WO2016176940A1 - 水平度检测装置及方法、水平度调节装置及方法 - Google Patents

水平度检测装置及方法、水平度调节装置及方法 Download PDF

Info

Publication number
WO2016176940A1
WO2016176940A1 PCT/CN2015/089300 CN2015089300W WO2016176940A1 WO 2016176940 A1 WO2016176940 A1 WO 2016176940A1 CN 2015089300 W CN2015089300 W CN 2015089300W WO 2016176940 A1 WO2016176940 A1 WO 2016176940A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
mirror
reflecting
adjustment
transmissive
Prior art date
Application number
PCT/CN2015/089300
Other languages
English (en)
French (fr)
Inventor
周祥
郭栋
廖志侠
韩冬
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/022,270 priority Critical patent/US9733078B2/en
Publication of WO2016176940A1 publication Critical patent/WO2016176940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/066Electric or photoelectric indication or reading means optical

Definitions

  • the present invention relates to the field of measurement and control technologies, and in particular, to a levelness detecting device and method, a level adjusting device and a method.
  • a robot is a robotic device that can work automatically, depending on the person's command, or it can work according to a pre-programmed program. Robots can replace people's work, and work efficiency and work quality are stable. Therefore, robots are widely used in production, construction, manufacturing and other fields. For example, in the manufacturing process of a liquid crystal panel, a robot can perform work such as carrying a substrate instead of a person.
  • the robot typically includes a base and an arm that is fixedly disposed on the base. Robots usually rely on the arm to carry out the handling of the object, and the arm is usually horizontal. Over time, the robot's arm will inevitably sag, causing the robot to work effectively. The slight drooping of the naked eye is usually not directly observable, so the levelness of the arm needs to be detected by means of a leveling device. In the prior art, the level of the arm of the robot is usually detected by a level measuring instrument.
  • the robot typically includes a first arm and a second arm, the upper surfaces of the first arm and the second arm are generally coplanar and parallel to the horizontal plane.
  • the level measuring instrument is placed at a position away from the robot by a predetermined distance, and the position of the level measuring instrument is kept unchanged during the detecting.
  • the length of the ruler is perpendicular to the upper surface of the first arm, and the position of the ruler is observed by the level measuring instrument.
  • the reading is the first indication; then the ruler is moved to the rear end of the first arm, and the indicator of the ruler is observed by the level measuring instrument, and the reading is recorded as the second indication; then the ruler is moved to the first
  • the front end of the second arm is used to observe the indication of the ruler at this time by the level measuring instrument, and the number is recorded as the third indication; then the ruler is moved to the rear end of the second arm, and the ruler is observed by the level measuring instrument at this time.
  • the number is recorded as the fourth indication, wherein the front end of any of the first arm and the second arm is the end of the arm away from the base, and the rear end of either arm is the end of the arm near the base. Whether the arm of the robot is in a horizontal state is determined according to whether the first indicator, the second indicator, the third indicator, and the fourth indicator are equal.
  • the level measuring instrument is detecting the machine
  • the ruler needs to be used
  • the position of the ruler on the arm of the robot needs to be moved, resulting in complicated operation and easy manual measurement error.
  • embodiments of the present invention provide a levelness detecting apparatus and method, a leveling adjusting apparatus, and a method.
  • the technical solution is as follows:
  • a level detection apparatus comprising:
  • a plurality of mirrors including a first mirror, a second mirror, and a third mirror
  • the semi-reflecting semi-transmissive mirror and the plurality of mirrors are arranged on a plane to be inspected and each is provided with a scale indicating a height;
  • the light emitted by the light emitter passes through the semi-reflecting semi-transmissive mirror and is split into two outgoing rays, one of which emits light to the first mirror, and the other of which emits light to the second mirror.
  • the second mirror in turn reflects the other beam of outgoing light to the third mirror, by comparing the scale of the light on the semi-reflecting semi-transmissive mirror and the plurality of mirrors To detect the level of the plane to be detected.
  • the light emitter emits light in a horizontal direction.
  • the semi-reflecting semi-transmissive mirror, the first mirror, the second mirror, and the third mirror are arranged such that if the semi-reflecting semi-transmissive mirror, the first mirror, the second The scales on the mirror and the third mirror are all equal, and the plane to be detected is detected as a horizontal plane; otherwise, the plane to be detected is detected as being in a non-horizontal state.
  • a semi-reflective semi-transmissive film is disposed on the light incident surface of the semi-reflective semi-transmissive mirror, and a scale is set on a height of the semi-reflective semi-transmissive film on the semi-reflective semi-transmissive film;
  • a total reflection film is disposed on the light incident surface of each of the mirrors, and a scale is provided on the total reflection film along the height direction of the mirror.
  • a distance between the semi-reflecting semi-transmissive mirror and the first mirror is equal to a distance between the second mirror and the third mirror; the semi-reflecting semi-transmissive mirror and the The distance between the second mirrors is equal to the distance between the first mirror and the third mirror.
  • the light incident surface of the semi-reflecting semi-transmissive mirror and the light incident surface of each of the plurality of mirrors are planar, and the light incident surface of the semi-reflecting semi-transmissive mirror and the second reflective surface
  • the light incident surfaces of the mirrors are parallel, and the light incident surface of the first mirror is parallel to the light incident surface of the third mirror.
  • an angle between a light incident surface of the semi-reflecting semi-transmissive mirror and a light incident surface of the first mirror is 90 degrees
  • a light incident surface of the second mirror and the third surface The angle between the incident surfaces of the mirror is 90 degrees.
  • the light emitter is a laser emitter.
  • the scales of the semi-reflecting semi-transmissive mirror and the plurality of mirrors are all 0.01 mm.
  • a level adjustment apparatus for use with the leveliness detecting apparatus of the first aspect, comprising:
  • a support member for supporting the device to be adjusted, wherein the support member is provided with an adjustment hole;
  • Adjusting unit passing through an adjusting hole provided on the support member and contacting the device to be adjusted;
  • the adjusting unit moves relative to the adjusting hole to adjust the level of the device to be adjusted.
  • the adjustment unit is movable in a direction in which it passes through the adjustment aperture.
  • the adjusting unit comprises an adjusting knob, and the adjusting knob is threadedly engaged with the adjusting hole.
  • the adjustment knob is any one of a screw and a nut.
  • the number of the adjustment knobs is n, and the n is a positive integer; the n adjustment knobs are distributed on the support according to a preset rule.
  • a level detection method for detecting a level of a device to be detected by using the level detecting device of the first aspect comprising:
  • a level adjustment method for adjusting a level of a device to be detected using the level adjustment device of the second aspect comprising:
  • the adjustment unit in the device causes a scale indication other than the reference representation to be equal to the reference representation.
  • the present invention provides the following advantageous effects.
  • the horizontality is detected according to the semi-reflective semi-transmissive mirror and the scale indication on the plurality of mirrors, so that the problem that the operation process is complicated and the manual measurement error is easy to occur when the level measuring instrument is used is solved, and the simplification is achieved.
  • the operation process and the effect of improving the detection accuracy is achieved according to the semi-reflective semi-transmissive mirror and the scale indication on the plurality of mirrors, so that the problem that the operation process is complicated and the manual measurement error is easy to occur when the level measuring instrument is used is solved, and the simplification is achieved.
  • FIG. 1 is a side view of a robot provided by the prior art
  • FIG. 2 is a scene diagram of detecting the levelness of an arm of a robot provided by the prior art
  • FIG. 3 is a schematic structural diagram of a levelness detecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a semi-reflecting semi-transmissive mirror provided by the embodiment shown in FIG. 3;
  • Figure 5 is a schematic structural view of a first mirror provided by the embodiment shown in Figure 3;
  • Figure 6 is a comparison diagram of a semi-reflecting semi-transmissive mirror and a first reflecting mirror provided by the embodiment shown in Figure 3;
  • Figure 7 is a comparison diagram of another semi-reflecting semi-transmissive mirror and a first reflecting mirror provided by the embodiment shown in Figure 3;
  • Figure 8 is a comparison diagram of still another semi-reflecting semi-transmissive mirror and a first reflecting mirror provided by the embodiment shown in Figure 3;
  • FIG. 9 is a comparison diagram of still another semi-reflecting semi-transmissive mirror and a first reflecting mirror provided by the embodiment shown in FIG. 3;
  • Figure 10 is a view of the semi-reflecting semi-transmissive mirror and the plurality of mirrors provided by the embodiment shown in Figure 3. Set the relationship diagram;
  • Figure 11 is a scene diagram for detecting the levelness of the arm of the robot using the level detecting device provided in the embodiment shown in Figure 3;
  • FIG. 12 is a schematic structural diagram of a level adjustment apparatus according to an embodiment of the present invention.
  • Figure 13 is a cross-sectional view of the level adjusting device of the embodiment shown in Figure 12 taken along the line A-A;
  • FIG. 14 is a schematic structural diagram of another level adjustment apparatus according to an embodiment of the present invention.
  • Figure 15 is a cross-sectional view of the level adjusting device of the embodiment shown in Figure 14 taken along the line B-B;
  • 16 is a schematic structural diagram of an adjustment knob according to an embodiment of the present invention.
  • Figure 17 is a bottom plan view of the level adjustment device provided in the embodiment shown in Figure 14;
  • Figure 18 is a scene diagram for adjusting the levelness of the arm of the robot using the level adjustment device provided in the embodiment shown in Figure 12;
  • 19 is a scene view of adjusting the levelness of the arm of the robot by using the level adjustment device provided in the embodiment shown in FIG. 14;
  • Figure 20 is a bottom plan view showing the levelness of the arm of the robot using the level adjustment device provided in the embodiment shown in Figure 19;
  • 21 is a flowchart of a method for detecting a levelness according to an embodiment of the present invention.
  • FIG. 22 is a flowchart of a level adjustment method according to an embodiment of the present invention.
  • FIG. 1 shows a side view of a conventional robot 00.
  • the robot 00 includes a base 001, an arm 002, and an arm support 003 for supporting the arm 002.
  • the arm 002 can generally include a first arm and a second arm.
  • the base 001 is provided with a first mounting slot 0011 for mounting the arm 002 and a second mounting slot 0012 for mounting the arm support 003, and the first mounting slot 0011 and the second mounting slot 0012 are in communication.
  • the arm 002 and the arm support 003 are respectively disposed in the first mounting groove 0011 and the second mounting groove 0012, and are fixed to the base 001 by screws 004 sequentially passing through the base 001, the arm 002, and the arm support 003.
  • FIG. 2 is a scene diagram for detecting the levelness of the arm 002 of the robot 00 shown in FIG. 1 and adjusting the level.
  • a level measuring instrument 01 is placed at a preset distance a from the robot 00, and a human eye observation portion 011 is disposed on the horizontal measuring instrument 01, and an arm 002 (which may be a first arm or a second arm) is placed thereon.
  • Ruler 02. In the prior art, when it is detected that the arm 002 sagging needs to adjust the level, it is usually necessary to unscrew the screw 004, remove the arm 002 from the base 001, and place a spacer on the end of the arm support 003 away from the base 001 (Fig.
  • the arm 002 is mounted on the base 001, the level of the arm 002 is re-detected, and if the arm 002 is still in the sag state, the arm 002 is removed from the base 001 and replaced with a larger thickness. The shims are repeated until the arm 002 is level. Therefore, the prior art process of adjusting the level of the arm is complicated, takes a long time, and has low adjustment precision.
  • FIG. 3 is a schematic structural diagram of a level detecting device 03 according to an embodiment of the present invention.
  • the level detecting device 03 includes a light emitter 031, a semi-reflecting semi-transmissive mirror 032, and a plurality of mirrors.
  • the light emitter 031 can be a laser emitter.
  • a semi-reflecting semi-transmissive mirror and the plurality of mirrors are arranged on a plane to be inspected.
  • Level refers to the extent to which the plane to be detected is parallel to the sea level (horizontal plane).
  • a scale is provided on the semi-reflective semi-transmissive mirror 032 and the plurality of mirrors.
  • the plurality of mirrors include a first mirror 0331, a second mirror 0332, and a third mirror 0333.
  • the light emitted by the light emitter 031 passes through the semi-reflective half-lens 032 and is split into two outgoing rays, which may be the outgoing light A and the outgoing light B, respectively, as shown in FIG.
  • One outgoing ray A reaches the first mirror 0331
  • the other outgoing ray B reaches the second mirror 0332, which in turn reflects the other outgoing ray B to the third mirror 0333.
  • the levelness is detected by comparing the semi-reflective semi-transmissive mirror 032 with the scale representation on the plurality of mirrors.
  • the light emitter 031, the semi-reflecting semi-transmissive mirror 032, the first reflecting mirror 0331, the second reflecting mirror 0332, and the third reflecting mirror 0333 may be arranged such that the light emitter 031 emits light in a horizontal direction and if semi-reflected
  • the scales on the semi-transmissive mirror 032, the first mirror 0331, the second mirror 0332, and the third mirror 0333 are all equal, and the plane to be detected is detected as a horizontal plane; otherwise, the plane to be detected is detected to be in a non-horizontal state. .
  • FIG. 4 is a schematic structural view of the semi-reflecting semi-transmissive mirror 032 provided by the embodiment shown in FIG. 3 .
  • the light incident surface of the semi-reflective semi-transmissive mirror 032 may be a plane, which is a half Reflecting the surface of the semi-transmissive mirror 032 where light enters.
  • the semi-reflective semi-transmissive mirror 032 may have a rectangular parallelepiped structure, and a light-reflecting surface M of the reflective semi-transmissive mirror 032 is provided with a semi-reflective semi-transmissive film (not shown in FIG. 4).
  • the semi-reflective semi-transmissive film may be formed by plating a semi-reflective semi-transmissive material on the incident surface M of the reflective semi-transmissive mirror 032.
  • the semi-reflective semi-transmissive film is provided with a scale along the height direction z of the semi-reflective semi-transmissive mirror 032, and the accuracy of the scale may be 0.01 mm (mm).
  • the scale of the semi-reflective semi-transmissive mirror 032 is the scale indicated by the light on the semi-reflective semi-transmissive mirror 032 when the light hits the semi-reflective semi-transmissive mirror 032, as indicated by the ray C indicated by the light C.
  • the ray C indicates a scale of 2.
  • the scales in FIG. 4 are merely illustrative and are not intended to limit the invention.
  • the light incident surfaces of the plurality of mirrors are all planes, and the light incident surface of each of the mirrors is a surface on the mirror where the light enters.
  • a total reflection film is disposed on the light incident surface of each of the mirrors, and the total reflection film is provided with a scale along the height direction of the mirror, and the accuracy of the scale may be 0.01 mm.
  • FIG. 5 is a schematic structural diagram of a first mirror 0331 provided by the embodiment shown in FIG. 3 .
  • the first mirror 0331 may have a rectangular parallelepiped structure, and a total reflection film (not shown in FIG. 5) is disposed on the light incident surface W of the first mirror 0331.
  • the total reflection film may be formed by plating a total reflection film material on the light incident surface W of the first mirror 0331.
  • a scale is provided on the total reflection film along the height direction z1 of the first mirror 0331, and the accuracy of the scale may be 0.01 millimeters (mm).
  • the scale of the first mirror 0331 is the scale indicated by the light on the first mirror 0331 when the light hits the first mirror 0331, as shown by the ray A indicated by the light A as shown in FIG. In the example shown in FIG. 5, the ray A indicates a scale of 2. It should be noted that the scales in FIG. 5 are merely schematic and are not intended to limit the present invention.
  • the scales of the semi-reflecting semi-transmissive mirror 032 and the plurality of mirrors are all scales indicating the height, and the accuracy of the scale is 0.01 mm. Therefore, the scale of the semi-reflecting semi-transmissive mirror 032 and the plurality of mirrors
  • the types are the same, and the range of the scale of the semi-reflecting semi-transmissive mirror 032 and the plurality of mirrors is also the same.
  • a semi-reflective semi-transmissive mirror 032 and a first reflecting mirror 0331 are taken as an example for comparison. As shown in FIG.
  • the semi-reflective semi-transmissive mirror 032 and the first reflecting mirror 0331 have a scale range of m, and the accuracy of the scale is 0.01 mm, wherein the semi-reflecting semi-transmissive mirror 032 and the first reflecting mirror 0331 are on the scale.
  • the distance between two adjacent tick marks is 0.1 mm.
  • the 0 scale point of the semi-reflective semi-transmissive mirror 032 is in the same plane as the bottom surface of the semi-reflective semi-transmissive mirror 032, and the 0-scale point of the first mirror 0331 is in the same plane as the bottom surface of the first mirror 0331. In the plane.
  • the 0 scale point of the semi-reflective semi-transmissive mirror 032 can also be higher than the bottom surface of the semi-reflective semi-transmissive mirror 032.
  • a semi-reflective semi-transmissive mirror 032 and a first reflecting mirror 0331 are taken as an example for comparison.
  • the semi-reflective semi-transmissive mirror 032 and the first reflecting mirror 0331 have a scale range of m, and the scale has an accuracy of 0.01 mm, wherein the semi-reflecting semi-transmissive mirror 032 and the first reflecting mirror 0331 are on the scale.
  • the distance between two adjacent tick marks is 0.1 mm. When actually reading, you can estimate 1 bit. In the example shown in FIG.
  • the 0 scale point of the semi-reflective semi-transmissive mirror 032 is higher than the bottom surface of the semi-reflective semi-transmissive mirror 032, and the 0-scale point of the semi-reflective semi-transmissive mirror 032 to the bottom surface of the semi-reflective semi-transmissive mirror 032
  • the distance is h.
  • the 0 scale point of the first mirror 0331 is also higher than the bottom surface of the first mirror 0331, and the distance h1 from the 0 scale point of the first mirror 0331 to the bottom surface of the first mirror 0331 is equal to the semi-reflective semi-transmission mirror.
  • the 0 scale point of the semi-reflective semi-transmissive mirror 032 may also be located at the center of the semi-reflective semi-transmissive mirror 032, which is referred to as a semi-reflective semi-transmissive mirror 032, parallel to the plane of the height direction z. center of.
  • the 0 scale point of any one of the plurality of mirrors may also be located at the center of the mirror.
  • a semi-reflective semi-transmissive mirror 032 and a first reflecting mirror 0331 are taken as an example for comparison. As shown in FIG.
  • the semi-reflective semi-transmissive mirror 032 and the first reflecting mirror 0331 have a scale range of m, and the scale accuracy is 0.01 mm, wherein the semi-reflecting semi-transmissive mirror 032 and the first reflecting mirror 0331 are on the scale.
  • the distance between two adjacent tick marks is 0.1 mm.
  • the 0 scale point of the semi-reflecting semi-transmissive mirror 032 is located at the center of the semi-reflecting semi-transmissive mirror 032, and at this time, the 0-scale point of the first reflecting mirror 0331 is also located at the center of the first reflecting mirror 0331. .
  • the first mirror 0331 is described as an example.
  • the second mirror 0332 and the third mirror 0333 may be mirrors identical to those of the first mirror 0331, which are not described in detail herein.
  • the scale of the light corresponding to the semi-reflective semi-transmissive mirror 032 is regarded as being in the light.
  • the scales corresponding to multiple mirrors are equal, no need Consider where the light is specifically on the scale.
  • a semi-reflective semi-transmissive mirror 032 and a first reflecting mirror 0331 are taken as an example for comparison. As shown in FIG.
  • the scale of the light on the semi-reflecting semi-transmissive mirror 032 The indication is equal to the scale of the light on the first mirror 0031. If the position of the light hitting the scale of the semi-reflective semi-transmissive mirror 032 is different from the position where the light hits the scale of the plurality of mirrors, the scale of the light on the semi-reflecting semi-transmissive mirror 032 is regarded as being multiple with the light. The scales on the mirror are not equal.
  • FIG. 10 is a positional relationship diagram of the semi-reflecting semi-transmissive mirror and the plurality of mirrors provided by the embodiment shown in FIG. 3.
  • the light emitter 031 in order to enable the light emitted from the light emitter 031 to be struck on the semi-reflective semi-transmissive mirror 032, and to emit the light A through the semi-reflecting semi-transmissive mirror 032, it can be struck on the first reflecting mirror 0331, and exit.
  • the light B can be struck on the second mirror 0032 and reflected on the third mirror 0333 via the reflection of the second mirror 0032.
  • the distance d between the semi-reflective semi-transmissive mirror 032 and the first mirror 0331 is equal to the second
  • the distance d1 between the mirror 0332 and the third mirror 0333, and the distance r1 between the semi-reflecting semi-transmissive mirror 032 and the second mirror 0332 is equal to the distance between the first mirror 0331 and the third mirror 0333.
  • the light incident surface of the semi-reflective semi-transmissive mirror 032 is parallel to the light incident surface of the second mirror 0332, and the light incident surface of the first mirror 0331 is parallel to the light incident surface of the third mirror 0333.
  • the angle between the light-incident surface of the semi-reflective semi-transmissive mirror 032 and the light-incident surface of the first mirror 0331 is 90.
  • the angle between the light incident surface of the second mirror 0332 and the light incident surface of the third mirror 0333 is 90 degrees.
  • the level detection device provided by the embodiment of the invention is applicable to the detection of the level of any platform.
  • the level detecting device provided in the embodiment of the present invention can be used to detect the levelness of the arm 002 of the robot shown in FIG. 1.
  • FIG. 11 is a scene diagram for detecting the levelness of the arm 002 of the robot shown in FIG. 1 by using the level detecting device provided by the embodiment of the present invention, wherein the robot is viewed from a plan view.
  • the arm 002 can include a first arm 0021 and a second arm 0022.
  • the arm support is not shown in FIG.
  • the semi-reflecting semi-transmissive mirror 032 and the second reflecting mirror 0332 are sequentially disposed on the first arm 0021 along the longitudinal direction y of the first arm 0021. And the height directions (not shown in FIG. 11) of the semi-reflecting semi-transmissive mirror 032 and the second reflecting mirror 0332 are perpendicular to the upper surface of the first arm 0021, and the scales of the semi-reflecting semi-transmissive mirror 032 and the second reflecting mirror 0332 The faces are facing the base 001.
  • the angle between the light incident surface of the semi-reflective semi-transmissive mirror 032 and the width direction x of the first arm 0021, the angle between the light incident surface of the second mirror 0332 and the width direction x of the first arm 0021 may be 45 degrees.
  • the first mirror 0331 and the third mirror 0333 are sequentially disposed on the second arm 0022 along the length direction y1 of the second arm 0022, and the height directions of the first mirror 0331 and the third mirror 0333 (not shown in FIG. 11) Both of them are perpendicular to the upper surface of the second arm 0022, and the faces of the first mirror 0331 and the third mirror 0333 are facing the base 001.
  • the angle between the light incident surface of the first mirror 0331 and the width direction x1 of the second arm 0022, the angle between the light incident surface of the third mirror 0333 and the width direction x1 of the second arm 0022 may be 45 degrees.
  • the distance between the second mirror 0332 and the third mirror 0333 is equal to the distance between the semi-reflective semi-transmissive mirror 032 and the first mirror 0331, and the distance between the first mirror 0331 and the third mirror 0333 is equal to The distance between the semi-reflecting semi-transmissive mirror 032 and the second reflecting mirror 0332.
  • the angle between the light incident surface of the semi-reflective semi-transmissive mirror 032 and the light incident surface of the first reflecting mirror 0331 is 90 degrees, between the light incident surface of the second reflecting mirror 0332 and the light incident surface of the third reflecting mirror 0333. The angle is 90 degrees.
  • the light emitter 031 is disposed at one end of the first arm 0021 near the semi-reflective semi-transmissive mirror 032.
  • the semi-reflective semi-transmissive mirror 032 is located between the light emitter 031 and the second mirror 0332, and the light-emitting end of the light emitter 031 is aligned with the light-incident surface of the semi-reflective semi-transmissive mirror 032.
  • the semi-reflective semi-transmissive mirror 032 can also be disposed at one end of the first arm 0021 away from the base 001. At this time, the light emitter 031 is disposed at one end of the first arm 0021 near the semi-reflecting semi-transmissive mirror 032.
  • the semi-reflecting semi-transmissive mirror 032 is disposed at the rear end of the first arm 0021
  • the second reflecting mirror 0332 is disposed at the front end of the first arm 0021
  • the first reflecting mirror 0331 is disposed at the rear end of the second arm 0022
  • the third The mirror 0333 is disposed at the front end of the second arm 0022, wherein the rear end of the first arm 0021 is one end of the first arm 0021 near the base 001, and the front end of the first arm 0021 is the end of the first arm 0021 away from the base 001, second hand
  • the rear end of the arm 0022 is an end of the second arm 0022 near the base 001
  • the front end of the second arm 0022 is an end of the second arm 0022 away from the base 001.
  • the light emitted by the light emitter 031 passes through the semi-reflective half-lens 032 and is split into two outgoing rays, which may be the outgoing light A and the outgoing light B, respectively, as shown in FIG.
  • One outgoing ray A reaches the first mirror 0331
  • the other outgoing ray B reaches the second mirror 0332
  • the second mirror 0332 reflects the other outgoing ray B to the third mirror 0333.
  • the level of the arm 002 is detected by reading and judging whether the semi-reflective semi-transmissive mirror 032 is equal to the scale indications on the plurality of mirrors.
  • the scale indications on the semi-reflecting semi-transmissive mirror 032, the first reflecting mirror 0331, the second reflecting mirror 0332, and the third reflecting mirror 0333 are compared, and if the semi-reflecting semi-transmissive mirror 032, the first reflecting mirror 0331, the first The scales on both the second mirror 0332 and the third mirror 0333 are equal, indicating that the arm 002 is in a horizontal state; otherwise, the arm 002 is in a non-horizontal state.
  • FIG. 12 is a schematic structural diagram of a level adjustment device 04 according to an embodiment of the present invention.
  • the level adjustment device 04 can be used with the level detection device described above for adjusting the level of the device to be adjusted 05.
  • the level adjustment device 04 includes a support member 041 and an adjustment unit 042.
  • the adjusting unit 042 passes through an adjusting hole provided on the support member 041 and is in contact with the device to be adjusted 05.
  • the adjustment unit 042 moves relative to the adjustment hole to adjust the level of the device to be adjusted 05. More specifically, the adjustment unit 042 can move in the direction in which it passes through the adjustment aperture.
  • the level adjustment device provided by the embodiment of the invention adjusts the level of the device to be adjusted by adjusting the movement of the adjustment unit relative to the adjustment hole, and solves the problems of the prior art, such as complicated adjustment process, long time consuming and low adjustment precision. Correspondingly, the effect of simplifying the adjustment process, saving the adjustment time and increasing the adjustment accuracy is achieved.
  • FIG. 13 shows a cross-sectional view of the level adjusting device 04 shown in FIG. 12 in the A-A direction.
  • the support member 041 is provided with an adjustment hole (not shown in FIG. 13), and the adjustment unit 042 passes through the adjustment hole provided on the support member 041 and comes into contact with the lower surface of the device to be adjusted 05.
  • the adjustment unit 042 moves relative to the adjustment hole to adjust the level of the device to be adjusted 05.
  • the adjustment unit 042 includes an adjustment knob 0421.
  • the adjustment knob 0421 is threaded with the adjustment hole.
  • the adjustment hole is provided with an internal thread, and the adjustment knob 0421 may be a screw that is threadedly engaged with the adjustment hole of the support member 041.
  • the adjustment hole is provided with an internal thread, and the adjustment knob 0421 may be a nut, and the support member 041 Adjust the hole thread fit.
  • FIG. 15 there is shown a cross-sectional view of the level adjusting device 04 shown in FIG. 14 in the B-B direction.
  • the support member 041 is provided with an adjustment hole (not shown in FIG. 15), and the adjustment knob 0421 passes through the adjustment hole provided on the support member 041 and comes into contact with the lower surface of the device to be adjusted 05.
  • the adjustment knob 0421 is moved relative to the adjustment hole to adjust the level of the device to be adjusted 05.
  • FIG. 16 is a schematic structural diagram of an adjustment knob 0421 according to an embodiment of the present invention.
  • the pitch s between any two turns of the adjustment knob 0421 is equal.
  • the precession distance can be determined by the number of pitches of the screw, thereby determining whether the adjustment is appropriate.
  • the specific value of the pitch s of the adjusting knob 0421 can be set according to actual needs, which is not limited by the embodiment of the present invention.
  • the number of adjustment knobs 0421 may be n, where n is a positive integer; n adjustment knobs 0421 are distributed on the support member 041 according to a preset rule.
  • FIG. 17 shows a bottom view of the level adjustment device 04 provided by the embodiment shown in FIG.
  • the support member 041 is provided with four adjustment knobs 0421, which are distributed in a diamond shape on the support member 041.
  • the four adjustment knobs 0421 may be distributed on the support member 041 in other manners, for example, four adjustment knobs 0421 are distributed at the four corners of the support member 041.
  • the number of the adjustment knobs 0421 on the support member 041 can also be other values.
  • the support member 041 is provided with three adjustment knobs 0421, and the three adjustment knobs 0421 are equilaterally arranged on the support member 041. Embodiments of the invention are not limited thereto.
  • the level adjustment device provided in the embodiment of the present invention can be used to adjust the level of the arm 002 of the robot shown in FIG. 1.
  • the robot 00 includes a base 001, an arm 002 fixedly disposed on the base 001, and an arm support disposed below the arm 002, wherein the arm 002 includes a first arm and a second arm, and the arm support is used to support the arm An arm support member is disposed under the first arm and the second arm.
  • the level adjustment device 04 includes a support member 041 and an adjustment unit. 042.
  • the support member 041 and the arm support of the robot 00 can be the same component.
  • the adjusting unit 042 is in contact with the arm 002 (the first arm and the second arm) through an adjusting hole (not shown in FIG. 18) provided on the support member 041, and the adjusting unit 042 is moved relative to the adjusting hole to adjust the arm 002.
  • Level the level adjustment device 04
  • the adjustment unit 042 includes an adjustment knob 0421.
  • the support member 041 is provided with an adjustment hole (not shown in FIG. 19) penetrating in the thickness direction p of the arm support 003.
  • the adjustment knob 0421 is disposed on the support member 041 through the adjustment hole, and the adjustment knob 0421 is in contact with the lower surface N of the arm 002.
  • the adjustment knob 0421 is threaded with the adjustment hole.
  • the adjustment hole is provided with an internal thread, and the adjustment knob 0421 may be a screw that is threadedly engaged with the adjustment hole of the support member 041.
  • the adjustment hole is provided with an internal thread, and the adjustment knob 0421 may be a nut that is threadedly engaged with the adjustment hole of the support member 041.
  • the number of adjustment knobs 0421 may be n, where n is a positive integer; n adjustment knobs 0421 are distributed on the support member 041 according to a preset rule.
  • FIG. 20 shows a bottom view of the level adjustment device 04 provided by the embodiment shown in FIG.
  • each support member 041 is provided with four adjustment knobs 0421, which are distributed in a diamond shape on the arm support member 003.
  • the four adjustment knobs 0421 may be distributed on the support member 041 in other manners, for example, four adjustment knobs 0421 are distributed at the four corners of the support member 041. And the adjustment knob 0421 is in contact with the arm 002.
  • the number of the adjustment knobs 0421 on the support member 041 can also be other values.
  • the support member 041 is provided with three adjustment knobs 0421, and the three adjustment knobs 0421 are equilaterally arranged on the support member 041. Embodiments of the invention are not limited thereto.
  • the level detecting device and the level adjusting device provided by the embodiments of the present invention can be applied to the following method.
  • FIG. 21 is a flowchart of a level detection method according to an embodiment of the present invention.
  • the level detection method can be used to detect the level of the device to be detected, which can be realized by the level detecting device 03 shown in FIG. 3 or FIG.
  • the level detection method includes:
  • the scale representations on the semi-reflecting semi-transmissive mirror and the plurality of mirrors are read.
  • the scale is the scale corresponding to the light on the semi-reflective semi-transmissive mirror or multiple mirrors.
  • the process of reading the scale indication can be implemented by an operator or a machine. Now. Since the distance between two adjacent scale lines is 0.1 mm, and 0.1 mm is easily observed by the human eye, the reading of the scale reading can be performed by the operator.
  • step 2102 it is determined whether the scale indications on the semi-reflecting semi-transmissive mirror and the plurality of mirrors are equal.
  • Whether the scale indications on the semi-reflective semi-transmissive mirror and the plurality of mirrors are equal are determined by comparing the semi-reflective semi-transmissive mirrors with the scale representations on the plurality of mirrors.
  • a level detection result is obtained, wherein if the scale indications on the semi-reflecting semi-transmissive mirror and the plurality of mirrors are equal, it is determined that the device to be detected is in a horizontal state; if the semi-reflecting semi-transmissive mirror and the plurality of reflections are If the scales on the mirror are not equal, it is determined that the device to be detected is in a non-horizontal state.
  • the scales on the semi-reflective semi-transmissive mirror and the plurality of mirrors are all equal, indicating that the device to be tested is at the same height, and since the device to be detected is generally placed in the horizontal plane to detect its level, at this time, The detection device is in a horizontal state.
  • FIG. 22 is a flowchart of a method for adjusting the levelness provided by an embodiment of the present invention.
  • This level adjustment method can be realized by the level adjustment device 04 shown in any of FIG. 12, FIG. 17, or FIG. 17 to FIG.
  • the level adjustment method includes:
  • step 2201 the levelness detection method provided by the embodiment shown in FIG. 21 is used to detect the levelness of the device to be detected, and the levelness detection result is obtained.
  • step 2202 if the device to be detected is in a non-horizontal state, any one of the scale indications on the semi-reflective semi-transmissive mirror and the plurality of mirrors is selected as a reference number to adjust the adjustment in the level adjustment device.
  • the unit is such that the scale of the scale other than the reference number is equal to the reference number.
  • the operator can adjust the adjustment unit while observing the scale display of the semi-reflecting semi-transmissive mirror and the plurality of mirrors until the scales are equal.
  • the method for adjusting the levelness provided by the embodiment of the present invention adjusts the adjustment unit by selecting any one of the scale indications of the semi-reflective semi-transmissive mirror and the plurality of mirrors as the reference display, so as to make the adjustment unit besides the reference indication
  • the scale indication is equal to the reference number, which solves the problems of the prior art, such as complicated adjustment process, long time-consuming, and low adjustment precision, and correspondingly simplifies the adjustment process, saves adjustment time and improves adjustment precision. effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)

Abstract

一种水平度检测装置(03)及方法、水平度调节装置(04)及方法。所述水平度检测装置(03)包括光发射器(031)、半反射半透射镜(032)和包括第一反射镜(0331)、第二反射镜(0332)和第三反射镜的多个反射镜(0333)。所述半反射半透射镜(032)和所述多个反射镜(0331,0332,0333)被布置在待检测平面上并且每一个都设置有指示高度的刻度。所述光发射器(031)发出的光线经过所述半反射半透射镜(032)后分为两束出射光线(A,B),一束出射光线(A)到达所述第一反射镜(0331),另一束出射光线(B)到达所述第二反射镜(0332),所述第二反射镜(0332)进而将所述另一束出射光线(B)反射到所述第三反射镜(0333),通过比较所述光线在所述半反射半透射镜(032)与所述多个反射镜上(0331,0332,0333)的刻度示数来检测所述待检测平面的水平度。解决了现有技术的问题,例如操作过程复杂,容易发生人工测量误差。

Description

水平度检测装置及方法、水平度调节装置及方法 技术领域
本发明涉及测量和控制技术领域,特别涉及一种水平度检测装置及方法、水平度调节装置及方法。
背景技术
机器人是一种能够自动工作的机器装置,其可以根据人的指挥工作,也可以根据预先编排的程序工作。机器人能够取代人的工作,且工作效率高、工作质量稳定,因此,机器人广泛应用于生产、建筑、制造等领域。例如,在液晶面板的制造过程中,机器人可以代替人完成基板的搬运等工作。
机器人通常包括:基部和固定设置在基部上的手臂。机器人通常依靠手臂完成物体的搬运工作,且手臂通常处于水平状态。随着时间的推移,机器人的手臂不可避免地会出现下垂,导致机器人无法有效工作。轻微的下垂肉眼通常无法直接观测,因此,需要借助水平度检测装置对手臂的水平度进行检测。现有技术中,通常采用水平测量仪检测机器人的手臂的水平度。机器人通常包括:第一手臂和第二手臂,第一手臂与第二手臂的上表面通常是共面且平行于水平面的。具体地,将水平测量仪放置在距机器人预设距离的位置处,在检测的过程中保持水平测量仪的放置位置不变。首先,在第一手臂的前端放置尺子,使尺子的刻度所在面面向水平测量仪,尺子的长度方向与第一手臂的上表面垂直,并且通过水平测量仪观测尺子此时的示数,记录下该示数为第一示数;之后将尺子移动到第一手臂的后端,通过水平测量仪观测尺子此时的示数,记录下该示数为第二示数;然后将尺子移动到第二手臂的前端,通过水平测量仪观测尺子此时的示数,记录下该示数为第三示数;再将尺子移动到第二手臂的后端,通过水平测量仪观测尺子此时的示数,记录下该示数为第四示数,其中,第一手臂和第二手臂中任一手臂的前端为该手臂远离基部的一端,任一手臂的后端为该手臂靠近基部的一端。根据第一示数、第二示数、第三示数和第四示数是否相等,确定机器人的手臂是否处于水平状态。
发明人发现现有技术至少存在以下问题:水平测量仪在检测机器 人的手臂的水平度时,需要借助尺子,且需要移动尺子在机器人的手臂上的位置,导致操作过程复杂,且容易发生人工测量误差。
发明内容
为了解决现有技术中的上述问题,本发明实施例提供一种水平度检测装置及方法、水平度调节装置及方法。所述技术方案如下:
根据本发明的第一方面,提供一种水平度检测装置,包括:
光发射器;
半反射半透射镜;和
多个反射镜,包括第一反射镜、第二反射镜和第三反射镜;
其中,所述半反射半透射镜和所述多个反射镜被布置在待检测平面上并且每一个都设置有指示高度的刻度;并且
其中,所述光发射器发出的光线经过所述半反射半透射镜后分为两束出射光线,一束出射光线到达所述第一反射镜,另一束出射光线到达所述第二反射镜,所述第二反射镜进而将所述另一束出射光线反射到所述第三反射镜,通过比较所述光线在所述半反射半透射镜与所述多个反射镜上的刻度示数来检测所述待检测平面的水平度。
可选地,所述光发射器在水平方向上发射光线。
可选地,所述半反射半透射镜、所述第一反射镜、所述第二反射镜和所述第三反射镜被布置为使得如果半反射半透射镜、第一反射镜、第二反射镜和第三反射镜上的刻度示数均相等,则所述待检测平面被检测为水平面;否则所述待检测平面被检测为处于非水平状态。
可选地,所述半反射半透射镜的入光面上设置有半反射半透射膜,在该半反射半透射膜上沿所述半反射半透射镜的高度方向设置刻度;所述多个反射镜中每一个的入光面上设置有全反射膜,在该全反射膜上沿所述反射镜的高度方向设置刻度。
可选地,所述半反射半透射镜与所述第一反射镜之间的距离等于所述第二反射镜与所述第三反射镜之间的距离;所述半反射半透射镜与所述第二反射镜之间的距离等于第一反射镜与所述第三反射镜之间的距离。
可选地,所述半反射半透射镜的入光面和所述多个反射镜中每一个的入光面都为平面,所述半反射半透射镜的入光面与所述第二反射 镜的入光面平行,所述第一反射镜的入光面与所述第三反射镜的入光面平行。
可选地,所述半反射半透射镜的入光面与所述第一反射镜的入光面之间的夹角为90度,所述第二反射镜的入光面与所述第三反射镜的入光面之间的夹角为90度。
可选地,所述光发射器为激光发射器。
可选地,所述半反射半透射镜和所述多个反射镜的刻度的精度都为0.01毫米。
根据本发明的第二方面,提供用于与第一方面所述的水平度检测装置一起使用的水平度调节装置,包括:
支撑件,用于支撑待调节装置,所述支撑件上设置有调节孔;和
调节单元,穿过设置于所述支撑件上的调节孔并与所述待调节装置相接触;
其中,所述调节单元相对于所述调节孔移动来调节所述待调节装置的水平度。
可选地,所述调节单元可在其穿过所述调节孔所沿的方向上移动。
可选地,所述调节单元包括调节旋钮,所述调节旋钮与所述调节孔螺纹配合。
可选地,所述调节旋钮为螺钉、螺母中的任意一种。
可选地,所述调节旋钮的个数为n,所述n为正整数;所述n个调节旋钮按照预设规则分布在所述支撑件上。
根据本发明的第三方面,提供一种采用第一方面所述的水平度检测装置来检测待检测装置的水平度的水平度检测方法,包括:
读取半反射半透射镜和多个反射镜上的刻度示数;
判断所述半反射半透射镜和所述多个反射镜上的刻度示数是否相等;以及
若所述半反射半透射镜和所述多个反射镜上的刻度示数均相等,则确定所述待检测装置处于水平状态;若所述半反射半透射镜和所述多个反射镜上的刻度示数不相等,则确定所述待检测装置处于非水平状态。
根据本发明的第四方面,提供了一种采用第二方面所述的水平度调节装置来调节待检测装置的水平度的水平度调节方法,包括;
采用第三方面所述的水平度检测方法来检测待检测装置的水平度;以及
若所述待检测装置处于非水平状态,则选择所述半反射半透射镜和所述多个反射镜上的刻度示数中的任一刻度示数作为基准示数,调节所述水平度调节装置中的所述调节单元,使除所述基准示数以外的刻度示数等于所述基准示数。
本发明提供以下有益效果。根据半反射半透射镜和多个反射镜上的刻度示数来检测水平度,使得解决了采用水平测量仪在检测水平度时,操作过程复杂,且容易发生人工测量误差的问题,达到了简化操作过程和提高检测精度的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不用于限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的一种机器人的侧视图;
图2是现有技术提供的检测机器人的手臂的水平度的场景图;
图3是本发明实施例提供的一种水平度检测装置的结构示意图;
图4是图3所示实施例提供的半反射半透射镜的结构示意图;
图5是图3所示实施例提供的第一反射镜的结构示意图;
图6是图3所示实施例提供的一种半反射半透射镜和第一反射镜的对比图;
图7是图3所示实施例提供的另一种半反射半透射镜和第一反射镜的对比图;
图8是图3所示实施例提供的再一种半反射半透射镜和第一反射镜的对比图;
图9是图3所示实施例提供的又一种半反射半透射镜和第一反射镜的对比图;
图10是图3所示实施例提供的半反射半透射镜与多个反射镜的位 置关系图;
图11是采用图3所示实施例提供的水平度检测装置检测机器人的手臂的水平度的场景图;
图12是本发明实施例提供的一种水平度调节装置的结构示意图;
图13是图12所示实施例提供的一种水平度调节装置的A-A方向的截面图;
图14是本发明实施例提供的另一种水平度调节装置的结构示意图;
图15是图14所示实施例提供的一种水平度调节装置的B-B方向的截面图;
图16是本发明实施例提供的一种调节旋钮的结构示意图;
图17是图14所示实施例提供的水平度调节装置的仰视图;
图18是采用图12所示实施例提供的水平度调节装置调节机器人的手臂的水平度的场景图;
图19是采用图14所示实施例提供的水平度调节装置调节机器人的手臂的水平度的场景图;
图20是采用图19所示实施例提供的水平度调节装置调节机器人的手臂的水平度的仰视图;
图21是本发明实施例提供的一种水平度检测方法的流程图;以及
图22是本发明实施例提供的一种水平度调节方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图1,其示出的是现有的一种机器人00的侧视图。如图1所示,机器人00包括:基部001、手臂002和用于支撑手臂002的手臂支撑件003。手臂002通常可以包括第一手臂和第二手臂。基部001上设置有用于安装手臂002的第一安装槽0011和用于安装手臂支撑件003的第二安装槽0012,第一安装槽0011和第二安装槽0012连通。手臂002和手臂支撑件003分别设置在第一安装槽0011和第二安装槽0012内,并通过依次穿过基部001、手臂002和手臂支撑件003的螺丝004与基部001固定。
请参考图2,其示出的是检测图1所示的机器人00的手臂002的水平度以及调节水平度的场景图。如图2所示,在距离机器人00预设距离a处放置有水平测量仪01,水平测量仪01上设置有人眼观测部位011,手臂002(可以为第一手臂或者第二手臂)上放置有尺子02。现有技术中,当检测到手臂002下垂需要调节水平度时,通常需要拧下螺丝004,将手臂002从基部001上拆卸下来,在手臂支撑件003远离基部001一端上放置垫片(图2中未示出);再将手臂002安装在基部001上,重新检测手臂002的水平度,并且若手臂002仍然处于下垂状态,则再将手臂002从基部001上拆卸下来,换上厚度更大的垫片,如此反复,直至手臂002处于水平状态为止。因此,现有技术调节手臂水平度的过程复杂,耗时较长,且调节精度较低。
请参考图3,其示出的是本发明实施例提供的一种水平度检测装置03的结构示意图。如图3所示,该水平度检测装置03包括:光发射器031、半反射半透射镜032和多个反射镜。为了便于人眼观察,光发射器031可以为激光发射器。半反射半透射镜和所述多个反射镜被布置在待检测平面上。水平度指的是待检测平面与海平面(水平面)平行的程度。
半反射半透射镜032和多个反射镜上都设置有刻度。多个反射镜包括:第一反射镜0331、第二反射镜0332和第三反射镜0333。
光发射器031发出的光线经过半反射半透镜032后分为两束出射光线,该两束出射光线可以分别为出射光线A和出射光线B,如图3所示。一束出射光线A到达第一反射镜0331,另一束出射光线B到达第二反射镜0332,该第二反射镜0332进而将另一束出射光线B反射到第三反射镜0333。通过比较半反射半透射镜032与多个反射镜上的刻度示数来检测水平度。例如,光发射器031、半反射半透射镜032、第一反射镜0331、第二反射镜0332和第三反射镜0333可以被布置为使得光发射器031在水平方向上发射光线并且如果半反射半透射镜032、第一反射镜0331、第二反射镜0332和第三反射镜0333上的刻度示数均相等,则待检测平面被检测为水平面;否则待检测平面被检测为处于非水平状态。
请参考图4,其示出的是图3所示实施例提供的半反射半透射镜032的结构示意图。半反射半透射镜032的入光面可以为平面,其为半 反射半透射镜032上,光线进入的面。如图4所示,半反射半透射镜032可以为长方体结构,反射半透射镜032的入光面M上设置有半反射半透射膜(图4中未示出)。示例地,半反射半透射膜可以通过在反射半透射镜032的入光面M上镀一层半反射半透射材料形成。半反射半透射膜上沿半反射半透射镜032的高度方向z设置有刻度,刻度的精度可以为0.01毫米(mm)。半反射半透射镜032的刻度示数为光线打在半反射半透射镜032上时,光线在半反射半透射镜032上指示的刻度,如图4中所示的光线C指示的刻度k。在图4所示的示例中,光线C指示的刻度为2。需要说明的是,附图4中的刻度仅仅是示意性的,并不用于限制本发明。
在本发明实施例中,多个反射镜的入光面都为平面,每个反射镜的入光面为该反射镜上,光线进入的面。每个反射镜的入光面上设置有全反射膜,所述全反射膜上沿该反射镜的高度方向设置有刻度,刻度的精度可以为0.01mm。请参考图5,其示出的是图3所示实施例提供的第一反射镜0331的结构示意图。如图5所示,在所图示的该示例中,第一反射镜0331可以为长方体结构,第一反射镜0331的入光面W上设置有全反射膜(图5中未示出)。示例地,全反射膜可以通过在第一反射镜0331的入光面W上镀一层全反射膜材料形成。全反射膜上沿第一反射镜0331的高度方向z1设置有刻度,刻度的精度可以为0.01毫米(mm)。第一反射镜0331的刻度示数为光线打在第一反射镜0331上时,光线在第一反射镜0331上指示的刻度,如图5中所示的光线A指示的刻度k1。在图5所示的示例中,光线A指示的刻度为2。需要说明的是,附图5中的刻度仅仅是示意性的,并不用于限制本发明。
在本发明实施例中,半反射半透射镜032和多个反射镜的刻度都为指示高度的刻度,刻度的精度都为0.01mm,因此,半反射半透射镜032和多个反射镜的刻度的类型均相同,且半反射半透射镜032和多个反射镜的刻度的范围也相同。具体地,请参考图6,以半反射半透射镜032和第一反射镜0331为例进行对比说明。如图6所示,半反射半透射镜032和第一反射镜0331的刻度范围均为m,刻度的精度都为0.01mm,其中,半反射半透射镜032和第一反射镜0331的刻度上,相邻两个刻度线之间的距离为0.1mm。实际读取时,可以估读1位。在 图6所示的示例中,半反射半透射镜032的0刻度点与半反射半透射镜032的底面位于同一平面内,第一反射镜0331的0刻度点与第一反射镜0331底面位于同一平面内。
事实上,半反射半透射镜032的0刻度点还可以高于半反射半透射镜032的底面。具体地,请参考图7,以半反射半透射镜032和第一反射镜0331为例进行对比说明。如图7所示,半反射半透射镜032和第一反射镜0331的刻度范围均为m,刻度的精度都为0.01mm,其中,半反射半透射镜032和第一反射镜0331的刻度上,相邻两个刻度线之间的距离为0.1mm。实际读取时,可以估读1位。在图7所示的示例中,半反射半透射镜032的0刻度点高于半反射半透射镜032的底面,且半反射半透射镜032的0刻度点到半反射半透射镜032的底面的距离为h。此时,第一反射镜0331的0刻度点也高于第一反射镜0331的底面,且第一反射镜0331的0刻度点到第一反射镜0331的底面的距离h1等于半反射半透射镜032的刻度的0刻度点到半反射半透射镜032的底面的距离h。
在本发明实施例中,半反射半透射镜032的0刻度点还可以位于半反射半透射镜032的中心,该中心指的是半反射半透射镜032上,平行于高度方向z的面中的中心。与此同理,多个反射镜的中的任意一个反射镜的0刻度点也可以位于该反射镜的中心。具体地,请参考图8,以半反射半透射镜032和第一反射镜0331为例进行对比说明。如图8所示,半反射半透射镜032和第一反射镜0331的刻度范围均为m,刻度的精度都为0.01mm,其中,半反射半透射镜032和第一反射镜0331的刻度上,相邻两个刻度线之间的距离为0.1mm。实际读取时,可以估读1位。在图8所示的示例中,半反射半透射镜032的0刻度点位于半反射半透射镜032的中心,此时,第一反射镜0331的0刻度点也位于第一反射镜0331的中心。
前面以第一反射镜0331为例进行说明。第二反射镜0332和第三反射镜0333可以为与第一反射镜0331完全相同的反射镜,它们在此不再详细赘述。
在本发明实施例中,只要光线在半反射半透射镜032对应的刻度与光线在多个反射镜对应的刻度相同,则光线在半反射半透射镜032对应的刻度示数视为与光线在多个反射镜对应的刻度示数相等,无需 考虑光线具体打在刻度的哪个位置。示例地,请参考图9,以半反射半透射镜032和第一反射镜0331为例进行对比说明。如图9所示,若光线分别打在半反射半透射镜032的刻度2的位置U处和第一反射镜0331的刻度2的位置U1处,则光线在半反射半透射镜032上的刻度示数与光线在第一反射镜0031上的刻度示数相等。若光线打在半反射半透射镜032的刻度的位置与光线打在多个反射镜的刻度的位置不相同,则光线在半反射半透射镜032上的刻度示数视为与光线在多个反射镜上的刻度示数不相等。
请进一步参考图10,其示出的是图3所示实施例提供的半反射半透射镜与多个反射镜的位置关系图。如图10所示,为了使得光发射器031发出的光线能够打在半反射半透射镜032上,以及为了经过半反射半透射镜032的出射光线A能够打在第一反射镜0331上,出射光线B能够打在第二反射镜0032上,并经过第二反射镜0032的反射打在第三反射镜0333上,半反射半透射镜032与第一反射镜0331之间的距离d等于第二反射镜0332与第三反射镜0333之间的距离d1,并且半反射半透射镜032与第二反射镜0332之间的距离r1等于第一反射镜0331与第三反射镜0333之间的距离r。
可选地,半反射半透射镜032的入光面与第二反射镜0332的入光面平行,第一反射镜0331的入光面与第三反射镜0333的入光面平行。
优选地,为了便于观察半反射半透射镜032和多个反射镜上的刻度示数,半反射半透射镜032的入光面与第一反射镜0331的入光面之间的夹角为90度,第二反射镜0332的入光面与第三反射镜0333的入光面之间的夹角为90度。
本发明实施例提供的水平度检测装置,适用于任何平台的水平度的检测。
本发明实施例中提供的水平度检测装置可以用于检测图1所示的机器人的手臂002的水平度。
请参考图11,其示出的是采用本发明实施例提供的水平度检测装置检测图1所示的机器人的手臂002的水平度的场景图,其中,所示的机器人是从俯视角度观看的图1所示的机器人00。如图11所示,手臂002可以包括第一手臂0021和第二手臂0022。图11中未示出手臂支撑件。
当采用图3所示的水平度检测装置03来检测手臂002的水平度时,半反射半透射镜032和第二反射镜0332沿第一手臂0021的长度方向y依次设置在第一手臂0021上,且半反射半透射镜032和第二反射镜0332的高度方向(图11中未示出)都垂直于第一手臂0021的上表面,半反射半透射镜032和第二反射镜0332的刻度所在面都面向基部001。半反射半透射镜032的入光面与第一手臂0021的宽度方向x的夹角、第二反射镜0332的入光面与第一手臂0021的宽度方向x的夹角都可以为45度。
第一反射镜0331和第三反射镜0333沿第二手臂0022的长度方向y1依次设置在第二手臂0022上,且第一反射镜0331和第三反射镜0333的高度方向(图11中未示出)都垂直于第二手臂0022的上表面,第一反射镜0331和第三反射镜0333的刻度所在面都面向基部001。第一反射镜0331的入光面与第二手臂0022的宽度方向x1的夹角、第三反射镜0333的入光面与第二手臂0022的宽度方向x1的夹角都可以为45度。第二反射镜0332与第三反射镜0333之间的距离等于半反射半透射镜032与第一反射镜0331之间的距离,且第一反射镜0331与第三反射镜0333之间的距离等于半反射半透射镜032与第二反射镜0332之间的距离。
半反射半透射镜032的入光面与第一反射镜0331的入光面之间的夹角为90度,第二反射镜0332的入光面与第三反射镜0333的入光面之间的夹角为90度。
光发射器031设置在第一手臂0021靠近半反射半透射镜032的一端。半反射半透射镜032位于光发射器031和第二反射镜0332之间,且光发射器031的发光端对准半反射半透射镜032的入光面。需要说明的是,半反射半透射镜032还可以设置在第一手臂0021远离基部001的一端,此时,光发射器031设置在第一手臂0021靠近半反射半透射镜032的一端。
示例地,半反射半透射镜032设置在第一手臂0021的后端,第二反射镜0332设置在第一手臂0021的前端,第一反射镜0331设置在第二手臂0022的后端,第三反射镜0333设置在第二手臂0022的前端,其中,第一手臂0021的后端为第一手臂0021靠近基部001的一端,第一手臂0021的前端为第一手臂0021远离基部001的一端,第二手 臂0022的后端为第二手臂0022靠近基部001的一端,第二手臂0022的前端为第二手臂0022远离基部001的一端。
光发射器031发出的光线经过半反射半透镜032后分为两束出射光线,该两束出射光线可以分别为出射光线A和出射光线B,如图11所示。一束出射光线A到达第一反射镜0331,另一束出射光线B到达第二反射镜0332,第二反射镜0332将另一束出射光线B反射到达第三反射镜0333。通过读取并判断半反射半透射镜032与多个反射镜上的刻度示数是否相等来检测手臂002的水平度。具体地,比较半反射半透射镜032、第一反射镜0331、第二反射镜0332和第三反射镜0333上的刻度示数,并且若半反射半透射镜032、第一反射镜0331、第二反射镜0332和第三反射镜0333上的刻度示数均相等,则说明手臂002处于水平状态;否则手臂002处于非水平状态。
请参考图12,其示出的是本发明实施例提供的一种水平度调节装置04的结构示意图。该水平度调节装置04可以与前面描述的水平度检测装置一起使用,以用于调节待调节装置05的水平度。如图12所示,该水平度调节装置04包括:支撑件041和调节单元042。调节单元042穿过设置于支撑件041上的调节孔并与待调节装置05相接触。调节单元042相对于调节孔移动来调节待调节装置05的水平度。更具体地,调节单元042可以在其穿过调节孔所沿的方向上移动。
本发明实施例提供的水平度调节装置,通过调节单元相对于调节孔移动来调节待调节装置的水平度,解决了现有技术的问题,例如调节过程复杂、耗时较长和调节精度较低,并且相应地达到了简化调节过程、节省调节耗时和提高调节精度的效果。
具体地,请参考图13,其示出了图12所示的水平度调节装置04的A-A方向的截面图。如图13所示,支撑件041上设置有调节孔(图13中未示出),并且调节单元042穿过设置于支撑件041上的调节孔并与待调节装置05的下表面相接触。调节单元042相对于调节孔移动来调节待调节装置05的水平度。
请进一步参考图14,调节单元042包括调节旋钮0421。调节旋钮0421与调节孔螺纹配合。可选地,调节孔设置有内螺纹,并且调节旋钮0421可以为螺钉,与支撑件041的调节孔螺纹配合。可替换地,调节孔设置有内螺纹,并且调节旋钮0421可以为螺母,与支撑件041的 调节孔螺纹配合。
请参考图15,其示出了图14所示的水平度调节装置04的B-B方向的截面图。如图15所示,支撑件041上设置有调节孔(图15中未示出),并且调节旋钮0421穿过设置于支撑件041上的调节孔并与待调节装置05的下表面相接触。调节旋钮0421相对于调节孔移动来调节待调节装置05的水平度。
请参考图16,其示出的是本发明实施例提供的一种调节旋钮0421的结构示意图。如图16所示,为了提高调节精度,调节旋钮0421的任意两圈螺纹之间的螺距s相等。在调节调节旋钮0421时,可以通过旋进的螺距数来确定旋进距离,从而确定调节是否合适。需要说明的是,调节旋钮0421的螺距s的具体数值可以根据实际需要设置,本发明实施例对此不做限定。
调节旋钮0421的个数可以为n,其中n为正整数;n个调节旋钮0421按照预设规则分布在支撑件041上。示例地,请参考图17,其示出的是图12所示实施例提供的水平度调节装置04的仰视图。如图17所示,支撑件041设置有4个调节旋钮0421,该4个调节旋钮0421呈菱形分布在支撑件041上。
需要说明的是,上述布置仅用于说明的目的;事实上,4个调节旋钮0421还可以以其他的方式分布在支撑件041上,比如,4个调节旋钮0421分布在支撑件041的四角。支撑件041上的调节旋钮0421的个数还可以为其他的数值,比如,支撑件041设置有3个调节旋钮0421,该3个调节旋钮0421呈等边三角形分布在支撑件041。本发明实施例不限于此。
本发明实施例中提供的水平度调节装置可以用于调节图1所示的机器人的手臂002的水平度。
请参考图18,其示出的是采用图12所示的水平度调节装置04调节图1所示的机器人00的手臂002的水平度的场景图。机器人00包括:基部001、固定设置在基部001上的手臂002和设置在手臂002的下方的手臂支撑件,其中,手臂002包括第一手臂和第二手臂,并且,手臂支撑件用于支撑手臂,第一手臂和第二手臂的下方均设置有手臂支撑件。
如图18所示,该水平度调节装置04包括支撑件041和调节单元 042。该支撑件041与机器人00的手臂支撑件可以为同一部件。调节单元042穿过设置在支撑件041上的调节孔(图18中未示出)与手臂002(第一手臂和第二手臂)相接触,调节单元042相对于调节孔移动来调节手臂002的水平度。
进一步地,如图19所示,调节单元042包括调节旋钮0421。支撑件041上设置有沿手臂支撑件003的厚度方向p贯通的调节孔(图19中未示出)。调节旋钮0421通过调节孔设置在支撑件041上,且调节旋钮0421与手臂002的下表面N相接触。
调节旋钮0421与调节孔螺纹配合。可选地,调节孔设置有内螺纹,并且调节旋钮0421可以为螺钉,与支撑件041的调节孔螺纹配合。可替换地,调节孔设置有内螺纹,并且调节旋钮0421可以为螺母,与支撑件041的调节孔螺纹配合。
调节旋钮0421的个数可以为n,其中n为正整数;n个调节旋钮0421按照预设规则分布在支撑件041上。示例地,请参考图20,其示出的是图19所示实施例提供的水平度调节装置04的仰视图。如图20所示,每个支撑件041设置有4个调节旋钮0421,该4个调节旋钮0421呈菱形分布在手臂支撑件003上。
需要说明的是,上述布置仅用于说明的目的;事实上,4个调节旋钮0421还可以以其他的方式分布在支撑件041上,比如,4个调节旋钮0421分布在支撑件041的四角,且调节旋钮0421与手臂002相接触。支撑件041上的调节旋钮0421的个数还可以为其他的数值,比如,支撑件041设置有3个调节旋钮0421,该3个调节旋钮0421呈等边三角形分布在支撑件041。本发明实施例不限于此。
本发明实施例提供的水平度检测装置和水平度调节装置可以应用于下文的方法。
请参考图21,其示出的是本发明实施例提供的一种水平度检测方法的流程图。该水平度检测方法可以用于检测待检测装置的水平度,该水平度检测方法可以由图3或图10所示的水平度检测装置03来实现。该水平度检测方法包括:
在步骤2101、读取半反射半透射镜和多个反射镜上的刻度示数。
刻度示数为光线在半反射半透射镜或多个反射镜上对应的刻度。在本发明实施例中,读取刻度示数的过程可以由操作人员或机器来实 现。由于相邻两个刻度线之间的距离为0.1mm,而0.1mm是人眼易于观察到的,因此,可以由操作人员来执行刻度示数的读取。
在步骤2102、判断半反射半透射镜和多个反射镜上的刻度示数是否相等。
通过比较半反射半透射镜和多个反射镜上的刻度示数,来判断半反射半透射镜和多个反射镜上的刻度示数是否相等。
在步骤2103、获取水平度检测结果,其中,若半反射半透射镜和多个反射镜上的刻度示数均相等,则确定待检测装置处于水平状态;若半反射半透射镜和多个反射镜上的刻度示数不相等,则确定待检测装置处于非水平状态。
半反射半透射镜和多个反射镜上的刻度示数均相等,说明待检测装置处于同一高度内,且由于一般是将待检测装置放置在水平面内检测其水平度的,因此此时,待检测装置处于水平状态。
请参考图22,其示出的是本发明实施例提供的一种水平度调节方法的方法流程图。该水平度调节方法可以由图12、图17或图17至图20任一所示的水平度调节装置04来实现。该水平度调节方法包括:
在步骤2201、采用图21所示实施例提供的水平度检测方法来检测待检测装置的水平度,获取水平度检测结果。
在步骤2202、若待检测装置处于非水平状态,则选择半反射半透射镜和多个反射镜上的刻度示数中的任一刻度示数作为基准示数,调节水平度调节装置中的调节单元,使除基准示数以外的刻度示数等于基准示数。
在调节调节单元的过程中,操作人员可以一边调节调节单元,一边观察半反射半透射镜和多个反射镜的刻度示数,直至各个刻度示数相等。
本发明实施例提供的水平度调节方法,通过选择半反射半透射镜与多个反射镜的刻度示数中的任一刻度示数作为基准示数,调节调节单元,使除基准示数以外的刻度示数等于基准示数,解决了现有技术的问题,例如调节过程复杂,耗时较长,且调节精度较低,并且相应地达到了简化调节过程、节省调节耗时和提高调节精度的效果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述 的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光线盘等。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种水平度检测装置,包括:
    光发射器;
    半反射半透射镜;和
    多个反射镜,包括第一反射镜、第二反射镜和第三反射镜;
    其中,所述半反射半透射镜和所述多个反射镜被布置在待检测平面上并且每一个都设置有指示高度的刻度;并且
    其中,所述光发射器发出的光线经过所述半反射半透射镜后分为两束出射光线,一束出射光线到达所述第一反射镜,另一束出射光线到达所述第二反射镜,所述第二反射镜进而将所述另一束出射光线反射到所述第三反射镜,通过比较所述光线在所述半反射半透射镜与所述多个反射镜上的刻度示数来检测所述待检测平面的水平度。
  2. 根据权利要求1所述的水平度检测装置,其中,所述光发射器在水平方向上发射光线。
  3. 根据权利要求2所述的水平度检测装置,其中,所述半反射半透射镜、所述第一反射镜、所述第二反射镜和所述第三反射镜被布置为使得如果半反射半透射镜、第一反射镜、第二反射镜和第三反射镜上的刻度示数均相等,则所述待检测平面被检测为水平面;否则所述待检测平面被检测为处于非水平状态。
  4. 根据权利要求1所述的水平度检测装置,其中,所述半反射半透射镜的入光面上设置有半反射半透射膜,在该半反射半透射膜上沿所述半反射半透射镜的高度方向设置刻度;并且其中,所述多个反射镜中每一个的入光面上设置有全反射膜,在该全反射膜上沿所述反射镜的高度方向设置刻度。
  5. 根据权利要求1所述的水平度检测装置,其中,所述半反射半透射镜与所述第一反射镜之间的距离等于所述第二反射镜与所述第三反射镜之间的距离,并且所述半反射半透射镜与所述第二反射镜之间的距离等于第一反射镜与所述第三反射镜之间的距离。
  6. 根据权利要求1所述的水平度检测装置,其中,所述半反射半透射镜的入光面和所述多个反射镜中每一个的入光面都为平面,所述半反射半透射镜的入光面与所述第二反射镜的入光面平行,所述第一 反射镜的入光面与所述第三反射镜的入光面平行。
  7. 根据权利要求6所述的水平度检测装置,其中,所述半反射半透射镜的入光面与所述第一反射镜的入光面之间的夹角为90度,并且所述第二反射镜的入光面与所述第三反射镜的入光面之间的夹角为90度。
  8. 根据权利要求1至7任一所述的水平度检测装置,其中,所述光发射器为激光发射器。
  9. 根据权利要求1至7任一所述的水平度检测装置,其中,所述半反射半透射镜和所述多个反射镜的刻度的精度都为0.01毫米。
  10. 一种用于与权利要求1-9中任一所述的水平度检测装置一起使用的水平度调节装置,包括:
    支撑件,用于支撑待调节装置,所述支撑件上设置有调节孔;和
    调节单元,穿过设置于所述支撑件上的调节孔并与所述待调节装置相接触;
    其中,所述调节单元相对于所述调节孔移动来调节所述待调节装置的水平度。
  11. 根据权利要求10所述的水平度调节装置,其中,所述调节单元可在其穿过所述调节孔所沿的方向上移动。
  12. 根据权利要求10所述的水平度调节装置,其中,所述调节单元包括调节旋钮,所述调节旋钮与所述调节孔螺纹配合。
  13. 根据权利要求12所述的水平度调节装置,其中,所述调节旋钮为螺钉、螺母中的任意一种。
  14. 根据权利要求12所述的水平度调节装置,其中,所述调节旋钮的个数为n,所述n为正整数,并且其中,所述n个调节旋钮按照预设布置分布在所述支撑件上。
  15. 一种采用权利要求1至9中任意一项所述的水平度检测装置来检测待检测装置的水平度的水平度检测方法,包括:
    读取半反射半透射镜和多个反射镜上的刻度示数;
    判断所述半反射半透射镜和所述多个反射镜上的刻度示数是否相等;以及
    若所述半反射半透射镜和所述多个反射镜上的刻度示数均相等,则确定所述待检测装置处于水平状态;若所述半反射半透射镜和所述 多个反射镜上的刻度示数不相等,则确定所述待检测装置处于非水平状态。
  16. 一种采用权利要求10至14中任意一项所述的水平度调节装置来调节待检测装置的水平度的水平度调节方法,包括;
    采用权利要求15所述的水平度检测方法来检测待检测装置的水平度;以及
    若所述待检测装置处于非水平状态,则选择所述半反射半透射镜和所述多个反射镜上的刻度示数中的任一刻度示数作为基准示数,调节所述水平度调节装置中的所述调节单元,使除所述基准示数以外的刻度示数等于所述基准示数。
PCT/CN2015/089300 2015-05-04 2015-09-10 水平度检测装置及方法、水平度调节装置及方法 WO2016176940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/022,270 US9733078B2 (en) 2015-05-04 2015-09-10 Levelness detecting device and method, levelness adjusting device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510222073.XA CN104776838B (zh) 2015-05-04 2015-05-04 水平度检测装置及方法、水平度调节装置及方法
CN201510222073.X 2015-05-04

Publications (1)

Publication Number Publication Date
WO2016176940A1 true WO2016176940A1 (zh) 2016-11-10

Family

ID=53618452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089300 WO2016176940A1 (zh) 2015-05-04 2015-09-10 水平度检测装置及方法、水平度调节装置及方法

Country Status (3)

Country Link
US (1) US9733078B2 (zh)
CN (1) CN104776838B (zh)
WO (1) WO2016176940A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776838B (zh) 2015-05-04 2017-05-24 合肥鑫晟光电科技有限公司 水平度检测装置及方法、水平度调节装置及方法
CN109099862A (zh) * 2018-08-23 2018-12-28 温州市经略建设管理有限公司 建筑工程质量平面度检测装置
CN112361976B (zh) * 2020-10-20 2022-08-19 中国一冶集团有限公司 一种扇形段托辊的精密度检查装置及调整方法
CN113218368B (zh) * 2021-05-18 2022-11-18 深圳市儒道数据分析有限公司 一种倾斜度检测激光水准仪及检测方法
CN113503860B (zh) * 2021-08-30 2023-08-08 京东方科技集团股份有限公司 一种水平度检测治具及检测方法
CN114384084B (zh) * 2021-12-16 2024-04-16 苏州镁伽科技有限公司 调平检测平台的方法和检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740693A (en) * 1994-06-13 1998-04-21 Daishowa Seiki Co., Ltd. Photoelectric levelness detector
CN2578789Y (zh) * 2002-10-23 2003-10-08 沈建明 激光水平仪
CN101666644A (zh) * 2009-10-26 2010-03-10 西安信唯信息科技有限公司 具有激光扫描的数字式水平度测量方法
JP2010197333A (ja) * 2009-02-27 2010-09-09 Atc:Kk 水平度検知具
CN103884316A (zh) * 2014-04-02 2014-06-25 温州大学 一种自校准的双工位激光水平测高仪
CN103954267A (zh) * 2014-05-14 2014-07-30 哈尔滨工业大学 基于线阵ccd的二次平台水平度测量系统及方法
CN104776838A (zh) * 2015-05-04 2015-07-15 合肥鑫晟光电科技有限公司 水平度检测装置及方法、水平度调节装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039584A (ja) * 1998-07-23 2000-02-08 Fuji Photo Optical Co Ltd プロジェクタ装置
CN2935087Y (zh) * 2006-07-10 2007-08-15 黄高明 一种激光水平尺调节座
DE112006004097C5 (de) * 2006-11-03 2017-11-02 Trimble Kaiserslautern Gmbh Winkelmessgerät
CN201993111U (zh) * 2011-01-14 2011-09-28 朱子艳 激光水平仪
EP2793042B1 (en) * 2013-04-15 2018-06-06 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Positioning device comprising a light beam
CN103821708B (zh) * 2014-02-26 2015-11-11 湖州新创丝织品有限公司 一种小压缩机专用的水平校正规
JP6490401B2 (ja) * 2014-11-12 2019-03-27 株式会社トプコン 傾斜検出システム及び傾斜検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740693A (en) * 1994-06-13 1998-04-21 Daishowa Seiki Co., Ltd. Photoelectric levelness detector
CN2578789Y (zh) * 2002-10-23 2003-10-08 沈建明 激光水平仪
JP2010197333A (ja) * 2009-02-27 2010-09-09 Atc:Kk 水平度検知具
CN101666644A (zh) * 2009-10-26 2010-03-10 西安信唯信息科技有限公司 具有激光扫描的数字式水平度测量方法
CN103884316A (zh) * 2014-04-02 2014-06-25 温州大学 一种自校准的双工位激光水平测高仪
CN103954267A (zh) * 2014-05-14 2014-07-30 哈尔滨工业大学 基于线阵ccd的二次平台水平度测量系统及方法
CN104776838A (zh) * 2015-05-04 2015-07-15 合肥鑫晟光电科技有限公司 水平度检测装置及方法、水平度调节装置及方法

Also Published As

Publication number Publication date
CN104776838A (zh) 2015-07-15
US9733078B2 (en) 2017-08-15
US20170160085A1 (en) 2017-06-08
CN104776838B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016176940A1 (zh) 水平度检测装置及方法、水平度调节装置及方法
US10145785B2 (en) Optical element rotation type Mueller-matrix ellipsometer and method for measuring Mueller-matrix of sample using the same
US10837764B2 (en) Surface flatness measuring device and surface flatness measuring method
CN105547657A (zh) 一种光学镜头分光束平行度检测装置及其检测方法
CN205449447U (zh) 一种光学镜头分光束平行度检测装置
CN102538712B (zh) 垂直度调整方法
CN110553580B (zh) 一种倾斜入射相移干涉仪和直角棱镜大面测量方法
JPS63292005A (ja) 走り誤差補正をなした移動量検出装置
CN110360960B (zh) 一种垂直度测量方法和装置
Hsia et al. Bidirectional Reflectometry. Part I.: A High Resolution Laser Bidirectional Reflectometer With Results on Several Optical Coatings
CN109959350B (zh) 棱镜直角工作面垂直度的检测方法及装置
TWI472712B (zh) Vertical and parallelism detection system and its detection method
CN110207587B (zh) 一种角锥棱镜光学顶点的测量方法
CN108061527A (zh) 一种抗空气扰动的二维激光自准直仪
CN107607061B (zh) 一种用于虚光轴和结构靠面的高精度角度测量方法
US20180003483A1 (en) Detection apparatus for a display panel component and method for detecting a display panel component
CN110425987A (zh) 一种穿透性激光测厚仪
CN210513029U (zh) 一种穿透性激光测厚仪
CN108344712A (zh) 一种材料折射率的测量装置及其测量方法
CN207894588U (zh) 基于角锥棱镜的光学镜头多视场像质检测装置
CN111998837A (zh) 一种多用途的激光准绳仪
CN106969682A (zh) 测量装置
JP2002107116A (ja) 平坦度等測定装置
CN215003472U (zh) 一种非接触式光学平坦度量测仪安装治具
TWM591613U (zh) 地板直角度測量儀器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15022270

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891191

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15891191

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.01.2018)