WO2023116482A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023116482A1
WO2023116482A1 PCT/CN2022/138323 CN2022138323W WO2023116482A1 WO 2023116482 A1 WO2023116482 A1 WO 2023116482A1 CN 2022138323 W CN2022138323 W CN 2022138323W WO 2023116482 A1 WO2023116482 A1 WO 2023116482A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
rnti
signaling
frequency resource
type
Prior art date
Application number
PCT/CN2022/138323
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023116482A1 publication Critical patent/WO2023116482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for semi-persistent scheduling or configuration scheduling in wireless communication.
  • massive MIMO Multi-Input Multi-Output
  • multiple antennas use beamforming (Beamforming) to form narrower beams pointing to a specific direction to improve communication quality.
  • the base station can use MAC (Medium Access Control, Media Access Control) CE (Control Elements, Control Unit) or dynamic signaling to update the terminal used to receive PDCCH (Physical Downlink Control Channel, physical downlink control channel) TCI (Transmission Configuration Indication, transmission configuration indication), and the TCI used to receive PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), thereby ensuring the performance gain brought by beamforming.
  • the base station can also use a DCI (Downlink Control Information) to update the QCL (Quasi Co-located) parameters used by multiple different types of physical layer channels or the QCL on multiple carriers. parameter to reduce signaling overhead.
  • DCI Downlink Control Information
  • the base station schedules the terminal through a PDCCH identified by a specific RNTI (Radio Network Temporary Identifier, wireless network temporary identifier), the corresponding data channel indicated by the PDCCH is also The specific RNTI will be used for scrambling to resist interference.
  • the base station activates (Activation) or deactivates (Deactivation)/releases (Release) downlink SPS (Semi -Persistent Scheduling, semi-static scheduling) or uplink Type 2 (Type 2) CS (Configured Scheduling, configuration scheduling).
  • RNTI Radio Network Temporary Identifier, wireless network temporary identifier
  • the base station can dynamically update the QCL relationship of the PDSCH received by the UE or the PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) sent by the UE through DCI; further, the updated QCL relationship exists from
  • the PCI associated to the serving cell is switched to the PCI associated to the non-serving cell, and then when an SPS configuration (Configuration) or a CS configuration spans two TCI states that are associated to different PCIs, how to deal with the above SPS configuration or CS Configuration needs to be rethought.
  • M-TRP is only used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems, such as a single TRP scenario, or between multiple base stations Joint cooperation scenarios, or base stations or user equipment with stronger capabilities, or for different technical fields, such as in addition to SPS or CS, can also be used in dynamic scheduling, channel estimation, measurement, demodulation and other fields to achieve similar technical effect.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the above-mentioned method is characterized in that: in traditional systems, the RNTI used to identify the PDCCH is often also used for scrambling of the data channel scheduled by the PDCCH, and whether the data channel scheduled by the PDCCH in the scheme proposed by this application still uses The scrambling of the RNTI identifying the PDCCH depends on the type of the RNTI identifying the PDCCH.
  • the above method is characterized in that it is applicable to the M-TRP scenario and does not configure RNTIs other than two C-RNTIs of the same type for one UE, so as to save RNTI resources of the system.
  • the first information block being generated at a protocol layer below the RRC layer;
  • the CORESET Control Resource Set, Control Resource Set
  • the first information block is used to determine that at least one CORESET is associated with the second identity, the The first identity and the second identity are different; the first identity and the second identity respectively identify a cell; only when the first time-frequency resource is located after the first effective time in the time domain, the The scrambling of the first signal is related to the type of the target RNTI, and the valid time of the first information block is the first valid time.
  • a feature of the above method is that: through a unified TCI, the indication reference signal is changed from being associated with the PCI of the serving cell to being associated with a PCI other than the PCI of the serving cell; at the same time, the first node still maintains the SPS or transmission of CS.
  • another feature of the above method is that: the first node is allocated an RNTI for SPS or CS in the TRP or cell associated with the first identity, and the first node is allocated in the There is no RNTI allocated for SPS or CS in the TRP or cell associated with the second identity.
  • the type of the target RNTI belongs to the second type set; the type of the RNTI used to identify the second signaling belongs to the first type set; RNTI is associated to the second identity; the second signaling is used to deactivate or release the scheduling of the first signaling.
  • a feature of the above method is that: the RNTI identifying the PDCCH used to activate SPS or CS transmission is different from the RNTI identifying the PDCCH used to deactivate/release the same SPS or CS transmission, so as to improve the flexibility of system implementation .
  • the first node receives a first signal in the first time-frequency resource, and the first signaling is used to determine K1 candidate time-frequency resources, where K1 is a positive integer greater than 1; the Any candidate time-frequency resource in the K2 candidate time-frequency resources is one of the K1 candidate time-frequency resources; the K2 is a positive integer not greater than the K1; in the K2 candidate time-frequency resources
  • the channel monitoring performed in is used to determine that the scheduling indicated by the first signaling is deactivated or released.
  • the first message is used to configure at least the target RNTI; the first message includes a first RNTI and a second RNTI, and both the type of the first RNTI and the type of the second RNTI belong to the first A type set; the first RNTI and the second RNTI are respectively associated with the first identity and the second identity; the second signaling is identified by the second RNTI.
  • a feature of the above method is that: on the premise of not affecting the transmission of SPS/CS, the first node is configured with two C-RNTIs for the scheduling of two TRPs or cells respectively, but is not configured by Configure two CS-RNTI (Configured Scheduling RNTI, configured scheduling wireless network temporary identifier) / SPS-RNTI (semi-static scheduling wireless network temporary identifier), so as not to increase the overhead of additional RNTI.
  • CS-RNTI Configured Scheduling RNTI, configured scheduling wireless network temporary identifier
  • SPS-RNTI semi-static scheduling wireless network temporary identifier
  • the target signaling is used to determine that the first information block is received correctly, and the position of the first effective time in the time domain is related to the time domain resources occupied by the target signaling.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource and the The first time-frequency resources are different;
  • the second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain;
  • the first candidate The time-frequency resource is used to determine the spatial characteristic of the first signal, and the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal;
  • the first candidate time-frequency resource and the second candidate time-frequency resource The frequency resources are different;
  • the first information block is used to determine the first candidate time-frequency resource.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource and the The first time-frequency resources are different;
  • the second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain;
  • the first candidate The time-frequency resource is used to determine the spatial characteristic of the first signal, and the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal;
  • the first candidate time-frequency resource and the second candidate time-frequency resource The frequency resources are different;
  • the first information block is used to determine the first candidate time-frequency resource.
  • the above method is characterized in that: when the reference signal indicated by the unified TCI changes from being associated with the PCI of the serving cell to being associated with a PCI other than the PCI of the serving cell, the reference signal indicated by the unified TCI is used to determine the unified The spatial characteristics of the data channel after the TCI effective time.
  • the present application discloses a method in a second node for wireless communication, including:
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the present application discloses a method in a second node for wireless communication, including:
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the CORESET where the first signaling is located is associated with a first identity; the first information block is used to determine that at least one CORESET is associated with a second identity, and the first identity and the second identity are different; the first identity and the second identity respectively identify a cell; only when the first time-frequency resource is located after the first effective time in the time domain, the scrambling of the first signal and the The type of the target RNTI is related, and the effective time of the first information block is the first effective time.
  • the type of the target RNTI belongs to the second type set; the type of the RNTI used to identify the second signaling belongs to the first type set; RNTI is associated to the second identity; the second signaling is used to deactivate or release the scheduling of the first signaling.
  • the second node sends a first signal in the first time-frequency resource, and the first signaling is used to determine K1 candidate time-frequency resources, where K1 is a positive integer greater than 1; the Any candidate time-frequency resource in the K2 candidate time-frequency resources is one of the K1 candidate time-frequency resources; the K2 is a positive integer not greater than the K1; the recipient of the first signaling Including a first node, the channel monitoring performed by the first node in the K2 candidate time-frequency resources is used to determine that the scheduling indicated by the first signaling is deactivated or released.
  • the first message is used to configure at least the target RNTI; the first message includes a first RNTI and a second RNTI, and both the type of the first RNTI and the type of the second RNTI belong to the first A type set; the first RNTI and the second RNTI are respectively associated with the first identity and the second identity; the second signaling is identified by the second RNTI.
  • the target signaling is used to determine that the first information block is correctly received by the sender of the target signaling, and the position of the first effective time in the time domain is the same as the time occupied by the target signaling domain resources.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource and the The first time-frequency resources are different;
  • the second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain;
  • the first candidate The time-frequency resource is used to determine the spatial characteristic of the first signal, and the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal;
  • the first candidate time-frequency resource and the second candidate time-frequency resource The frequency resources are different;
  • the first information block is used to determine the first candidate time-frequency resource.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource and the The first time-frequency resources are different;
  • the second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain;
  • the first candidate The time-frequency resource is used to determine the spatial characteristic of the first signal, and the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal;
  • the first candidate time-frequency resource and the second candidate time-frequency resource The frequency resources are different;
  • the first information block is used to determine the first candidate time-frequency resource.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receiving first signaling, where the first signaling is used to determine a first time-frequency resource
  • a first transceiver receiving a first signal in the first time-frequency resource, or sending a first signal in the first time-frequency resource
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the present application discloses a second node for wireless communication, including:
  • a first transmitter sending first signaling, where the first signaling is used to determine a first time-frequency resource
  • a second transceiver sending a first signal in the first time-frequency resource, or receiving a first signal in the first time-frequency resource;
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to the first one of a type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the target RNTI When the type of RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the advantage of the solution in this application is that whether the data channel scheduled by the PDCCH is still scrambled with the RNTI identifying the PDCCH depends on the type of the RNTI identifying the PDCCH, thereby optimizing system performance and avoiding unnecessary waste of RNTI resources.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of the first signaling according to an embodiment of the present application
  • FIG. 6 shows a flowchart of the first signaling according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of a first message according to an embodiment of the present application.
  • FIG. 8 shows a flow chart of second signaling according to an embodiment of the present application.
  • FIG. 9 shows a flowchart of channel monitoring according to an embodiment of the present application.
  • FIG. 10 shows a flowchart of a second signal according to an embodiment of the present application.
  • FIG. 11 shows a flowchart of a second signal according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a timing relationship according to an embodiment of the present application.
  • Fig. 13 shows a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives the first signaling in step 101, and the first signaling is used to determine the first time-frequency resource; in step 102, the first time-frequency The resource operates on the first signal.
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the operation is receiving, or the target RNTI The operation is sending; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling of the first signal; the first Among the first type set and the second type set, only the first type set includes C-RNTI; there is no RNTI type belonging to both the first type set and the second type set.
  • the physical layer channel occupied by the first signaling includes a PDCCH.
  • the first signaling is a DCI.
  • the first signaling is a PDCCH confirmation (Validation).
  • the first signaling is used to activate a SPS (Semi-Persistent Scheduling, semi-persistent scheduling).
  • SPS Semi-Persistent Scheduling, semi-persistent scheduling
  • the first signaling is used to activate a CS (Configured Scheduling, configuration scheduling).
  • CS Configured Scheduling, configuration scheduling
  • the first signaling is used to activate a DL SPS.
  • the first signaling is used to activate a type 2 uplink grant (Grant).
  • Grant type 2 uplink grant
  • the first signaling is used to activate type 2 configuration grant scheduling on an SL (Sidelink, secondary link).
  • the first signaling is used to activate a semi-static CSI (Channel State Information, channel state information).
  • CSI Channel State Information, channel state information
  • the first signaling is sent in the at least one CORESET.
  • the search space where the first signaling is located is associated with one CORESET of the at least one CORESET.
  • the first signaling is used to activate a transmission corresponding to a DL (Downlink, downlink) SPS (Semi-Static Scheduling, semi-static scheduling) configuration (Configuration) corresponding to the sps-ConfigIndex.
  • DL Downlink, downlink
  • SPS Semi-Static Scheduling, semi-static scheduling
  • the first signaling is used to activate a transmission corresponding to a UL (Uplink, uplink) Configured Grant (configuration authorization) configuration corresponding to a configuredGrantConfigIndex.
  • UL Uplink, uplink
  • Configured Grant configuration authorization
  • the first signaling is used to activate a transmission corresponding to a UL Configured Grant configuration corresponding to a configuredGrantConfigIndexMAC.
  • the first signaling is used to activate a transmission corresponding to an SL (Sidelink, secondary link) Configured Grant configuration corresponding to an sl-ConfigIndexCG.
  • the first signaling is used to determine a plurality of candidate time-frequency resources, and the first time-frequency resource is the plurality of One of the candidate time-frequency resources.
  • the first signaling is used to indicate the multiple candidate time-frequency resources.
  • the multiple candidate time-frequency resources belong to the DL SPS configuration corresponding to the same sps-ConfigIndex.
  • the multiple candidate time-frequency resources belong to the UL Configured Grant configuration corresponding to the same configuredGrantConfigIndex.
  • the multiple candidate time-frequency resources belong to the UL Configured Grant configuration corresponding to the same configuredGrantConfigIndexMAC.
  • the multiple candidate time-frequency resources belong to the SL Configured Grant configuration corresponding to the same sl-ConfigIndexCG.
  • the first signaling is used to determine the first time-frequency resource.
  • the first signaling is used to indicate the first time-frequency resource.
  • the first time-frequency resource set occupies a positive integer number of REs (Resource Elements, resource units) greater than 1.
  • the physical layer channel occupied by the first signal includes a PDSCH.
  • the transmission channel occupied by the first signal includes a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the physical layer channel occupied by the first signal includes a PUSCH.
  • the transmission channel occupied by the first signal includes a UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the first signal is generated by a TB (Transport Block, transmission block).
  • TB Transport Block, transmission block
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the target RNTI is a non-negative integer.
  • the target RNTI occupies 16 bits.
