WO2016177203A1 - 一种管道降噪系统及方法 - Google Patents

一种管道降噪系统及方法 Download PDF

Info

Publication number
WO2016177203A1
WO2016177203A1 PCT/CN2016/077729 CN2016077729W WO2016177203A1 WO 2016177203 A1 WO2016177203 A1 WO 2016177203A1 CN 2016077729 W CN2016077729 W CN 2016077729W WO 2016177203 A1 WO2016177203 A1 WO 2016177203A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
microphone
noise
signal
noise reduction
Prior art date
Application number
PCT/CN2016/077729
Other languages
English (en)
French (fr)
Inventor
徐宗财
李帅
王标华
邹海山
马进
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177203A1 publication Critical patent/WO2016177203A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone

Definitions

  • the present application relates to the field of noise control, for example, to a pipeline noise reduction system and method.
  • Ventilation duct noise is a common noise in daily life, such as the exhaust duct of a factory, the exhaust duct of an indoor transformer, and the noise in a ventilation duct of a communication cabinet.
  • the traditional noise reduction method is passive noise reduction, such as filling the pipe wall with sound absorbing material.
  • the sound absorbing material can better suppress high frequency noise, the low frequency noise cancellation performance is generally not limited by the volume and pressure loss.
  • the thickness of the sound absorbing material is thick, which will occupy the space inside the pipeline, thereby affecting the airflow in the pipeline and hindering the ventilation and heat dissipation function of the pipeline.
  • Embodiments of the present invention provide a pipeline noise reduction system and method to solve the problem of passive noise reduction occupying pipeline volume.
  • Embodiments of the present invention provide a pipeline noise reduction system, including: a reference microphone disposed in a pipeline close to a noise source, and an error microphone near the end of the pipeline, a controller, a secondary sound source disposed on the pipeline; and control
  • the device is configured to acquire a noise signal collected by the reference microphone and the error microphone, generate a control signal and transmit the signal to the secondary sound source, and the secondary sound source emits noise according to the control signal;
  • the reference microphone includes at least two microphones.
  • a preamplifier can also be included.
  • the preamplifier is disposed between the controller and the reference microphone and the error microphone and is configured to amplify the noise signal.
  • a power amplifier may also be included, the power amplifier being disposed between the controller and the secondary sound source, configured to amplify the control signal, and the control signal is a muffling signal.
  • the error microphone can be placed at the end of the pipe, and the secondary sound source can be placed at the side of the pipe from the pipe.
  • the position of the end of the quarter pipe length, the reference microphone can be placed in the pipe near the noise source.
  • the distance between the secondary sound source and the reference microphone may be not less than the product of the controller's delay and the speed of sound.
  • the controller may be configured to perform a weighted linear operation on different signals collected by the at least two microphones to obtain a reference signal, and obtain a control signal according to the end noise signal of the pipeline collected by the error microphone and the reference signal.
  • the reference microphone may comprise two microphones, one of which is next to the noise source of the pipe and the other of which is one quarter of the length of the noise source.
  • Both microphones can be placed on the centerline of the pipe, and both can be omnidirectional microphones.
  • the embodiment of the invention also provides a pipeline noise reduction method, which can be applied to the pipeline noise reduction system provided by the invention.
  • the pipeline noise reduction method includes: the controller acquires a noise signal collected by the reference microphone and the error microphone, generates a control signal and transmits the signal to the secondary sound source; and the secondary sound source emits sound and noise according to the control signal.
  • the controller may generate the control signal by performing weighted linear operation on different signals collected by the at least two microphones to obtain a reference signal, and calculating a control signal according to the end noise signal of the pipeline collected by the error microphone and the reference signal.
  • the new pipeline noise reduction method provided by the embodiment of the invention can effectively suppress the one-dimensional plane acoustic wave propagating along the pipeline by using the active noise control technology, and has small volume and low pressure loss, which can effectively compensate for the shortage of passive noise reduction, and Using a multi-microphone to obtain a reference signal can improve signal quality and improve system noise reduction performance.
  • FIG. 1 is a schematic structural view of a pipeline noise reduction system according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a pipeline noise reduction method according to a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pipeline noise reduction system according to a third embodiment of the present invention.
  • Figure 4 is a schematic view showing the placement position of each device in the third embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a pipeline noise reduction system according to a first embodiment of the present invention.
  • the pipeline noise reduction system 1 provided by the present invention includes:
  • the controller 13 is configured to acquire a reference microphone 11 and the noise signal collected by the error microphone 12, generating a control signal and transmitting it to the secondary sound source 14, the secondary sound source 14 sounds noise reduction according to the control signal;
  • the reference microphone 11 includes at least two microphones.
  • the pipeline noise reduction system 1 of the above embodiment further includes a preamplifier disposed between the controller 13 and the reference microphone 11 and the error microphone 12, configured to amplify the noise signal.
  • the pipeline noise reduction system 1 in the above embodiment further includes a power amplifier disposed between the controller 13 and the secondary sound source 14 and configured to amplify the control signal, and the control signal is a noise cancellation signal.
  • the error microphone 12 in the above embodiment is disposed at the end of the pipe 2, and the secondary sound source 14 is disposed at a position where the side wall of the pipe 2 is a quarter of the length of the pipe end, and the reference microphone 11 is disposed in the pipe 2. Inside the noise source 3 position.
  • the distance between the secondary sound source 14 and the reference microphone 11 in the above embodiment is not less than the product of the delay of the controller 12 (including circuit and algorithm delay) and the speed of sound.
  • the controller 13 in the above embodiment is configured to perform weighted linear operations on different signals collected by at least two microphones to obtain a reference signal, which is calculated according to the end noise signal of the pipeline collected by the error microphone and the reference signal. Get the control signal.
  • the reference microphone 11 in the above embodiment includes two microphones, one of which is in close proximity to the noise source 3 of the pipe 2 and the other of which is one quarter of the length of the noise source.
  • the two microphones in the above embodiments are all disposed on the centerline of the pipe and are all omnidirectional microphones.
  • FIG. 2 is a flow chart of a pipeline noise reduction according to a second embodiment of the present invention.
  • the pipeline noise reduction method provided by the present invention includes the following steps:
  • S201 the controller acquires a noise signal collected by the reference microphone and the error microphone, generates a control signal, and transmits the signal to the secondary sound source;
  • S202 The secondary sound source is audible and noise-reduced according to the control signal.
  • the controller in the above embodiment generates the control signal by performing weighted linear operation on different signals collected by the at least two microphones to obtain a reference signal, the end noise signal of the pipeline and the reference signal according to the error microphone. Calculate the control signal.
  • a communication device has a pipe 2 configured to ventilate and dissipate heat, and the noise source 3 is a fan configured to ventilate and dissipate heat.
  • the pipeline noise reduction system 1 is composed of a reference microphone 11, an error microphone 12, a secondary sound source 14, and a controller 13.
  • the signals collected by the reference microphone 11 and the error microphone 12 are in the controller.
  • the amplification by the preamplifier 15 is first performed, and the output signal produced by the controller 13 needs to be amplified by the power amplifier 16 before entering the secondary sound source 14.
  • both the reference microphone 11 and the error microphone 12 use an omnidirectional electret microphone, and the secondary sound source 14 uses a speaker.
  • the reference microphone 11 and the error microphone 12 are fixed at the center of the pipe by a bracket. It is on the same line as the center of the noise source 3.
  • the reference microphone 11 is composed of two microphones, one close to the noise source 3 and the other from the noise source 3 about 1/4L, where L is the length of the pipe.
  • the secondary sound source 14 is located at a distance of 1/4L from the nozzle, and the error microphone 12 is placed at the pipe mouth to reduce the influence of the standing wave reflected by the end of the pipe.
  • the linear distance Xrc of the reference microphone 11 and the secondary sound source 14 is satisfied. Xrc/c>t0, c is the speed of sound, and t0 is the circuit and algorithm delay of the controller.
  • the controller 13 is configured to control the output of its corresponding secondary sound source 14 to minimize the square of the sound pressure amplitude at its corresponding error microphone 12.
  • omnidirectional microphones are less sensitive to airflow noise than unidirectional, and can also be passed Add a wind cone structure to reduce the effects of airflow noise.
  • the reference microphone 11 uses an omnidirectional microphone
  • the secondary source 14 produces a large secondary acoustic feedback to the reference microphone 11.
  • the reference signal collected by the omnidirectional microphone under the influence of the secondary acoustic feedback is:
  • Zr, Zf are the transfer function of the noise source 3 to the reference microphone 11, and the secondary sound source 14 to the reference microphone 11, k is the wave number, and R1 and R2 are the reflection coefficients of the sound source end and the end of the pipe, respectively.
  • the first term is the original reference signal collected by the reference microphone 11 from the noise source 3
  • the second term is the secondary
  • the useless reference signal (secondary sound feedback signal) from the sound source 14 to the reference microphone 11 when the first term is much smaller than the second term, the reference signal collected by the reference microphone 11 is from the secondary acoustic feedback, and the reference signal is controlled
  • the output of the controller 13 is again fed back into the reference microphone 11, thereby forming a loop that affects the stability of the system and the noise reduction performance.
  • the present embodiment uses a dual reference microphone to obtain the original reference signal, and after the operation is sent to the controller 13, the operation can be realized by an analog circuit, for example, the signals of the two microphones are converted into a signal by using an adder.
  • the input controller can also be implemented by software.
  • the signals of the two microphones are divided into two input controllers, which can be operated on the interface chip of the controller (such as fpga, plc, etc.) (similar to the adder), or can be input.
  • the algorithm is used for operations, such as direct addition/weighted addition, and so on.
  • One of the reference microphones is in close proximity to the noise source 3, and the other reference microphone is located at a distance KL from the noise source 3, L is the length of the pipe, and K is a coefficient between 0 and 3/4L.
  • the sound pressure measured at the two reference points is averaged as a reference signal to the controller 13, which can be implemented by an analog circuit or by a software program in the digital chip of the controller.
  • the original reference signal at this time is:
  • the two reference microphones When adopting the above reference microphone distribution mode, according to the signals collected by the two reference microphones and the reference signals obtained by using the dual microphone signals, it can be known that in the low frequency band below 600 Hz, the two reference microphones respectively have many valley points, but two The valleys of the people do not coincide.
  • the signal using any one of the reference microphones alone is used as the reference signal, and the noise reduction effect at the reference signal valley frequency is not good, thereby affecting the noise reduction effect of the entire frequency band.
  • the sound pressure level of the valley point obtained by using the double microphone operation is greatly improved, and the lifting amount is about 20 dB, so that the pollution of the reference signal by the secondary sound feedback and the influence on the control result can be greatly reduced.
  • the signals of the two reference microphones are averaged as reference signals, and other linear operations, such as weighted averaging, may be applied according to the signal spectra of the two reference microphones to obtain a more ideal noise reduction effect.
  • Active noise control technology can effectively suppress one-dimensional plane acoustic waves propagating along the pipeline. Its small volume and low pressure loss can effectively compensate for the lack of passive noise reduction. Moreover, using multi-microphones to obtain reference signals can improve signal quality. Improve the noise reduction performance of the system.
  • the present application provides a pipeline noise reduction system and method, the pipeline noise reduction system comprising: a reference microphone disposed in the pipeline close to the noise source, and an error microphone near the end of the pipeline, a controller, and a secondary disposed on the pipeline The sound source; the controller is configured to acquire the noise signal collected by the reference microphone and the error microphone, generate a control signal and transmit the signal to the secondary sound source, and the secondary sound source emits noise according to the control signal; the reference microphone includes at least two microphones. Active noise control technology can effectively suppress one-dimensional plane acoustic waves propagating along the pipeline. Its small volume and low pressure loss can effectively compensate for the lack of passive noise reduction. Moreover, using multi-microphones to obtain reference signals can improve signal quality. Improve the noise reduction performance of the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种管道降噪系统(1)及方法,该管道降噪系统(1)包括:设置于管道(2)内的靠近噪声源(3)的参考传声器(11)、及靠近管道(2)末端的误差传声器(12),控制器(13),设置于管道(2)上的次级声源(14);控制器(13)被配置为获取参考传声器(11)及误差传声器(12)采集的噪声信号,生成控制信号并传输至次级声源(14),次级声源(14)根据控制信号发声降噪;参考传声器(11)包括至少两个传声器。采用有源噪声控制技术可以有效抑制沿管道传播的一维平面声波,其体积小,压损低,可以有效弥补被动降噪的不足,并且,使用多传声器获取参考信号,可以提升信号质量,从而提高系统的降噪性能。

Description

一种管道降噪系统及方法 技术领域
本申请涉及噪声控制领域,例如涉及一种管道降噪系统及方法。
背景技术
通风管道噪声是日常生活中一种常见的噪声,例如工厂的排气管道、室内变压器的通风排气管道、通讯机箱的通风散热管道中的噪声。传统的降噪方法为被动降噪,比如使用吸声材料填充管道壁,然而吸声材料虽然可以较好的抑制高频噪声,但受体积和压损的限制,其低频消声性能一般并不理想;此外,为获得较大的吸声量,吸声材料厚度较厚,会挤占管道内的空间,从而影响管道中的气流传播,妨碍管道的通风散热功能。
因此,如何提供一种不占用管道内体积的管道降噪方法,是本领域技术人员亟待解决的技术问题。
发明内容
本发明实施例提供了一种管道降噪系统及方法,以解决被动降噪占用管道体积的问题。
本发明实施例提供了一种管道降噪系统,其包括:设置于管道内的靠近噪声源的参考传声器、及靠近管道末端的误差传声器,控制器,设置于管道上的次级声源;控制器被配置为获取参考传声器及误差传声器采集的噪声信号,生成控制信号并传输至次级声源,次级声源根据控制信号发声降噪;参考传声器包括至少两个传声器。
还可以包括前置放大器,前置放大器设置于控制器与参考传声器及误差传声器之间,被配置为放大噪声信号。
还可以包括功率放大器,功率放大器设置于控制器与次级声源之间,被配置为放大控制信号,控制信号为消声信号。
误差传声器可以设置于管道末端,次级声源可以设置于管道侧壁距离管道 末端四分之一管道长度的位置,参考传声器可以设置于管道内靠近噪声源的位置。
次级声源与参考传声器之间的距离可以不小于控制器的时延与声速之积。
控制器可以被配置为将至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据误差传声器采集的管道的末端噪声信号、及参考信号计算获得控制信号。
参考传声器可以包括两个传声器,其中一传声器紧靠管道的噪声源,另一传声器距离噪声源四分之一管道长度。
两个传声器均可以设置于管道的中心线上,且均可以为全指向性传声器。
本发明实施例还提供了一种管道降噪方法,其可适用于本发明提供的管道降噪系统。所述管道降噪方法包括:控制器获取参考传声器及误差传声器采集的噪声信号,生成控制信号并传输至次级声源;次级声源根据控制信号发声降噪。
控制器生成控制信号可以包括:将至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据误差传声器采集的管道的末端噪声信号、及参考信号计算获得控制信号。
本发明实施例的有益效果:
本发明实施例提供的新的管道降噪方法,采用有源噪声控制技术可以有效抑制沿管道传播的一维平面声波,其体积小,压损低,可以有效弥补被动降噪的不足,并且,使用多传声器获取参考信号,可以提升信号质量,从而提高系统的降噪性能。
附图概述
图1为本发明第一实施例提供的管道降噪系统的结构示意图;
图2为本发明第二实施例提供的管道降噪方法的流程图;
图3为本发明第三实施例提供的管道降噪系统的结构示意图;
图4为本发明第三实施例中各器件的放置位置示意图。
本发明的实施方式
现通过实施方式结合附图的方式对本发明进行说明。
第一实施例:
图1为本发明第一实施例提供的管道降噪系统的结构示意图,由图1可知,在本实施例中,本发明提供的管道降噪系统1包括:
设置于管道2内的靠近噪声源3的参考传声器11、及靠近管道2末端的误差传声器12,控制器13,设置于管道2上的次级声源14;控制器13被配置为获取参考传声器11及误差传声器12采集的噪声信号,生成控制信号并传输至次级声源14,次级声源14根据控制信号发声降噪;参考传声器11包括至少两个传声器。
在一些实施例中,上述实施例中的管道降噪系统1还包括前置放大器,前置放大器设置于控制器13与参考传声器11及误差传声器12之间,被配置为放大噪声信号。
在一些实施例中,上述实施例中的管道降噪系统1还包括功率放大器,功率放大器设置于控制器13与次级声源14之间,被配置为放大控制信号,控制信号为消声信号。
在一些实施例中,上述实施例中的误差传声器12设置于管道2末端,次级声源14设置于管道2侧壁距离管道末端四分之一管道长度的位置,参考传声器11设置于管道2内靠近噪声源3位置。
在一些实施例中,上述实施例中的次级声源14与参考传声器11之间的距离不小于控制器12的时延(包括电路及算法时延)与声速之积。
在一些实施例中,上述实施例中的控制器13被配置为将至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据误差传声器采集的管道的末端噪声信号、及参考信号计算获得控制信号。
在一些实施例中,上述实施例中的参考传声器11包括两个传声器,其中一传声器紧靠管道2的噪声源3,另一传声器距离噪声源四分之一管道长度。
在一些实施例中,上述实施例中的两个传声器均设置于管道的中心线上,且均为全指向性传声器。
第二实施例:
图2为本发明第二实施例提供的管道降噪的流程图,由图2可知,在本实施例中,本发明提供的管道降噪方法包括以下步骤:
S201:控制器获取参考传声器及误差传声器采集的噪声信号,生成控制信号并传输至次级声源;
S202:次级声源根据控制信号发声降噪。
在一些实施例中,上述实施例中的控制器生成控制信号包括:将至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据误差传声器采集的管道的末端噪声信号、及参考信号计算获得控制信号。
现结合应用场景对本发明实施例进行说明。
第三实施例:
在本实施例内,以某通讯设备有一被配置为通风散热的管道2,噪声源3为被配置为通风散热的风扇为运用场景。
如图3及图4所示,管道降噪系统1由参考传声器11、误差传声器12、次级声源14、控制器13组成;由参考传声器11、误差传声器12采集到的信号在进入控制器13之前,首先经过前置放大器15的放大,而控制器13产生的输出信号在进入次级声源14之前,需要经过功率放大器16的放大。
本实施例中,参考传声器11、误差传声器12均使用全指向驻极体性传声器,次级声源14使用扬声器。
在本实施例中,参考传声器11、误差传声器12用支架固定在管道中心位置, 与噪声源3的中心位于同一条直线上。
参考传声器11共有两个传声器构成,一个紧贴噪声源3,另一个距离噪声源3约1/4L处,其中L为管道长度。
次级声源14位于距离管口1/4L处,误差传声器12放置于管道口处,以减小管道末端反射产生驻波的影响,参考传声器11与次级声源14的直线距离Xrc需满足Xrc/c>t0,c为声速,t0为控制器的电路与算法时延。
控制器13被配置为控制其对应的次级声源14的输出,以使其对应的误差传声器12处的声压幅值平方最小。
如图4所示,误差传声器12处的声压pe包含两部分,一是噪声源3产生的声压pne,二是次级声源14产生的声压pce,pce=pnr.W.Zc,其中pnr为参考传声器11处的声压,W为参考传声器11的声压到次级声源14输入电信号的传递函数,Zc为次级声源14的输入电信号到误差传声器12的声压的传递函数。
取pe幅值平方最小,对单通道系统而言,即pe为0,由
pe=pne+pce=pne+pnr.W.Zc=0可得:
W=-pne/(pnr.Zc);
传递函数Zc在使用前通过离线建模方式测得,pne由误差传声器12测得,pnr由参考传声器11测得,由式W=-pne/(pnr.Zc)计算出W的值,并计算出(pnr.W)以驱动次级声源14,使误差传声器12处声压幅值平方最小,控制器13采用前馈单通道自适应控制算法。
在实际运用中,由于通风管道中一般有较大速度的气流,将产生气流噪声,单指向型传声器相对于全指向传声器对气流噪声更为敏感,所采集到的信号将产生较大的污染,故在此应用场景不宜使用单指向传声器。
使用全指向型传声器,相对单指向而言对气流噪声较不敏感,还可以通过 添加风锥结构以减小气流噪声的影响。
然而参考传声器11若使用全指向型传声器,次级声源14会对参考传声器11产生很大的次级声反馈。此时,全指向型传声器在次级声反馈影响下采集到的的参考信号为:
pnr=qpZr(ω,xr)+qcZf(ω,xr);
Figure PCTCN2016077729-appb-000001
Figure PCTCN2016077729-appb-000002
其中Zr,Zf分别为噪声源3到参考传声器11,以及次级声源14到参考传声器11的传递函数,k为波数,R1,R2分别为声源端以及管道末端的反射系数。
pnr=qpZr(ω,xr)+qcZf(ω,xr)式中第一项为参考传声器11从噪声源3采集到的原始参考信号,第二项为次级声源14到参考传声器11的无用参考信号(次级声反馈信号),当第一项远小于第二项时,参考传声器11采集到的参考信号来自于次级声反馈,而参考信号经过控制器13处理后,控制器13的输出又会重新反馈到参考传声器11中,从而形成一个回路,影响系统的稳定性以及降噪性能。
因此,为解决这一问题,需提高原始参考信号在总参考信号中所占据的比例,即提升原始参考信号谷点频率所对应的声压级。
对此,本实施例采用双参考传声器以获取原始参考信号,经过运算后再送给控制器13,运算可以通过模拟电路实现,比如,将两个传声器的信号使用加法器进行运算后变成一路信号输入控制器,也可以通过软件实现,比如,两个传声器的信号分两路输入控制器,可以在控制器的接口芯片(如fpga,plc等)进行运算(类似加法器),也可以在输入到DSP后用算法进行运算,如直接相加/加权相加,等等。
其中一个参考传声器紧贴噪声源3,另一个参考传声器距离噪声源3的距离为KL,L为管道长度,K为系数,在0~3/4L之间。对两个参考点测得的声压取平均值作为参考信号输入到控制器13,这一过程可以通过模拟电路实现,也可以通过控制器中数字芯片内的软件程序实现。
此时原始参考信号为:
Figure PCTCN2016077729-appb-000003
根据不同K值条件下对两个参考点测得的声压取平均值得到的参考信号可知,K=0.25即两个参考传声器相距L/4时,参考信号谷点频率对应的声压级最大,所以系统中参考传声器间距设置为L/4。
在采取以上参考传声器分布方式时,根据两个参考传声器各自采集到的信号以及使用双传声器信号运算得到的参考信号可知,在600Hz以下低频段,两个参考传声器分别都有许多谷点,但二者的谷点交错不重合。
因此,使用任何一个参考传声器的信号独自作为参考信号,在参考信号谷点频率处的降噪效果都不好,进而影响全频段的降噪效果。
使用双传声器运算得到的参考信号的谷点声压级大幅提升,提升量在20dB左右,从而可以很大程度的减弱次级声反馈对参考信号的污染以及对控制结果的影响。
本实施例将两个参考传声器的信号取平均值作为参考信号,也可以根据这两个参考传声器的信号频谱施加其他线性运算,如加权平均,以获得更理想的降噪效果。
综上可知,通过本发明实施例的实施,至少存在以下有益效果:
采用有源噪声控制技术可以有效抑制沿管道传播的一维平面声波,其体积小,压损低,可以有效弥补被动降噪的不足,并且,使用多传声器获取参考信号,可以提升信号质量,从而提高系统的降噪性能。
以上仅是本发明的实施方式而已,并非对本发明做任何形式上的限制,凡是依据本发明实施例对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本发明技术方案的保护范围。
工业实用性
本申请提供了一种管道降噪系统及方法,该管道降噪系统包括:设置于管道内的靠近噪声源的参考传声器、及靠近管道末端的误差传声器,控制器,设置于管道上的次级声源;控制器被配置为获取参考传声器及误差传声器采集的噪声信号,生成控制信号并传输至次级声源,次级声源根据控制信号发声降噪;参考传声器包括至少两个传声器。采用有源噪声控制技术可以有效抑制沿管道传播的一维平面声波,其体积小,压损低,可以有效弥补被动降噪的不足,并且,使用多传声器获取参考信号,可以提升信号质量,从而提高系统的降噪性能。

Claims (10)

  1. 一种管道降噪系统,包括:设置于管道内的靠近噪声源的参考传声器、及靠近管道末端的误差传声器,控制器,设置于所述管道上的次级声源;所述控制器被配置为获取所述参考传声器及所述误差传声器采集的噪声信号,生成控制信号并传输至所述次级声源,所述次级声源被配置为根据所述控制信号发声降噪;所述参考传声器包括至少两个传声器。
  2. 如权利要求1所述的管道降噪系统,还包括前置放大器,所述前置放大器设置于所述控制器与所述参考传声器及所述误差传声器之间,被配置为放大所述噪声信号。
  3. 如权利要求1所述的管道降噪系统,其中,还包括功率放大器,所述功率放大器设置于所述控制器与所述次级声源之间,被配置为放大所述控制信号,所述控制信号为消声信号。
  4. 如权利要求1所述的管道降噪系统,其中,所述误差传声器设置于所述管道末端,所述次级声源设置于所述管道侧壁距离所述管道末端四分之一管道长度的位置,所述参考传声器设置于所述管道内靠近噪声源的位置。
  5. 如权利要求5所述的管道降噪系统,其中,所述次级声源与所述参考传声器之间的距离不小于所述控制器的时延与声速之积。
  6. 如权利要求1至5任一项所述的管道降噪系统,其中,所述控制器被配置为将所述至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据所述误差传声器采集的所述管道的末端噪声信号、及所述参考信号计算获得所述控制信号。
  7. 如权利要求6所述的管道降噪系统,其中,所述参考传声器包括两个传声器,其中一传声器紧靠所述管道的噪声源,另一传声器距离所述噪声源四分 之一管道长度。
  8. 如权利要求7所述的管道降噪系统,其中,所述两个传声器均设置于所述管道的中心线上,且均为全指向性传声器。
  9. 一种管道降噪方法,适用于如权利要求1至8任一项所述的管道降噪系统,所述方法包括:
    所述控制器获取所述参考传声器及所述误差传声器采集的噪声信号,生成控制信号并传输至所述次级声源;
    所述次级声源根据所述控制信号发声降噪。
  10. 如权利要求9所述的管道降噪方法,其中,所述控制器生成控制信号,包括:将所述至少两个传声器所采集的不同信号进行加权线性运算得到参考信号,根据所述误差传声器采集的所述管道的末端噪声信号、及所述参考信号计算获得所述控制信号。
PCT/CN2016/077729 2015-08-19 2016-03-29 一种管道降噪系统及方法 WO2016177203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510512378.4A CN106469551A (zh) 2015-08-19 2015-08-19 一种管道降噪系统及方法
CN201510512378.4 2015-08-19

Publications (1)

Publication Number Publication Date
WO2016177203A1 true WO2016177203A1 (zh) 2016-11-10

Family

ID=57217547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077729 WO2016177203A1 (zh) 2015-08-19 2016-03-29 一种管道降噪系统及方法

Country Status (2)

Country Link
CN (1) CN106469551A (zh)
WO (1) WO2016177203A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939481A (zh) * 2017-12-11 2018-04-20 四川三元环境治理股份有限公司 排烟管道的有源控制系统及其使用方法
CN108088064A (zh) * 2018-01-15 2018-05-29 青岛理工大学 设于通风管口且能够声学交互的有源降噪装置及控制方法
CN109405262A (zh) * 2018-12-14 2019-03-01 中国船舶重工集团公司第七〇四研究所 管路噪声主动控制系统、主被动复合管路消声器
CN112879142A (zh) * 2021-03-16 2021-06-01 桂林电子科技大学 一种汽车智能降噪控制系统
CN114199368A (zh) * 2021-11-30 2022-03-18 北京工商大学 一种全频带pp声强自动测量装置和测量方法
CN114935210A (zh) * 2022-06-20 2022-08-23 哈尔滨工程大学船舶装备科技有限公司 一种列车空调系统用主被动复合降噪静压箱

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428444B (zh) * 2018-03-07 2021-06-22 南京大学 一种补偿次级声源近场影响的紧凑有源吸声方法
CN108428445B (zh) * 2018-03-15 2021-02-09 中国科学院声学研究所 一种无误差传声器的自适应主动降噪方法
CN109658915B (zh) * 2019-03-08 2019-06-25 深兰人工智能芯片研究院(江苏)有限公司 一种中央空调的降噪方法、降噪装置及中央空调
CN110500762A (zh) * 2019-07-05 2019-11-26 青岛海信日立空调系统有限公司 一种用于风管机的降噪组件及风管机
CN110189738A (zh) * 2019-07-09 2019-08-30 吉林大学 一种用于主动降噪的装置及其降噪优化方法
CN111145715B (zh) * 2019-12-27 2020-08-25 汉得利(常州)电子股份有限公司 一种风机用有源噪声控制系统及控制方法
CN113639136A (zh) * 2021-07-21 2021-11-12 西安理工大学 一种用于通风管道噪声的降噪系统及降噪方法
CN113658576A (zh) * 2021-08-12 2021-11-16 西安艾科特声学科技有限公司 一种用于管道有源噪声控制的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2130651A (en) * 1982-11-26 1984-06-06 Lord Corp Improvements relating to active acoustic attenuators
JPH05232968A (ja) * 1992-02-19 1993-09-10 Fujitsu Ltd 能動騒音消去システムおよび能動騒音消去システムのフィルタ係数更新方法
JPH06318083A (ja) * 1993-05-06 1994-11-15 Daikin Ind Ltd アクティブ消音装置
US20020080978A1 (en) * 2000-12-15 2002-06-27 Isao Kakuhari Active noise control system
JP2002328681A (ja) * 2001-04-27 2002-11-15 Fuji Xerox Co Ltd 能動的騒音制御装置
CN103440861A (zh) * 2013-08-30 2013-12-11 云南省科学技术情报研究院 一种针对室内环境中低频噪音的自适应降噪器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166989A (ja) * 1995-12-18 1997-06-24 Calsonic Corp 能動型消音器
JPH09258741A (ja) * 1996-03-25 1997-10-03 Yamaha Corp アクティブ消音装置
JPH09258742A (ja) * 1996-03-25 1997-10-03 Yamaha Corp 消音装置
US5832095A (en) * 1996-10-18 1998-11-03 Carrier Corporation Noise canceling system
FR2799873B1 (fr) * 1999-10-18 2002-02-08 Comptoir De La Technologie Dispositif actif d'attenuation de l'intensite sonore
AU2002353888B1 (en) * 2001-10-24 2008-03-13 Shell Internationale Research Maatschappij B.V. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
CN2804832Y (zh) * 2005-07-01 2006-08-09 宋益纯 一体化管道泄漏噪声变送器
CN101056322A (zh) * 2006-04-13 2007-10-17 中兴通讯股份有限公司 一种在移动通讯终端上叠加背景声的装置及方法
US9100640B2 (en) * 2010-08-27 2015-08-04 Broadcom Corporation Method and system for utilizing image sensor pipeline (ISP) for enhancing color of the 3D image utilizing z-depth information
CN102146766A (zh) * 2011-02-17 2011-08-10 南京大学 一种分立式有源降噪通风隔声窗
GB201110403D0 (en) * 2011-06-20 2011-08-03 Qinetiq Ltd Monitoring of conduits
EP2552125B1 (en) * 2011-07-26 2017-11-15 Harman Becker Automotive Systems GmbH Noise reducing sound-reproduction
US9443504B2 (en) * 2013-01-08 2016-09-13 Schlumberger Technology Corporation Active attenuation of vibrations resulting from firing of acoustic sources
CN203286197U (zh) * 2013-05-17 2013-11-13 中国科学院声学研究所 一种通风管路用主被动复合消声器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2130651A (en) * 1982-11-26 1984-06-06 Lord Corp Improvements relating to active acoustic attenuators
JPH05232968A (ja) * 1992-02-19 1993-09-10 Fujitsu Ltd 能動騒音消去システムおよび能動騒音消去システムのフィルタ係数更新方法
JPH06318083A (ja) * 1993-05-06 1994-11-15 Daikin Ind Ltd アクティブ消音装置
US20020080978A1 (en) * 2000-12-15 2002-06-27 Isao Kakuhari Active noise control system
JP2002328681A (ja) * 2001-04-27 2002-11-15 Fuji Xerox Co Ltd 能動的騒音制御装置
CN103440861A (zh) * 2013-08-30 2013-12-11 云南省科学技术情报研究院 一种针对室内环境中低频噪音的自适应降噪器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939481A (zh) * 2017-12-11 2018-04-20 四川三元环境治理股份有限公司 排烟管道的有源控制系统及其使用方法
CN107939481B (zh) * 2017-12-11 2023-12-22 四川三元环境治理股份有限公司 排烟管道的有源控制系统的使用方法
CN108088064A (zh) * 2018-01-15 2018-05-29 青岛理工大学 设于通风管口且能够声学交互的有源降噪装置及控制方法
CN108088064B (zh) * 2018-01-15 2023-05-23 青岛理工大学 设于通风管口且能够声学交互的有源降噪装置及控制方法
CN109405262A (zh) * 2018-12-14 2019-03-01 中国船舶重工集团公司第七〇四研究所 管路噪声主动控制系统、主被动复合管路消声器
CN112879142A (zh) * 2021-03-16 2021-06-01 桂林电子科技大学 一种汽车智能降噪控制系统
CN114199368A (zh) * 2021-11-30 2022-03-18 北京工商大学 一种全频带pp声强自动测量装置和测量方法
CN114199368B (zh) * 2021-11-30 2024-04-26 北京工商大学 一种全频带pp声强自动测量装置和测量方法
CN114935210A (zh) * 2022-06-20 2022-08-23 哈尔滨工程大学船舶装备科技有限公司 一种列车空调系统用主被动复合降噪静压箱

Also Published As

Publication number Publication date
CN106469551A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2016177203A1 (zh) 一种管道降噪系统及方法
US20100296666A1 (en) Apparatus and method for noise cancellation in voice communication
CN108088064B (zh) 设于通风管口且能够声学交互的有源降噪装置及控制方法
US5018202A (en) Electronic noise attenuation system
WO2017000814A1 (zh) 一种有源噪声控制系统
JP6343970B2 (ja) 信号処理装置、プログラム、レンジフード装置
US10037755B2 (en) Method and system for active noise reduction
MY157196A (en) Methods and systems for active sound attenuation in an air handling unit
CN105913836B (zh) 一种基于dsp的定点化实时降噪方法
TW202037077A (zh) 雙二階前饋式主動抗噪系統及處理器
US10171907B1 (en) Fan noise controlling system
JP2015158542A (ja) 閉じた空間における騒音低減方法および騒音低減システム
Sharma et al. Server noise: health hazard and its reduction using active noise control
CN107230482B (zh) 一种多点反馈的主动降噪系统及方法
JP2005037447A (ja) 空気調和機の騒音制御装置
TWI386018B (zh) Speech communication device with noise canceling structure
JPH0574835B2 (zh)
Sun et al. An improved active-passive hybrid muffler
Fasciani et al. Comparative study of cone-shaped versus flat-panel speakers for active noise control of multi-tonal signals in open windows
TWI695630B (zh) 主動式管路噪音控制系統及其方法
Riyanto Real-time DSP implementation of active noise control for broadband noise using adaptive LMS filter algorithm
Anachkova et al. Technical aspects of physical implementation of an active noise control system: challenges and opportunities
Hilgemann et al. Active Acoustic Equalization: Performance Bounds for Time-Invariant Systems
JP2010206526A (ja) 背面感度抑圧型狭指向性マイクロホン及びその製造方法
JP7144853B2 (ja) 音響式フェイズシフタを備えた消音装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789197

Country of ref document: EP

Kind code of ref document: A1