WO2016177268A1 - 一种燃烧室独立的内燃机 - Google Patents

一种燃烧室独立的内燃机 Download PDF

Info

Publication number
WO2016177268A1
WO2016177268A1 PCT/CN2016/079527 CN2016079527W WO2016177268A1 WO 2016177268 A1 WO2016177268 A1 WO 2016177268A1 CN 2016079527 W CN2016079527 W CN 2016079527W WO 2016177268 A1 WO2016177268 A1 WO 2016177268A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
work
feed
intake
combustion engine
Prior art date
Application number
PCT/CN2016/079527
Other languages
English (en)
French (fr)
Inventor
周虎
Original Assignee
周虎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周虎 filed Critical 周虎
Priority to KR1020177034765A priority Critical patent/KR101997091B1/ko
Priority to EP16789262.9A priority patent/EP3293381A4/en
Priority to US15/571,044 priority patent/US10533518B2/en
Publication of WO2016177268A1 publication Critical patent/WO2016177268A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • F02G3/02Combustion-product positive-displacement engine plants with reciprocating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2258/00Materials used
    • F02G2258/20Materials used having heat insulating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/02Pistons for reciprocating and rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/55Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/85Crankshafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine, and more particularly to an internal combustion engine having an independent combustion chamber.
  • a piston type internal combustion engine does not have an independent combustion chamber, and fuel is burned in a cylinder to push the piston to work externally.
  • the energy utilization efficiency of the internal combustion engine is generally 20-40%, which is difficult to further improve. The main reason is that the compression ratio and the initial temperature of combustion are difficult to further increase.
  • combustion chambers of piston-operated internal combustion engines are intermittent combustion, and the increase of the compression ratio and the initial temperature of combustion tend to cause knocking and damage the internal combustion engine.
  • An object of the present invention is to provide an internal combustion engine that increases the compression ratio and the initial temperature of combustion without causing knocking damage to the working chamber.
  • the internal combustion engine of the invention adopts an independent combustion chamber, and the combustion chamber is made of high temperature resistant high pressure material, and the fuel is continuously combusted in the combustion chamber to generate high temperature and high pressure gas, which does not cause knocking damage to the internal combustion engine.
  • the invention consists of a combustion chamber, an air intake system, a feed system, and a work power system.
  • the intake system is connected to the combustion chamber and is responsible for delivering compressed air to the combustion chamber.
  • the feed system is connected to the combustion chamber and is responsible for delivering fuel to the combustion chamber.
  • the combustion chamber is fixed in volume and has no moving wall like a piston.
  • the fuel continues to burn in the combustion chamber, producing high temperature and high pressure gas, and the chemical energy of the fuel is converted into the internal energy of the high temperature and high pressure gas.
  • the work system is connected to the combustion chamber, and the piston of the work system performs work to convert the gas energy into mechanical energy.
  • the combustion chamber is made of a high temperature resistant high pressure material, which may be a high temperature resistant special steel, a high temperature resistant ceramic, or a high temperature resistant composite material, especially a carbon fiber ceramic composite material, a combustion chamber. At work, it has been in a state of high temperature and high pressure. Further, the combustion chamber may be coated with the heat insulating material on the outer wall, and the fireproof heat insulating material may be coated on the inner wall to avoid heat loss.
  • the intake system consists of an air compression system, an intake duct, and an intake valve.
  • the air compression system can be an air compression system linked to the work system or an independent air compression system, which can be a single stage. Compression can also be multi-stage compression, either a piston air compression system or a centrifugal air compression system.
  • the piston air compression system can be a reciprocating piston air compression system or a rotor piston air compression system.
  • the air compression system linked to the work system can be coaxial or not coaxial with the work system. Piston reciprocating air compression system linked to the work system can have independent compression cylinders
  • the independently operated air compression system can be either an electric air compression system or an independent internal combustion engine air compression system.
  • the air intake system may further provide a compressed air buffer device between the air compression system and the intake valve, and the buffer device may further have a heating device, the heating device preheats the compressed air of the buffer device, and the preheated compressed air passes through the intake air.
  • the valve enters the combustion chamber.
  • the heat of the heating device is derived from the exhaust gas discharged from the work system.
  • the feed system is mainly composed of a fuel storage device and a feed pump.
  • the fuel can be either a liquid fuel or a gaseous fuel.
  • the feed pump can be a continuous feed pump or a pulse feed pump, and can be a separate feed pump or a feed pump that is linked to the work system.
  • the independent feed pump can be an electric feed pump or a pneumatic feed pump.
  • the feed pump and the combustion chamber may be directly connected through a feed valve, or the feed pump may be connected to a buffer heating device and connected to the combustion chamber through a feed valve.
  • a feed system having a buffer heating device, the fuel entering the buffer heating device through the feed pump, the buffer heating device preheating the fuel entering the buffer device, and the preheated fuel enters the combustion chamber through the feed valve.
  • the heat of the buffer heating device is derived from the exhaust gas discharged from the work system.
  • the work system converts internal energy into mechanical energy
  • the work system can be a reciprocating piston work system or a rotor type piston work system.
  • the reciprocating piston work system can be a single cylinder system or a multi-cylinder system.
  • the multi-cylinders can be in-line or in pairs, or they can be V-shaped.
  • the reciprocating piston work system has only two strokes, one is the work stroke and the other is the exhaust stroke.
  • Each chamber with a working piston has an independent intake control valve that controls the flow rate of the high temperature and high pressure airflow and the on/off time as needed.
  • the working principle of the invention is: the intake system sends compressed air into the combustion chamber, the feed system sends fuel into the combustion chamber, the fuel is combusted in the combustion chamber, and the chemical energy of the fuel is converted into the internal energy of the high temperature and high pressure gas.
  • the high temperature and high pressure gas converts the internal energy into mechanical energy through the work of the piston of the work system.
  • the internal combustion engine continues to operate, the intake system continues to provide compressed air that is greater than the combustion chamber pressure, and the feed system continues to provide fuel that is stronger than the combustion chamber.
  • the internal combustion engine of the present invention has a relatively simple structure, a relatively convenient control, a high fuel combustion efficiency, and a high output power density.
  • 1 is a schematic view of an internal combustion engine having an independent combustion chamber.