  • the meaning that the first signaling is identified by the target RNTI includes: the CRC (Cyclic Redundancy Check, cyclic redundancy check) included in the first signaling is scrambled by the target RNTI.
  • the meaning that the first signaling is identified by the target RNTI includes: the first signaling is scrambled by the target RNTI.
  • the meaning that the first signaling is identified by the target RNTI includes: the first signaling is generated by the target RNTI.
  • the meaning that the first signaling is identified by the target RNTI includes: the target RNTI is used to initialize a generator (Generator) of a scrambling sequence (Scrambling Sequence) of the first signaling.
  • the meaning that the first signaling is identified by the target RNTI includes: the target RNTI is used to initialize a generator of a CRC scrambling sequence included in the first signaling.
  • the meaning that the target RNTI is used for scrambling the first signal includes: the target RNTI is used for initializing a generator of a scrambling code sequence of the first signal.
  • the meaning of the type of the target RNTI includes: the target RNTI is C-RNTI, CS-RNTI, SPS-RNTI, SP-CSI-RNTI, SL Semi-Persistent Scheduling V-RNTI, SL -CS-RNTI, SL-RNTI, SL-L-CS-RNTI, MCS-C-RNTI, TC-RNTI, SI-RNTI, P-RNTI, RA-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC -Which type of RNTI is PUCCH-RNTI, MsgB-RNTI, INT-RNTI, SFI-RNTI, TPC-SRS-RNTI, CI-RNTI or PS-RNTI.
  • the first type set includes C-RNTI.
  • the first type set only includes C-RNTI.
  • the first type set does not include any one of CS-RNTI, SPS-RNTI or SP-CSI-RNTI.
  • the first type set includes any type of RNTI other than CS-RNTI, SPS-RNTI or SP-CSI-RNTI.
  • the second type set includes at least one type of RNTI, and the DCI identified by each type of RNTI in the at least one type of RNTI is used for scheduling activation or scheduling release.
  • the second type set includes at least one type of RNTI, and the DCI identified by each type of RNTI in the at least one type of RNTI is used for scheduling activation or scheduling deactivation.
  • the second type set includes at least CS-RNTI.
  • the second type set does not include C-RNTI.
  • the second type set includes at least one of CS-RNTI, SPS-RNTI or SP-CSI-RNTI.
  • the second type set does not include an RNTI used to identify a dynamically scheduled PDCCH.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, user equipment) 201, NR-RAN (next generation radio access network) 202, EPC (Evolved Packet Core, evolved packet core)/5G-CN (5G-Core Network, 5G core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 supports dynamic signaling to update the QCL relationship.
  • the UE 201 supports unified TCI configuration.
  • the UE 201 can simultaneously receive CSI-RSs from multiple TRPs.
  • the UE 201 can receive SSBs from multiple TRPs at the same time.
  • the UE 201 is a terminal capable of monitoring multiple beams simultaneously.
  • the UE 201 is a terminal supporting Massive-MIMO.
  • the UE 201 supports non-dynamic scheduling.
  • the UE201 supports DL SPS-based transmission.
  • the UE 201 supports transmission scheduled based on uplink configuration.
  • the UE 201 supports configured and scheduled transmission on the SL.
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 supports dynamic signaling to update the QCL relationship.
  • the gNB203 supports unified TCI configuration.
  • the gNB203 can simultaneously receive CSI-RSs from multiple TRPs.
  • the gNB203 can receive SSBs from multiple TRPs at the same time.
  • the gNB203 is a base station capable of simultaneously monitoring multiple beams.
  • the gNB203 is a base station supporting Massive-MIMO.
  • the gNB203 supports non-dynamic scheduling.
  • the gNB203 supports transmission based on DL SPS.
  • the gNB203 supports transmission scheduled based on uplink configuration.
  • the gNB203 supports configuration and scheduled transmission on SL.
  • the first node in this application corresponds to the UE201
  • the second node in this application corresponds to the gNB203.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for a link between the first communication node device and the second communication node device through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first signaling is generated by the MAC302 or the MAC352.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signal is generated by the MAC302 or the MAC352.
  • the first signal is generated by the PHY301 or the PHY351.
  • the first signal is generated by the RRC306.
  • the first information block is generated by the MAC302 or the MAC352.
  • the first information block is generated by the PHY301 or the PHY351.
  • the second signaling is generated by the MAC302 or the MAC352.
  • the second signaling is generated by the PHY301 or the PHY351.
  • the first message is generated by the MAC302 or the MAC352.
  • the first message is generated by the RRC306.
  • the target signaling is generated by the MAC302 or the MAC352.
  • the target signaling is generated by the PHY301 or the PHY351.
  • the second signal is generated by the MAC302 or the MAC352.
  • the second signal is generated by the PHY301 or the PHY351.
  • the second signal is generated by the RRC306.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • the second node is a node for managing multiple carriers.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 device at least: firstly receive first signaling, said first signaling is used to determine a first time-frequency resource; then, in said first time-frequency resource The first signal is operated in the middle; the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling of the first signal is related to the type of the target RNTI; the operation is receiving, or The operation is sending; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling of the first signal, and when the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling of the first signal; the Among the first type set and
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving The first signaling, the first signaling is used to determine the first time-frequency resource; then operate the first signal in the first time-frequency resource; the first signaling is identified by the target RNTI; the Whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the operation is receiving, or the operation is sending; the type of the target RNTI belongs to the first type set and One of the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, and when the target RNTI is used for scrambling the first signal, When the type belongs to the second type set, the target RNTI is not used for scrambling the first signal; among the first type set and the second type set, only the first type set includes C-RNTI:
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: firstly sending the first signaling, the first signaling is used to determine the first time-frequency resource; then executing the first signal in the first time-frequency resource; the The first signaling is identified by the target RNTI; whether the target RNTI is used for the scrambling of the first signal is related to the type of the target RNTI; the execution is sending, or the execution is receiving; the The type of the target RNTI belongs to one of a first type set and a second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for the first Signal scrambling, when the type of the target RNTI belongs to the second type set, the target RNTI is not used for the scrambling of the first signal; the first type set and
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first Sending first signaling, where the first signaling is used to determine a first time-frequency resource; then executing a first signal in the first time-frequency resource; the first signaling is identified by the target RNTI; the Whether the target RNTI is used for the scrambling of the first signal is related to the type of the target RNTI; the execution is sending, or the execution is receiving; the type of the target RNTI belongs to the first type set and one of the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, and when the target RNTI When the type belongs to the second type set, the target RNTI is not used for scrambling of the first signal; only the first type set in the first type set and the second type set C-RNTI is included; there is no
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First signaling; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first signaling.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The first signal is received in the first time-frequency resource; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the front of the controller/processor 475 The four are used to send the first signal in the first time-frequency resource.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used in the A first signal is sent in a time-frequency resource; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and at least the first four of the controller/processor 475 or are used to receive a first signal in a first time-frequency resource.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First information block; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first information block.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive Second signaling; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit Second signaling.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to Channel monitoring is performed on the K2 candidate time-frequency resources.
  • At least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to determine The scheduling indicated by the first signaling is deactivated or released, and sending the scheduling associated with the first signaling is abandoned in the K2 candidate time-frequency resources.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First message; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit the first message a message.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the target signaling; at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive target signals make.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The second signal is received in the second time-frequency resource; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and at least the front of the controller/processor 475 The four are used to send the second signal in the second time-frequency resource.
  • the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used in the The second signal is sent in two time-frequency resources; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and at least the first four in the controller/processor 475 or are used to receive a second signal in a second time-frequency resource.
  • Embodiment 5 illustrates a flow chart of the first signaling of an embodiment, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node N2 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to any embodiment in Embodiments 6 to 11; otherwise, in the case of no conflict, the embodiment Any of the embodiments, sub-embodiments, and subsidiary embodiments of 6 to 11 can be applied to Embodiment 5.
  • the first signaling is received in step S10; the first information block is received in step S11; the target signaling is sent in step S12; the first signal is received in the first time-frequency resource in step S13 .
  • the first signaling is used to determine the first time-frequency resource; the first signaling is identified by the target RNTI; whether the target RNTI is used to add the first signal
  • the interference is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, The target RNTI is used for scrambling the first signal, and when the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal ;
  • the first type set and the second type set only the first type set includes C-RNTI; there is no type of RNTI that belongs to both the first type set and the second type set;
  • the first information block is generated at the protocol layer below the RRC layer; the CORESET where the first signaling is located is associated with the first identity; the first information block is used to determine that at least one CORESET is associated with the first identity Two identities, the first identity and
  • the first information block is transmitted through physical layer signaling.
  • the first information block is transmitted through a MAC (Medium Access Control, Media Access Control) CE (Control Elements, control unit).
  • MAC Medium Access Control, Media Access Control
  • CE Control Elements, control unit
  • the first information block is transmitted through a PDCCH.
  • the first information block is transmitted through DCI.
  • the CRC included in the PDCCH carrying the first information block is scrambled by one type of RNTI in the second type set.
  • the CRC included in the PDCCH carrying the first information block is scrambled by C-RNTI.
  • the first information block is specific to the user equipment.
  • the first information block is used to indicate a first candidate time-frequency resource.
  • the first candidate time-frequency resources include CSI-RS (Channel-State Information Reference Signals, Channel-State Information Reference Signals) resources.
  • CSI-RS Channel-State Information Reference Signals, Channel-State Information Reference Signals
  • the first candidate time-frequency resource includes SSB (Synchronization Signal/Physical Broadcast Channel block, synchronization signal broadcast block).
  • SSB Synchronization Signal/Physical Broadcast Channel block, synchronization signal broadcast block.
  • the first candidate time-frequency resource includes a DMRS (Demodulation Reference Signal, demodulation reference signal) resource.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the first candidate time-frequency resource includes an SRS (Sounding Reference Signal, sounding reference signal) resource.
  • SRS Sounding Reference Signal, sounding reference signal
  • the first information block is used to indicate a unified (Unified) TCI.
  • the first information block is used to indicate a TCI.
  • the first information block is used to indicate a TCI-State.
  • the first information block is used to indicate a TCI-StateId.
  • the first information block is used to indicate a SRI (Sounding Reference Signal Resource Indicator, Sounding Reference Signal Resource Indicator).
  • SRI Sounding Reference Signal Resource Indicator
  • the meaning of the above phrase that the CORESET where the first signaling is located is associated with the first identity includes; the first signaling is located in the first CORESET, and the first signaling is used to indicate the first identity,
  • the reference signal associated with the first identity and the demodulation reference signal in the first CORESET are QCL, and the reference signal associated with the first identity is associated with the first identity.
  • the first identifier is one of TCI, TCI-State, or TCI-StateId.
  • the reference signal associated with the first identifier includes at least one of CSI-RS or SSB.
  • the first identifier is used to determine a reference signal resource.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: configuring the RRC signaling of the reference signal associated with the first identity to include the first identity.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: the reference signal associated with the first identity is associated with the first identity The corresponding TRP is sent.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: the time-frequency resource occupied by the reference signal associated with the first identity is determined by The TRP corresponding to the first identity is maintained.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: the reference signal associated with the first identity is added with the first identity disturb.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: the first identity is used to generate the reference signal associated with the first identity reference signal.
  • the meaning of the above phrase that the reference signal associated with the first identity is associated with the first identity includes: there is explicit signaling indicating that the reference signal associated with the first identity is associated with the first identity.
  • the occupied time-frequency resources are associated with the first identity.
  • the meaning of the above phrase that the first information block is used to determine that at least one CORESET is associated with the second identity includes: there is a second CORESET after the effective time of the first information block, and the first information block is used It is used to indicate the second identity, the reference signal associated with the second identity and the demodulation reference signal in the second CORESET are QCL, and the reference signal associated with the second identity is associated with the second identity.
  • the second identifier is one of TCI, TCI-State, or TCI-StateId.
  • the reference signal associated with the second identifier includes at least one of CSI-RS or SSB.
  • the second identifier is used to determine a reference signal resource.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: configuring the RRC signaling of the reference signal associated with the second identity to include the second identity.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: the reference signal associated with the second identity is associated with the second identity The corresponding TRP is sent.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: the time-frequency resource occupied by the reference signal associated with the second identity is determined by The TRP corresponding to the second identity is maintained.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: the reference signal associated with the second identity is added with the second identity disturb.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: the second identity is used to generate the reference signal associated with the second identity reference signal.
  • the meaning of the above phrase that the reference signal associated with the second identity is associated with the second identity includes: there is explicit signaling indicating that the reference signal associated with the second identity is associated with the second identity.
  • the occupied time-frequency resources are associated with the second identity.
  • the first CORESET and the second CORESET are the same CORESET.
  • the first CORESET and the second CORESET are associated to the same search space.
  • the first CORESET and the second CORESET are associated to the same set of search spaces.
  • At least one of the first identity and the second identity is a physical cell identity.
  • the first identity is a non-negative integer.
  • the second identity is a non-negative integer.
  • the first identity is PCI.
  • the second identity is PCI.
  • the first identity is the PCI of the serving cell.
  • the second identity is different from the PCI of the serving cell.
  • the second identity is a PCI other than the PCI of the serving cell.
  • the first information block is used to determine the first effective time.
  • the meaning that the above-mentioned first information block is used to determine the first effective time includes: the first node sends a first feedback after receiving the first information block, and the first The feedback is an acknowledgment (Acknowledgment) of the first information block, and the first effective time is Y1 symbols after the last symbol occupied by the first feedback, where Y1 is a positive integer.
  • the Y1 is configured by the base station.
  • the Y1 is fixed.
  • the Y1 is related to the capability of the first node.
  • the above meaning that the first information block is used to determine the first effective time includes: the first information block is used to indicate the first effective time.
  • the meaning that the first information block is used to determine the first effective time includes: the first effective time is X1 symbols after the last symbol occupied by the first information block , the X1 is a positive integer.
