WO2017000814A1 - 一种有源噪声控制系统 - Google Patents

一种有源噪声控制系统 Download PDF

Info

Publication number
WO2017000814A1
WO2017000814A1 PCT/CN2016/086627 CN2016086627W WO2017000814A1 WO 2017000814 A1 WO2017000814 A1 WO 2017000814A1 CN 2016086627 W CN2016086627 W CN 2016086627W WO 2017000814 A1 WO2017000814 A1 WO 2017000814A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
source
signal
sound
collector
Prior art date
Application number
PCT/CN2016/086627
Other languages
English (en)
French (fr)
Inventor
刘鑫
杜钢英
Original Assignee
芋头科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芋头科技(杭州)有限公司 filed Critical 芋头科技(杭州)有限公司
Publication of WO2017000814A1 publication Critical patent/WO2017000814A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone

Definitions

  • the invention relates to the field of monitoring, and in particular to an active noise control system.
  • Noise pollution is an environmental issue that is of great concern to the whole world. Excessive environmental noise will have a certain impact on people's physical and mental health. A noisy environment can cause serious damage to people's hearing and physical health. The general noise will have a certain impact on people's daily work and life. According to statistics, noise pollution causes different degrees of harm to more than 70% of urban residents in the world. As a developing country, the impact of noise pollution on the people in China is more prominent. Noise control is mainly divided into three aspects: noise source, noise propagation path and noise receiver. The main control methods of traditional noise control technology based on acoustic control methods include sound absorption processing, sound insulation processing, use of muffler, vibration isolation, damping damping and so on.
  • the mechanism of these noise control methods is that the noise energy is consumed by the interaction of the noise sound waves with the acoustic material or the acoustic mechanism, thereby achieving the purpose of reducing noise, and is a passive or passive control method, that is, "passive" noise control (passive) Noise control).
  • Sound absorption processing involves the use of sound absorbing materials or sound absorbing structures to absorb sound energy, thereby reducing noise intensity.
  • the sound absorbing material mainly refers to the porous sound absorbing material, and its sound absorption coefficient increases with the increase of the sound wave frequency. After reaching the maximum value, it slightly drops and then rises again, and the fluctuation of the undulation at high frequency is no longer obvious.
  • the sound absorption in the middle and low frequency also increases as the thickness of the porous material increases, but the thickness does not significantly absorb the high frequency sound waves.
  • the sound insulation treatment mainly includes two kinds of sound insulation cover and sound insulation screen, and the sound insulation cover is separated.
  • Sound performance generally follows the quality control law, but in the application, more consideration should be given to ventilation, heat dissipation, corrosion resistance, heat resistance, equipment maintenance and other issues.
  • the resistant muffler in the muffling process can better reduce the low frequency noise, but its muffling frequency band is narrow, and the volume becomes bulky as the muffling frequency decreases.
  • the composite muffler is more rational in terms of noise reduction and muffling frequency, its volume is too large, and its service life is shortened under high temperature, steam erosion and high-speed airflow impact.
  • Resistive noise control has better control effect on medium and high frequency noise, while resistance can better control low frequency noise, but its frequency band is better. It is narrow and the equipment required is too cumbersome and the scope of application is limited.
  • the present invention provides an active noise control system.
  • An active noise control system is characterized in that, based on a primary noise source, the system comprises:
  • a distributed noise collector that performs signal acquisition on the noise generated by the primary noise source, and converts the collected sound signal into a first digital signal, and simultaneously acquires first parameter data of noise generated by the primary noise source;
  • noise reduction error sensor for performing noise detection on an environment in which the primary noise source is located, and converting the monitored sound signal into a second digital signal
  • DSP active noise controller respectively, with the distributed noise collector and the noise reduction
  • An error sensor is coupled to obtain the first digital signal and the second digital signal, and based on the first digital signal and the second digital signal, calculate a secondary sound according to the first parameter data Second parameter data of the source;
  • a secondary sound source transmitter coupled to the DSP active noise controller to emit a canceled sound wave of the primary noise source based on the second parameter data.
  • the above system is characterized in that the distributed noise collector is a plurality of ceramic pressure sensors.
  • the above system is characterized in that the distributed noise collector comprises an FPGA multi-channel microphone array signal collector, and the FPGA multi-channel microphone array signal collector is a sound signal of the primary noise source.
  • the above system is characterized in that the distributed noise collector further comprises a multi-channel analog-to-digital converter, and the multi-channel analog-to-digital converter is connected to the FPGA multi-channel microphone array signal collector to A sound signal of the primary noise source is converted into the first digital signal.
  • the distributed noise collector further comprises a USB multi-channel microphone transmitter respectively connected to the multi-channel analog-to-digital converter and the DSP active noise controller to The first digital signal is encapsulated into a message, and the first digital signal encapsulated in a message form is transmitted to the DSP active noise controller via a USB protocol.
  • the above system is characterized in that said first parameter and said second parameter comprise a frequency and an amplitude of an acoustic wave.
  • the above system is characterized in that the sound wave of the primary noise source and the cancellation sound
  • the waves have opposite frequencies and the same amplitude.
  • the present invention provides an active noise control system capable of transmitting equal amplitude to the noise level of the primary noise source to the noise reduction point near the indoor glass window for the indoor low frequency noise, and the phases are opposite. Offset, the effect of active control of low frequency noise is realized near the indoor glass window, thereby preventing indoor noise pollution, improving the living environment of people in the living room, and thus playing a positive role in promoting economic development.
  • Figure 1 is a schematic view showing the structure of the system of the present invention.
  • Resistive noise control has better control effect on medium and high frequency noise, while resistance can better control low frequency noise, but its frequency band is better. It is narrow and the equipment required is too cumbersome and the scope of application is limited.
  • the invention is based on the principle that two columns of sound waves with the same frequency and fixed phase difference are superimposed, and then additive or destructive interference is generated to eliminate noise.
  • the sound wave generated by the secondary sound source and the primary noise source are controlled.
  • the sound waves are equal in amplitude and opposite in phase. Eliminate, so as to eliminate the effect of indoor low frequency noise.
  • an active noise control system designed by the present invention is based on a primary noise source, and the system includes:
  • the distributed noise collector performs signal acquisition on the noise generated by the primary noise source, and converts the collected sound signal into a first digital signal, and simultaneously acquires first parameter data of noise generated by the primary noise source;
  • noise reduction error sensor for performing noise monitoring on a environment in which the primary noise source is located, and converting the monitored sound signal into a second digital signal
  • a DSP active noise controller respectively connected to the distributed noise collector and the noise reduction error sensor to obtain the first digital signal and the second digital signal, and reference the first digital signal and the second digital signal, and according to the Calculating the second parameter data of the secondary sound source by using one parameter data;
  • the secondary sound source transmitter is coupled to the DSP active noise controller to emit a canceled sound wave of the primary noise source according to the second parameter, the first parameter data and the second parameter data including the frequency and amplitude of the sound wave.
  • the distributed noise collector includes an FPGA multi-channel microphone array signal collector, and an FPGA multi-channel microphone array signal collector primary noise source sound signal.
  • the distributed noise collector further includes a multi-channel analog-to-digital converter connected to the FPGA multi-channel microphone array signal collector to convert the sound signal of the primary noise source into the first digital signal.
  • the distributed noise collector also includes a USB multi-channel microphone transmitter, which is respectively connected with a plurality of analog-to-digital converters and a DSP active noise controller to encapsulate the first digital signal into a message and package the package by the USB protocol. The first digital signal in the form of a message is transmitted to the DSP active noise controller.
  • the active controller in the technical solution adopted by the present invention sets the transfer function to adaptive time-varying, and simultaneously takes the secondary sound source into consideration for the primary reference sensor.
  • the distributed noise collector collects the noise signal of the primary noise source, converts the collected sound signal into the first digital signal, and acquires the first parameter data of the noise generated by the primary noise source, and inputs the first digital signal into the DSP. Active noise controller.
  • the DSP active noise controller monitors the sound signal of the noise reduction error sensor at the noise reduction point, and converts the sound signal into a second digital signal, and the DSP active noise controller controls the secondary sound source transmitter to emit the primary signal.
  • the noise source frequency is opposite, and the canceling sound waves with the same amplitude are superimposed and cancelled at the noise reduction point to realize the effect of active noise dynamic control.
  • the active noise control system is divided into a microphone array, an FPGA multi-channel microphone array signal collector, an indoor noise DSP active controller, and an active noise control secondary sound source transmitter.
  • the active noise control system is applied in a home intelligent robot, and the distributed noise collector is a plurality of ceramic high-precision pressure sensors.
  • the noise reduction point is set near the indoor glass window, and the plurality of ceramic high-precision pressure sensors are distributed indoors.
  • the sound generated by the primary noise source and the vibration parameter generated by the glass window are measured, and the analog signal is converted into the first digital signal, and the first parameter data of the noise generated by the primary noise source is obtained and transmitted to the DSP.
  • Active noise controller is applied in a home intelligent robot, and the distributed noise collector is a plurality of ceramic high-precision pressure sensors.
  • the noise reduction error sensor is used to monitor the sound field near the user and convert the analog signal into the first Two digital signals are transmitted to the DSP active noise controller.
  • the DSP active noise controller realizes receiving the first digital signal of the primary noise source and the second digital signal of the noise field near the indoor glass collected by the noise reduction error microphone as an error reference signal, and according to the primary noise
  • the first parameter data of the generated noise of the source calculates the second parameter data of the secondary sound source that actively cancels the noise of the primary noise source, and the canceled sound wave of the primary noise source is emitted according to the second parameter data to realize the effect of active noise reduction.
  • the secondary sound source transmitter realizes real-time emission of the sound wave with the same amplitude and opposite phase of the sound wave of the primary noise source through the digital power amplifier driving the speaker to the noise reduction point near the glass window, and the effect of the superposition offset is achieved, thereby achieving the main noise.
  • the invention provides a distributed active noise control system for a robot, which realizes the function of the robot for active control of indoor noise.
  • the cloth active noise control system distributes a plurality of high-precision ceramic pressure sensors on the glazing window to acquire the primary noise source in a first time and convert the analog signal of the primary noise source into a digital signal.
  • a secondary sound source with the same acoustic wave amplitude and opposite phase as the primary noise source is emitted to the noise reduction point, and the noise control effect of the noise superposition cancellation is realized.
  • the distributed active noise control system of the robot realizes active control of indoor noise by the robot. Indoor noise pollution has brought many inconveniences to people's lives, which has greatly reduced people's quality of life.
  • the distributed active noise control system of the robot first collects the audio signal of the microphone array through the FPGA multi-channel microphone array signal collector.
  • the FGPA multi-channel microphone array collector synchronously converts multiple microphone signals into digital signals through multiple ADCs, and then realizes phase synchronization of multiple microphones by means of DMA interruption.
  • the USB multi-channel microphone transmitter encapsulates the microphone signal collected in the DMA into a message, and transmits the data message to the DSP active noise controller through the USB protocol.
  • the secondary sound source transmitter transmits the sound waves with the same amplitude and opposite phase of the sound wave at the noise reduction point and the primary noise source in real time, and the effect of superimposing and canceling the two is achieved, thereby achieving the main noise control.
  • the physical parameters such as the noise source (primary noise source) and the temperature and air velocity in the sound field often change with time.
  • the active controller in the technical solution adopted by the present invention sets the transfer function to adaptive time-varying, and simultaneously takes the secondary sound source into consideration for the primary reference sensor.
  • the primary microphone is used to acquire the primary noise source signal and input it to the DSP active noise controller.
  • the DSP active noise controller monitors the sound signal parameters of the noise reduction error sensor at the noise reduction point, and the DSP active noise controller controls the secondary sound source transmitter to emit the opposite frequency to the primary noise source. The same canceling sound waves are superimposed and cancelled at the noise reduction point to realize the effect of active noise dynamic control.
  • the invention provides an active noise control system capable of transmitting equal to the amplitude of the sound wave of the primary noise source to the noise reduction point near the indoor glass window for the indoor low frequency noise, and the phases are opposite, and the two overlap each other to cancel each other in the indoor glass.
  • the effect of active control of low-frequency noise is realized near the window, thereby preventing indoor noise pollution, improving people's living environment in the living room, and thus playing a positive role in promoting economic development.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种有源噪声控制系统,能够针对室内低频噪声,向室内玻璃窗附近的降噪点发射与初级噪声源的声波幅度相等,相位相反的抵消声波,二者叠加后相互抵消,在室内玻璃窗附近实现低频噪声有源控制的效果,从而防止了室内噪声污染,改善了人们在居室内的生活环境,进而对促进经济发展起到了积极作用。

Description

一种有源噪声控制系统 技术领域
本发明涉及监测领域,尤其涉及一种有源噪声控制系统。
背景技术
噪声污染是一个全世界都十分关注的环境问题,过量的环境噪声对人的生理和心理健康都会造成一定的影响。高噪声环境会对人们的听力和身体健康造成严重的损害。而一般噪声则会对人们日常工作与生活造成一定的影响。据统计,噪声污染对全球范围内约70%以上的城市居民造成不同程度的危害。而作为发展中国家,中国噪声污染对人民的影响更为突出。噪声控制在防控策略上主要分为噪声源、噪声传播途径和噪声接受者三方面。以声学控制方法为主的传统噪声控制技术的主要防控途径包括吸声处理、隔声处理、使用消声器、振动的隔离、阻尼减震等。这些噪声控制的方法的机理在于,通过噪声声波与声学材料或声学机构的相互作用消耗声能,从而达到降低噪声的目的,属于无源或被动式的控制方法,即“无源”噪声控制(passive noise control)。
吸声处理包括使用吸声材料或吸声结构来吸取声能,从而降低噪声强度。但吸声材料主要指多孔吸声材料,其吸声系数随声波频率增加而增大,达到极大值后略降再回升,到高频时起伏变化就不再明显。中低频的吸声还随着多孔材料的厚度增加而增加,但厚度对高频声波的吸收不显著。隔声处理主要包括隔声罩和隔声屏两种,隔声罩的隔 声性能总体遵循质量控制规律,但在应用上需要更多地考虑通风、散热、耐蚀、耐热、设备维修等问题。消声处理中的抗性消声器能够较好地降低低频噪声,但它的消声频段窄,并且随消声频率的下降而使体积变得庞大起来。而复合消声器虽然消声量和消声频带都比较理性,但其体积过大,且使用寿命在高温、蒸汽侵蚀和高速气流冲击下减短。
传统噪声控制方法总体而言分为阻性和抗性两种,阻性噪声控制对中、高频噪声有较好的控制效果,而抗性虽然能够较好地控制低频噪声,但其频段较窄,而且所需的设备过于笨重,应用范围受到限制。
发明内容
鉴于上述问题,为能够降低用户室内环境中的低频噪声,为用户营造一个安静的室内生活环境,本发明提供了一种有源噪声控制系统。
一种有源噪声控制系统,其特征在于,基于一初级噪声源,所述系统包括:
分布式噪声采集器,对所述初级噪声源产生的噪声进行信号采集,并将采集到的声音信号转换成第一数字信号,同时获取所述初级噪声源产生的噪声的第一参数数据;
降噪误差传感器,用以对所述初级噪声源所处环境进行噪声检测,并将监测到的声音信号转换为第二数字信号;
DSP有源噪声控制器,分别与所述分布式噪声采集器和所述降噪 误差传感器连接,以获取所述第一数字信号和所述第二数字信号,并以所述第一数字信号和所述第二数字信号为参考,根据所述第一参数数据计算出次级声源的第二参数数据;
次级声源发射器,与所述DSP有源噪声控制器连接,根据所述第二参数数据发出所述初级噪声源的抵消声波。
上述的系统,其特征在于,所述分布式噪声采集器为若干陶瓷压力传感器。
上述的系统,其特征在于,所述分布式噪声采集器中包括FPGA多通道麦克风阵列信号采集器,所述FPGA多通道麦克风阵列信号采集器所述初级噪声源的声音信号。
上述的系统,其特征在于,所述分布式噪声采集器中还包括多路模拟数字转换器,所述多路模拟数字转换器与所述FPGA多通道麦克风阵列信号采集器连接,以将所述初级噪声源的声音信号转换成所述第一数字信号。
上述的系统,其特征在于,所述分布式噪声采集器中还包括USB多路麦克风传输器,分别与所述多路模拟数字转换器和所述DSP有源噪声控制器连接,以将所述第一数字信号封装成报文,并通过USB协议将封装成报文形式的所述第一数字信号传输至所述DSP有源噪声控制器内。
上述的系统,其特征在于,所述第一参数和所述第二参数包括声波的频率和振幅。
上述的系统,其特征在于,所述初级噪声源的声波与所述抵消声 波的频率相反,振幅相同。
综上所述,本发明提出了一种有源噪声控制系统,能够针对室内低频噪声,向室内玻璃窗附近的降噪点发射与初级噪声源的声波幅度相等,相位相反,二者叠加后相互抵消,在室内玻璃窗附近实现低频噪声有源控制的效果,从而防止了室内噪声污染,改善了人们在居室内的生活环境,进而对促进经济发展起到了积极作用。
附图说明
参考所附附图,以更加充分的描述本发明的实施例。然而,所附附图仅用于说明和阐述,并不构成对本发明范围的限制。
图1是本发明系统结构示意图。
具体实施方式
为了使本发明的技术方案及优点更加易于理解,下面结合附图作进一步详细说明。应当说明,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
传统噪声控制方法总体而言分为阻性和抗性两种,阻性噪声控制对中、高频噪声有较好的控制效果,而抗性虽然能够较好地控制低频噪声,但其频段较窄,而且所需的设备过于笨重,应用范围受到限制。
本发明基于两列频率相同、相位差固定的声波,叠加后会产生相加性或相消性干涉来消除噪声的原理,在降噪点,控制次级声源产生的声波与初级噪声源的声波幅度相等,相位相反,二者叠加后相互抵 消,从而达到消除室内低频噪声的效果。
如图1所示,本发明设计的一种有源噪声控制系统,基于一初级噪声源,该系统包括:
分布式噪声采集器,对初级噪声源产生的噪声进行信号采集,并将采集到的声音信号转换成第一数字信号,同时获取初级噪声源产生的噪声的第一参数数据;
降噪误差传感器,用以对初级噪声源所处环境进行噪声监测,并将监测到的声音信号转换为第二数字信号;
DSP有源噪声控制器,分别与分布式噪声采集器和降噪误差传感器连接,以获取第一数字信号和第二数字信号,并以第一数字信号和第二数字信号为参考,并根据第一参数数据计算出次级声源的第二参数数据;
次级声源发射器,与DSP有源噪声控制器连接,根据第二参数发出初级噪声源的抵消声波,第一参数数据和第二参数数据包括声波的频率和振幅。
在本发明中,分布式噪声采集器中包括FPGA多通道麦克风阵列信号采集器,FPGA多通道麦克风阵列信号采集器初级噪声源的声音信号。分布式噪声采集器中还包括多路模拟数字转换器,多路模拟数字转换器与FPGA多通道麦克风阵列信号采集器连接,以将初级噪声源的声音信号转换成第一数字信号。分布式噪声采集器中还包括USB多路麦克风传输器,分别与多路模拟数字转换器和DSP有源噪声控制器连接,以将第一数字信号封装成报文,并通过USB协议将封装 成报文形式的第一数字信号传输至DSP有源噪声控制器内。
具体实施方案如下:
实际环境中噪声源(初级噪声源)特性及声场空间中的温度、气流速度等物理参数会经常随时间发生变化。为实现较好地降噪效果,本发明所采用的技术方案中的主动控制器设置传递函数为自适应时变,并同时将次级声源对初级参考传感器考虑在内。如图1所示。分布式噪声采集器对初级噪声源的噪声信号进行采集,并将采集到的声音信号转换成第一数字信号,同时获取初级噪声源产生的噪声的第一参数数据,将第一数字信号输入DSP有源噪声控制器。同时,DSP有源噪声控制器监听在降噪点的降噪误差传感器的声音信号,并将该声音信号转换成第二数字信号,DSP有源噪声控制器控制次级声源发射器发出与初级噪声源频率相反,振幅相同的抵消声波在降噪点进行叠加、抵消,实现主动噪声动态控制的效果。有源噪声控制系统从功能层面划分为麦克风阵列、FPGA多通道麦克风阵列信号采集器、室内噪声DSP有源控制器与主动噪声控制次级声源发射器。
该有源噪声控制系统应用于家庭智能机器人内,分布式噪声采集器为多个陶瓷高精度压力传感器,以室内玻璃窗附近设为降噪点,则多个陶瓷高精度压力传感器分布在室内的玻璃窗上,对初级噪声源发出的声音与玻璃窗产生的振动参数进行测量,并将模拟信号转换为第一数字信号,同时获取初级噪声源产生的噪声的第一参数数据,并传输给DSP有源噪声控制器。
降噪误差传感器用于监测用户附近的声场,将模拟信号转换为第 二数字信号,并传输给DSP有源噪声控制器。
DSP有源噪声控制器实现了接收分布式噪声采集器传来的初级噪声源第一数字信号与降噪误差传声器采集的室内玻璃附近的噪声场第二数字信号作为误差参考信号,并根据初级噪声源的产生的噪声第一参数数据计算出主动抵消初级噪声源噪声的次级声源第二参数数据,根据第二参数数据发出初级噪声源的抵消声波,来实现有源降噪的效果。
次级声源发射器实现了通过数字功放驱动扬声器向玻璃窗附近的降噪点实时发射与初级噪声源的声波幅度相等、相位相反的抵消声波,产生二者叠加抵消的效果,从而达到主要噪声控制的目的。
下面结合具体实施例进行说明
目前,以家用电器为主要噪声源的室内低频噪声已经成为不可忽视的噪声源。实际监测表明,家用电冰箱为35~50分贝,洗衣机为50~70分贝,电风扇为55~70分贝,吸尘器为60~80分贝,家庭影院更是可以达到60~80分贝,明显增加了居室内的噪声污染程度。室内噪声所造成危害的严重性虽然不会像空气污染与水污染那样引起人的疾病,甚至死亡。但由于现代人的大多数在室内度过,室内噪声污染会影响到人的心理状况,导致听觉、神经系统及内分泌系统出现病变,对人们的日常生活造成较大的危害。
本发明提供一种机器人分布式有源噪声控制系统,实现机器人对室内噪声有源控制的功能。以室内玻璃窗附近设为降噪点,机器人分 布式有源噪声控制系统将多个高精度陶瓷压力传感器分布在玻璃窗上,以第一时间采集初级噪声源,并将初级噪声源的模拟信号转换为数字信号。根据初级噪声源向降噪点发射与初级噪声源的声波幅度相等,相位相反的次级声源,实现噪声叠加相消的噪声控制效果。
本实施例中提供的机器人分布式有源噪声控制系统实现机器人对室内噪声进行主动控制。室内噪声污染给人们的生活带来了诸多不便,在较大程度上降低了人们的生活品质。为能够主动控制室内的低频噪声,机器人分布式有源噪声控制系统先通过FPGA多通道麦克风阵列信号采集器来采集麦克风阵列的音频信号。FGPA多通道麦克风阵列采集器在通过多路ADC来同步转换多路麦克风信号为数字信号后,再以DMA中断的方式实现多路麦克风的相位同步。随后,USB多路麦克风传输器将DMA中采集的麦克风信号封装成报文,并通过USB协议将数据报文传输到DSP有源噪声控制器。最后,次级声源发射器实时发射在降噪点与初级噪声源的声波幅度相等、相位相反的声波,产生二者叠加抵消的效果,从而达到主要噪声控制的目的。实际环境中噪声源(初级噪声源)特性及声场空间中的温度、气流速度等物理参数会经常随时间发生变化。为实现较好地降噪效果,本发明所采用的技术方案中的主动控制器设置传递函数为自适应时变,并同时将次级声源对初级参考传感器考虑在内。初级传声麦克风对初级噪声源信号进行采集,并输入DSP有源噪声控制器。同时,DSP有源噪声控制器监听在降噪点的降噪误差传感器的声音信号参数,DSP有源噪声控制器控制次级声源发射器发出与初级噪声源频率相反,振幅 相同的抵消声波在降噪点进行叠加、抵消,实现主动噪声动态控制的效果。
本发明提出了一种有源噪声控制系统,能够针对室内低频噪声,向室内玻璃窗附近的降噪点发射与初级噪声源的声波幅度相等,相位相反,二者叠加后相互抵消,在室内玻璃窗附近实现低频噪声有源控制的效果,从而防止了室内噪声污染,改善了人们在居室内的生活环境,进而对促进经济发展起到了积极作用。
通过说明和附图,给出了具体实施方式的特定结构的典型实施例,基于本发明精神,还可作其他的转换。尽管上述发明提出了现有的较佳实施例,然而,这些内容并不作为局限。
对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

Claims (7)

  1. 一种有源噪声控制系统,其特征在于,基于一初级噪声源,所述系统包括:
    分布式噪声采集器,对所述初级噪声源产生的噪声进行信号采集,并将采集到的声音信号转换成第一数字信号,同时获取所述初级噪声源产生的噪声的第一参数数据;
    降噪误差传感器,用以对所述初级噪声源所处环境进行噪声检测,并将监测到的声音信号转换为第二数字信号;
    DSP有源噪声控制器,分别与所述分布式噪声采集器和所述降噪误差传感器连接,以获取所述第一数字信号和所述第二数字信号,并以所述第一数字信号和所述第二数字信号为参考,根据所述第一参数数据计算出次级声源的第二参数数据;
    次级声源发射器,与所述DSP有源噪声控制器连接,根据所述第二参数数据发出所述初级噪声源的抵消声波。
  2. 根据权利要求1所述的系统,其特征在于,所述分布式噪声采集器为若干陶瓷压力传感器。
  3. 根据权利要求1所述的系统,其特征在于,所述分布式噪声采集器中包括FPGA多通道麦克风阵列信号采集器,所述FPGA多通道麦克风阵列信号采集器所述初级噪声源的声音信号。
  4. 根据权利要求3所述的系统,其特征在于,所述分布式噪声采集器中还包括多路模拟数字转换器,所述多路模拟数字转换器与所述FPGA多通道麦克风阵列信号采集器连接,以将所述初级噪声源的声音信号转换成所述第一数字信号。
  5. 根据权利要求4所述的系统,其特征在于,所述分布式噪声采集器中还包括USB多路麦克风传输器,分别与所述多路模拟数字转换器和所述DSP有源噪声控制器连接,以将所述第一数字信号封装成报文,并通过USB协议将封装成报文形式的所述第一数字信号传输至所述DSP有源噪声控制器内。
  6. 根据权利要求1所述的系统,其特征在于,所述第一参数和所述第二参数包括声波的频率和振幅。
  7. 根据权利要求6所述的系统,其特征在于,所述初级噪声源的声波与所述抵消声波的频率相反,振幅相同。
PCT/CN2016/086627 2015-06-30 2016-06-21 一种有源噪声控制系统 WO2017000814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510381735.8A CN106328117A (zh) 2015-06-30 2015-06-30 一种有源噪声控制系统
CN201510381735.8 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000814A1 true WO2017000814A1 (zh) 2017-01-05

Family

ID=57607801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086627 WO2017000814A1 (zh) 2015-06-30 2016-06-21 一种有源噪声控制系统

Country Status (4)

Country Link
CN (1) CN106328117A (zh)
HK (1) HK1231618A1 (zh)
TW (1) TW201701268A (zh)
WO (1) WO2017000814A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939481A (zh) * 2017-12-11 2018-04-20 四川三元环境治理股份有限公司 排烟管道的有源控制系统及其使用方法
CN108877762A (zh) * 2018-05-16 2018-11-23 南京大学 一种多通道有源噪声辐射控制系统误差传声器的布放方法
CN109151668A (zh) * 2018-09-28 2019-01-04 天津职业技术师范大学 一种乘车用座椅声品质主动控制系统
CN109587618A (zh) * 2018-11-22 2019-04-05 清华大学苏州汽车研究院(相城) 一种主动降噪系统稳定性测试方法及测试系统
CN111462724A (zh) * 2019-12-03 2020-07-28 国家电网有限公司 一种高压换流站噪声自适应降噪方法
CN111583896A (zh) * 2020-05-13 2020-08-25 苏州静声泰科技有限公司 一种多通道有源降噪头靠的降噪方法
CN111599337A (zh) * 2020-05-13 2020-08-28 苏州静声泰科技有限公司 一种外放式有源降噪头靠的降噪方法
CN112017626A (zh) * 2020-08-21 2020-12-01 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN112669804A (zh) * 2020-12-11 2021-04-16 西北工业大学 有源噪声控制系统降噪效果估计方法
CN112879142A (zh) * 2021-03-16 2021-06-01 桂林电子科技大学 一种汽车智能降噪控制系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981285A (zh) * 2017-03-28 2017-07-25 联想(北京)有限公司 一种降噪方法及机器人系统
CN107393524A (zh) * 2017-08-16 2017-11-24 吉林大学 自适应噪声主动控制展示系统
CN108536024A (zh) * 2018-03-19 2018-09-14 珠海格力电器股份有限公司 一种智能插座
CN109238443A (zh) * 2018-08-01 2019-01-18 中科振声(苏州)电子科技有限公司 一种振动噪声智能应对系统及一种振动噪声智能应对方法
CN111938504B (zh) * 2019-09-19 2022-04-29 北京安声浩朗科技有限公司 空间主动降噪方法、装置、系统和吸尘器
CN111883096A (zh) * 2020-08-03 2020-11-03 西安艾科特声学科技有限公司 一种基于轨道机车的局部空间有源噪声控制系统
CN112128918A (zh) * 2020-08-11 2020-12-25 清华大学苏州汽车研究院(相城) 一种用于空调风机降噪的主动噪声控制系统和空调
CN111862920A (zh) * 2020-08-20 2020-10-30 北京驭声科技有限公司 一种鼾声有源噪声控制系统及其实现方法和使用方法
CN112943705B (zh) * 2021-02-24 2022-12-06 三一重能股份有限公司 风机降噪系统、方法和风机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393736A (zh) * 2008-10-28 2009-03-25 南京大学 无次级通道建模的有源噪声控制方法
CN101819766A (zh) * 2010-01-15 2010-09-01 浙江万里学院 一种用于消减噪声的多通道有源噪声控制方法
US9058801B2 (en) * 2012-09-09 2015-06-16 Apple Inc. Robust process for managing filter coefficients in adaptive noise canceling systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393736A (zh) * 2008-10-28 2009-03-25 南京大学 无次级通道建模的有源噪声控制方法
CN101819766A (zh) * 2010-01-15 2010-09-01 浙江万里学院 一种用于消减噪声的多通道有源噪声控制方法
US9058801B2 (en) * 2012-09-09 2015-06-16 Apple Inc. Robust process for managing filter coefficients in adaptive noise canceling systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENG, QINGJUN ET AL., RESEARCH ON THE TECHNIQUE OF ACTIVE NOISE CONTROL BASED ON DSPMEASUREMENT AND CONTROL TECHNOLOGY, vol. 25, no. 9, 31 December 2006 (2006-12-31), pages 31 - 33 *
TANG, HONG ET AL.: "Design and Simulation of Adaptive Active Noise Control System for Aircraft Hemlet", AIRCRAFT DESIGN, vol. 31, no. 5, 31 October 2011 (2011-10-31), pages 33 , 34 *
TIAN, ZIJIAN ET AL.: "kuàngyòng du?b? zh? dòngzàosh?ng kòngzhì xìt? ng", JOURNAL OF CHINA COAL SOCIETY, vol. 36, no. 6, 30 June 2011 (2011-06-30), pages 1057 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939481B (zh) * 2017-12-11 2023-12-22 四川三元环境治理股份有限公司 排烟管道的有源控制系统的使用方法
CN107939481A (zh) * 2017-12-11 2018-04-20 四川三元环境治理股份有限公司 排烟管道的有源控制系统及其使用方法
CN108877762A (zh) * 2018-05-16 2018-11-23 南京大学 一种多通道有源噪声辐射控制系统误差传声器的布放方法
CN109151668B (zh) * 2018-09-28 2023-01-24 天津职业技术师范大学 一种乘车用座椅声品质主动控制系统
CN109151668A (zh) * 2018-09-28 2019-01-04 天津职业技术师范大学 一种乘车用座椅声品质主动控制系统
CN109587618A (zh) * 2018-11-22 2019-04-05 清华大学苏州汽车研究院(相城) 一种主动降噪系统稳定性测试方法及测试系统
CN111462724A (zh) * 2019-12-03 2020-07-28 国家电网有限公司 一种高压换流站噪声自适应降噪方法
CN111583896B (zh) * 2020-05-13 2023-09-08 苏州静声泰科技有限公司 一种多通道有源降噪头靠的降噪方法
CN111599337B (zh) * 2020-05-13 2023-09-08 苏州静声泰科技有限公司 一种外放式有源降噪头靠的降噪方法
CN111599337A (zh) * 2020-05-13 2020-08-28 苏州静声泰科技有限公司 一种外放式有源降噪头靠的降噪方法
CN111583896A (zh) * 2020-05-13 2020-08-25 苏州静声泰科技有限公司 一种多通道有源降噪头靠的降噪方法
CN112017626A (zh) * 2020-08-21 2020-12-01 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN112017626B (zh) * 2020-08-21 2024-02-06 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN112669804A (zh) * 2020-12-11 2021-04-16 西北工业大学 有源噪声控制系统降噪效果估计方法
CN112669804B (zh) * 2020-12-11 2024-02-09 西北工业大学 有源噪声控制系统降噪效果估计方法
CN112879142A (zh) * 2021-03-16 2021-06-01 桂林电子科技大学 一种汽车智能降噪控制系统

Also Published As

Publication number Publication date
HK1231618A1 (zh) 2017-12-22
CN106328117A (zh) 2017-01-11
TW201701268A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
WO2017000814A1 (zh) 一种有源噪声控制系统
WO2016177203A1 (zh) 一种管道降噪系统及方法
TWI353579B (zh)
TWI584268B (zh) 一種機器人室內噪聲控制系統
CN205881451U (zh) 一种智能家居去噪装置
MY157196A (en) Methods and systems for active sound attenuation in an air handling unit
JP2016512970A5 (zh)
CN205425376U (zh) 带主动降噪的新风机
CN106158301A (zh) 配电变压器运行噪声有源降噪系统
CN107945785A (zh) 主动式室内噪音屏蔽方法
CN108182932A (zh) 一种用于人员密集区施工的主动降噪装置及方法
CN105509292A (zh) 一种有源通风消声装置
CN111536587A (zh) 空调器
CN203902837U (zh) 一种直升机桨叶反相位消声装置
CN107989530A (zh) 一种应用于多层玻璃窗的主动降噪装置及控制方法
CN205194324U (zh) 大型发电机组的主动降噪静音装置
CN105575381A (zh) 一种列车风冷变流器噪声有源控制的方法
CN203362639U (zh) 一种风机进出口消声器
CN205092055U (zh) 一种列车风冷变流器噪声有源控制装置
CN112128918A (zh) 一种用于空调风机降噪的主动噪声控制系统和空调
CN107882487A (zh) 一种通风隔声装置
CN209089216U (zh) 一种次声波主动消除设备
CN206625922U (zh) 一种主动降噪的进气系统
CN214788236U (zh) 吸油烟机用的降噪装置及应用有该降噪装置的吸油烟机
CN108289260A (zh) 机电一体化声电屏蔽耳罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817178

Country of ref document: EP

Kind code of ref document: A1