  • FIG 2 is a schematic view of a working gas chamber having an independent intake control valve.
  • 21 is a work piston, 22 - exhaust valve, 23 - intake valve.
  • FIG. 3 is a schematic diagram of the linkage of the work system and the air compression system.
  • FIG. 4 is a schematic view of the cylinder and the piston of the work system and the cylinder and the piston of the air compression system.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is a rotor type piston work system
  • the air intake system 2 is a single stage rotor type piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is an inner wall.
  • a high temperature resistant alloy combustion chamber with a fire resistant thermal barrier coating detailed description
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is a single cylinder reciprocating piston work system
  • the intake system 2 is a single cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 It is a high temperature resistant alloy combustion chamber with a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is a V-arranged multi-cylinder reciprocating piston work system, and the intake system 2 is a multi-cylinder single-stage reciprocating piston air compression system linked with the work system, and the feed system 3 is an independent electric liquid fuel continuous feed.
  • the material system, the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a multi-cylinder single-stage reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal barrier coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is a rotor type piston work system
  • the air intake system 2 is a single stage rotor type piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is an inner wall. Fireproof Heat resistant alloy high temperature alloy combustion chamber.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a multi-cylinder multi-stage reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal barrier coating on the inner wall.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a rotor type piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is A high temperature resistant alloy combustion chamber with a fire resistant thermal barrier coating on the inner wall.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a centrifugal air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is an inner wall.
  • a high temperature resistant alloy combustion chamber with a fire resistant thermal barrier coating is provided.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work power system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is an independent electric centrifugal air compression system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is fireproofed on the inner wall. Thermal insulation coating Layer of high temperature resistant alloy combustion chamber.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is an independent electric single-stage reciprocating piston air compression system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is A high temperature resistant alloy combustion chamber with a fire resistant thermal barrier coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is an independent electric multi-stage reciprocating piston air compression system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is A high temperature resistant alloy combustion chamber with a fire resistant thermal barrier coating on the inner wall.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is an independent electric rotor type piston air compression system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 has an inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is an independent internal combustion engine air compression system
  • the feed system 3 is an independent electric liquid fuel continuous feed system
  • the combustion chamber 1 is fireproof and heat-insulated on the inner wall. Coated High temperature resistant alloy combustion chamber.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel pulse feed system.
  • the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal barrier coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system, and the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system, and the feed system 3 is continuous with the liquid fuel mechanically linked with the work system.
  • the material system, the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston working system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is a liquid fuel pulse that is mechanically linked with the work system.
  • the material system, the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric gas fuel continuous feed system.
  • Combustion chamber 1 It is a high temperature resistant alloy combustion chamber with a fireproof thermal insulation coating on the inner wall.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric gas fuel pulse feed system.
  • the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal barrier coating on the inner wall.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system, and the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system, and the feed system 3 is continuous with the gaseous fuel mechanically linked with the work system.
  • the material system, the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is a gas fuel pulse that is mechanically linked with the work system.
  • the material system, the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof thermal insulation coating on the inner wall.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 via an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 through a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • Combustion chamber 1 It is a high temperature ceramic combustion chamber.
  • the invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4, the combustion chamber 1 being fixed in volume and having an igniter 8 therein.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • the combustion chamber 1 is a high temperature resistant ceramic combustion chamber, and the combustion chamber is covered with an insulating material.
  • the present invention consists of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4.
  • the combustion chamber 1 is fixed in volume and has an igniter 8 inside.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • the combustion chamber 1 is a ceramic carbon fiber composite combustion chamber, and the combustion chamber is covered with a heat insulating material.
  • the present invention consists of an internal combustion engine and a generator.
  • the internal combustion engine is composed of a combustion chamber 1, an intake system 2, a feed system 3, and a work system 4.
  • the combustion chamber 1 is fixed in volume and has an igniter 8 inside.
  • the intake system 2 is connected to the combustion chamber 1 through an intake valve 5.
  • the feed system 3 is connected to the combustion chamber 1 via a feed valve 6.
  • the work system 4 is connected to the combustion chamber 1 through the power valve 7.
  • the work system 4 is an in-line multi-cylinder reciprocating piston work system
  • the intake system 2 is a single-stage multi-cylinder reciprocating piston air compression system linked with the work system
  • the feed system 3 is an independent electric liquid fuel continuous feed system.
  • the combustion chamber 1 is a high temperature resistant alloy combustion chamber having a fireproof and thermal insulation coating on the inner wall, and the combustion chamber is covered with a heat insulating material.
  • the generator is coaxial with the internal combustion engine.
  • the above embodiments are only some of the applications of the present invention, and the present invention can be implemented with more combinations of different combustion chambers, intake systems, feed systems, and work systems.
  • the internal combustion engine of the present invention can have a higher air compression ratio, can have a higher initial temperature, can better regulate the output power by controlling the work valve, and can be more energy efficient.
  • the internal combustion engine of the present invention can be used as an engine of a motor vehicle or as a power source of a generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

一种燃烧室独立的内燃机,由燃烧室(1)、进气系统(2)、进料系统(3)、做功系统(4)组成。进气系统(2)与燃烧室(1)相连,负责向燃烧室(1)输送压缩空气。进料系统(3)与燃烧室(1)相连,负责向燃烧室(1)输送燃料。燃烧室(1)体积固定,没有像活塞一样的活动壁,燃料在燃烧室(1)持续燃烧,产生高温高压气体,燃料的化学能转化为高温高压气体的内能。做功系统(4)与燃烧室(1)相连,做功系统(4)的活塞(21)做功将气体内能转化为机械能。

Description

一种燃烧室独立的内燃机
技术领域
[0001] 本发明涉及到一种内燃机, 特别是一种具有独立燃烧室的内燃机。
背景技术
[0002] 一般活塞式内燃机没有独立燃烧室, 燃料在气缸内燃烧, 推动活塞对外做功, 内燃机的能源利用效率一般在 20-40%, 很难进一步提高。 主要原因是压缩比和 燃烧初温难于进一步提高。
技术问题
[0003] 一般活塞做功内燃机的燃烧室都是间歇式燃烧, 提高压缩比和燃烧初温易引发 爆震现象, 损坏内燃机。
问题的解决方案
技术解决方案
[0004] 本发明的目的是提供一种提高压缩比和燃烧初温不会发生爆震损坏做功气室的 内燃机。 本发明的内燃机采用独立燃烧室, 燃烧室由耐高温高压材料制造, 燃 料在燃烧室内持续燃烧产生高温高压气体, 不会引发爆震现象损坏内燃机。 本 发明由燃烧室、 进气系统、 进料系统、 做功系统组成。 进气系统与燃烧室相连 , 负责向燃烧室输送压缩空气。 进料系统与燃烧室相连, 负责向燃烧室输送燃 料。 燃烧室体积固定, 没有像活塞一样的活动壁, 燃料在燃烧室持续燃烧, 产 生高温高压气体, 燃料的化学能转化为高温高压气体的内能。 做功系统与燃烧 室相连, 做功系统的活塞做功将气体内能转化为机械能。
[0005] 燃烧室由耐高温高压材料制造, 所述耐高温高压材料既可以是耐高温特种钢, 也可以是耐高温陶瓷, 也可以是耐高温复合材料, 特别是碳纤维陶瓷复合材料 , 燃烧室在工作吋一直处于高温高压状态。 进一步的, 燃烧室可以在外壁包覆 保温材料, 还可以在内壁涂覆耐火隔热材料, 避免热量流失。
[0006] 进气系统由空气压缩系统、 进气管道及进气阀门组成。 空气压缩系统可以是与 做功系统联动的空气压缩系统也可以是独立工作的空气压缩系统, 可以是单级 压缩也可以是多级压缩, 可以是活塞式空气压缩系统也可以是离心式空气压缩 系统。 活塞空气压缩系统可以是往复式活塞空气压缩系统, 也可以是转子式活 塞空气压缩系统。 与做功系统联动的空气压缩系统, 可以与做功系统共轴也可 以不共轴。 与做功系统联动的活塞往复式空气压缩系统可以有独立的压缩气缸
, 也可以是压缩气缸与做功系统的做功气缸连为一体。 独立工作的空气压缩系 统可以是电动空气压缩系统, 也可以是独立内燃机空气压缩系统。 进气系统还 可以在空气压缩系统与进气阀之间设置压缩空气缓冲装置, 缓冲装置还可以具 有加热装置, 加热装置对缓冲装置的压缩空气进行预热, 预热后的压缩空气通 过进气阀进入燃烧室。 加热装置的热量来源于做功系统排放的尾气。
[0007] 进料系统主要由燃料储存装置及进料泵组成。 燃料可以是液体燃料也可以是气 体燃料。 进料泵可以是连续进料泵也可以是脉冲式进料泵, 可以是独立进料泵 也可以是与做功系统联动的进料泵。 独立进料泵可以是电动进料泵也可以是气 动进料泵。 进料泵与燃烧室可以通过进料阀直接相连, 也可以是进料泵连接缓 冲加热装置再通过进料阀与燃烧室相连。 具有缓冲加热装置的进料系统, 燃料 通过进料泵进入缓冲加热装置, 缓冲加热装置对进入缓冲装置的燃料进行预热 , 预热后的燃料通过进料阀进入燃烧室。 缓冲加热装置的热量来源于做功系统 排放的尾气。
[0008] 做功系统将内能转化为机械能, 做功系统可以是往复式活塞做功系统, 也可以 是转子式活塞做功系统。 往复式活塞做功系统可以是单缸系统也可以是多缸系 统。 多缸可以是直列, 也可以是对列, 还可以是 V型排列。 往复式活塞做功系统 只有二个行程, 一个是做功行程, 一个是排气行程。 每个具有做功活塞的气室 有独立的进气控制阀门, 可以按需要控制高温高压气流的流速及通断吋间。
[0009] 本发明的工作原理是: 进气系统将压缩空气送入燃烧室, 进料系统将燃料送入 燃烧室, 燃料在燃烧室燃烧, 燃料的化学能转化为高温高压气体的内能, 高温 高压气体通过做功系统的活塞做功将内能转化为机械能。 内燃机持续工作, 进 气系统持续提供大于燃烧室压强的压缩空气, 进料系统持续提供压强大于燃烧 室的燃料。
发明的有益效果 有益效果
[0010] 本发明的内燃机结构相对简单、 控制相当方便、 燃料燃烧效率高、 输出功率密 度高。
对附图的简要说明
附图说明
[0011] 图 1是具有独立燃烧室的内燃机的示意图。
[0012] 其中 1一燃烧室、 2—进气系统、 3—进料系统、 4一做功系统、 5—进气阀、 6— 进料阀、 7_做功阀、 8—点火器。
[0013] 图 2是具有独立进气控制阀门的做功气室的示意图。
[0014] 其中 21一做功活塞、 22—排气阀、 23—进气阀。
[0015] 图 3是做功系统与空气压缩系统的联动共轴的示意图。
[0016] 其中 31_做功系统与空气压缩系统共用的主轴、 32_进气系统的空气压缩气缸
、 33_做功系统的做功气缸。
[0017] 图 4是做功系统的气缸与活塞与空气压缩系统的气缸与活塞连为一体的示意图
[0018] 其中 41_做功系统与空气压缩系统连为一体的气缸、 42_做功系统与空气压缩 系统连为一体的活塞、 43_做功系统的废气排气阀、 44_做功系统的高压气体 进气阀、 45_进气系统的自然空气进气阀、 6_进气系统的压缩气体出气阀。 实施该发明的最佳实施例
本发明的最佳实施方式
[0019] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 转子式活塞做功系统, 进气系统 2为与做功系统联动的单级转子式活塞空气压缩 系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火 隔热涂层的耐高温合金燃烧室。 具体实施方式
[0020] 实施例一
[0021] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 单气缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单缸往复式活塞空 气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁 有防火隔热涂层的耐高温合金燃烧室。
[0022] 实施例二
[0023] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 V 型排列的多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的多缸单级往 复式活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧 室 1为内壁有防火隔热涂层的耐高温合金燃烧室。
[0024] 实施例三
[0025] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的多缸单级往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1 为内壁有防火隔热涂层的耐高温合金燃烧室。
[0026] 实施例四
[0027] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 转子式活塞做功系统, 进气系统 2为与做功系统联动的单级转子式活塞空气压缩 系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火 隔热涂层的耐高温合金燃烧室。
[0028] 实施例五
[0029] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的多缸多级往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1 为内壁有防火隔热涂层的耐高温合金燃烧室。
[0030] 实施例六
[0031] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的转子式活塞空气 压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有 防火隔热涂层的耐高温合金燃烧室。
[0032] 实施例七
[0033] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的离心式空气压缩 系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火 隔热涂层的耐高温合金燃烧室。
[0034] 实施例八
[0035] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为独立的电动离心式空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火隔热涂 层的耐高温合金燃烧室。
[0036] 实施例九
[0037] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为独立的电动单级往复式活塞空气压 缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防 火隔热涂层的耐高温合金燃烧室。
[0038] 实施例十
[0039] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为独立的电动多级往复式活塞空气压 缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防 火隔热涂层的耐高温合金燃烧室。
[0040] 实施例十一
[0041] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为独立的电动转子式活塞空气压缩系 统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火隔 热涂层的耐高温合金燃烧室。
[0042] 实施例十二
[0043] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为独立的内燃机空气压缩系统, 进料 系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1为内壁有防火隔热涂层的 耐高温合金燃烧室。
[0044] 实施例十三
[0045] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料脉冲进料系统, 燃烧室 1 为内壁有防火隔热涂层的耐高温合金燃烧室。
[0046] 实施例十四
[0047] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为与做功系统机械联动的液体燃料连续进料系统 , 燃烧室 1为内壁有防火隔热涂层的耐高温合金燃烧室。
[0048] 实施例十五
[0049] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为与做功系统机械联动的液体燃料脉冲进料系统 , 燃烧室 1为内壁有防火隔热涂层的耐高温合金燃烧室。
[0050] 实施例十六
[0051] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动气体燃料连续进料系统, 燃烧室 1 为内壁有防火隔热涂层的耐高温合金燃烧室。
[0052] 实施例十七
[0053] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动气体燃料脉冲进料系统, 燃烧室 1 为内壁有防火隔热涂层的耐高温合金燃烧室。
[0054] 实施例十八
[0055] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为与做功系统机械联动的气体燃料连续进料系统 , 燃烧室 1为内壁有防火隔热涂层的耐高温合金燃烧室。
[0056] 实施例十九
[0057] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为与做功系统机械联动的气体燃料脉冲进料系统 , 燃烧室 1为内壁有防火隔热涂层的耐高温合金燃烧室。
[0058] 实施例二十
[0059] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1 为耐高温陶瓷燃烧室。
[0060] 实施例二十一
[0061] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成, 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1 为耐高温陶瓷燃烧室, 燃烧室外包覆有保温材料。
[0062] 实施例二十二
[0063] 本发明由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成。 燃烧室 1体积固 定, 内有点火器 8。 进气系统 2通过进气阀 5与燃烧室 1相连。 进料系统 3通过进料 阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与燃烧室 1相连。 其中做功系统 4为 直列多缸往复式活塞做功系统, 进气系统 2为与做功系统联动的单级多缸往复式 活塞空气压缩系统, 进料系统 3为独立的电动液体燃料连续进料系统, 燃烧室 1 为陶瓷碳纤维复合材料燃烧室, 燃烧室外包覆有保温材料。
[0064] 实施例二十三
[0065] 本发明由内燃机与发电机组成, 内燃机由燃烧室 1、 进气系统 2、 进料系统 3、 做功系统 4组成。 燃烧室 1体积固定, 内有点火器 8。 进气系统 2通过进气阀 5与燃 烧室 1相连。 进料系统 3通过进料阀 6与燃烧室 1相连。 做功系统 4通过做功阀 7与 燃烧室 1相连。 其中做功系统 4为直列多缸往复式活塞做功系统, 进气系统 2为与 做功系统联动的单级多缸往复式活塞空气压缩系统, 进料系统 3为独立的电动液 体燃料连续进料系统, 燃烧室 1为内壁有防火隔热涂层的耐高温合金燃烧室, 燃 烧室外包覆有保温材料。 发电机与内燃机共轴。
[0066] 上述实施例只是本发明的部分应用, 不同的燃烧室、 进气系统、 进料系统、 做 功系统有更多的组合, 都能实现本发明。 本发明所述的内燃机可以有更高的空 气压缩比, 可以有更高的初温, 可以通过控制做功阀门更好地调节输出功率, 与可以更加节能。
工业实用性 [0067] 本发明的内燃机可以作为机动车辆的发动机, 也可以作为发电机的动力源。

Claims

权利要求书
[权利要求 1] 一种活塞式内燃机, 主要由燃烧室、 进气系统、 进料系统、 做功系统 组成, 其特征在于进气系统、 进料系统、 做功系统分别与燃烧室连接 , 燃烧室内空间固定, 燃烧室与做功系统在空间上是分离的, 燃料在 燃烧室完成将化学能转化为内能的过程, 做功介质通过做功系统做功 完成将内能转化为机械能的过程, 燃烧室在内燃机工作期间始终处于 高温高压状态, 进气压强大于做功介质压强。
权利要求 2] 根据权利要求 1所述的内燃机, 其特征在于燃烧室外壁包覆保温材料 进行保温。
权利要求 3] 根据权利要求 1所述的内燃机, 其特征在于燃烧室内壁涂覆耐火隔热 材料。
权利要求 4] 根据权利要求 1所述的内燃机, 其特征在于空气压缩系统与做功系统 联动且共用主轴。
权利要求 5] 根据权利要求 1所述的内燃机, 其特征在于进料系统是独立的电动进 料系统。
权利要求 6] 根据权利要求 1所述的内燃机, 其特征在于做功气室有独立控制阀门
, 可以按需要控制做功介质的流速与通断吋间。
权利要求 7] 根据权利要求 6所述的内燃机, 其特征在于做功系统与空气压缩系统 同为往复式活塞系统, 且空气压缩系统与做功系统的气缸连为一体。 权利要求 8] 根据权利要求 1所述的内燃机, 其特征在于进气系统的空气压缩机与 燃烧室之间有压缩空气缓冲装置。
权利要求 9] 根据权利要求 8所述的内燃机, 其特征在于缓冲装置具有加热功能, 热量来源于做功系统的排放废气。
权利要求 10] 一种内燃发电机, 其特征在于其发电动力来源于权利要求书 1所述的 内燃机。
PCT/CN2016/079527 2015-05-02 2016-04-18 一种燃烧室独立的内燃机 WO2016177268A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177034765A KR101997091B1 (ko) 2015-05-02 2016-04-18 연소실이 독립된 내연기관
EP16789262.9A EP3293381A4 (en) 2015-05-02 2016-04-18 Internal combustion engine having independent combustion chamber
US15/571,044 US10533518B2 (en) 2015-05-02 2016-04-18 Internal combustion engine having independent combustion chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510216187.3A CN104819048A (zh) 2015-05-02 2015-05-02 一种燃烧室独立的内燃机
CN201510216187.3 2015-05-02

Publications (1)

Publication Number Publication Date
WO2016177268A1 true WO2016177268A1 (zh) 2016-11-10

Family

ID=53729487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079527 WO2016177268A1 (zh) 2015-05-02 2016-04-18 一种燃烧室独立的内燃机

Country Status (5)

Country Link
US (1) US10533518B2 (zh)
EP (1) EP3293381A4 (zh)
KR (1) KR101997091B1 (zh)
CN (1) CN104819048A (zh)
WO (1) WO2016177268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819048A (zh) * 2015-05-02 2015-08-05 周虎 一种燃烧室独立的内燃机
US11753988B2 (en) 2018-11-30 2023-09-12 David L. Stenz Internal combustion engine configured for use with solid or slow burning fuels, and methods of operating or implementing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2349360Y (zh) * 1998-02-23 1999-11-17 高富 活塞式双气缸循环内燃机
US20040226523A1 (en) * 2003-03-14 2004-11-18 Peter Kreuter Internal combustion engines having double cylinder units
CN101566095A (zh) * 2009-05-23 2009-10-28 王勇 主副缸式发动机
CN102536428A (zh) * 2003-06-03 2012-07-04 克里尔·卢普有限公司 内燃机及增强发动机性能的方法
CN102966430A (zh) * 2012-11-15 2013-03-13 上海交通大学 缸套运动式内燃发电机系统
CN104819048A (zh) * 2015-05-02 2015-08-05 周虎 一种燃烧室独立的内燃机

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE14066C (de) * G. STOFF in Frankfurt a. Oder Motor für Gas oder Petroleum
DE17253C (de) * E. C. ROETTGER in Brüssel Apparat zur Gaserzeugung und Verwendung desselben zur Erzeugung bewegender Kraft
US972504A (en) * 1908-03-23 1910-10-11 Walter F Brown Continuous-combustion heat-engine.
GB191506353A (en) * 1914-04-28 1916-05-29 Lucien Neu Improvements in and relating to Hot Air and the like Motive Power Plant.
US2688230A (en) * 1950-08-30 1954-09-07 Milliken Humphreys Continuous combustion engine
US4024702A (en) * 1970-09-23 1977-05-24 Perry David Hudson Combustion products pressure generators continuous burner type and engines
SE366092B (zh) * 1973-01-02 1974-04-08 T Airas
US4653269A (en) * 1975-03-14 1987-03-31 Johnson David E Heat engine
US4179879A (en) * 1976-04-21 1979-12-25 Kincaid Elmo Jr Automatic steam pressure generator
JPS62214256A (ja) * 1986-03-17 1987-09-21 Jinichi Nishiwaki 独立燃焼室型エンジン
JPS62243916A (ja) * 1986-04-12 1987-10-24 Isuzu Motors Ltd 内燃機関の燃焼室
DE4237826A1 (de) * 1992-11-10 1994-05-11 Klaus Dr Roth Verfahren und Vorrichtung zur Gewinnung mechanischer Energie aus Wärme
US5381660A (en) * 1993-04-06 1995-01-17 Hughes Aircraft Company Engine exhaust reburner system and method
FR2748776B1 (fr) * 1996-04-15 1998-07-31 Negre Guy Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
CN1158940A (zh) * 1997-03-06 1997-09-10 朱荣辉 内燃机的循环工作方法及实施该方法的装置
JP3828239B2 (ja) * 1997-05-22 2006-10-04 三菱電機株式会社 燃料噴射用インジェクタの制御装置
US6092365A (en) * 1998-02-23 2000-07-25 Leidel; James A. Heat engine
FR2779480B1 (fr) * 1998-06-03 2000-11-17 Guy Negre Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnant en mono energie, ou en bi energie bi ou tri modes d'alimentation
US6170441B1 (en) * 1998-06-26 2001-01-09 Quantum Energy Technologies Engine system employing an unsymmetrical cycle
US6401458B2 (en) * 2000-02-28 2002-06-11 Quoin International, Inc. Pneumatic/mechanical actuator
US6230670B1 (en) * 2001-03-28 2001-05-15 Robert L. Russell Engine generator
KR200288317Y1 (ko) * 2002-05-24 2002-09-10 김창선 단열 처리된 엔진
DE102007047280A1 (de) * 2007-10-02 2009-04-16 Volkswagen Ag Heißgasmaschine sowie Verfahren zu deren Betrieb
CN102667062B (zh) * 2009-07-24 2016-02-10 热力驱动系统有限责任公司 轴向活塞式发动机、用于使轴向活塞式发动机运行的方法以及用于制造轴向活塞式发动机的热交换器的方法
JP5650504B2 (ja) * 2010-11-19 2015-01-07 ニチアス株式会社 シリンダボア壁の保温構造体、内燃機関及び自動車
CN103133178B (zh) * 2011-12-01 2015-08-19 摩尔动力(北京)技术股份有限公司 双通道熵循环发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2349360Y (zh) * 1998-02-23 1999-11-17 高富 活塞式双气缸循环内燃机
US20040226523A1 (en) * 2003-03-14 2004-11-18 Peter Kreuter Internal combustion engines having double cylinder units
CN102536428A (zh) * 2003-06-03 2012-07-04 克里尔·卢普有限公司 内燃机及增强发动机性能的方法
CN101566095A (zh) * 2009-05-23 2009-10-28 王勇 主副缸式发动机
CN102966430A (zh) * 2012-11-15 2013-03-13 上海交通大学 缸套运动式内燃发电机系统
CN104819048A (zh) * 2015-05-02 2015-08-05 周虎 一种燃烧室独立的内燃机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3293381A4 *

Also Published As

Publication number Publication date
EP3293381A1 (en) 2018-03-14
US10533518B2 (en) 2020-01-14
CN104819048A (zh) 2015-08-05
KR20180008527A (ko) 2018-01-24
KR101997091B1 (ko) 2019-07-05
US20180163662A1 (en) 2018-06-14
EP3293381A4 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN202745952U (zh) 低熵混燃气体液化物引射充气发动机
WO2016177268A1 (zh) 一种燃烧室独立的内燃机
CN102562292A (zh) 三类气门气体压缩机
CN105386875A (zh) 涡轮活塞混合动力系统
EP3728815B1 (en) System and method for generating power
RU78527U1 (ru) Поршневой двигатель
RU2675427C1 (ru) Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода
CN202228175U (zh) 低温进气发动机
CN102748085B (zh) 充气爆排发动机直控阀
CN102168613B (zh) 万能燃料发动机
RU2431752C1 (ru) Способ оптимизации процесса расширения продуктов сгорания свободнопоршневого генератора газов с внешней камерой сгорания
RU176215U1 (ru) Вторичный паросиловой контур двс транспортного средства
UA151742U (uk) Поршневий тепловий двигун з індукційним підігрівом повітря вхідного каналу
UA151743U (uk) Спосіб роботи поршневого теплового двигуна з індукційним підігрівом повітря у вхідному каналі
RU155349U1 (ru) Теплоэнергетическая установка с разделенными процессами сжатия и расширения
CN107387239B (zh) 一种八缸自增压发动机
CN104929761A (zh) 一种固体燃料内燃机
SU114827A1 (ru) Комбинированна газотурбинна установка со свободно-поршневыми генераторами газа и способ регулировани ее
RU2548528C1 (ru) Способ оптимизации процесса расширения продуктов сгорания газораспределительными клапанами в цилиндрах свободнопоршневого с оппозитным движением поршней энергомодуля, соединенных с поршнями компрессора сжатия газов
CN1201865A (zh) 一种内燃蒸气发动机
RU2624076C1 (ru) Способ генерирования электроэнергии однотактным двигателем с внешней камерой сгорания энергией сжимаемого в компрессорных полостях поршней воздуха
JPH1054306A (ja) 内燃式蒸気機関
WO2015034448A1 (en) A combustion system with a heat recovery unit
CN204003106U (zh) 一种工业天然气分布式供能系统
RU2474706C1 (ru) Комбинированный свободнопоршневой электрогазогенератор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15571044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034765

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016789262

Country of ref document: EP