  • the X1 is configured by the base station.
  • the X1 is fixed.
  • the X1 is related to the capability of the first node.
  • the meaning of the above sentence "when the first time-frequency resource is located after the first effective time in the time domain, the scrambling of the first signal is related to the type of the target RNTI" includes: when the When the first time-frequency resource is located after the first effective time in the time domain, and the type of the target RNTI is the first type set, the target RNTI is used for scrambling the first signal.
  • the meaning of the above sentence "when the first time-frequency resource is located after the first effective time in the time domain, the scrambling of the first signal is related to the type of the target RNTI" includes: when the When the first time-frequency resource is located after the first effective time in the time domain, and the type of the target RNTI is the second type set, the target RNTI is not used for scrambling the first signal.
  • the C-RNTI is used for scrambling the first signal.
  • the first effective time is Y3 symbols after the last symbol occupied by the target signaling, where Y3 is a positive integer.
  • the Y3 is configured by the base station.
  • the Y3 is fixed.
  • the Y3 is related to the capability of the first node.
  • the first effective time is Y4 time slots after the time slot occupied by the target signaling, where Y4 is a positive integer.
  • the Y4 is configured by the base station.
  • the Y4 is fixed.
  • the Y4 is related to the capability of the first node.
  • the target signaling is used to indicate that the first information block is received correctly.
  • the PDCCH carrying the first information block is used to schedule a given PDSCH, and the target signaling includes HARQ-ACK for the given PDSCH.
  • Embodiment 6 illustrates a flow chart of the first signaling in another embodiment, as shown in FIG. 6 .
  • the first node U3 communicates with the second node N4 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiment, sub-embodiment and subsidiary embodiment in Embodiment 6 can be applied to any embodiment in Embodiment 5 to 11; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in any one of 5 to 11 can be applied to Embodiment 6.
  • the first signaling is received in step S30; the first information block is received in step S31; the target signaling is sent in step S32; the first signal is sent in the first time-frequency resource in step S33 .
  • the first signaling is used to determine the first time-frequency resource; the first signaling is identified by the target RNTI; whether the target RNTI is used to add the first signal
  • the interference is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, The target RNTI is used for scrambling the first signal, and when the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal ;
  • the first type set and the second type set only the first type set includes C-RNTI; there is no type of RNTI that belongs to both the first type set and the second type set;
  • the first information block is generated at the protocol layer below the RRC layer; the CORESET where the first signaling is located is associated with the first identity; the first information block is used to determine that at least one CORESET is associated with the first identity Two identities, the first identity and
  • the PDCCH carrying the first information block is used to schedule a given PUSCH, and the target signaling is sent on the given PUSCH.
  • the PDCCH carrying the first information block is used to trigger a given PUCCH, and the target signaling is sent on the given PUCCH.
  • Embodiment 7 illustrates a flow chart of the first message of an embodiment, as shown in FIG. 7 .
  • the first node U5 communicates with the second node N6 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to any embodiment in Embodiments 5 to 11; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in any one of 5 to 11 can be applied to Embodiment 7.
  • the first message is received in step S50.
  • the first message is sent in step S60.
  • the first message is used to configure at least the target RNTI; the first message includes a first RNTI and a second RNTI, and the type of the first RNTI and the type of the second RNTI are both belonging to a first type set; the first RNTI and the second RNTI are respectively associated with the first identity and the second identity; the second signaling is identified by the second RNTI.
  • the first message is RRC signaling.
  • the first message is user equipment specific (UE-Specific).
  • the type of the first RNTI is C-RNTI.
  • the type of the second RNTI is C-RNTI.
  • the first RNTI is a C-RNTI.
  • the second RNTI is a C-RNTI.
  • the first message is used to configure a PCI cell.
  • the first message is used to configure a cell other than the serving cell.
  • the name of the RRC signaling carrying the first message includes PCI.
  • the name of the RRC signaling carrying the first message includes Cell.
  • the name of the RRC signaling carrying the first message includes Non.
  • the name of the RRC signaling carrying the first message includes Serving.
  • the first RNTI is different from the second RNTI.
  • the first RNTI is maintained by a TRP associated with the first identity.
  • the second RNTI is maintained by a TRP associated with the second identity.
  • the meaning that the second signaling is identified by the second RNTI includes: the CRC included in the second signaling is scrambled by the second RNTI.
  • the meaning that the second signaling is identified by the second RNTI includes: the second signaling is scrambled by the second RNTI.
  • the meaning that the second signaling is identified by the second RNTI includes: the second signaling is generated by the second RNTI.
  • the meaning that the second signaling is identified by the second RNTI includes: the second RNTI is used to initialize a generator of a scrambling code sequence for the second signaling.
  • the meaning that the second signaling is identified by the second RNTI includes: the second RNTI is used to initialize a generator of a CRC scrambling sequence included in the second signaling.
  • the first RNTI is the target RNTI.
  • the first RNTI is used to identify the PDCCH sent by the TRP associated with the first identity to schedule the first node.
  • the second RNTI is used to identify the PDCCH sent by the TRP associated with the second identity to schedule the first node.
  • the TRP associated with the first identity in this application is the first TRP
  • the TRP associated with the second identity in this application is the second TRP
  • the first TRP and the second TRP respectively maintain two different serving cells.
  • the first TRP and the second TRP are connected through a backhaul link (Backhaul Link).
  • the first TRP and the second TRP are maintained by the same base station.
  • the step S50 is before the step S10 in the fifth embodiment.
  • the step S60 is before the step S20 in the fifth embodiment.
  • the step S50 is before the step S30 in the sixth embodiment.
  • the step S60 is before the step S40 in the sixth embodiment.
  • Embodiment 8 illustrates a flowchart of the second signaling of an embodiment, as shown in FIG. 8 .
  • the first node U7 communicates with the second node N8 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 8 can be applied to any one of Embodiments 5 to 11; otherwise, in the case of no conflict, the embodiment The embodiments, sub-embodiments, and subsidiary embodiments in any one of 5 to 11 can be applied to Embodiment 8.
  • the second signaling is received in step S70.
  • the type of the target RNTI belongs to the second type set; the type of the RNTI used to identify the second signaling belongs to the first type set; and is used to identify the second
  • the signaled RNTI is associated to the second identity; the second signaling is used to deactivate or release the scheduling of the first signaling.
  • the physical layer channel occupied by the second signaling includes a PDCCH.
  • the second signaling is a DCI.
  • the second signaling is used to deactivate the scheduling of the first signaling.
  • the second signaling is used to release the scheduling of the first signaling.
  • the second signaling is a PDCCH acknowledgment.
  • the second signaling is used to deactivate or release an SPS.
  • the second signaling is used to deactivate or release a CS.
  • the second signaling is used to deactivate or release a DL SPS.
  • the second signaling is used to deactivate or release a Type 2 uplink grant.
  • the second signaling is used to deactivate or release type 2 configuration grant scheduling on an SL.
  • the second signaling is used to deactivate or release a semi-static CSI.
  • the second signaling is transmitted in the second CORESET in this application.
  • the RNTI used to identify the second signaling is a C-RNTI.
  • the second signaling is used to deactivate the downlink semi-persistent scheduling or uplink configuration scheduling indicated by the first signaling, or the second signaling is used to release the The indicated downlink semi-persistent scheduling or uplink configuration scheduling.
  • the scheduling that the second signaling is used to release the first signaling is indicated by setting at least one field in the second signaling to a fixed value.
  • the at least one field includes an MCS field, and each bit of the fixed value is 1.
  • the step S70 is located after the step S13 in the fifth embodiment.
  • the step S80 is located after the step S23 in the fifth embodiment.
  • the step S70 is located after the step S33 in the sixth embodiment.
  • the step S80 is located after the step S43 in the sixth embodiment.
  • Embodiment 9 illustrates a flow chart of channel monitoring in an embodiment, as shown in FIG. 9 .
  • the first node U9 communicates with the second node N10 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 9 can be applied to any embodiment in Embodiments 5 to 11; otherwise, in the case of no conflict, Embodiment 5 Embodiments, sub-embodiments, and subsidiary embodiments in any one of to 11 can be applied to Embodiment 9.
  • step S90 channel monitoring is performed in the K2 candidate time-frequency resources.
  • step S100 For the second node N10 , determine in step S100 that the scheduling indicated by the first signaling is deactivated or released, and give up sending the scheduling associated with the first signaling in the K2 candidate time-frequency resources.
  • the first node receives the first signal in the first time-frequency resource, and the first signaling is used to determine K1 candidate time-frequency resources, where K1 is a positive integer greater than 1 ; Any candidate time-frequency resource in the K2 candidate time-frequency resources is one of the K1 candidate time-frequency resources; the K2 is a positive integer not greater than the K1; among the K2 candidate
  • the channel monitoring performed in the time-frequency resource is used to determine that the scheduling indicated by the first signaling is deactivated or released.
  • the first signaling is used to determine at least one of time-domain resources or frequency-domain resources occupied by at least one candidate time-frequency resource among the K1 candidate time-frequency resources.
  • the first signaling is used to determine at least one of time-domain resources or frequency-domain resources occupied by any one of the K1 candidate time-frequency resources.
  • the first signaling is used to indicate at least one of time-domain resources or frequency-domain resources occupied by at least one candidate time-frequency resource among the K1 candidate time-frequency resources.
  • the first signaling is used to indicate at least one of time-domain resources or frequency-domain resources occupied by any one of the K1 candidate time-frequency resources.
  • performing channel monitoring in the K2 candidate time-frequency resources includes: performing energy detection in the K2 candidate time-frequency resources respectively.
  • the result of energy detection in any candidate time-frequency resource among the K2 candidate time-frequency resources is smaller than the first threshold, and the scheduling indicated by the first signaling is deactivated or released.
  • the unit of the first threshold is dB.
  • the unit of the first threshold is dBm.
  • performing channel monitoring in the K2 candidate time-frequency resources includes: performing RSRP measurement in the K2 candidate time-frequency resources respectively.
  • the results of RSRP performed in any candidate time-frequency resource among the K2 candidate time-frequency resources are all smaller than the second threshold, and the scheduling indicated by the first signaling is canceled. activated or released.
  • the unit of the second threshold is dBm.
  • the RSRP measurement is aimed at a DMRS in any candidate time-frequency resource among the K2 candidate time-frequency resources.
  • the RSRP measurement is aimed at the CSI-RS in any candidate time-frequency resource among the K2 candidate time-frequency resources.
  • the RSRP measurement is for a data channel in any candidate time-frequency resource among the K2 candidate time-frequency resources.
  • performing channel monitoring in the K2 candidate time-frequency resources includes: performing coherent detection in the K2 candidate time-frequency resources respectively.
  • the result of coherent detection in any candidate time-frequency resource among the K2 candidate time-frequency resources is used to determine that there is no correct receiving, the scheduling indicated by the first signaling is deactivated or released.
  • performing channel monitoring in the K2 candidate time-frequency resources includes: performing demodulation for the PDSCH in the K2 candidate time-frequency resources respectively.
  • the result of PDSCH demodulation in any candidate time-frequency resource among the K2 candidate time-frequency resources is used to determine that there is no The PDSCH is received correctly, and the scheduling indicated by the first signaling is deactivated or released.
  • the time-domain resource occupied by any candidate time-frequency resource among the K2 candidate time-frequency resources is located after the first effective time.
  • the step S90 is located after the step S13 in the fifth embodiment.
  • the step S100 is located after the step S23 in the fifth embodiment.
  • the step S90 is located after the step S33 in the sixth embodiment.
  • the step S100 is located after the step S43 in the sixth embodiment.
  • Embodiment 10 illustrates a flowchart of a second signal in an embodiment, as shown in FIG. 10 .
  • the first node U11 communicates with the second node N12 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 10 can be applied to any embodiment in Embodiments 5 to 11; otherwise, in the case of no conflict, Embodiment 5 Embodiments, sub-embodiments, and subsidiary embodiments in any one of to 11 can be applied to Embodiment 10.
  • step S110 the second signal is received in the second time-frequency resource.
  • step S120 the second signal is sent in the second time-frequency resource.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources
  • the second time-frequency The resource is different from the first time-frequency resource
  • the second time-frequency resource is located before the first effective time in the time domain
  • the first time-frequency resource is located after the first effective time in the time domain
  • the first candidate time-frequency resource is used to determine the spatial characteristic of the first signal
  • the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal
  • the first candidate time-frequency resource and the first candidate time-frequency resource are used to determine the spatial characteristic of the second signal
  • the two candidate time-frequency resources are different
  • the first information block is used to determine the first candidate time-frequency resource.
  • the first node receives the second signal in the second time-frequency resource, and the first node receives the first signal in the first time-frequency resource.
  • the second node sends the second signal in the second time-frequency resource, and the second node sends the first signal in the first time-frequency resource.
  • the first signaling is used to determine the second candidate time-frequency resource.
  • the first signaling is used to indicate the second candidate time-frequency resource.
  • the first information block is used to indicate the first candidate time-frequency resource.
  • the second time-frequency resource set occupies a positive integer number of REs greater than 1.
  • the first signaling is used to indicate the second candidate time-frequency resource.
  • the second candidate time-frequency resources include CSI-RS resources.
  • the second candidate time-frequency resource includes SSB.
  • the second candidate time-frequency resources include DMRS resources.
  • the second candidate time-frequency resources include SRS resources.
  • the physical layer channel occupied by the second signal includes a PDSCH.
  • the transmission channel occupied by the second signal includes DL-SCH.
  • the first signaling is used to indicate a TCI
  • the second candidate time-frequency resource is associated with the TCI
  • the first signaling is used to indicate a TCI-State
  • the second candidate time-frequency resource is associated with the TCI-State.
  • the first signaling is used to indicate a TCI-StateId
  • the second candidate time-frequency resource is associated with the TCI-StateId.
