备,所述配对信息用于指示所述第一用户设备是否为配对用户设备;
    所述发送单元,还用于向所述第一用户设备发送关联用户设备组的数据信号,其中,所述关联用户设备组的数据信号包括所述第一用户设备的数据信号和所述第二用户设备的数据信号。
  20. 根据权利要求19所述的基站,其特征在于,所述发送单元,还用于向所述第二用户设备发送所述关联用户设备组的数据信号。
  21. 根据权利要求19或20所述的基站,其特征在于,所述下行控制信息还包括传输方式指示,所述基站还包括处理单元,
    所述处理单元,用于根据所述第二用户设备的传输方式,确定所述第一用户设备的所述传输方式指示,所述传输方式包括闭环空间复用CLSM、开环空间复用OLSM或发射分集TXD。
  22. 根据权利要求19至21中任一项所述的基站,其特征在于,所述下行控制信息所包括的信息采用联合编码的方式进行编码。
PCT/CN2015/078672 2015-05-11 2015-05-11 基于半正交传输的通信方法和设备 WO2016179779A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017559051A JP6512643B2 (ja) 2015-05-11 2015-05-11 準直交伝送ベースの通信方法およびデバイス
EP15891482.0A EP3273735B1 (en) 2015-05-11 2015-05-11 Semi-orthogonal transmission-based communication method and device
CN201580065009.3A CN107005982B (zh) 2015-05-11 2015-05-11 基于半正交传输的通信方法和设备
PCT/CN2015/078672 WO2016179779A1 (zh) 2015-05-11 2015-05-11 基于半正交传输的通信方法和设备
US15/805,386 US10588118B2 (en) 2015-05-11 2017-11-07 Semi-orthogonal transmission-based communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078672 WO2016179779A1 (zh) 2015-05-11 2015-05-11 基于半正交传输的通信方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/805,386 Continuation US10588118B2 (en) 2015-05-11 2017-11-07 Semi-orthogonal transmission-based communication method and device

Publications (1)

Publication Number Publication Date
WO2016179779A1 true WO2016179779A1 (zh) 2016-11-17

Family

ID=57248484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078672 WO2016179779A1 (zh) 2015-05-11 2015-05-11 基于半正交传输的通信方法和设备

Country Status (5)

Country Link
US (1) US10588118B2 (zh)
EP (1) EP3273735B1 (zh)
JP (1) JP6512643B2 (zh)
CN (1) CN107005982B (zh)
WO (1) WO2016179779A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285169B2 (en) * 2015-07-10 2019-05-07 Qualcomm Incorporated Downlink control information (DCI) enhancements for non-orthogonal multiple access
CN108029126A (zh) 2015-09-24 2018-05-11 华为技术有限公司 一种下行控制信令发送的方法及设备
CN107733602B (zh) * 2016-08-12 2022-05-10 华为技术有限公司 一种控制信息传输方法及装置
US10771214B2 (en) * 2017-09-11 2020-09-08 Apple Inc. System and method for uplink power contrl framework
EP3753345A1 (en) * 2018-02-15 2020-12-23 Telefonaktiebolaget LM Ericsson (publ) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (noma) network
US11184107B2 (en) * 2019-01-07 2021-11-23 Huawei Technologies Co., Ltd. Semi-orthogonal multiple access communication of PPDU and acknowledgment
CN111901862B (zh) * 2020-07-07 2021-08-13 西安交通大学 一种基于深度q网络的用户分簇与功率分配方法、设备和介质
CN112592702A (zh) * 2020-12-16 2021-04-02 西南石油大学 一种油气井封堵材料及封堵方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066229A1 (en) * 2005-09-21 2007-03-22 Chengjin Zhang Method and system for finding a threshold for semi-orthogonal user group selection in multiuser MIMO downlink transmission
CN101557611A (zh) * 2009-05-15 2009-10-14 北京邮电大学 一种用于多天线系统的下行多用户的选择方法
CN101997653A (zh) * 2009-08-17 2011-03-30 上海交通大学 虚拟多输入多输出系统中的用户设备配对方法和基站
CN102187596A (zh) * 2008-08-13 2011-09-14 三星电子株式会社 支持主用户和次用户的通信系统
CN103338455A (zh) * 2013-06-07 2013-10-02 华为技术有限公司 通信资源分配方法、系统、终端及网络侧设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8880580B2 (en) * 2010-07-28 2014-11-04 Admiemobile Llc Systems and methods for establishing and maintaining virtual computing clouds
CN102378343A (zh) * 2010-08-11 2012-03-14 中兴通讯股份有限公司 正交频分多址系统中的功率分配方法及装置
US9282568B2 (en) * 2011-11-18 2016-03-08 Futurewei Technologies, Inc. Method and system for dynamic, joint assignment of power and scheduling of users for wireless systems
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
CN103491621B (zh) * 2012-06-12 2017-04-12 华为技术有限公司 多天线系统功率分配及波束赋形方法、基站及多天线系统
CN103959880B (zh) * 2012-11-20 2018-01-23 华为技术有限公司 调度无线资源的方法、网络设备和用户设备
WO2014094310A1 (zh) * 2012-12-21 2014-06-26 华为技术有限公司 资源调度的方法和装置
JP5830478B2 (ja) * 2013-02-06 2015-12-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP5894105B2 (ja) 2013-04-04 2016-03-23 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US10003486B2 (en) * 2014-04-28 2018-06-19 Intel IP Corporation Non-orthogonal multiple access (NOMA) wireless systems and methods
US10149318B2 (en) * 2014-09-02 2018-12-04 Qualcomm Incorporated Techniques for transmitting and receiving downlink control information for a set of NOMA downlink transmissions
US9614711B2 (en) * 2015-01-12 2017-04-04 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
WO2016164069A1 (en) * 2015-04-08 2016-10-13 Intel Corporation Non-orthogonal superposition transmissions for multimedia broadcast multicast service (mbms)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066229A1 (en) * 2005-09-21 2007-03-22 Chengjin Zhang Method and system for finding a threshold for semi-orthogonal user group selection in multiuser MIMO downlink transmission
CN102187596A (zh) * 2008-08-13 2011-09-14 三星电子株式会社 支持主用户和次用户的通信系统
CN101557611A (zh) * 2009-05-15 2009-10-14 北京邮电大学 一种用于多天线系统的下行多用户的选择方法
CN101997653A (zh) * 2009-08-17 2011-03-30 上海交通大学 虚拟多输入多输出系统中的用户设备配对方法和基站
CN103338455A (zh) * 2013-06-07 2013-10-02 华为技术有限公司 通信资源分配方法、系统、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273735A4 *

Also Published As

Publication number Publication date
US20180063822A1 (en) 2018-03-01
JP2018515997A (ja) 2018-06-14
EP3273735A4 (en) 2018-05-02
US10588118B2 (en) 2020-03-10
CN107005982A (zh) 2017-08-01
CN107005982B (zh) 2020-02-21
JP6512643B2 (ja) 2019-05-15
EP3273735A1 (en) 2018-01-24
EP3273735B1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
US10588118B2 (en) Semi-orthogonal transmission-based communication method and device
TWI466482B (zh) 用於改善認可/否定認可回饋的方法和裝置
EP3846370B1 (en) Communication method and apparatus
US10609697B2 (en) Communication method based on non-orthogonal transmission, and device
US20150036625A1 (en) Method and system for indicating method used to scramble dedicated reference signals
WO2016119240A1 (zh) 一种非正交多址接入传输方法、基站及ue
US10356771B2 (en) Method and device for transmitting downlink information in wireless communication system
US11770229B2 (en) Method and device in communication node used for wireless communication with multiple antenna panels
US11979841B1 (en) Method and device in UE and base station for power adjustment
CN111769855B (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN113078927B (zh) 一种被用于无线通信的节点中的方法和装置
CN112350806A (zh) 一种被用于无线通信的节点中的方法和装置
CN111615193A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
EP3429118A1 (en) Power configuration method and device
CN112312350A (zh) 一种被用于无线通信的节点中的方法和装置
CN109474312B (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN108352888B (zh) 在无线通信系统中发送用于must传输的控制信息的方法及其装置
CN113677033B (zh) 一种被用于无线通信的节点中的方法和装置
CN115242363A (zh) 一种被用于无线通信的节点中的方法和装置
WO2018201410A1 (zh) 控制信息获取方法及设备
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023116482A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240049220A1 (en) Method and device in nodes used for wireless communication
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115278910A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE