WO2016176941A1 - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2016176941A1
WO2016176941A1 PCT/CN2015/089345 CN2015089345W WO2016176941A1 WO 2016176941 A1 WO2016176941 A1 WO 2016176941A1 CN 2015089345 W CN2015089345 W CN 2015089345W WO 2016176941 A1 WO2016176941 A1 WO 2016176941A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical film
organic electroluminescent
electroluminescent device
filter layer
Prior art date
Application number
PCT/CN2015/089345
Other languages
English (en)
French (fr)
Inventor
郭远辉
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/127,026 priority Critical patent/US10388704B2/en
Publication of WO2016176941A1 publication Critical patent/WO2016176941A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an organic electroluminescent device and a method of fabricating the same.
  • the organic electroluminescent device (OLED) in the prior art has a thin, light, wide viewing angle, active illumination, continuously adjustable color, low cost, fast response, and low energy consumption. Low driving voltage, wide operating temperature range, simple production process, high luminous efficiency and flexible display.
  • Organic electroluminescent devices (OLEDs) have attracted the attention of those skilled in the art due to the advantages unmatched by other displays.
  • an organic electroluminescent device is composed of an anode, a cathode, and an organic layer.
  • an organic electroluminescent device 20 of the prior art comprising: a substrate 25; a thin film transistor array (TFT) 24 disposed on the substrate; and an organic device disposed on the thin film transistor array
  • the organic electroluminescent device layer (OLED) 23 of the above structure has low light utilization efficiency, and high efficiency white light is difficult to obtain.
  • the present invention provides an organic electroluminescent device comprising: a substrate; a thin film transistor array disposed on the substrate; an organic electroluminescent device layer disposed on the thin film transistor array; a filter layer; wherein, the filtering An optical film layer is disposed between the layer and the organic electroluminescent device layer, the optical film layer having a periodic uneven surface structure formed of nanoparticles.
  • the filter layer comprises a red filter layer, a green filter layer, and a blue filter layer.
  • the optical film layer is disposed below or below any one of the red filter layer, the green filter layer, and the blue filter layer, or below three.
  • the optical film layer is formed of polymer nanoparticles.
  • the polymer nanoparticles are polystyrene nanoparticles.
  • the optical film layer has a pore structure.
  • the particle diameter of the optical film layer disposed under the red filter layer is larger than the particle diameter of the optical film layer disposed under the blue filter layer, and is disposed under the blue filter layer
  • the particle diameter of the optical film layer is between the above two.
  • the optical film layer disposed under the green filter layer has a particle diameter of 500-600 nm; and the optical film layer disposed under the blue filter layer has a particle diameter of 300-400 nm.
  • the present invention provides a method of fabricating an organic electroluminescent device, wherein the organic electroluminescent device is the organic electroluminescent device according to any one of claims 1-8, the method The method comprises the steps of: providing a substrate; forming a thin film transistor array on the substrate; forming an organic electroluminescent device layer on the thin film transistor array; forming an optical thin film layer on the organic electroluminescent device layer; forming a filter on the optical thin film layer In the optical layer, the optical film layer has a periodic uneven surface structure formed of nanoparticles.
  • polymer nanoparticles are spin-coated on the organic electroluminescent device layer to form the optical film layer.
  • the step of forming an optical film layer specifically includes:
  • a red resin is spin-coated on the surface of the organic electroluminescent device layer, and a red filter layer is formed by a process such as exposure and development;
  • a green resin is spin-coated on the surface, and a green filter layer is formed by a process such as exposure and development, and the first optical film layer is disposed between the green filter layer and the surface of the organic electroluminescent device layer;
  • Polystyrene nanoparticles are spin-coated again on the aforementioned surface to form a second optical film layer;
  • a blue resin is spin-coated on the foregoing surface, and a blue filter layer is formed by a process such as exposure and development, and the second optical film layer is disposed between the blue filter layer and the surface of the organic electroluminescent device layer.
  • the particles in the first optical film layer have a diameter of 500-600 nm; and the particles in the second optical film layer have a diameter of 300-400 nm.
  • an encapsulation layer is formed on the filter layer by spin coating.
  • At least one aspect of the following beneficial technical effects is obtained, by setting an optical film layer, which changes the structure between the positive and negative electrodes, and helps to break the organic electroluminescent device.
  • the microcavity effect of the surface of the layer so that high efficiency white light can be obtained.
  • the optical film layer since an optical film layer is provided between the filter layer and the organic electroluminescent device layer, the optical film layer has a periodic uneven surface structure formed of nanoparticles, thereby causing irradiation The light of the surface of the electroluminescent device layer is converted from total reflection to refraction, thereby increasing the light extraction rate.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device in the prior art
  • FIG. 2 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 3 is a schematic illustration of an embodiment of an organic electroluminescent device in accordance with the present invention.
  • FIG. 4 is a flow chart of a method of fabricating an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device 10 includes: a substrate 16; a thin film transistor array (TFT) 15; an organic electroluminescent device layer (OLED) 14 disposed on the thin film transistor array; and a filter layer 12.
  • An optical film layer 13 is provided between the filter layer 12 and the organic electroluminescent device layer 14, and the optical film layer 13 has a periodic uneven surface structure formed of nanoparticles.
  • the periodic uneven surface structure may be any uneven structure, but the change thereof should be periodic, and the above structure can increase the refractive index of the surface of the optical film layer 13 to inject into the organic electroluminescence as much as possible.
  • the light of the device layer 14 is emitted in a refracting manner instead of total reflection, thereby obtaining a more efficient OLED display device.
  • the filter layer 12 includes a red filter layer, a green filter layer, and a blue filter layer arranged in a predetermined pattern.
  • the optical film layer 13 is disposed below any one of the red filter layer, the green filter layer, and the blue filter layer, or any two below or any three below. As shown in FIG. 3, the first optical film layer 131 is disposed under the green filter layer, and the second optical film layer 132 is disposed under the blue filter layer.
  • the optical film layer 13 may be disposed under the red filter layer, the green filter layer, and the blue filter layer; or only the red filter layer and the blue filter layer. Below The optical film layer 13 is disposed; the optical film layer 13 may be disposed only under the red filter layer and the green filter layer; or the optical layer may be disposed only under one of the red filter layer, the green filter layer, and the blue filter layer. Thin film layer 13.
  • the optical film layer 13 is formed of polymer nanoparticles, for example, formed of polystyrene nanoparticles.
  • the optical film layer 13 has a hole-like structure.
  • the nanoparticles of different diameters of the optical film layer 13 have different gain effects on light of different wavelengths. When the particle diameter is small, it is more conducive to the emission of blue light, and when the particle diameter is larger, it is more conducive to red light and green light. emission.
  • the particle diameter of the optical film layer 13 disposed under the filter layers of different colors is different. Specifically, the particle diameter of the optical film layer 13 disposed under the red filter layer is larger than that in the blue layer.
  • the particle diameter of the optical film layer 13 disposed under the color filter layer, and the particle diameter of the optical film layer 13 disposed under the blue filter layer are between the above two.
  • the refractive index is different at different positions on the surface of the organic electroluminescent device (OLED), so that the organic electroluminescent device emits different wavelengths at different positions of the display panel, and the color gamut can be obtained.
  • OLED organic electroluminescent device
  • a method of fabricating an organic electroluminescent device comprising the steps of: providing a substrate 16; forming a thin film transistor array 15 on the substrate 16; forming on the thin film transistor array 15.
  • polymer nanoparticles are spin-coated on the organic electroluminescent device layer 14 to form the optical film layer 13.
  • the above formation manner is not limited to the technical solution of the present invention, and those skilled in the art may also adopt other methods to form the optical film layer 13, such as printing or the like.
  • a substrate 16 is shown in (a), and after the substrate 16 is provided, a thin film transistor array (TFT) 15 is formed on the substrate 16, and organic electroluminescence is formed on the thin film transistor array 15.
  • a device layer (OLED) 14 then, as shown in (b), a red resin is spin-coated on the surface of the organic electroluminescent device layer (OLED) 14; as shown in (c), a red filter is formed by a process such as exposure and development.
  • the polystyrene nanoparticles are spin-coated again on the aforementioned surface to form a second optical film layer 132, which is in the second optical film layer 132.
  • the particle diameter is 300-400 nm; then, as shown in (h), the blue resin is spin-coated on the aforementioned surface; then, as shown in (i), a blue filter layer is formed by a process such as exposure and development.
  • the second optical film layer 132 is disposed between the blue filter layer and the surface of the organic electroluminescent device layer (OLED) 14; finally, the corresponding surface is spin-coated with the corresponding material to form the encapsulation layer 11.
  • An organic electroluminescent device obtained by the above method which forms an optical film layer 13 (specifically, a first optical film) between a green filter layer and a surface of the blue filter layer and the organic electroluminescent device layer (OLED) 14
  • the layer 131 and the second optical film layer 132) have different particle diameters of the optical film layer under both the green filter layer and the blue filter layer.
  • the first optical film layer 131 and the second optical film layer 132 may function as different light conversion layers.
  • the above method is not limited to the present invention, and those skilled in the art may change the order of the above steps according to actual needs, and set nanoparticles of different particle diameters under different filter layers 12, and further, those skilled in the art may also use other methods.
  • a suitable material is used to form the optical film layer 13.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机电致发光器件,其包括:基板;设置在基板上的薄膜晶体管阵列;设置在薄膜晶体管阵列上的有机电致发光器件层;滤光层;其中,在所述滤光层和所述有机电致发光器件层之间设置光学薄膜层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构。

Description

有机电致发光器件及其制备方法 技术领域
本发明涉及一种有机电致发光器件及其制备方法。
背景技术
现有技术中有机电致发光器件(OLED)作为新型的平板显示器与LCD相比,具有薄、轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点。有机电致发光器件(OLED)由于具有其他显示器不可比拟的优势得到了本领域技术人员的注意。
现有技术中,有机电致发光器件(OLED)是由阳极、阴极以及有机层组成。如图1所示,其示出了现有技术中的有机电致发光器件20,其包括:基板25;设置在基板上的薄膜晶体管阵列(TFT)24;设置在薄膜晶体管阵列上的有机电致发光器件层(OLED)23;滤光层22;以及封装层21。但是,上述结构的有机电致发光器件层(OLED)23的光利用率较低,高效率的白光难以获得。
发明内容
本发明的目的在于克服现有技术中存在的问题和缺陷的至少一个方面。
本发明提供一种有机电致发光器件,其包括:基板;设置在基板上的薄膜晶体管阵列;设置在薄膜晶体管阵列上的有机电致发光器件层;滤光层;其中,在所述滤光层和所述有机电致发光器件层之间设置光学薄膜层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构。
在本发明的实施方式中,所述滤光层包括红色滤光层、绿色滤光层以及蓝色滤光层。
在本发明的实施方式中,所述光学薄膜层设置在所述红色滤光层、绿色滤光层以及蓝色滤光层中的任意一个的下方或者任意两个的下方或者三个的下方。
在本发明的实施方式中,所述光学薄膜层由高分子纳米粒子形成。
在本发明的实施方式中,所述高分子纳米粒子为聚苯乙烯纳米粒子。
在本发明的实施方式中,所述光学薄膜层为孔状结构。
在本发明的实施方式中,在红色滤光层下方设置的光学薄膜层的粒子直径大于在蓝色滤光层下方设置的光学薄膜层的粒子直径,在所述蓝色滤光层下方设置的光学薄膜层的粒子直径介于上述两者之间。
在本发明的实施方式中,在绿色滤光层下方设置的光学薄膜层的粒子直径为500-600nm;在蓝色滤光层下方设置的光学薄膜层的粒子直径为300-400nm。
另一方面,本发明提供一种有机电致发光器件的制备方法,其中,所述有机电致发光器件是根据权利要求1-8中任一项所述的有机电致发光器件,所述方法包括如下步骤:提供基板;在基板上形成薄膜晶体管阵列;在薄膜晶体管阵列上形成有机电致发光器件层;在所述有机电致发光器件层上形成光学薄膜层;在光学薄膜层上形成滤光层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构。
在本发明的实施方式中,在所述有机电致发光器件层上旋涂高分子纳米粒子以形成所述光学薄膜层。
在本发明的实施方式中,所述形成光学薄膜层的步骤具体包括:
在有机电致发光器件层表面上旋涂红色树脂,通过曝光和显影等工艺形成红色滤光层;
在前述表面上旋涂聚苯乙烯纳米粒子以形成第一光学薄膜层;
在前述表面上旋涂绿色树脂,通过曝光和显影等工艺形成绿色滤光层,所述第一光学薄膜层设置在绿色滤光层与有机电致发光器件层表面之间;
在前述表面上再次旋涂聚苯乙烯纳米粒子以形成第二光学薄膜层;
在前述表面上旋涂蓝色树脂,通过曝光和显影等工艺形成蓝色滤光层,所述第二光学薄膜层设置在蓝色滤光层与有机电致发光器件层表面之间。
在本发明的实施方式中,所述第一光学薄膜层中的粒子直径为500-600nm;所述第二光学薄膜层中的粒子直径为300-400nm。
在本发明的实施方式中,在形成所述滤光层之后,通过旋涂在所述滤光层上形成封装层。
利用本发明实施例所提出的技术方案,其取得下述有益的技术效果的至少一个方面,通过设置光学薄膜层,其改变了正负极之间的结构,有助于打破有机电致发光器件层的表面的微腔效应,从而可以获得高效率的白光。具体而言,由于在所述滤光层和所述有机电致发光器件层之间设置光学薄膜层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构,从而使得照射到机电致发光器件层的表面的光由全反射转变成折射,从而提高了出光率。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1是现有技术中的有机电致发光器件的结构示意图;
图2是根据本发明实施例的有机电致发光器件的结构示意图;
图3是根据本发明的有机电致发光器件的一种实施方式的示意图;
图4是根据本发明实施例的有机电致发光器件的制备方法的流程图。
具体实施方式
下面将参照附图详细描述本发明的实施例,其中相同的标号对应相同的元件。但是,本发明有很多不同的实施方案,不能解释为将本发明限定为所述的实施例;而只是通过提供本发明的实施例,使本发明公开内容全面而完整,并向本领域技术人员完全的传达本发明的发明构思。
如图2所示,其示出了根据本发明实施例的有机电致发光器件的结构,具体的,根据本发明实施例的有机电致发光器件10,其包括:基板16;设置在基板16上的薄膜晶体管阵列(TFT)15;设置在薄膜晶体管阵列上的有机电致发光器件层(OLED)14;滤光层12。在所述滤光层12和所述有机电致发光器件层14之间设置光学薄膜层13,该光学薄膜层13具有由纳米粒子形成的周期性不平坦的表面结构。这里的周期性不平坦的表面结构可以是任意的不平坦的结构,但是其变化应是周期性的,上述结构可以提高光学薄膜层13表面的折射率,以尽量将射入到有机电致发光器件层14的光以折射的方式射出而不是全反射,从而获得效率更高的OLED显示器件。
在本发明的实施方式中,所述滤光层12包括成预定图案布置的红色滤光层、绿色滤光层以及蓝色滤光层。
在本发明的实施方式中,所述光学薄膜层13设置在所述红色滤光层、绿色滤光层以及蓝色滤光层任意一个下方或者任意两个下方或者任意三个下方。如图3所示,第一光学薄膜层131设置在绿色滤光层下方,第二光学薄膜层132设置在蓝色滤光层下方。
上述设置方式不是对本发明的限定,例如,可以在红色滤光层、绿色滤光层以及蓝色滤光层下方都设置光学薄膜层13;也可以只在红色滤光层和蓝色滤光层下方 设置光学薄膜层13;也可以只在红色滤光层和绿色滤光层下方设置光学薄膜层13;也可以仅在红色滤光层、绿色滤光层以及蓝色滤光层任一个下方设置光学薄膜层13。
在本发明的实施方式中,所述光学薄膜层13由高分子纳米粒子形成,例如,由聚苯乙烯纳米粒子形成。当然,本领域技术人员也可以采用其他材料来形成光学薄膜层13。所述光学薄膜层13为孔状结构。通过在有机电致发光器件(OLED)14的表面设置光学薄膜层13,有助于改变其表面的折射系数,即,尽量将射入到有机电致发光器件层的光以折射的方式射出而不是全反射,从而提升有机电致发光器件的出光率。通过控制孔状结构直径,从而控制OLED在不同位置的波长,从而获得色域更广、效率更高的OLED显示器件。
光学薄膜层13的不同直径的纳米粒子对不同波长的光的增益效果不同,粒子直径较小时,更有助于蓝色光的发射,粒子直径较大时,更有助于红光和绿光的发射。
因此,在本发明的实施方式中,在不同颜色的滤光层下方设置的光学薄膜层13的粒子直径不同,具体的,在红色滤光层下方设置的光学薄膜层13的粒子直径大于在蓝色滤光层下方设置的光学薄膜层13的粒子直径,在所述蓝色滤光层下方设置的光学薄膜层13的粒子直径介于上述两者之间。
通过控制光学薄膜层粒子的直径,使得在有机电致发光器件(OLED)的表面的不同位置的折射系数不同,从而使得有机电致发光器件在显示面板的不同位置发射波长不同,可以得到色域更广的有机电致发光显示器件。
根据本发明的另外一个方面,其提出了一种有机电致发光器件的制备方法,所述方法包括如下步骤:提供基板16;在基板16上形成薄膜晶体管阵列15;在薄膜晶体管阵列15上形成有机电致发光器件层14;在所述有机电致发光器件层14上形成光学薄膜层13;在光学薄膜层13上形成滤光层12,所述光学薄膜层13具有由纳米粒子形成的周期性不平坦的表面结构。
在本发明的实施方式中,在所述有机电致发光器件层14上旋涂高分子纳米粒子以形成所述光学薄膜层13。当然上述形成方式不是对本发明的技术方案的限定,本领域技术人员也可以采用其他方式来形成所述光学薄膜层13,例如印刷等。
具体地,如图4所示,在(a)中示出了基板16,在提供基板16之后,在基板16上形成薄膜晶体管阵列(TFT)15,在薄膜晶体管阵列15上形成有机电致发光器件层(OLED)14;接着,如(b)所示,在有机电致发光器件层(OLED)14表面上旋涂红色树脂;如(c)所示,通过曝光和显影等工艺形成红色滤光层;接着,如 (d)所示,在前述表面上旋涂聚苯乙烯纳米粒子以形成第一光学薄膜层131,所述第一光学薄膜层131中的粒子直径为500-600nm;接着,如(e)所示,在前述表面上旋涂绿色树脂;接着,如(f)所示,通过曝光和显影等工艺形成绿色滤光层,所述第一光学薄膜层131设置在绿色滤光层与有机电致发光器件层(OLED)14表面之间;接着,如(g)所示,在前述表面上再次旋涂聚苯乙烯纳米粒子以形成第二光学薄膜层132,所述第二光学薄膜层132中的粒子直径为300-400nm;接着,如(h)所示,在前述表面上旋涂蓝色树脂;接着,如(i)所示,通过曝光和显影等工艺形成蓝色滤光层,所述第二光学薄膜层132设置在蓝色滤光层与有机电致发光器件层(OLED)14表面之间;最后,对前述表面旋涂相应的材料以形成封装层11。
通过上述方法获得的有机电致发光器件,其在绿色滤光层以及蓝色滤光层与有机电致发光器件层(OLED)14表面之间形成光学薄膜层13(具体地是第一光学薄膜层131和第二光学薄膜层132),并且,在绿色滤光层以及蓝色滤光层两者下面的光学薄膜层的粒子直径不同。或者说,所述第一光学薄膜层131和第二光学薄膜层132可以起到不同的光转换层的作用。
上述方法不是对本发明的限定,本领域技术人员可以根据实际需要改变上述步骤的顺序,以及在不同的滤光层12下方设置不同粒子直径的纳米粒子,此外,本领域技术人员也可以改用其他合适的材料来形成所述光学薄膜层13。
尽管对本发明的实施例进行了展示和描述,但本领域技术人员将会理解在不偏离本发明的原理和实质的情况下,可对这些实施例进行改变,其范围也落入本实用新型的权利要求及其等同物所限定的范围内。

Claims (13)

  1. 一种有机电致发光器件,其包括:
    基板;
    设置在基板上的薄膜晶体管阵列;
    设置在薄膜晶体管阵列上的有机电致发光器件层;
    滤光层;
    其中,在所述滤光层和所述有机电致发光器件层之间设置光学薄膜层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构。
  2. 根据权利要求1所述的有机电致发光器件,其中,
    所述滤光层包括红色滤光层、绿色滤光层以及蓝色滤光层。
  3. 根据权利要求2所述的有机电致发光器件,其中,
    所述光学薄膜层设置在所述红色滤光层、绿色滤光层以及蓝色滤光层中的任意一个的下方或者任意两个的下方或者三个的下方。
  4. 根据权利要求1-3中任一项所述的有机电致发光器件,其中,
    所述光学薄膜层由高分子纳米粒子形成。
  5. 根据权利要求4所述的有机电致发光器件,其中,
    所述高分子纳米粒子为聚苯乙烯纳米粒子。
  6. 根据权利要求1-5中任一项所述的有机电致发光器件,其中,
    所述光学薄膜层为孔状结构。
  7. 根据权利要求3所述的有机电致发光器件,其中,
    在红色滤光层下方设置的光学薄膜层的粒子直径大于在蓝色滤光层下方设置的光学薄膜层的粒子直径,在所述蓝色滤光层下方设置的光学薄膜层的粒子直径介于上 述两者之间。
  8. 根据权利要求7所述的有机电致发光器件,其中,
    在绿色滤光层下方设置的光学薄膜层的粒子直径为500-600nm;在蓝色滤光层下方设置的光学薄膜层的粒子直径为300-400nm。
  9. 一种有机电致发光器件的制备方法,其中,所述有机电致发光器件是根据权利要求1-8中任一项所述的有机电致发光器件,所述方法包括如下步骤:
    提供基板;
    在基板上形成薄膜晶体管阵列;
    在薄膜晶体管阵列上形成有机电致发光器件层;
    在所述有机电致发光器件层上形成光学薄膜层;
    在光学薄膜层上形成滤光层,所述光学薄膜层具有由纳米粒子形成的周期性不平坦的表面结构。
  10. 根据权利要求9所述的有机电致发光器件的制备方法,其中,在所述有机电致发光器件层上旋涂高分子纳米粒子以形成所述光学薄膜层。
  11. 根据权利要求9或10所述的有机电致发光器件的制备方法,其中,所述形成光学薄膜层的步骤具体包括:
    在有机电致发光器件层表面上旋涂红色树脂,通过曝光和显影工艺形成红色滤光层;
    在前述表面上旋涂聚苯乙烯纳米粒子以形成第一光学薄膜层;
    在前述表面上旋涂绿色树脂,通过曝光和显影工艺形成绿色滤光层,所述第一光学薄膜层设置在绿色滤光层与有机电致发光器件层表面之间;
    在前述表面上再次旋涂聚苯乙烯纳米粒子以形成第二光学薄膜层;
    在前述表面上旋涂蓝色树脂,通过曝光和显影工艺形成蓝色滤光层,所述第二光学薄膜层设置在蓝色滤光层与有机电致发光器件层表面之间。
  12. 根据权利要求11所述的有机电致发光器件的制备方法,其中,所述第一光学薄膜层中的粒子直径为500-600nm;所述第二光学薄膜层中的粒子直径为300- 400nm。
  13. 根据权利要求9-12中任一项所述的有机电致发光器件的制备方法,其中
    在形成所述滤光层之后,通过旋涂在所述滤光层上形成封装层。
PCT/CN2015/089345 2015-05-04 2015-09-10 有机电致发光器件及其制备方法 WO2016176941A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/127,026 US10388704B2 (en) 2015-05-04 2015-09-10 Organic electroluminescence device and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510221957.3A CN104821328B (zh) 2015-05-04 2015-05-04 有机电致发光器件及其制备方法
CN201510221957.3 2015-05-04

Publications (1)

Publication Number Publication Date
WO2016176941A1 true WO2016176941A1 (zh) 2016-11-10

Family

ID=53731574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089345 WO2016176941A1 (zh) 2015-05-04 2015-09-10 有机电致发光器件及其制备方法

Country Status (3)

Country Link
US (1) US10388704B2 (zh)
CN (1) CN104821328B (zh)
WO (1) WO2016176941A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821328B (zh) * 2015-05-04 2018-11-16 合肥京东方光电科技有限公司 有机电致发光器件及其制备方法
CN107393944A (zh) * 2017-07-12 2017-11-24 武汉华星光电半导体显示技术有限公司 显示面板及制作方法
CN111430570B (zh) * 2020-04-02 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板以及显示面板的制造方法
CN113707684A (zh) * 2020-05-21 2021-11-26 咸阳彩虹光电科技有限公司 一种oled显示结构、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771188A (zh) * 2010-02-25 2012-11-07 夏普株式会社 发光元件、显示器和显示装置
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN203179892U (zh) * 2013-04-09 2013-09-04 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
WO2013145914A1 (ja) * 2012-03-27 2013-10-03 ソニー株式会社 表示装置および電子機器
CN104821328A (zh) * 2015-05-04 2015-08-05 合肥京东方光电科技有限公司 有机电致发光器件及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635869B2 (ja) * 2003-04-23 2011-02-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置
DE102009014808A1 (de) * 2009-03-25 2010-10-07 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ansteuern eines eine Ansprechverzögerung aufweisenden Steuerelements einer Antriebseinrichtung
JPWO2013154133A1 (ja) * 2012-04-13 2015-12-17 シャープ株式会社 光散乱体、光散乱体膜、光散乱体基板、光散乱体デバイス、発光デバイス、表示装置、および照明装置
JPWO2014006987A1 (ja) * 2012-07-04 2016-06-02 シャープ株式会社 蛍光材料、蛍光塗料、蛍光体基板、電子機器およびledパッケージ
WO2014084012A1 (ja) * 2012-11-30 2014-06-05 シャープ株式会社 散乱体基板
US9262487B2 (en) * 2013-07-25 2016-02-16 Samsung Electronics Co., Ltd Method and apparatus for guided acquisition and tracking in global navigation satellite system receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771188A (zh) * 2010-02-25 2012-11-07 夏普株式会社 发光元件、显示器和显示装置
WO2013145914A1 (ja) * 2012-03-27 2013-10-03 ソニー株式会社 表示装置および電子機器
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN203179892U (zh) * 2013-04-09 2013-09-04 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN104821328A (zh) * 2015-05-04 2015-08-05 合肥京东方光电科技有限公司 有机电致发光器件及其制备方法

Also Published As

Publication number Publication date
CN104821328A (zh) 2015-08-05
US10388704B2 (en) 2019-08-20
CN104821328B (zh) 2018-11-16
US20170373123A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
KR101289844B1 (ko) 유기 발광 소자
WO2016176941A1 (zh) 有机电致发光器件及其制备方法
US10186675B2 (en) Top-emitting white organic light emitting diode device, method for manufacturing the same, and display apparatus
US20170261849A1 (en) Method for manufacturing color filter substrate
US10038159B2 (en) Organic electroluminescent device structure and manufacturing for the same
US20180108871A1 (en) Manufacturing method for led display panel and led display panel
CN203787433U (zh) Oled显示器件及显示装置
CN106449719A (zh) 一种有机发光显示面板、装置及制作方法
CN104681736A (zh) 一种oled单元及其制造方法、显示面板
Zhou et al. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes
US10338429B2 (en) Method for manufacturing quantum dot color filter
CN111384287B (zh) 量子点发光二极管及其制备方法
CN111384286B (zh) 量子点发光二极管及其制备方法
JP2010186613A (ja) 有機発光素子及びその作製方法、並びに表示装置
CN204179111U (zh) 一种顶发射白光oled器件和显示装置
CN103943785A (zh) 光学调节膜及其制造方法
US20180294377A1 (en) Graphene light emitting display and method of manufacturing the same
TWI676843B (zh) 量子點膠帶與量子點背光模組
KR101861630B1 (ko) 발광장치 및 그 제조방법
CN103367655A (zh) 基于光子晶体微结构衬底的高亮度oled及其制作方法
CN104409654A (zh) 发光器件及其制备方法
CN206076288U (zh) 光学器件、显示基板及显示装置
KR102587010B1 (ko) 내부 광 추출용 광결정, 내부 산란층 및 외부 양자점층을 포함하는 유기발광소자
KR101495088B1 (ko) 광전소자용 필름 제조방법
KR20170066935A (ko) 마이크로렌즈가 집적화된 유기전계발광소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15127026

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891192

Country of ref document: EP

Kind code of ref document: A1