  • the first signaling is used to indicate an SRI
  • the second candidate time-frequency resource is associated with the SRI
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and includes: the demodulation reference signal used to demodulate the first signal and the first candidate time-frequency resource
  • the wireless signal sent in the resource is QCL.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and includes: the demodulation reference signal used to demodulate the first signal and the first candidate time-frequency resource
  • the wireless signals sent in the resource adopt the same QCL parameter.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and includes: the demodulation reference signal used to demodulate the first signal and the first candidate time-frequency resource
  • the resource is QCL.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and the first signal includes: being used for demodulating the first signal and the first candidate time-frequency resource is QCL.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and the first candidate time-frequency resource includes: using the same QCL for demodulating the first signal and the first candidate time-frequency resource parameter.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal includes: the wireless signal transmitted in the first candidate time-frequency resource and the first signal use the same The space receives parameters.
  • the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal includes: the wireless signal sent in the first candidate time-frequency resource is used to determine the first signal Spatial Tx Parameters.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal includes: the wireless signal transmitted in the first candidate time-frequency resource and the first signal use the same Spatial Relation.
  • the meaning of the above phrase that the first candidate time-frequency resource is used to determine the spatial characteristics of the first signal and includes: the first node can experience from the wireless signal transmitted in the first candidate time-frequency resource
  • the large-scale properties of the channel infer the large-scale properties of the channel experienced in the first signal.
  • the spatial characteristics include QCL parameters.
  • the spatial characteristics include spatial reception parameters.
  • the spatial characteristic includes spatial reception filtering.
  • the spatial characteristic includes a spatial transmission parameter.
  • the spatial characteristic includes a spatial domain transmission filter (Spatial Domain Transmission Filter).
  • the spatial characteristic includes a spatial relation (Spatial Relation).
  • the spatial characteristic includes a precoder (Precoder).
  • Precoder a precoder
  • the type of QCL in this application includes QCL-TypeA.
  • the type of QCL in this application includes QCL-TypeB.
  • the type of QCL in this application includes QCL-TypeC.
  • the type of QCL in this application includes QCL-TypeD.
  • the QCL-TypeA includes Doppler shift, Doppler spread, average delay and delay spread.
  • the QCL-TypeB includes Doppler shift and Doppler spread.
  • the QCL-TypeC includes Doppler shift (Doppler shift) and average delay (average delay).
  • the QCL-TypeD includes a spatial reception parameter (Spatial Rx parameter).
  • the large-scale characteristics include delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay) or spatial receiving parameter (Spatial One or more of Rx parameter).
  • the step S110 is located after the step S10 and before the step S11 in the fifth embodiment.
  • the step S120 is located after the step S20 and before the step S21 in the fifth embodiment.
  • Embodiment 11 illustrates a flowchart of a second signal in another embodiment, as shown in FIG. 11 .
  • the first node U13 communicates with the second node N14 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 11 can be applied to any embodiment in Embodiments 5 to 10; otherwise, in the case of no conflict, Embodiment 5 Embodiments, sub-embodiments, and subsidiary embodiments in any one of to 10 can be applied to Embodiment 11.
  • step S130 the second signal is sent in the second time-frequency resource.
  • step S140 the second signal is received in the second time-frequency resource.
  • the first signaling is used to determine a plurality of candidate time-frequency resources
  • the second time-frequency resource is one of the plurality of candidate time-frequency resources
  • the second time-frequency The resource is different from the first time-frequency resource
  • the second time-frequency resource is located before the first effective time in the time domain
  • the first time-frequency resource is located after the first effective time in the time domain
  • the first candidate time-frequency resource is used to determine the spatial characteristic of the first signal
  • the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal
  • the first candidate time-frequency resource and the first candidate time-frequency resource are used to determine the spatial characteristic of the second signal
  • the two candidate time-frequency resources are different
  • the first information block is used to determine the first candidate time-frequency resource.
  • the first node sends the second signal in the second time-frequency resource, and the first node sends the first signal in the first time-frequency resource.
  • the second node receives the second signal in the second time-frequency resource, and the second node receives the first signal in the first time-frequency resource.
  • the second candidate time-frequency resources include SRS resources.
  • the physical layer channel occupied by the second signal includes PUSCH.
  • the transmission channel occupied by the second signal includes UL-SCH.
  • the step S130 is located after the step S30 and before the step S31 in the sixth embodiment.
  • the step S140 is located after the step S40 and before the step S41 in the sixth embodiment.
  • Embodiment 12 illustrates a schematic diagram of the timing relationship of an embodiment, as shown in FIG. 12 .
  • the time domain resource occupied by the first message of this application is located in the first time unit
  • the time domain resource occupied by the first signaling of this application is located in the second time unit
  • the second time domain resource of this application is located in the second time unit.
  • the time domain resource occupied by the signal is located in the third time unit, the time domain resource occupied by the first information block of the present application is located in the fourth time unit, and the time domain resource occupied by the target signaling of the present application is located in the fifth time unit,
  • the time domain resource occupied by the first signal in this application is located in the sixth time unit, the time domain resource occupied by the second signaling in this application or any of the K2 candidate time-frequency resources in this application
  • the time domain resources occupied by the frequency resources are all located in the first time window; the first time unit, the second time unit, the third time unit, the fourth time unit, the fifth time unit,
  • the sixth time unit and the first time window are sequentially sorted in the time domain; the arrows in the figure correspond to the first effective time of the present application.
  • the given time unit is one of a time slot (Slot), a sub-slot (Sub-slot), or a mini-slot (Mini-slot).
  • a given time unit includes a positive integer number of OFDM symbols.
  • the given time unit is the first time unit.
  • the given time unit is the second time unit.
  • the given time unit is the third time unit.
  • the given time unit is the fourth time unit.
  • the given time unit is the fifth time unit.
  • the given time unit is the sixth time unit.
  • the first time window includes a positive integer number of consecutive time slots greater than 1.
  • the first time window includes only one time slot.
  • Embodiment 13 illustrates a schematic diagram of an application scenario of an embodiment, as shown in FIG. 13 .
  • TRP-1 and TRP-2 shown in the figure are both managed by the second node in this application; or TRP-1 shown is managed by the second node in this application and TRP- 2 is managed by a neighboring base station of the second node; the first identity in this application is associated to the TRP-1, and the second identity in this application is associated to the TRP-2; The first node moves within the coverage of the TRP-1 and the coverage of the TRP-2.
  • TRP-1 shown in the figure maintains the first candidate time-frequency resource set, and the first candidate time-frequency resource set includes K1 candidate time-frequency resources;
  • TRP-2 shown in the figure maintains the second candidate time-frequency resource set , the second set of candidate time-frequency resources includes K2 candidate time-frequency resources; both K1 and K2 are positive integers greater than 1.
  • the K1 candidate time-frequency resources correspond to K1 TCI-StateIds respectively.
  • the K1 candidate time-frequency resources are all associated with the first identity.
  • the K2 candidate time-frequency resources correspond to K2 TCI-StateIds respectively.
  • the K2 candidate time-frequency resources are all associated with the second identity.
  • backhaul link (Backhaul Link) between the TRP-1 and the TRP-2.
  • the second candidate time-frequency resource indicated by the first signaling is one of the K1 candidate time-frequency resources.
  • the first candidate time-frequency resource indicated by the first information block is one of the K2 candidate time-frequency resources.
  • Embodiment 14 illustrates a structural block diagram of a first node, as shown in FIG. 14 .
  • the first node 1400 includes a first receiver 1401 and a first transceiver 1402 .
  • the first receiver 1401 receives first signaling, where the first signaling is used to determine a first time-frequency resource;
  • the first transceiver 1402 receives a first signal in the first time-frequency resource, or sends a first signal in the first time-frequency resource;
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, when When the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the first type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the first transceiver 1402 receives a first information block, and the first information block is generated at a protocol layer below the RRC layer; the CORESET (Control Resource Set, where the first signaling is located) control resource set) is associated to a first identity; the first information block is used to determine that at least one CORESET is associated to a second identity, and the first identity is different from the second identity; the first identity and The second identities respectively identify a cell; only when the first time-frequency resource is located after the first effective time in the time domain, the scrambling of the first signal is related to the type of the target RNTI, the The effective time of the first information block is the first effective time.
  • the CORESET Control Resource Set, where the first signaling is located
  • the first transceiver 1402 receives the second signaling; the type of the target RNTI belongs to the second type set; the type of the RNTI used to identify the second signaling belongs to the The first type set; the RNTI used to identify the second signaling is associated with the second identity; the second signaling is used to deactivate or release the scheduling of the first signaling.
  • the first transceiver 1402 performs channel monitoring in K2 candidate time-frequency resources; the first transceiver 1402 receives a first signal in the first time-frequency resource; the first signal To be used to determine K1 candidate time-frequency resources, said K1 is a positive integer greater than 1; any candidate time-frequency resource in said K2 candidate time-frequency resources is one of said K1 candidate time-frequency resources One; the K2 is a positive integer not greater than the K1; the channel monitoring performed in the K2 candidate time-frequency resources is used to determine that the scheduling indicated by the first signaling is deactivated or freed.
  • the first receiver 1401 receives a first message; the first message is used to configure at least the target RNTI; the first message includes a first RNTI and a second RNTI, and the first Both the type of RNTI and the type of the second RNTI belong to a first type set; the first RNTI and the second RNTI are respectively associated with the first identity and the second identity; the second information Let be identified by the second RNTI.
  • the first transceiver 1402 sends target signaling; the target signaling is used to determine that the first information block is received correctly, and the position of the first effective time in the time domain is the same as the It is related to the time-domain resources occupied by the target signaling.
  • the first transceiver 1402 receives the second signal in the second time-frequency resource, or the first transceiver 1402 sends the second signal in the second time-frequency resource; the first signaling is used to determine a plurality of candidate time-frequency resources, the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource is different from the first time-frequency resource; The second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain; the first candidate time-frequency resource is used to determine the The spatial characteristic of the first signal, the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal; the first candidate time-frequency resource is different from the second candidate time-frequency resource; the first The information block is used to determine the first candidate time-frequency resource.
  • the first receiver 1401 includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the first transceiver 1402 includes the antenna 452, receiver/transmitter 454, multi-antenna transmit processor 457, transmit processor 468, multi-antenna receive processor 458, receive processor 456. At least the first six of the controllers/processors 459.
  • the first signaling is identified by a target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, when When the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the first type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time; the first type set includes C-RNTI, and the second type set C-RNTI is not included; the second type set includes at least one of CS-RNTI, SPS-RNTI or SP-CSI-RNTI; the physical layer channel occupied by the first signaling includes PDCCH, and the second A physical layer channel occupied by a signal includes
  • Embodiment 15 illustrates a structural block diagram of a second node, as shown in FIG. 15 .
  • the second node 1500 includes a first transmitter 1501 and a second transceiver 1502 .
  • the first transmitter 1501 sends first signaling, where the first signaling is used to determine a first time-frequency resource;
  • the second transceiver 1502 is configured to send a first signal in the first time-frequency resource, or receive a first signal in the first time-frequency resource
  • the first signaling is identified by the target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, when When the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the first type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time.
  • the second transceiver 1502 sends a first information block, and the first information block is generated at a protocol layer below the RRC layer; the CORESET where the first signaling is located is associated with the first Identity; the first information block is used to determine that at least one CORESET is associated with a second identity, and the first identity is different from the second identity; the first identity and the second identity respectively identify a cell ; Only when the first time-frequency resource is located after the first effective time in the time domain, the scrambling of the first signal is related to the type of the target RNTI, and the effective time of the first information block is the The stated first effective time.
  • the second transceiver 1502 sends the second signaling; the type of the target RNTI belongs to the second type set; the type of the RNTI used to identify the second signaling belongs to the The first type set; the RNTI used to identify the second signaling is associated with the second identity; the second signaling is used to deactivate or release the scheduling of the first signaling.
  • the second transceiver 1502 determines that the scheduling indicated by the first signaling is deactivated or released, and gives up sending the information associated with the first signaling in the K2 candidate time-frequency resources. Scheduling; the second transceiver 1502 sends a first signal in the first time-frequency resource; the first signaling is used to determine K1 candidate time-frequency resources, and K1 is a positive integer greater than 1; Any candidate time-frequency resource in the K2 candidate time-frequency resources is one of the K1 candidate time-frequency resources; the K2 is a positive integer not greater than the K1; the first signaling
  • the receiver includes the first node, and the channel monitoring performed by the first node in the K2 candidate time-frequency resources is used to determine that the scheduling indicated by the first signaling is deactivated or released.
  • the first transmitter 1501 sends a first message; the first message is used to configure at least the target RNTI; the first message includes a first RNTI and a second RNTI, and the first Both the type of RNTI and the type of the second RNTI belong to a first type set; the first RNTI and the second RNTI are respectively associated with the first identity and the second identity; the second information Let be identified by the second RNTI.
  • the second transceiver 1502 receives target signaling; the target signaling is used to determine that the first information block is correctly received by the sender of the target signaling, and the first effective time The position in the time domain is related to the time domain resources occupied by the target signaling.
  • the second transceiver 1502 sends the second signal in the second time-frequency resource, or the second transceiver 1502 receives the second signal in the second time-frequency resource;
  • the first signaling is used to determine a plurality of candidate time-frequency resources, the second time-frequency resource is one of the plurality of candidate time-frequency resources, and the second time-frequency resource is different from the first time-frequency resource;
  • the second time-frequency resource is located before the first effective time in the time domain, and the first time-frequency resource is located after the first effective time in the time domain;
  • the first candidate time-frequency resource is used to determine the The spatial characteristic of the first signal, the second candidate time-frequency resource is used to determine the spatial characteristic of the second signal; the first candidate time-frequency resource is different from the second candidate time-frequency resource;
  • the first The information block is used to determine the first candidate time-frequency resource.
  • the first transmitter 1501 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second transceiver 1502 includes the antenna 420, the transmitter/receiver 418, the multi-antenna transmit processor 471, the multi-antenna receive processor 472, the transmit processor 416, and the receive processor in Embodiment 4. 470. At least the first six of the controllers/processors 475.
  • the first signaling is identified by a target RNTI; whether the target RNTI is used for scrambling the first signal is related to the type of the target RNTI; the type of the target RNTI belongs to one of the first type set and the second type set; when the type of the target RNTI belongs to the first type set, the target RNTI is used for scrambling the first signal, when When the type of the target RNTI belongs to the second type set, the target RNTI is not used for scrambling the first signal; only the first type set and the second type set
  • the first type set includes C-RNTI; there is no RNTI type belonging to the first type set and the second type set at the same time; the first type set includes C-RNTI, and the second type set C-RNTI is not included; the second type set includes at least one of CS-RNTI, SPS-RNTI or SP-CSI-RNTI; the physical layer channel occupied by the first signaling includes PDCCH, and the second A physical layer channel occupied by a signal includes
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, wireless Man-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial base station , RSU, unmanned aerial vehicles, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源中接收或发送第一信号;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰。本申请改进多传输接收节点条件下半静态传输的传输方式,优化系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中针对半静态调度或配置调度的传输方案和装置。
背景技术
在5G NR(New Radio,新无线)中,大规模(Massive)MIMO(Multi-Input Multi-Output)是一个重点技术。大规模MIMO中,多个天线通过波束赋型(Beamforming),形成较窄的波束指向一个特定方向来提高通信质量。在5G NR中,基站可以通过MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)或动态信令去更新终端用于接收PDCCH(Physical Downlink Control Channel,物理下行控制信道)的TCI(Transmission Configuration Indication,传输配置指示),以及用于接收PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的TCI,进而保证波束赋形所带来的性能增益。同样的,基站也可以通过一个DCI(Downlink Control Information,下行控制信息)去更新多个不同类型的物理层信道所采用的QCL(Quasi Co-located,准共址)参数或多个载波上的QCL参数以降低信令开销。
在NR R17的讨论中,针对Multi-TRP(发送接收节点)的场景,小区间(Inter-cell)操作(Operation)相关议题正在被讨论,其中,在RAN1#104b-e会议中,不同于服务小区(Serving Cell)的PCI(Physical Cell Identity,物理小区身份)的另外一个额外的PCI被引入。
发明内容
在现有的NR系统中,通常情况下,当基站通过某种特定RNTI(Radio Network Temporary Identifier,无线网络临时标识)标识的PDCCH对终端进行调度的时候,所述PDCCH指示的对应的数据信道也会采用所述特定的RNTI进行加扰以抵抗干扰。与此同时,基站通过C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)之外的RNTI标识的PDCCH激活(Activation)、或者去激活(Deactivation)/释放(Release)下行的SPS(Semi-Persistent Scheduling,半静态调度)或者上行的类型2(Type 2)的CS(Configured Scheduling,配置调度)。然而,在M-TRP场景下,基站可以通过DCI动态的去更新UE接收的PDSCH或发送的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的QCL关系;进一步的,更新后的QCL关系存在从关联到服务小区PCI切换到关联到非服务小区PCI的场景,进而当一个SPS配置(Configuration)或者一个CS配置跨越了两个分别被关联到不同PCI的TCI状态时,如何处理上述SPS配置或CS配置需要被重新考虑。
针对上述M-TRP场景下非动态调度的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将M-TRP作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如单TRP的场景,或者多个基站之间联合协作的场景,或者具有更强能力的基站或用户设备,或者针对不同的技术领域,比如除了SPS或CS之外,也可以用于动态调度、信道估计、测量、解调等领域以取得类似的技术效果。此外,不同场景(包括但不限于M-TRP的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令,所述第一信令被用于确定第一时频资源;
在所述第一时频资源中接收第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目 标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令,所述第一信令被用于确定第一时频资源;
在所述第一时频资源中发送第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,上述方法的特征在于:传统系统中,用于标识PDCCH的RNTI往往还用于PDCCH所调度的数据信道的加扰,而本申请提出的方案中PDCCH调度的数据信道是否仍采用标识PDCCH的RNTI加扰取决于标识PDCCH的RNTI的类型。
作为一个实施例,上述方法的特征在于:适用于M-TRP场景下不为一个UE配置两个同一类型的C-RNTI之外的RNTI,以节约系统的RNTI资源。
根据本申请的一个方面,包括:
接收第一信息块,所述第一信息块被生成于RRC层之下的协议层;
其中,所述第一信令所位于的CORESET(Control Resource Set,控制资源集合)被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
作为一个实施例,上述方法的一个特征在于:通过统一的TCI,指示参考信号从关联到服务小区PCI变为关联到服务小区PCI之外的PCI;与此同时,所述第一节点依然保持SPS或CS的传输。
作为一个实施例,上述方法的另一个特征在于:所述第一节点在所述第一身份关联的TRP或小区中被分配了用于SPS或CS的RNTI,且所述第一节点在所述第二身份关联的TRP或小区中没有被分配用于SPS或CS的RNTI。
根据本申请的一个方面,包括:
接收第二信令;
其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
作为一个实施例,上述方法的一个特征在于:标识用于激活SPS或CS传输的PDCCH的RNTI与标识用于去激活/释放相同SPS或CS传输的PDCCH的RNTI不同,以提高系统实现的灵活性。
根据本申请的一个方面,包括:
在K2个候选时频资源中进行信道监测;
其中,所述第一节点在所述第一时频资源中接收第一信号,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
根据本申请的一个方面,包括:
接收第一消息;
其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所 述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
作为一个实施例,上述方法的一个特征在于:在不影响SPS/CS的传输的前提下,所述第一节点被配置两个C-RNTI分别用于两个TRP或小区的调度,但没有被配置两个CS-RNTI(Configured Scheduling RNTI,配置调度无线网络临时标识)/SPS-RNTI(半静态调度无线网络临时标识),进而不增加额外的RNTI的开销。
根据本申请的一个方面,包括:
发送目标信令;
其中,所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
根据本申请的一个方面,包括:
在第二时频资源中接收第二信号;
其中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
根据本申请的一个方面,包括:
在第二时频资源中发送第二信号;
其中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
作为一个实施例,上述方法的特征在于:当统一的TCI指示的参考信号从关联到服务小区PCI变为关联到服务小区PCI之外的PCI时,统一的TCI指示的参考信号被用于确定统一的TCI生效时间之后的数据信道的空间特性。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令,所述第一信令被用于确定第一时频资源;
在所述第一时频资源中发送第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令,所述第一信令被用于确定第一时频资源;
在所述第一时频资源中接收第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
根据本申请的一个方面,包括:
发送第一信息块,所述第一信息块被生成于RRC层之下的协议层;
其中,所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
根据本申请的一个方面,包括:
发送第二信令;
其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
根据本申请的一个方面,包括:
确定所述第一信令所指示的调度被去激活或被释放,并在K2个候选时频资源中放弃发送关联到所述第一信令的调度;
其中,所述第二节点在所述第一时频资源中发送第一信号,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
根据本申请的一个方面,包括:
发送第一消息;
其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
根据本申请的一个方面,包括:
接收目标信令;
其中,所述目标信令被用于确定所述第一信息块被所述目标信令的发送者正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
根据本申请的一个方面,包括:
在第二时频资源中发送第二信号;
其中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
根据本申请的一个方面,包括:
在第二时频资源中接收第二信号;
其中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一时频资源;
第一收发机,在所述第一时频资源中接收第一信号,或者在所述第一时频资源中发送第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所 述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
本申请公开了一种用于无线通信的第二节点,包括:
第一发射机,发送第一信令,所述第一信令被用于确定第一时频资源;
第二收发机,在所述第一时频资源中发送第一信号,或者在所述第一时频资源中接收第一信号;
其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,本申请中的方案的好处在于:PDCCH调度的数据信道是否仍采用标识PDCCH的RNTI加扰取决于标识PDCCH的RNTI的类型,进而优化系统性能,避免不必要的RNTI资源浪费。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的另一个实施例的第一信令的流程图;
图7示出了根据本申请的一个实施例的第一消息的流程图;
图8示出了根据本申请的一个实施例的第二信令的流程图;
图9示出了根据本申请的一个实施例的信道监测的流程图;
图10示出了根据本申请的一个实施例的第二信号的流程图;
图11示出了根据本申请的另一个实施例的第二信号的流程图;
图12示出了根据本申请的一个实施例的时序关系的示意图;
图13示出了根据本申请的一个实施例的应用场景的示意图;
图14示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信令,所述第一信令被用于确定第一时频资源;在步骤102中在所述第一时频资源中操作第一信号。
实施例1中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述操作是接收,或者所述操作是发送;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标 RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令是一个PDCCH确认(Validation)。
作为一个实施例,所述第一信令被用于激活一个SPS(Semi-Persistent Scheduling,半静态调度)。
作为一个实施例,所述第一信令被用于激活一个CS(Configured Scheduling,配置调度)。
作为一个实施例,所述第一信令被用于激活一个DL SPS。
作为一个实施例,所述第一信令被用于激活一个类型2的上行授权(Grant)。
作为一个实施例,所述第一信令被用于激活一个SL(Sidelink,副链路)上的类型2的配置授权调度。
作为一个实施例,所述第一信令被用于激活一个半静态CSI(Channel State Information,信道状态信息)。
典型的,所述第一信令在所述至少一个CORESET中被发送。
典型的,所述第一信令所在的搜索空间被关联到所述至少一个CORESET中的一个CORESET。
作为一个实施例,所述第一信令被用于激活一个sps-ConfigIndex所对应的DL(Downlink,下行)SPS(Semi-Static Scheduling,半静态调度)配置(Configuration)所对应的传输。
作为一个实施例,所述第一信令被用于激活一个configuredGrantConfigIndex所对应的UL(Uplink,上行)Configured Grant(配置授权)配置所对应的传输。
作为一个实施例,所述第一信令被用于激活一个configuredGrantConfigIndexMAC所对应的UL Configured Grant配置所对应的传输。
作为一个实施例,所述第一信令被用于激活一个sl-ConfigIndexCG所对应的SL(Sidelink,副链路)Configured Grant配置所对应的传输。
典型的,当所述目标RNTI的所述类型属于所述第二类型集合时,所述第一信令被用于确定多个候选时频资源,所述第一时频资源是所述多个候选时频资源中的之一。
作为一个实施例,所述第一信令被用于指示所述多个候选时频资源。
作为一个实施例,所述多个候选时频资源属于同一个sps-ConfigIndex所对应的DL SPS配置。
作为一个实施例,所述多个候选时频资源属于同一个configuredGrantConfigIndex所对应的UL Configured Grant配置。
作为一个实施例,所述多个候选时频资源属于同一个configuredGrantConfigIndexMAC所对应的UL Configured Grant配置。
作为一个实施例,所述多个候选时频资源属于同一个sl-ConfigIndexCG所对应的SL Configured Grant配置。
典型的,当所述目标RNTI的所述类型属于所述第一类型集合时,所述第一信令被用于确定所述第一时频资源。
作为一个实施例,所述第一信令被用于指示所述第一时频资源。
作为一个实施例,所述第一时频资源集合占用大于1的正整数个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第一信号所占用的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号所占用的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述目标RNTI是一个非负整数。
作为一个实施例,所述目标RNTI占用16个比特。
作为一个实施例,所述第一信令被目标RNTI标识的意思包括:所述第一信令所包括的CRC(Cyclic Redundancy Check,循环冗余校验)通过所述目标RNTI加扰。
作为一个实施例,所述第一信令被目标RNTI标识的意思包括:所述第一信令通过所述目标RNTI加扰。
作为一个实施例,所述第一信令被目标RNTI标识的意思包括:所述第一信令通过所述目标RNTI生成。
作为一个实施例,所述第一信令被目标RNTI标识的意思包括:所述目标RNTI被用于初始化所述第一信令的扰码序列(Scrambling Sequence)的生成器(Generator)。
作为一个实施例,所述第一信令被目标RNTI标识的意思包括:所述目标RNTI被用于初始化所述第一信令所包括的CRC的扰码序列的生成器。
作为一个实施例,所述目标RNTI被用于所述第一信号的加扰的意思包括:所述目标RNTI被用于初始化所述第一信号的扰码序列的生成器。
作为一个实施例,所述目标RNTI的所述类型的意思包括:所述目标RNTI是C-RNTI、CS-RNTI、SPS-RNTI、SP-CSI-RNTI、SL Semi-Persistent Scheduling V-RNTI、SL-CS-RNTI、SL-RNTI、SL-L-CS-RNTI、MCS-C-RNTI、TC-RNTI、SI-RNTI、P-RNTI、RA-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、MsgB-RNTI、INT-RNTI,SFI-RNTI,TPC-SRS-RNTI、CI-RNTI或PS-RNTI中的哪一类RNTI。
作为一个实施例,所述第一类型集合包括C-RNTI。
作为一个实施例,所述第一类型集合仅包括C-RNTI。
作为一个实施例,所述第一类型集合不包括CS-RNTI、SPS-RNTI或SP-CSI-RNTI中的任意一个。
作为一个实施例,所述第一类型集合包括CS-RNTI、SPS-RNTI或SP-CSI-RNTI之外的任意一类RNTI。
典型的,所述第二类型集合包括至少一种RNTI,所述至少一种RNTI中的每种RNTI所标识的DCI被用于调度激活,或者调度释放。
典型的,所述第二类型集合包括至少一种RNTI,所述至少一种RNTI中的每种RNTI所标识的DCI被用于调度激活,或者调度去激活。
典型的,所述第二类型集合包括至少CS-RNTI。
作为一个实施例,所述第二类型集合不包括C-RNTI。
作为一个实施例,所述第二类型集合包括CS-RNTI、SPS-RNTI或SP-CSI-RNTI中的至少一个。
作为一个实施例,所述第二类型集合不包括用于标识动态调度的PDCCH的RNTI。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视 频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持动态信令更新QCL关系。
作为一个实施例,所述UE201支持统一的TCI配置。
作为一个实施例,所述UE201能够同时接收来自多个TRP的CSI-RS。
作为一个实施例,所述UE201能够同时接收来自多个TRP的SSB。
作为一个实施例,所述UE201是具有同时监测多个波束的能力的终端。
作为一个实施例,所述UE201是支持Massive-MIMO的终端。
作为一个实施例,所述UE201支持非动态调度。
作为一个实施例,所述UE201支持基于DL SPS的传输。
作为一个实施例,所述UE201支持基于上行配置调度的传输。
作为一个实施例,所述UE201支持SL上的配置调度的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持动态信令更新QCL关系。
作为一个实施例,所述gNB203支持统一的TCI配置。
作为一个实施例,所述gNB203能够同时接收来自多个TRP的CSI-RS。
作为一个实施例,所述gNB203能够同时接收来自多个TRP的SSB。
作为一个实施例,所述gNB203是具有同时监测多个波束的能力的基站。
作为一个实施例,所述gNB203是支持Massive-MIMO的基站。
作为一个实施例,所述gNB203支持非动态调度。
作为一个实施例,所述gNB203支持基于DL SPS的传输。
作为一个实施例,所述gNB203支持基于上行配置调度的传输。
作为一个实施例,所述gNB203支持SL上的配置调度的传输。
作为一个实施例,本申请中的所述第一节点对应所述UE201,本申请中的所述第二节点对应所述gNB203。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和 PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一信息块生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信息块生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一消息生成于所述MAC302或者MAC352。
作为一个实施例,所述第一消息生成于所述RRC306。
作为一个实施例,所述目标信令生成于所述MAC302或者MAC352。
作为一个实施例,所述目标信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信号生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个载波的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源中操作第一信号;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述操作是接收,或者所述操作是发送;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源中操作第一信号;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述操作是接收,或者所述操作是发送;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源中执行第一信号;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述执行是发送,或者所述执行是接收;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源中执行第一信号;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述执行是发送,或者所述执行是接收;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类 型集合和所述第二类型集合。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时频资源中接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一时频资源中发送第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第一时频资源中发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第一时频资源中接收第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息块。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第二信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在K2个候选时频资源中进行信道监测。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于确定所述第一信令所指示的调度被去激活或被释放,并在K2个候选时频资源中放弃发送关联到所述第一信令的调度。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一消息;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一消息。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送目标信令;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收目标信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第二时频资源中接收第二信号;所述天线420,所 述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第二时频资源中发送第二信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第二时频资源中发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第二时频资源中接收第二信号。
实施例5
实施例5示例了一个实施例的第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6至11中的任一实施例中;反之,在不冲突的情况下,实施例6至11中的任一实施例、子实施例和附属实施例能够被应用到实施例5中。
对于 第一节点U1,在步骤S10中接收第一信令;在步骤S11中接收第一信息块;在步骤S12中发送目标信令;在步骤S13中在第一时频资源中接收第一信号。
对于 第二节点N2,在步骤S20中发送第一信令;在步骤S21中发送第一信息块;在步骤S22中接收目标信令;在步骤S23中在第一时频资源中发送第一信号。
实施例5中,所述第一信令被用于确定所述第一时频资源;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合;所述第一信息块被生成于RRC层之下的协议层;所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;所述第一时频资源在时域上位于第一生效时间之后,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间;所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
作为一个实施例,所述第一信息块通过物理层信令传输。
作为一个实施例,所述第一信息块通过MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)传输。
作为一个实施例,所述第一信息块通过PDCCH传输。
作为一个实施例,所述第一信息块通过DCI传输。
作为一个实施例,承载所述第一信息块的PDCCH所包括的CRC通过所述第二类型集合中的一种类型的RNTI加扰。
作为一个实施例,承载所述第一信息块的PDCCH所包括的CRC通过C-RNTI加扰。
作为一个实施例,所述第一信息块是用户设备专属的。
作为一个实施例,所述第一信息块被用于指示第一候选时频资源。
作为该实施例的一个子实施例,所述第一候选时频资源包括CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)资源。
作为该实施例的一个子实施例,所述第一候选时频资源包括SSB(Synchronization Signal/Physical Broadcast Channel block,同步信号广播块)。
作为该实施例的一个子实施例,所述第一候选时频资源包括DMRS(Demodulation Reference Signal,解调参考信号)资源。
作为该实施例的一个子实施例,所述第一候选时频资源包括SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,所述第一信息块被用于指示统一的(Unified)TCI。
典型的,所述第一信息块被用于指示一个TCI。
典型的,所述第一信息块被用于指示一个TCI-State。
典型的,所述第一信息块被用于指示一个TCI-StateId。
典型的,所述第一信息块被用于指示一个SRI(Sounding Reference Signal Resource Indicator,探测参考信号资源指示)。
典型的,上述短语所述第一信令所位于的CORESET被关联到第一身份的意思包括;所述第一信令位于第一CORESET,所述第一信令被用于指示第一标识,所述第一标识所关联的参考信号和所述第一CORESET中的解调参考信号是QCL的,所述第一标识所关联的所述参考信号被关联到所述第一身份。
作为一个实施例,所述第一标识是TCI、TCI-State或TCI-StateId中的之一。
作为一个实施例,所述第一标识所关联的所述参考信号包括CSI-RS或SSB中的至少之一。
作为一个实施例,所述第一标识被用于确定一个参考信号资源。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:配置所述第一标识所关联的所述参考信号的RRC信令中包括所述第一身份。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:所述第一标识所关联的所述参考信号由所述第一身份所对应的TRP发送。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:所述第一标识所关联的所述参考信号所占用的时频资源由所述第一身份所对应的TRP所维护。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:所述第一标识所关联的所述参考信号通过所述第一身份加扰。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:所述第一身份被用于生成所述第一标识所关联的所述参考信号。
作为一个实施例,上述短语所述第一标识所关联的所述参考信号被关联到所述第一身份的意思包括:存在显性信令指示所述第一标识所关联的所述参考信号所占用的时频资源和所述第一身份是相关联的。
典型的,上述短语所述第一信息块被用于确定至少一个CORESET被关联到第二身份的意思包括:所述第一信息块的生效时间之后存在第二CORESET,所述第一信息块被用于指示第二标识,所述第二标识所关联的参考信号和所述第二CORESET中的解调参考信号是QCL的,所述第二标识所关联的所述参考信号被关联到所述第二身份。
作为一个实施例,所述第二标识是TCI、TCI-State或TCI-StateId中的之一。
作为一个实施例,所述第二标识所关联的所述参考信号包括CSI-RS或SSB中的至少之一。
作为一个实施例,所述第二标识被用于确定一个参考信号资源。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:配置所述第二标识所关联的所述参考信号的RRC信令中包括所述第二身份。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:所述第二标识所关联的所述参考信号由所述第二身份所对应的TRP发送。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:所述第二标识所关联的所述参考信号所占用的时频资源由所述第二身份所对应的TRP所维护。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:所述第二标识所关联的所述参考信号通过所述第二身份加扰。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:所述第二身份被用于生成所述第二标识所关联的所述参考信号。
作为一个实施例,上述短语所述第二标识所关联的所述参考信号被关联到所述第二身份的意思包括:存在显性信令指示所述第二标识所关联的所述参考信号所占用的时频资源和所述第二身份是相关联的。
作为一个实施例,所述第一CORESET和所述第二CORESET是同一个CORESET。
作为一个实施例,所述第一CORESET和所述第二CORESET被关联到同一个搜索空间。
作为一个实施例,所述第一CORESET和所述第二CORESET被关联到同一个搜索空间集合。
作为一个实施例,所述第一身份和所述第二身份二者中的至少之一是物理小区标识。
作为一个实施例,所述第一身份是非负整数。
作为一个实施例,所述第二身份是非负整数。
作为一个实施例,所述第一身份是PCI。
作为一个实施例,所述第二身份是PCI。
作为一个实施例,所述第一身份是服务小区的PCI。
作为一个实施例,所述第二身份与服务小区的PCI不同。
作为一个实施例,所述第二身份是服务小区的PCI之外的PCI。
典型的,所述第一信息块被用于确定所述第一生效时间。
作为一个实施例,上述所述第一信息块被用于确定所述第一生效时间的意思包括:所述第一节点在接收到所述第一信息块后发送第一反馈,所述第一反馈是所述第一信息块的确认(Acknowledgement),且所述第一生效时间是所述第一反馈所占用的最后一个符号之后的Y1个符号,所述Y1是正整数。
作为该实施例的一个子实施例,所述Y1是基站配置的。
作为该实施例的一个子实施例,所述Y1是固定的。
作为该实施例的一个子实施例,所述Y1与所述第一节点的能力有关。
作为一个实施例,上述所述第一信息块被用于确定所述第一生效时间的意思包括:所述第一信息块被用于指示所述第一生效时刻。
作为一个实施例,上述所述第一信息块被用于确定所述第一生效时间的意思包括:所述第一生效时间是所述第一信息块所占用的最后一个符号之后的X1个符号,所述X1是正整数。
作为该实施例的一个子实施例,所述X1是基站配置的。
作为该实施例的一个子实施例,所述X1是固定的。
作为该实施例的一个子实施例,所述X1与所述第一节点的能力有关。
典型的,上述句子“当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关”的意思包括:当所述第一时频资源在时域上位于第一生效时间之后时,且所述目标RNTI的类型是所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰。
典型的,上述句子“当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关”的意思包括:当所述第一时频资源在时域上位于第一生效时间之后时,且所述目标RNTI的类型是所述第二类型集合时,所述目标RNTI不被用于所述第一信号的加扰。
作为一个实施例,当所述目标RNTI不被用于所述第一信号的加扰时,C-RNTI被用于所述第一信号的加扰。
作为一个实施例,所述第一生效时间是所述目标信令所占用的最后一个符号之后的Y3个符号,所述Y3是正整数。
作为该实施例的一个子实施例,所述Y3是基站配置的。
作为该实施例的一个子实施例,所述Y3是固定的。
作为该实施例的一个子实施例,所述Y3与所述第一节点的能力有关。
作为一个实施例,所述第一生效时间是所述目标信令所占用的时隙之后的Y4个时隙,所述Y4是正整数。
作为该实施例的一个子实施例,所述Y4是基站配置的。
作为该实施例的一个子实施例,所述Y4是固定的。
作为该实施例的一个子实施例,所述Y4与所述第一节点的能力有关。
作为一个实施例,所述目标信令被用于指示所述第一信息块被正确接收。
作为一个实施例,承载所述第一信息块的PDCCH被用于调度给定PDSCH,所述目标信令包括针对所述给定PDSCH的HARQ-ACK。
实施例6
实施例6示例了一个另一个实施例的第一信令的流程图,如附图6所示。在附图6中,第一节点 U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5至11中的任一实施例中;反之,在不冲突的情况下,实施例5至11中任一中的实施例、子实施例和附属实施例能够被应用到实施例6中。
对于 第一节点U3,在步骤S30中接收第一信令;在步骤S31中接收第一信息块;在步骤S32中发送目标信令;在步骤S33中在第一时频资源中发送第一信号。
对于 第二节点N4,在步骤S40中发送第一信令;在步骤S41中发送第一信息块;在步骤S42中接收目标信令;在步骤S43中在第一时频资源中接收第一信号。
实施例6中,所述第一信令被用于确定所述第一时频资源;所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合;所述第一信息块被生成于RRC层之下的协议层;所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;所述第一时频资源在时域上位于第一生效时间之后,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间;所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
作为一个实施例,承载所述第一信息块的PDCCH被用于调度给定PUSCH,所述目标信令在所述给定PUSCH中被发送。
作为一个实施例,承载所述第一信息块的PDCCH被用于触发给定PUCCH,所述目标信令在所述给定PUCCH中被发送。
实施例7
实施例7示例了一个实施例的第一消息的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5至11中的任一实施例中;反之,在不冲突的情况下,实施例5至11中任一中的实施例、子实施例和附属实施例能够被应用到实施例7中。
对于 第一节点U5,在步骤S50中接收第一消息。
对于 第二节点N6,在步骤S60中发送第一消息。
实施例6中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
作为一个实施例,所述第一消息是RRC信令。
作为一个实施例,所述第一消息是用户设备专属的(UE-Specific)。
典型的,所述第一RNTI的类型是C-RNTI。
典型的,所述第二RNTI的类型是C-RNTI。
典型的,所述第一RNTI是一个C-RNTI。
典型的,所述第二RNTI是一个C-RNTI。
作为一个实施例,所述第一消息被用于配置PCI小区。
作为一个实施例,所述第一消息被用于配置服务小区之外的小区。
作为一个实施例,承载所述第一消息的RRC信令的名字包括PCI。
作为一个实施例,承载所述第一消息的RRC信令的名字包括Cell。
作为一个实施例,承载所述第一消息的RRC信令的名字包括Non。
作为一个实施例,承载所述第一消息的RRC信令的名字包括Serving。
作为一个实施例,所述第一RNTI和所述第二RNTI不同。
作为一个实施例,所述第一RNTI被关联到所述第一身份的TRP维持。
作为一个实施例,所述第二RNTI被关联到所述第二身份的TRP维持。
作为一个实施例,所述第二信令被所述第二RNTI标识的意思包括:所述第二信令所包括的CRC通过所述第二RNTI加扰。
作为一个实施例,所述第二信令被所述第二RNTI标识的意思包括:所述第二信令通过所述第二RNTI加扰。
作为一个实施例,所述第二信令被所述第二RNTI标识的意思包括:所述第二信令通过所述第二RNTI生成。
作为一个实施例,所述第二信令被所述第二RNTI标识的意思包括:所述第二RNTI被用于初始化所述第二信令的扰码序列的生成器。
作为一个实施例,所述第二信令被所述第二RNTI标识的意思包括:所述第二RNTI被用于初始化所述第二信令所包括的CRC的扰码序列的生成器。
典型的,当所述目标RNTI的所述类型属于所述第一类型集合时,所述第一RNTI是所述目标RNTI。
作为一个实施例,所述第一RNTI被用于标识所述第一身份所关联的TRP发送的调度所述第一节点的PDCCH。
作为一个实施例,所述第二RNTI被用于标识所述第二身份所关联的TRP发送的调度所述第一节点的PDCCH。
作为一个实施例,本申请中的所述第一身份所关联的TRP是第一TRP,本申请中的所述第二身份所关联的TRP是第二TRP。
作为该实施例的一个子实施例,所述第一TRP和所述第二TRP分别维持两个不同的服务小区。
作为该实施例的一个子实施例,所述第一TRP和所述第二TRP通过回程链路(Backhaul Link)连接。
作为该实施例的一个子实施例,所述第一TRP和所述第二TRP被同一个基站维护。
作为一个实施例,所述步骤S50位于实施例5中的步骤S10之前。
作为一个实施例,所述步骤S60位于实施例5中的步骤S20之前。
作为一个实施例,所述步骤S50位于实施例6中的步骤S30之前。
作为一个实施例,所述步骤S60位于实施例6中的步骤S40之前。
实施例8
实施例8示例了一个实施例的第二信令的流程图,如附图8所示。在附图8中,第一节点U7与第二节点N8之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例8中的实施例、子实施例和附属实施例能够被应用到实施例5至11中的任一实施例中;反之,在不冲突的情况下,实施例5至11中的任一中的实施例、子实施例和附属实施例能够被应用到实施例8中。
对于 第一节点U7,在步骤S70中接收第二信令。
对于 第二节点N8,在步骤S80中发送第二信令。
实施例8中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
作为一个实施例,所述第二信令所占用的物理层信道包括PDCCH。
作为一个实施例,所述第二信令是一个DCI。
作为一个实施例,所述第二信令被用于去激活所述第一信令的调度。
作为一个实施例,所述第二信令被用于释放所述第一信令的调度。
作为一个实施例,所述第二信令是一个PDCCH确认。
作为一个实施例,所述第二信令被用于去激活或释放一个SPS。
作为一个实施例,所述第二信令被用于去激活或释放一个CS。
作为一个实施例,所述第二信令被用于去激活或释放一个DL SPS。
作为一个实施例,所述第二信令被用于去激活或释放一个类型2的上行授权。
作为一个实施例,所述第二信令被用于去激活或释放一个SL上的类型2的配置授权调度。
作为一个实施例,所述第二信令被用于去激活或释放一个半静态CSI。
作为一个实施例,所述第二信令在本申请中的所述第二CORESET中被传输。
作为一个实施例,用于标识所述第二信令的RNTI是C-RNTI。
典型的,所述第二信令被用于去激活所述第一信令所指示的下行半静态调度或上行配置调度,或者所述第二信令被用于释放所述第一信令所指示的下行半静态调度或上行配置调度。
典型的,所述第二信令被用于释放所述第一信令的所述调度是通过所述第二信令中的至少一个域被设置为固定值来指示的。
典型的,所述至少一个域包括MCS域,所述固定值为每个比特都为1。
作为一个实施例,所述步骤S70位于实施例5中的步骤S13之后。
作为一个实施例,所述步骤S80位于实施例5中的步骤S23之后。
作为一个实施例,所述步骤S70位于实施例6中的步骤S33之后。
作为一个实施例,所述步骤S80位于实施例6中的步骤S43之后。
实施例9
实施例9示例了一个实施例的信道监测的流程图,如附图9所示。在附图9中,第一节点U9与第二节点N10之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例9中的实施例、子实施例和附属实施例能够被应用到实施例5至11中的任一实施例;反之,在不冲突的情况下,实施例5至11中任一中的实施例、子实施例和附属实施例能够被应用到实施例9中。
对于 第一节点U9,在步骤S90中在K2个候选时频资源中进行信道监测。
对于 第二节点N10,在步骤S100中确定所述第一信令所指示的调度被去激活或被释放,并在K2个候选时频资源中放弃发送关联到所述第一信令的调度。
实施例9中,所述第一节点在所述第一时频资源中接收第一信号,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
作为一个实施例,所述第一信令被用于确定K1个候选时频资源中的至少一个候选时频资源所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一信令被用于确定K1个候选时频资源中的任一候选时频资源所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一信令被用于指示K1个候选时频资源中的至少一个候选时频资源所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一信令被用于指示K1个候选时频资源中的任一候选时频资源所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述在K2个候选时频资源中进行信道监测的意思包括:分别在所述K2个候选时频资源中进行能量检测。
作为该实施例的一个子实施例,所述K2个候选时频资源中的任一候选时频资源中进行的能量检测的结果都小于第一阈值,所述第一信令所指示的调度被去激活或被释放。
作为该子实施例的一个附属实施例,所述第一阈值的单位是dB。
作为该子实施例的一个附属实施例,所述第一阈值的单位是dBm。
作为一个实施例,所述在K2个候选时频资源中进行信道监测的意思包括:分别在所述K2个候选时频资源中进行RSRP测量。
作为该实施例的一个子实施例,所述K2个候选时频资源中的任一候选时频资源中进行的RSRP的结果都小于第二阈值,所述第一信令所指示的调度被去激活或被释放。
作为该子实施例的一个附属实施例,所述第二阈值的单位是dBm。
作为该实施例的一个子实施例,所述RSRP测量针对所述K2个候选时频资源中的任一候选时频资源中的DMRS。
作为该实施例的一个子实施例,所述RSRP测量针对所述K2个候选时频资源中的任一候选时频资源中的CSI-RS。
作为该实施例的一个子实施例,所述RSRP测量针对所述K2个候选时频资源中的任一候选时频资源中的数据信道。
作为一个实施例,所述在K2个候选时频资源中进行信道监测的意思包括:分别在所述K2个候选时频资源中进行相干检测。
作为该实施例的一个子实施例,所述K2个候选时频资源中的任一候选时频资源中进行的相干检测的结果都被用于确定在对应的所述候选时频资源中没有正确接收,所述第一信令所指示的调度被去激活或被释放。
作为一个实施例,所述在K2个候选时频资源中进行信道监测的意思包括:分别在所述K2个候选时频资源中进行针对PDSCH的解调。
作为该实施例的一个子实施例,所述K2个候选时频资源中的任一候选时频资源中进行的PDSCH解调的结果都被用于确定在对应的所述候选时频资源中没有正确接收所述PDSCH,所述第一信令所指示的调度被去激活或被释放。
作为一个实施例,所述K2个候选时频资源中的任一候选时频资源所占用的时域资源位于所述第一生效时间之后。
作为一个实施例,所述步骤S90位于实施例5中的步骤S13之后。
作为一个实施例,所述步骤S100位于实施例5中的步骤S23之后。
作为一个实施例,所述步骤S90位于实施例6中的步骤S33之后。
作为一个实施例,所述步骤S100位于实施例6中的步骤S43之后。
实施例10
实施例10示例了一个实施例的第二信号的流程图,如附图10所示。在附图10中,第一节点U11与第二节点N12之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例10中的实施例、子实施例和附属实施例能够被应用到实施例5至11中的任一实施例;反之,在不冲突的情况下,实施例5至11中任一中的实施例、子实施例和附属实施例能够被应用到实施例10中。
对于 第一节点U11,在步骤S110中在第二时频资源中接收第二信号。
对于 第二节点N12,在步骤S120中在第二时频资源中发送第二信号。
实施例10中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
作为一个实施例,所述第一节点在所述第二时频资源中接收所述第二信号,且所述第一节点在所述第一时频资源中接收所述第一信号。
作为一个实施例,所述第二节点在所述第二时频资源中发送所述第二信号,且所述第二节点在所述第一时频资源中发送所述第一信号。
作为一个实施例,所述第一信令被用于确定所述第二候选时频资源。
作为一个实施例,所述第一信令被用于指示所述第二候选时频资源。
作为一个实施例,所述第一信息块被用于指示所述第一候选时频资源。
作为一个实施例,所述第二时频资源集合占用大于1的正整数个REs。
作为一个实施例,所述第一信令被用于指示所述第二候选时频资源。
作为一个实施例,所述第二候选时频资源包括CSI-RS资源。
作为一个实施例,所述第二候选时频资源包括SSB。
作为一个实施例,所述第二候选时频资源包括DMRS资源。
作为一个实施例,所述第二候选时频资源包括SRS资源。
作为一个实施例,所述第二信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第二信号所占用的传输信道包括DL-SCH。
典型的,所述第一信令被用于指示一个TCI,所述第二候选时频资源被关联到所述TCI。
典型的,所述第一信令被用于指示一个TCI-State,所述第二候选时频资源被关联到所述TCI-State。
典型的,所述第一信令被用于指示一个TCI-StateId,所述第二候选时频资源被关联到所述TCI-StateId。
典型的,所述第一信令被用于指示一个SRI,所述第二候选时频资源被关联到所述SRI。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号的解调参考信号与所述第一候选时频资源中发送的无线信号是QCL的。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号的解调参考信号与所述第一候选时频资源中发送的无线信号采用相同的QCL参数。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号的解调参考信号与所述第一候选时频资源是QCL的。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号的解调参考信号与所述第一候选时频资源采用相同的QCL参数。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号与所述第一候选时频资源是QCL的。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:用于解调所述第一信号与所述第一候选时频资源采用相同的QCL参数。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:所述第一候选时频资源中发送的无线信号与所述第一信号采用相同的空间接收参数。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:所述第一候选时频资源中发送的无线信号被用于确定所述第一信号的空间发送参数(Spatial Tx Parameters)。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:所述第一候选时频资源中发送的无线信号与所述第一信号采用相同的空间关系(Spatial Relation)。
典型的,上述短语第一候选时频资源被用于确定所述第一信号与的空间特性的意思包括:所述第一节点能够从所述第一候选时频资源中被传输的无线信号经历的信道的大尺度特性推断出在所述第一信号经历的信道的大尺度特性。
作为一个实施例,所述空间特性包括QCL参数。
作为一个实施例,所述空间特性包括空间接收参数。
作为一个实施例,所述空间特性包括空域接收滤波。
作为一个实施例,所述空间特性包括空间发送参数。
作为一个实施例,所述空间特性包括空域发送滤波(Spatial Domain Transmission Filter)。
作为一个实施例,所述空间特性包括空间关系(Spatial Relation)。
作为一个实施例,所述空间特性包括预编码(Precoder)。
作为一个实施例,本申请中的QCL的类型包括QCL-TypeA。
作为一个实施例,本申请中的QCL的类型包括QCL-TypeB。
作为一个实施例,本申请中的QCL的类型包括QCL-TypeC。
作为一个实施例,本申请中的QCL的类型包括QCL-TypeD。
作为一个实施例,所述QCL-TypeA包括多普勒位移(Doppler shift)、多普勒扩展(Doppler spread)、平均延时(average delay)和延时扩展(delay spread)。
作为一个实施例,所述QCL-TypeB包括多普勒位移(Doppler shift)和多普勒扩展(Doppler spread)。
作为一个实施例,所述QCL-TypeC包括多普勒位移(Doppler shift)和平均延时(average delay)。
作为一个实施例,所述QCL-TypeD包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述大尺度特性包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay)或空间接收参数(Spatial Rx parameter)中的一种或多种。
作为一个实施例,所述步骤S110位于实施例5中的步骤S10之后且步骤S11之前。
作为一个实施例,所述步骤S120位于实施例5中的步骤S20之后且步骤S21之前。
实施例11
实施例11示例了一个另一个实施例的第二信号的流程图,如附图11所示。在附图11中,第一节点U13与第二节点N14之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例11中的实施例、子实施例和附属实施例能够被应用到实施例5至10中的任一实施例;反之,在不冲突的情况下,实施例5至10中任一中的实施例、子实施例和附属实施例能够被应用到实施例11中。
对于 第一节点U13,在步骤S130中在第二时频资源中发送第二信号。
对于 第二节点N14,在步骤S140中在第二时频资源中接收第二信号。
实施例11中,所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
作为一个实施例,所述第一节点在所述第二时频资源中发送所述第二信号,且所述第一节点在所述第一时频资源中发送所述第一信号。
作为一个实施例,所述第二节点在所述第二时频资源中接收所述第二信号,且所述第二节点在所述第一时频资源中接收所述第一信号。
作为一个实施例,所述第二候选时频资源包括SRS资源。
作为一个实施例,所述第二信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信号所占用的传输信道包括UL-SCH。
作为一个实施例,所述步骤S130位于实施例6中的步骤S30之后且步骤S31之前。
作为一个实施例,所述步骤S140位于实施例6中的步骤S40之后且步骤S41之前。
实施例12
实施例12示例了一个实施例的时序关系的示意图,如附图12所示。在附图12中,本申请的所述第一消息所占用的时域资源位于第一时间单元,本申请的第一信令所占用的时域资源位于第二时间单元,本申请的第二信号所占用的时域资源位于第三时间单元,本申请的第一信息块所占用的时域资源位于第四时间单元,本申请的目标信令所占用的时域资源位于第五时间单元,本申请的第一信号所占用的时域资源位于第六时间单元,本申请中的第二信令所占用的时域资源或本申请中的所述K2个候选时频资源中任一候选时频资源所占用的时域资源都位于第一时间窗;所述第一时间单元、所述第二时间单元、所述第三时间单元、所述第四时间单元、所述第五时间单元、所述第六时间单元和所述第一时间窗在时域从先到后被依次排序;图中箭头对应本申请的第一生效时间。
作为一个实施例,给定时间单元是一个时隙(Slot)、子时隙(Sub-slot)或微时隙(Mini-slot)中的之一。
作为一个实施例,给定时间单元包括正整数个OFDM符号。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第一时间单元。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第二时间单元。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第三时间单元。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第四时间单元。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第五时间单元。
作为上述两个实施例的一个子实施例,所述给定时间单元是所述第六时间单元。
作为一个实施例,所述第一时间窗包括大于1的正整数个连续的时隙。
作为一个实施例,所述第一时间窗仅包括1个时隙。
实施例13
实施例13示例了一个实施例的应用场景的示意图,如附图13所示。在附图13中,图中所示的TRP-1和TRP-2均由本申请中的所述第二节点管理;或者所示的TRP-1由本申请中的所述第二节点管理且TRP-2由所述第二节点的相邻基站管理;本申请中的所述第一身份被关联到所述TRP-1,本申请中的所述第二身份被关联到所述TRP-2;所述第一节点在所述TRP-1的覆盖范围和所述TRP-2的覆盖范围中移动。
图中所示的TRP-1维护第一候选时频资源集合,所述第一候选时频资源集合包括K1个候选时频资源;图中所示的TRP-2维护第二候选时频资源集合,所述第二候选时频资源集合包括K2个候选时频资源;所述K1和所述K2都是大于1的正整数。
作为一个实施例,所述K1个候选时频资源分别对应K1个TCI-StateId。
作为一个实施例,所述K1个候选时频资源均被关联到所述第一身份。
作为一个实施例,所述K2个候选时频资源分别对应K2个TCI-StateId。
作为一个实施例,所述K2个候选时频资源均被关联到所述第二身份。
作为一个实施例,所述TRP-1和所述TRP-2之间存在回程链路(Backhaul Link)。
作为一个实施例,所述第一信令所指示的所述第二候选时频资源是所述K1个候选时频资源中的之一。
作为一个实施例,所述第一信息块所指示的所述第一候选时频资源是所述K2个候选时频资源中的之一。
实施例14
实施例14示例了一个第一节点中的结构框图,如附图14所示。附图14中,第一节点1400包括第一接收机1401和第一收发机1402。
第一接收机1401,接收第一信令,所述第一信令被用于确定第一时频资源;
第一收发机1402,在所述第一时频资源中接收第一信号,或者在所述第一时频资源中发送第一信号;
实施例14中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第一收发机1402接收第一信息块,所述第一信息块被生成于RRC层之下的协议层;所述第一信令所位于的CORESET(Control Resource Set,控制资源集合)被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
作为一个实施例,所述第一收发机1402接收第二信令;所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
作为一个实施例,所述第一收发机1402在K2个候选时频资源中进行信道监测;所述第一收发机1402在所述第一时频资源中接收第一信号;所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
作为一个实施例,所述第一接收机1401接收第一消息;所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
作为一个实施例,所述第一收发机1402发送目标信令;所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
作为一个实施例,所述第一收发机1402在第二时频资源中接收第二信号,或者所述第一收发机1402在第二时频资源中发送第二信号;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
作为一个实施例,所述第一接收机1401包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1402包括实施例4中的天线452、接收器/发射器454、多天线发射处理器457、发射处理器468、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合;所述第一类型集合包括C-RNTI,且所述第二类型集合不包括C-RNTI;所述第二类型集合包括CS-RNTI、SPS-RNTI或SP-CSI-RNTI中的至少之一;所述第一信令所占用的物理层信道包括PDCCH,所述第一信号所占用的物理层信道包括PDSCH、PUSCH或PUCCH中的至少之一。
实施例15
实施例15示例了一个第二节点中的结构框图,如附图15所示。附图15中,第二节点1500包括第一发射机1501和第二收发机1502。
第一发射机1501,发送第一信令,所述第一信令被用于确定第一时频资源;
第二收发机1502,在所述第一时频资源中发送第一信号,或者在所述第一时频资源中接收第一信号
实施例15中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
作为一个实施例,所述第二收发机1502发送第一信息块,所述第一信息块被生成于RRC层之下的协议层;所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
作为一个实施例,所述第二收发机1502发送第二信令;所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
作为一个实施例,所述第二收发机1502确定所述第一信令所指示的调度被去激活或被释放,并在 K2个候选时频资源中放弃发送关联到所述第一信令的调度;所述第二收发机1502在所述第一时频资源中发送第一信号;所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
作为一个实施例,所述第一发射机1501发送第一消息;所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
作为一个实施例,所述第二收发机1502接收目标信令;所述目标信令被用于确定所述第一信息块被所述目标信令的发送者正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
作为一个实施例,所述第二收发机1502在第二时频资源中发送第二信号,或者所述第二收发机1502在第二时频资源中接收第二信号;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
作为一个实施例,所述第一发射机1501包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二收发机1502包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
作为一个实施例,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合;所述第一类型集合包括C-RNTI,且所述第二类型集合不包括C-RNTI;所述第二类型集合包括CS-RNTI、SPS-RNTI或SP-CSI-RNTI中的至少之一;所述第一信令所占用的物理层信道包括PDCCH,所述第一信号所占用的物理层信道包括PDSCH、PUSCH或PUCCH中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定第一时频资源;
    第一收发机,在所述第一时频资源中操作第一信号;
    其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述操作是接收,或者所述操作是发送;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一收发机,接收第一信息块,所述第一信息块被生成于RRC层之下的协议层;
    其中,所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
  3. 根据权利要求2所述的第一节点,其特征在于,包括:
    所述第一收发机,接收第二信令;
    其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
  4. 根据权利要求2所述的第一节点,其特征在于,包括:
    所述第一收发机,在K2个候选时频资源中进行信道监测;
    其中,所述操作是接收,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
  5. 根据权利要求3所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一消息;
    其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
  6. 根据权利要求2至5中任一权利所述的第一节点,其特征在于,包括:
    所述第一收发机,发送目标信令;
    其中,所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
  7. 根据权利要求2至6中任一权利所述的第一节点,其特征在于,包括:
    所述第一收发机,在第二时频资源中操作第二信号;
    其中,所述操作是接收或者所述操作是发送;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第一发射机,发送第一信令,所述第一信令被用于确定第一时频资源;
    第二收发机,在所述第一时频资源中执行第一信号;
    其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述执行是发送,或者所述执行是接收;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
  9. 根据权利要求8所述的第二节点,其特征在于,包括:
    所述第二收发机,发送第一信息块,所述第一信息块被生成于RRC层之下的协议层;
    其中,所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
  10. 根据权利要求9所述的第二节点,其特征在于,包括:
    所述第二收发机,发送第二信令;
    其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
  11. 根据权利要求9所述的第二节点,其特征在于,包括:
    所述第二收发机,确定所述第一信令所指示的调度被去激活或被释放,并在K2个候选时频资源中放弃发送关联到所述第一信令的调度;
    其中,所述执行是发送,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
  12. 根据权利要求10所述的第二节点,其特征在于,包括:
    所述第一发射机,发送第一消息;
    其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
  13. 根据权利要求9至12中任一权利所述的第二节点,其特征在于,包括:
    所述第二收发机,接收目标信令;
    其中,所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
  14. 根据权利要求9至13中任一权利所述的第二节点,其特征在于,包括:
    所述第二收发机,在第二时频资源中执行第二信号;
    其中,所述执行是发送或者所述执行是接收;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定第一时频资源;
    在所述第一时频资源中操作第一信号;
    其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述操作是接收,或者所述操作是发送;所述目标RNTI的所述类型属于第一类型集合 和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,包括:
    接收第一信息块,所述第一信息块被生成于RRC层之下的协议层;
    其中,所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
  17. 根据权利要求16所述的第一节点中的方法,其特征在于,包括:
    接收第二信令;
    其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
  18. 根据权利要求16所述的第一节点中的方法,其特征在于,包括:
    在K2个候选时频资源中进行信道监测;
    其中,所述操作是接收,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
  19. 根据权利要求17所述的第一节点中的方法,其特征在于,包括:
    接收第一消息;
    其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
  20. 根据权利要求16至19中任一权利所述的第一节点中的方法,其特征在于,包括:
    发送目标信令;
    其中,所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
  21. 根据权利要求16至20中任一权利所述的第一节点中的方法,其特征在于,包括:
    在第二时频资源中操作第二信号;
    其中,所述操作是接收或者所述操作是发送;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定第一时频资源;
    在所述第一时频资源中执行第一信号;
    其中,所述第一信令被目标RNTI所标识;所述目标RNTI是否被用于所述第一信号的加扰与所述目标RNTI的类型有关;所述执行是发送,或者所述执行是接收;所述目标RNTI的所述类型属于第一类型集合和第二类型集合中的之一;当所述目标RNTI的所述类型属于所述第一类型集合时,所述目标RNTI被用于所述第一信号的加扰,当所述目标RNTI的所述类型属于所述第二类型集合时,所述目标RNTI未被用于所述第一信号的加扰;所述第一类型集合和所述第二类型集合中仅所述第一类型集合包括C-RNTI;不存在一 种RNTI类型同时属于所述第一类型集合和所述第二类型集合。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,包括:
    发送第一信息块,所述第一信息块被生成于RRC层之下的协议层;
    其中,所述第一信令所位于的CORESET被关联到第一身份;所述第一信息块被用于确定至少一个CORESET被关联到第二身份,所述第一身份和所述第二身份不同;所述第一身份和所述第二身份分别标识一个小区;仅当所述第一时频资源在时域上位于第一生效时间之后时,所述第一信号的加扰与所述目标RNTI的类型有关,所述第一信息块的生效时间是所述第一生效时间。
  24. 根据权利要求22所述的第二节点中的方法,其特征在于,包括:
    发送第二信令;
    其中,所述目标RNTI的所述类型属于所述第二类型集合;用于标识所述第二信令的RNTI的类型属于所述第一类型集合;被用于标识所述第二信令的RNTI被关联到所述第二身份;所述第二信令被用于去激活或释放所述第一信令的调度。
  25. 根据权利要求23所述的第二节点中的方法,其特征在于,包括:
    确定所述第一信令所指示的调度被去激活或被释放,并在K2个候选时频资源中放弃发送关联到所述第一信令的调度;
    其中,所述执行是发送,所述第一信令被用于确定K1个候选时频资源,所述K1是大于1的正整数;所述K2个候选时频资源中的任一候选时频资源是所述K1个候选时频资源中的之一;所述K2是不大于所述K1的正整数;所述第一信令的接收者包括第一节点,所述第一节点在所述K2个候选时频资源中进行的所述信道监测被用于确定所述第一信令所指示的调度被去激活或被释放。
  26. 根据权利要求24所述的第二节点中的方法,其特征在于,包括:
    发送第一消息;
    其中,所述第一消息被用于配置至少所述目标RNTI;所述第一消息包括第一RNTI和第二RNTI,所述第一RNTI的类型和所述第二RNTI的类型都属于第一类型集合;所述第一RNTI和所述第二RNTI分别被关联到所述第一身份和所述第二身份;所述第二信令被所述第二RNTI标识。
  27. 根据权利要求23至26中任一权利所述的第二节点中的方法,其特征在于,包括:
    接收目标信令;
    其中,所述目标信令被用于确定所述第一信息块被正确接收,所述第一生效时间在时域的位置与所述目标信令所占用的时域资源有关。
  28. 根据权利要求23至27中任一权利所述的第二节点中的方法,其特征在于,包括:
    在第二时频资源中执行第二信号;
    其中,所述执行是发送或者所述执行是接收;所述第一信令被用于确定多个候选时频资源,所述第二时频资源是所述多个候选时频资源中的之一,且所述第二时频资源与所述第一时频资源不同;所述第二时频资源在时域位于所述第一生效时间之前,且所述第一时频资源在时域位于所述第一生效时间之后;第一候选时频资源被用于确定所述第一信号的空间特性,第二候选时频资源被用于确定所述第二信号的空间特性;所述第一候选时频资源和所述第二候选时频资源不同;所述第一信息块被用于确定所述第一候选时频资源。
PCT/CN2022/138323 2021-12-20 2022-12-12 一种被用于无线通信的节点中的方法和装置 WO2023116482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111563606.2 2021-12-20
CN202111563606.2A CN116321176A (zh) 2021-12-20 2021-12-20 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023116482A1 true WO2023116482A1 (zh) 2023-06-29

Family

ID=86787448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138323 WO2023116482A1 (zh) 2021-12-20 2022-12-12 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116321176A (zh)
WO (1) WO2023116482A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160360437A1 (en) * 2015-01-30 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) CSI Reporting and Measurement for LAA SCells
WO2017039513A1 (en) * 2015-09-04 2017-03-09 Telefonaktiebolaget Lm Ericsson (Publ) A first and second wireless device and a network node, and methods performed thereby, for performing a random access procedure
US20200374067A1 (en) * 2019-05-20 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Reference signaling for a wireless communication network
CN113439453A (zh) * 2019-02-14 2021-09-24 夏普株式会社 无线中继网络中的无线电链路故障的通知

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160360437A1 (en) * 2015-01-30 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) CSI Reporting and Measurement for LAA SCells
WO2017039513A1 (en) * 2015-09-04 2017-03-09 Telefonaktiebolaget Lm Ericsson (Publ) A first and second wireless device and a network node, and methods performed thereby, for performing a random access procedure
CN113439453A (zh) * 2019-02-14 2021-09-24 夏普株式会社 无线中继网络中的无线电链路故障的通知
US20200374067A1 (en) * 2019-05-20 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Reference signaling for a wireless communication network

Also Published As

Publication number Publication date
CN116321176A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
US12052196B2 (en) Method and device in communication node used for wireless communication
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020134909A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN109152011B (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023116482A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024125277A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE