WO2016175629A1 - 레이저 장치 및 레이저 장치 구동방법 - Google Patents

레이저 장치 및 레이저 장치 구동방법 Download PDF

Info

Publication number
WO2016175629A1
WO2016175629A1 PCT/KR2016/004590 KR2016004590W WO2016175629A1 WO 2016175629 A1 WO2016175629 A1 WO 2016175629A1 KR 2016004590 W KR2016004590 W KR 2016004590W WO 2016175629 A1 WO2016175629 A1 WO 2016175629A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
pumping
pulse width
oscillation
Prior art date
Application number
PCT/KR2016/004590
Other languages
English (en)
French (fr)
Inventor
이희철
Original Assignee
(주)루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)루트로닉 filed Critical (주)루트로닉
Priority to US15/570,623 priority Critical patent/US10340652B2/en
Publication of WO2016175629A1 publication Critical patent/WO2016175629A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0947Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of an organic dye laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094034Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a dye
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • H01S3/1024Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping for pulse generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1063Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a solid state device provided with at least one potential jump barrier

Definitions

  • the present invention relates to a laser device and a laser driving method, and more particularly, to a laser device and a laser driving method capable of outputting a specific wavelength laser with a nano-second pulse width.
  • a technique of treating a human body by modifying a state of human tissue by using light or removing a specific tissue has been widely applied.
  • various light sources such as a laser source, a flash lamp, and an LED
  • a therapeutic apparatus for treating various human tissues including skin is being actively developed.
  • the laser device outputs a laser beam having monochromatic, coherence and collimation.
  • the laser beam output from the laser device is output with energy having different wavelengths or different pulse widths according to changes in the oscillation conditions of the laser beam, etc.
  • commercially available laser treatment devices have a pulse in the micro-second band. It is common to output a laser having a width.
  • the commercialization of a laser having a nano-second pulse width is required for precise treatment, it is difficult to commercialize depending on the type or wavelength of the laser medium.
  • Er: YAG has been widely used as a medical laser medium, but due to the characteristics of the medium, it was difficult to generate a laser having a pulse width of nano-seconds.
  • the present invention is to solve the above problems, to provide a laser device and a laser device driving method capable of outputting a therapeutic laser having a nano-second pulse width.
  • the laser device is disposed on one side of the pumping laser supply unit and the pumping laser supply unit for emitting a pumping laser having a nano-second pulse width, and is pumped by the pumping laser, thereby the pumping laser. And a laser output for generating an output laser having a pulse width of nanoseconds corresponding to a pulse width of.
  • the laser output unit may include an output laser medium that absorbs the pumping laser to generate the output laser having a wavelength different from that of the pumping laser.
  • the output laser medium may also include Er: YAG.
  • the laser output unit is disposed on one side of the output laser medium, and passes through the pumping laser to the output laser medium, and reflects the output laser oscillated from the output laser medium to the total reflection mirror and the other side of the output laser medium. And an output mirror disposed to face the total reflection mirror and partially reflecting or transmitting the output laser oscillated in the output laser medium.
  • the pumping laser supplied to the laser output unit may have a wavelength of 650nm.
  • the output laser emitted from the laser output unit may have a wavelength of 2940 nm
  • the pumping laser supply unit may include a die laser source for generating the pumping laser
  • the pumping laser supply may further include a laser oscillator configured to emit an oscillation laser having a nano-second pulse width, wherein the die laser source is amplified by the oscillation laser emitted from the laser oscillation portion to pump the laser. Can be generated.
  • the laser oscillator may include an oscillation laser medium that absorbs light incident from the outside and outputs the oscillation laser, and the oscillation laser medium may include Nd: YAG.
  • the oscillation laser may have a wavelength of 532 nm.
  • the laser output unit may further include a filter unit disposed within the laser output unit and reflecting the pumping laser and transmitting the output laser beam.
  • the laser device driving method comprises the steps of: emitting a pumping laser having a nano-second pulse width and pumped by the pumping laser, the nano-seconds corresponding to the pulse width of the pumping laser. Outputting an output laser having a pulse width.
  • the method may include generating the pumping laser at a die laser source having a laser dye as a medium. .
  • the method further comprises emitting an oscillation laser having a nano-second pulse width at the laser oscillator, wherein the die laser source comprises:
  • the pump may be amplified by the oscillation laser emitted from the oscillation unit.
  • the output laser, the pumping laser and the oscillation laser may have wavelengths of 2940 nm, 650 nm and 532 nm, respectively, having a pulse width of nanoseconds.
  • the laser output unit and the laser oscillator may use a medium including Er: YAG and Nd: YAG, respectively.
  • the laser device for outputting the laser of the nano-second pulse width can be configured in a compact structure.
  • Er: YAG laser which was previously difficult to output with a laser of nano-second pulse width, can also easily output a short pulse laser according to the present invention, and there is an advantage in that a new treatment using the same is possible.
  • FIG. 1 is a perspective view showing a laser device according to a preferred embodiment of the present invention.
  • FIG. 2 and 3 are schematic diagrams mainly showing a configuration of generating a laser among the configurations of the laser device of FIG. 1.
  • FIGS. 4 is a graph illustrating wavelength characteristics of a pumping laser absorbed by Er: YAG of the laser output unit of FIGS. 2 and 3.
  • FIG. 5 is a schematic diagram of a laser apparatus according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a laser apparatus according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of driving a laser device according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a laser device according to a preferred embodiment of the present invention.
  • 2 and 3 are block diagrams of laser devices according to different embodiments of the present invention.
  • the laser device according to the present embodiment includes a main body 10, a laser irradiation unit 20, a pumping laser supply unit 200, and a laser output unit 100.
  • the laser device 1 according to the embodiment of the present invention can be used in various industrial fields using the laser of the wavelength band output from the laser device 1 of the present invention in addition to various medical industry fields such as for skin treatment.
  • the main body 10 may be provided with various components that generate power by receiving power from the outside.
  • the outer surface of the main body 10 may be provided with a control panel 11 for manipulating the driving contents of the laser device 1 and a display 12 for displaying the operation menu and the operating contents to the user.
  • the cable 13 is extended to one side of the main body 10, the laser irradiation portion 20 such as the handpiece may be connected to the fastening portion 14 of the end of the cable (13).
  • the fastening part 14 of the cable 13 may be installed to be connected to the laser irradiation part 20 end by screwing, and may be configured in various coupling manners.
  • the laser irradiation unit 20 is connected to the cable 13 of the main body 10, the laser generated from the main body 10 is transmitted to the laser irradiation unit 20.
  • the laser irradiator 20 has a laser path through which the laser proceeds, and is configured to irradiate the laser to the outside during treatment in a state in which the laser is protruded.
  • the laser generated by the main body 10 is transmitted to the laser irradiation unit 20 along the optical fiber of the cable, and is controlled through the manipulation of the control panel 11 or the laser irradiation unit 20 of the main body 10 to The laser can be irradiated for treatment or examination.
  • FIGS. 2 and 3 are schematic diagrams mainly showing a configuration of generating a laser among the configurations of the laser device of FIG. 1.
  • the configuration of the laser device according to the present embodiment will be described in more detail with reference to FIGS. 2 and 3.
  • the laser irradiation unit 20 uses the pumping laser supply unit 200 for generating the pumping laser L2 and the output laser L1 to the human tissue using the pumping laser L2.
  • Laser output unit 100 that can be irradiated may be provided.
  • the pumping laser supply unit 200 When the pumping laser supply unit 200 is disposed inside the laser irradiation unit 20 as shown in FIG. 2, the pumping laser supply unit 200 is disposed in parallel with the laser output unit 100, and the emitted pumping laser L2 is a laser. It can be supplied directly to the output unit 100.
  • the pumping laser supplier 200 may emit the pumping laser L2 having a pulse width of nano-seconds. That is, the present invention can provide the laser device 1 having a high pulse width. For example, the laser device 1 can irradiate a laser of a specific wavelength having a pulse width of several ns to several hundred ns. Specifically, a laser having a pulse width of about 1 ns to 500 ns may be used. The laser having a nano-second pulse width output from the pumping laser supply unit 200 may be supplied to the laser output unit 100.
  • the laser output unit 100 is disposed inside the laser irradiator 20 and is pumped by the pumping laser L2 to output an output laser having a pulse width of nanoseconds corresponding to the pulse width of the pumping laser L2. (L1) may occur. Therefore, the laser itself incident on a specific medium of the laser output unit 100 has a pulse width of nano-second, and then the laser output from the laser output unit 201 easily generates a laser having a pulse width of nano-second. Enable output.
  • nano -Can be configured to output a laser of a second pulse width.
  • the longer the wavelength of the laser may be more difficult to configure the short pulse laser, in this embodiment the wavelength of the output laser is longer than the wavelength of the pumping laser, the pumping laser is to configure a laser of relatively nano-second pulse width. It may be an easy wavelength.
  • the laser irradiation part 20 may be configured to detachably attach the irradiation part end 21 provided on one side to which the output laser L1 is irradiated.
  • the laser output unit 100 may be disposed inside the irradiation unit end 21 so that the laser output unit 100 may be easily replaced by detaching the irradiation unit end 21. Therefore, by replacing the laser output unit 100 to generate a different output laser (L1) if necessary during use, it is possible to perform treatment or inspection using a laser of various wavelengths.
  • the laser output unit 100 may include an output laser medium 103 capable of absorbing the pumping laser L2 to generate an output laser L1 having a wavelength different from that of the pumping laser L2. have.
  • the first total reflection mirror 106 and the first output mirror 107 may be provided at both sides of the output laser medium 103.
  • the first total reflection mirror 106 is disposed on one side of the output laser medium 103, and passes the pumping laser L2 through the output laser medium 103 and the output laser L1 oscillated in the output laser medium 103. Can reflect.
  • the first output mirror 107 is disposed on the other side of the output laser medium 103 to face the first total reflection mirror 106, and partially reflects or outputs the output laser L1 oscillated from the output laser medium 103. Permeable.
  • the resonance section is formed by coating reflective materials on both sides or one side of the output laser medium 103. It is also possible to configure (reflecting mirror and output mirror to form a resonant path in Figures 5 and 6 also can be configured by coating the reflective material on both or one side of the medium).
  • the laser output unit 100 reflects the pumping laser L2 among the laser beams passing through the output laser medium 103, the first total reflection, and the first output mirrors 106 and 107, and transmits only the output laser L1.
  • the filter unit 105 may further include a.
  • various optical elements such as a condenser and a shutter, may be included in the laser output unit 100 to focus the laser beam that has passed through the filter unit 105.
  • FIG. 3 shows an embodiment different from the embodiment shown in FIG. 2.
  • a pumping laser supply unit 200 capable of emitting a pumping laser L2 is provided inside the main body 10, and the pumping laser L2 is provided inside the laser irradiation unit 20.
  • the laser output unit 100 may be provided to irradiate the output laser L1 to the skin.
  • the pumping laser supply unit 200 When the pumping laser supply unit 200 is disposed inside the main body 10, the pumping laser supply unit 200 may be connected to the laser output unit 100 disposed on the laser irradiation unit 20 through a cable 13. That is, the pumping laser L2 emitted from the pumping laser supply unit 200 may be supplied to the laser output unit 100 through the optical fiber of the cable 13.
  • the laser output unit 100 is disposed inside the laser irradiation unit 20, is pumped by the pumping laser (L2), having a pulse width of nano-second corresponding to the pulse width of the pumping laser (L2)
  • the output laser L1 can be generated.
  • the laser output unit 100 absorbs the pumping laser L2 and outputs an output laser L1 having a wavelength different from that of the pumping laser L2.
  • Laser medium 103 the laser output unit 100 absorbs the pumping laser L2 and outputs an output laser L1 having a wavelength different from that of the pumping laser L2.
  • the wavelength of the pumping laser (L2) may be 650nm
  • the wavelength of the output laser (L1) generated in the output laser medium 103 may be 2940nm.
  • This output laser medium 103 may comprise Er: YAG.
  • Chromaphore a skin tissue component that absorbs light such as lasers and ultraviolet rays, is mostly made up of water and collagen.
  • the main absorption peaks of water are at 2940nm (wavelength of Er: YAG laser) and 10.6um (wavelength of CO2 laser), and the most absorbable wavelength is 2940nm.
  • a laser having a wavelength of 2940 nm band is irradiated to the skin and penetrates into a depth of several um, there is an advantage that almost no thermal damage is caused except the irradiated tissue. Therefore, by using such a laser, it is possible to precisely perform the treatment of skin peeling and the like without damaging adjacent tissues, and can have an excellent effect on the treatment of scars and solar lentigines, which are pigmented lesions on the epithelial surface.
  • the laser device 1 configures the output laser medium 103 using Er: YAG, whereby the laser device 1 can be configured to irradiate the output laser of 2940 nm wavelength to the skin.
  • Er: YAG As the output laser medium 103 is an example, and in addition to this, it is also possible to configure using various laser media.
  • a laser having a wavelength having excellent absorption characteristics in Er: YAG may be configured as a pumping laser L2 so as to effectively pump the output laser medium.
  • the laser device of the present embodiment can pump the output laser medium by using a laser having a wavelength having high absorption characteristics as a pumping rage.
  • a laser having a wavelength of 630 to 670 nm is used as the pumping laser L2, and is configured to generate an output laser of 2940 nm using the laser.
  • FIG. 5 is a schematic diagram of a laser apparatus according to another embodiment of the present invention.
  • the laser device 1 according to the present embodiment also includes the main body 10, the laser irradiation unit 20, the pumping laser supply unit 200, and the laser output unit 100, similarly to the above-described embodiment.
  • the pumping laser supply unit 200 may include the laser oscillation unit 220 and the die laser source 210.
  • the pumping laser supply unit 200 includes a light source 201, a laser oscillator 220, and a die laser source 210.
  • the laser oscillator 220 is disposed inside the main body 10 and absorbs and supplies a light source 201 such as a flash lamp that receives power from the power supply and emits excitation light O input from the light source 201. It may include an oscillation laser medium 223 for generating a laser (L4) or an oscillation laser (L3).
  • the laser oscillator 220 is located at both sides of the oscillation laser medium 223, the third total reflection mirror 226 for amplifying the laser by total reflection and partial reflection of the light output from the oscillation laser medium 223, respectively ) And a third output mirror 227.
  • the fully amplified oscillation laser L3 or the supply laser L4 can then be emitted.
  • the oscillation laser medium 223 of the present embodiment may include, for example, Nd: YAG for outputting a nano-second supply laser L4 having a wavelength of 1064 nm.
  • the laser oscillator 220 may optionally include a KTP crystal 228 and a KTP mirror 229.
  • the KTP crystal 228 and the KTP mirror 229 are arranged on one side of the oscillation laser medium 223, and the supply laser L4 is incident to output the oscillation laser L3 having a wavelength different from that of the supply laser.
  • the KTP crystal 228 converts a part or all of the incident supply laser L4 into the supply laser L4 having a different wavelength
  • the KTP mirror 229 is provided at the rear end of the KTP crystal 228 to generate an oscillation laser ( It is configured to transmit the wavelength corresponding to L3) and reflect the wavelength corresponding to the supply laser L4.
  • the KTP crystal 228 is partially converted to a laser of 532nm when a laser of 1064nm wavelength is incident, and the converted 1064nm laser passes through the KTP mirror 229, and the unconverted 532nm.
  • the laser of the wavelength is reflected by the KTP mirror 229.
  • the front surface of the KTP mirror 229 (the direction in which the oscillation laser is incident) is coated to totally reflect the laser of 1064 nm wavelength and transmit the laser of 532 nm wavelength, and the rear side of the KTP mirror 229 (the direction in which the supply laser is output). ) May be coated so that only the laser corresponding to the laser of 532 nm wavelength is transmitted.
  • the laser oscillator 220 may selectively generate the oscillation laser L3 having a wavelength of 1064 nm or 532 nm.
  • Nd: YAG is used as the laser medium for oscillation, but this is referred to as an example, and in addition, the oscillation laser medium may be configured using various media.
  • the die laser source 210 may absorb the oscillation laser L3 output from the laser oscillator 220 to emit a pumping laser L2 having a pulse width of nanoseconds.
  • the die laser source 210 is included in the pumping laser supply unit 200. Like the pumping laser supply unit 200 described above, the die laser source 210 may be disposed in the main body 10 or may be disposed in the laser irradiation unit 20. (See Figures 2 and 3).
  • the die laser source 210 When the die laser source 210 is disposed in the laser irradiator 20, the die laser source 210 may be disposed in parallel with the laser output unit 100 to directly supply the discharged pumping laser L2 to the laser output unit 100.
  • the die laser source 210 When the die laser source 210 is disposed inside the main body 10, the die laser source 210 may be connected to the laser output unit 100 disposed on the laser irradiator 20 through a cable 13.
  • the pumping laser L2 emitted from the pumping laser supply unit 200 may be supplied to the laser output unit 100 through the optical fiber of the cable 13.
  • the die laser source 210 may use a solid laser die 213 as a medium so as to generate a die laser.
  • a laser die 213 capable of generating light of 650 nm wavelength can be used.
  • the die laser source 210 may include a second total reflection mirror 216 and a second output mirror 217 on both sides of the solid laser die 213 disposed therein.
  • the second total reflection mirror 216 is disposed spaced apart from one surface of the solid state laser die 213, and the second output mirror 217 is opposite to the second total reflection mirror 216 on the other surface of the solid state laser die 213. Is placed.
  • the pumping light (supplied laser) supplied to the die laser source 210 is 532 nm
  • the second total reflection mirror 216 transmits the 532 nm light to the solid laser die 213 and reflects the light of 585 nm and 650 nm. Is configured to.
  • the second output mirror 217 is configured to reflect the 532nm light and partially reflect and partially transmit the light of 585nm and 650nm.
  • the pumping laser L2 output from the die laser source 210 may be 585 nm or 650 nm, and in this embodiment, 650 nm light having a nano-second pulse width is used.
  • the nano-second pumping laser L2 having a wavelength of 650 nm output to the pumping laser supply unit 200 may be transmitted to the laser output unit 100.
  • the solid state laser die 213 may be configured using various types of laser dies in addition to the laser die.
  • first laser device unit 218 and the second optical device unit 219 may be included in the die laser source 210.
  • first optical element unit 218 is disposed on the light path incident from the outside to enter the laser into the laser die 213.
  • the second optical element unit 219 is disposed on one side of the laser die 213 to face the first optical element unit 218 and forms a path through which the pumping laser L2 travels to the laser oscillator 220.
  • the first optical element unit 218 and the second optical element unit 219 may each include at least one or more optical elements such as a plurality of lenses, filters, shutters, and the like.
  • the laser oscillator 220 and the die laser source 210 have a laser width of a wavelength having a high absorption band in the medium of the laser output unit 100 and having a pulse width of nanoseconds by the above configuration. ) Can be supplied.
  • the laser whose wavelength is converted to the output laser L1 may be irradiated to the local area of the patient in need of the procedure, and may be effectively treated and examined as described above.
  • the laser device 1 includes a main body 10, a laser irradiation unit 20, a pumping laser supply unit 200, and a laser output unit 100, similarly to the above-described embodiment. .
  • the laser oscillator 220 disposed in the pumping laser supply unit 200 emits the pumping laser L2, and the emitted pumping laser L2 is the laser output unit ( 100) can be configured to be supplied directly.
  • the laser oscillator 220 is disposed inside the main body 10, and absorbs a light source 201 such as a flash lamp that receives power from the power supply unit and emits light, and the light O input from the light source 201 to pump the laser. It may include the laser medium for oscillation 223 to generate (L2).
  • the laser oscillator 220 is located at both sides of the oscillation laser medium 223, the third total reflection mirror 226 for amplifying the laser by total reflection and partial reflection of the light output from the oscillation laser medium 223, respectively ) And a third output mirror 227. After that, it is possible to emit a sufficiently amplified pumping laser (L2).
  • the pumping laser L2 having a nanosecond pulse width output from the laser oscillator 220 may be supplied to the laser output unit 100.
  • the laser output unit 100 is disposed inside the laser irradiator 20 and is pumped by the pumping laser L2 to output an output laser having a pulse width of nanoseconds corresponding to the pulse width of the pumping laser L2. (L1) may occur. Therefore, the laser itself incident on a specific medium of the laser output unit 100 has a pulse width of nanoseconds, so that the laser output from the laser output unit 201 easily generates a laser having a nanosecond pulse width. Enable output. This is an effect that can easily implement a high wavelength laser having a nano-second pulse width that was difficult to implement conventionally.
  • FIG. 7 is a flowchart illustrating a method of driving a laser device according to an embodiment of the present invention.
  • the laser oscillator 220 emits an oscillation laser having a pulse width of nano-seconds (S10).
  • the laser oscillator 220 may absorb light O from the light source 201 that emits light by receiving power, and generate a supply laser L4 having a pulse width of nanoseconds.
  • the laser oscillator 220 is light output from the oscillation laser medium 223 by the third total reflection mirror 226 and the third output mirror 227 disposed on both sides of the oscillation laser medium 223. Can be totally reflected and partially reflected, respectively, to amplify the laser. The fully amplified supply laser L4 can then be emitted.
  • the oscillation laser medium 223 may include Nd: YAG capable of outputting a supply laser L4 having a wavelength of 1064 nm.
  • the 1064 nm wavelength laser generated by the Nd: YAG medium may pass through the KTP crystal 228 and the KTP mirror 229 to generate the oscillation laser L3.
  • the wavelength of the oscillation laser L3 converted through the KTP crystal 228 and the KTP mirror 229 may be 532 nm.
  • the oscillation laser L3 having the pulse width of the nano-seconds proceeds to the die laser source 210.
  • the die laser source 210 having the laser dye as a medium may absorb the oscillation laser L3 to generate the pumping laser L2 (S30).
  • the pumping laser supplied from the laser oscillator 220 to the die laser source 210 is 532 nm, pumping of 585 nm or 650 nm wavelength by the second total reflection mirror 216 and the second output mirror 217.
  • the laser L2 may be generated. Detailed description of the generation of the pumping laser L2 will be omitted as described above.
  • One embodiment of the present invention illustrates the use of a laser die 213 capable of generating light (pumping laser L2) of 650 nm wavelength having a nano-second pulse width.
  • the pumping laser L2 having the pulse width of the nano-second proceeds to the laser output unit 100.
  • the laser output unit 100 may be pumped by the pumping laser L2 to output an output laser L1 having a pulse width of nanoseconds corresponding to the pulse width of the pumping laser L2 (S50). ).
  • the laser output unit 100 may include an output laser medium 103 that may absorb the pumping laser L2 and convert the pumping laser L2 into an output laser L1 having a wavelength different from that of the pumping laser L2.
  • the output laser medium 103 may comprise Er: YAG.
  • the laser output unit 100 including Er: YAG may convert the nano-second pumping laser L2 having the 650 nm wavelength to the nano-second output laser L1 having the 2940 nm wavelength. have. That is, as described above, when the pumping laser L1 supplied from the die laser source 210 to the laser output unit 100 is 650 nm, the first total reflection mirrors 106 disposed on both sides of the output laser medium 103. ) And a pumping laser L1 of 2940 nm wavelength amplified by the first output mirror 107 may be generated.
  • the pumping laser L1 may be provided as energy necessary for each lesion to improve the treatment effect.
  • the laser having a wavelength of 2940 nm has the largest absorbance to water, thermal damage is hardly caused to tissues other than the laser irradiated with a depth of several um. Therefore, in the case of treatment of skin dermabrasion using the laser device 1 according to the present invention, very precise dermabrasion and the like can be treated without thermal damage to surrounding tissues. It can be very effective in treating scars and solar lentigines, pigmented lesions on the epithelial surface.
  • the laser device can easily implement a laser having a wavelength of 2940 nm having a nano-second pulse width while retaining sufficient energy that has not been commercially available, and thus can be expected to expand a new treatment area.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Otolaryngology (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Lasers (AREA)
  • Laser Surgery Devices (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명에 따른 레이저 장치는 나노-세컨드(nano-second)의 펄스폭을 갖는 펌핑 레이저를 방출하는 펌핑 레이저 공급부 및 상기 펌핑 레이저 공급부의 일측에 배치되며, 상기 펌핑 레이저에 의해 펌핑되어, 상기 펌핑 레이저의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저를 발생시키는 레이저 출력부를 포함할 수 있다.

Description

레이저 장치 및 레이저 장치 구동방법
본 발명은, 레이저 장치 및 레이저 구동방법에 관한 것으로서, 보다 상세하게는 나노-세컨드(nano-second)의 펄스폭을 가지면서 특정 파장 레이저를 출력할 수 있는 레이저 장치 및 레이저 구동방법에 관한 것이다.
광을 이용하여 인체 조직의 상태를 변형시키거나, 특정 조직을 제거하는 방식으로 인체를 치료하는 기술이 널리 적용되고 있다. 레이저 소스, 플래시 램프, LED 등의 다양한 광원을 이용하여, 피부를 비롯한 각종 인체 조직을 치료하기 위한 치료장치가 활발하게 개발되고 있다.
레이저 장치는 단색성(monochromatic), 간섭성(coherence) 및 직진성(collimation)을 갖는 레이저 빔을 출력한다. 레이저 장치로부터 출력되는 레이저 빔은 레이저 빔의 발진 조건 등 변경에 따라 상이한 파장 또는 상이한 펄스폭을 갖는 에너지로 출력된다.현재 상업적으로 판매되는 레이저 치료 장치는 마이크로-세컨드(micro-second) 대역의 펄스폭을 갖는 레이저를 출력하는 것이 일반적이다. 정밀한 치료를 위해 나노-세컨드(nano-second)의 펄스폭을 갖는 레이저의 상용화가 요구되고 있으나, 레이저 매질의 종류 또는 파장에 따라 상용화가 어려운 문제점이 있다. 특히, Er:YAG의 경우 의료용 레이저 매질로 널리 이용되고 있으나, 매질 특성으로 인하여 나노-세컨트(nano-second)의 펄스폭을 갖는 레이저를 발생시키는데 어려움이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 나노-세컨드의 펄스폭을 갖는 치료용 레이저를 출력할 수 있는 레이저 장치 및 레이저 장치 구동 방법을 제공하는데 있다.
본 발명에 따른 레이저 장치는 나노-세컨드(nano-second)의 펄스폭을 갖는 펌핑 레이저를 방출하는 펌핑 레이저 공급부 및 상기 펌핑 레이저 공급부의 일측에 배치되며, 상기 펌핑 레이저에 의해 펌핑되어, 상기 펌핑 레이저의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저를 발생시키는 레이저 출력부를 포함할 수 있다.
또한, 상기 레이저 출력부는, 상기 펌핑 레이저를 흡수하여 상기 펌핑 레이저와 상이한 파장을 갖는 상기 출력 레이저를 발생시키는 출력 레이저 매질을 포함할 수 있다.
또한, 상기 출력 레이저 매질은 Er:YAG를 포함할 수 있다.
그리고 상기 레이저 출력부는, 상기 출력 레이저 매질의 일측에 배치되고, 상기 출력 레이저 매질로 상기 펌핑 레이저를 통과시키고 상기 출력 레이저 매질에서 발진되는 상기 출력 레이저를 반사하는 전반사거울 및 상기 출력 레이저 매질의 타측에 상기 전반사거울과 대향하여 배치되고, 상기 출력 레이저 매질에서 발진되는 출력 레이저를 부분적으로 반사 또는 투과하는 출력거울을 포함할 수 있다.
또한, 상기 레이저 출력부에 공급되는 상기 펌핑 레이저는 650nm의 파장을 가질 수 있다.
또한, 상기 레이저 출력부에서 방출되는 상기 출력 레이저는 2940nm의 파장을 가질 수 있으며, 상기 펌핑 레이저 공급부는 상기 펌핑 레이저를 발생시키는 다이 레이저 소스(dye laser source)를 포함하여 구성될 수 있다.
또한, 상기 펌핑 레이저 공급부는 나노-세컨드 펄스폭을 갖는 발진 레이저를 방출시킬 수 있도록 구성되는 레이저 발진부를 더 포함하고, 상기 다이 레이저 소스는 상기 레이저 발진부에서 방출되는 발진 레이저에 의해 증폭되어 상기 펌핑 레이저를 발생시킬 수 있다.
또한, 상기 레이저 발진부는 외부로부터 입사된 광을 흡수하여 상기 발진 레이저를 출력하는 발진용 레이저 매질을 포함하고, 상기 발진용 레이저 매질은 Nd:YAG를 포함할 수 있다.
여기서 상기 발진 레이저는 532nm 파장을 가질 수 있다.
더욱이, 상기 레이저 출력부 내부에 배치되며, 상기 펌핑 레이저는 반사하고 상기 출력 레이저는 투과하는 필터부를 더 포함할 수 있다.
본 발명에 따른 레이저 장치 구동방법은 나노-세컨드(nano-second)의 펄스폭을 가지는 펌핑 레이저를 방출하는 단계 및 상기 펌핑 레이저에 의해 펌핑되어, 상기 펌핑 레이저의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저를 출력하는 단계를 포함할 수 있다.
또한, 상기 나노-세컨드(nano-second)의 펄스폭을 가지는 펌핑 레이저를 방출하는 단계에서, 레이저 다이(laser dye)를 매질로 하는 다이 레이저 소스에서 상기 펌핑 레이저를 발생시키는 단계를 포함할 수 있다.
또한, 다이 레이저 소스에서 상기 펌핑 레이저를 발생시키는 단계 이전에, 레이저 발진부에서 나노-세컨드(nano-second)의 펄스폭을 갖는 발진 레이저를 방출시키는 단계를 더 포함하고, 상기 다이 레이저 소스는 상기 레이저 발진부에서 방출되는 발진 레이저에 의해 증폭되어 상기 펌핑 레이저를 발생시킬 수 있다.
그리고 상기 출력 레이저, 상기 펌핑 레이저와 상기 발진 레이저는 각각 나노-세컨드의 펄스폭을 가지면서, 2940nm, 650nm와 532nm의 파장을 가질 수 있다.
또한, 상기 레이저 출력부와 상기 레이저 발진부는 각각 Er:YAG와 Nd:YAG를 포함하는 매질을 사용할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 의할 경우, 나노-세컨드 펄스폭의 레이저를 출력하는 레이저 장치를 컴팩트한 구조로 구성할 수 있는 장점이 있다.
특히, 종전에 나노-세컨드 펄스폭의 레이저로 출력이 어려웠던 Er:YAG 레이저 또한 본 발명에 의할 경우 숏 펄스 레이저를 용이하게 출력할 수 있어, 이를 이용한 새로운 치료가 가능한 장점이 있다.
도 1은 본 발명의 바람직한 실시예에 따른 레이저 장치를 도시한 사시도이다.
도 2 및 3은 도 1의 레이저 장치의 구성 중 레이저를 발생시키는 구성을 중심으로 도시한 개략도이다.
도 4는 도 2 및 도 3의 레이저 출력부의 Er:YAG에 흡수되는 펌핑 레이저의 파장 특성을 도시한 그래프이다.
도 5는 본 발명의 다른 실시예에 따른 레이저 장치의 개략도이다.
도 6은 본 발명의 또 다른 실시예에 따른 레이저 장치의 개략도이다.
도 7은 본 발명의 일 실시예에 따른 레이저 장치 구동방법을 나타낸 순서도이다.
이하, 본 발명의 실시예에 따른 레이저 장치 및 레이저 장치 구동방법에 대해 첨부된 도면을 참조하여 상세히 설명한다. 그러나 본 실시예의 이하에서 개시되는 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이를 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 레이저 장치를 도시한 사시도이다. 도 2 및 도 3은 본 발명의 서로 다른 실시예에 따른 레이저 장치의 블럭도이다.
도 1 내지 3에 도시된 바와 같이, 본 실시예에 따른 레이저 장치는 본체(10), 레이저 조사부(20), 펌핑 레이저 공급부(200) 및 레이저 출력부(100)를 포함하여 구성된다. 본 발명의 실시예에 따른 레이저 장치(1)는 피부 치료용과 같은 다양한 의료 산업 분야 이외에도 본 발명의 레이저 장치(1)로부터 출력된 파장 대역의 레이저를 이용하는 다양한 산업 분야에서도 사용될 수 있다.
본체(10)는 외부로부터 전원을 공급받아 레이저를 발생시키는 각종 구성요소들이 내부에 설치될 수 있다. 본체(10)의 외면에는 레이저 장치(1)의 구동 내용을 조작하기 위한 컨트롤 패널(11) 및 조작 메뉴와 동작 중인 내용을 사용자에게 표시하는 디스플레이(12)가 설치될 수 있다.
또한, 본체(10)의 일측에는 케이블(13)이 연장 설치되며, 상기 케이블(13)의 단부의 체결부(14)로 핸드피스와 같은 레이저 조사부(20)가 연결될 수 있다. 이러한 케이블(13)의 체결부(14)는 나사 결합에 의해 레이저 조사부(20) 단부와 연결되도록 설치되는 것도 가능하고, 그 이외에도 다양한 결합 방식으로 구성될 수 있다.
한편, 레이저 조사부(20)는 본체(10)의 케이블(13)에 연결되어, 본체(10)로부터 발생된 레이저는 레이저 조사부(20)로 전달된다. 레이저 조사부(20)는 내부에 레이저가 진행하는 레이저 경로를 구비하며, 케이블(13)에 체결된 상태에서 치료시 외부로 레이저를 조사하는 구성이다.
이처럼, 본체(10)에서 발생된 레이저는 케이블의 광 파이버를 따라 레이저 조사부(20)로 전달되고, 본체(10)의 컨트롤 패널(11) 또는 레이저 조사부(20)의 조작을 통해 제어되어 인체의 치료 혹은 검사를 위한 레이저를 조사할 수 있다.
도 2 및 3은 도 1의 레이저 장치의 구성 중 레이저를 발생시키는 구성을 중심으로 도시한 개략도이다. 이하에서 도 2 및 3을 참조하여 본 실시예에 따른 레이저 장치의 구성을 보다 구체적으로 설명하도록 한다.
도 2를 참조한 일 실시예에 따르면, 레이저 조사부(20) 내부에는, 펌핑 레이저(L2)를 발생시키는 펌핑 레이저 공급부(200)와 상기 펌핑 레이저(L2)을 이용하여 인체 조직에 출력 레이저(L1)를 조사할 수 있는 레이저 출력부(100)가 구비될 수 있다.
도 2와 같이 펌핑 레이저 공급부(200)가 레이저 조사부(20) 내부에 배치될 경우, 펌핑 레이저 공급부(200)는 레이저 출력부(100)와 나란하게 배치되며, 방출된 펌핑 레이저(L2)는 레이저 출력부(100)로 직접 공급될 수 있다.
펌핑 레이저 공급부(200)는 나노-세컨드(nano-second)의 펄스폭을 가지는 펌핑 레이저(L2)를 방출할 수 있다. 즉, 본 발명은 고속의 펄스폭을 가지는 레이저 장치(1)를 제공할 수 있다. 예를 들어, 본 레이저 장치(1)는 수 ns에서 수백 ns의 펄스 폭을 갖는 특정 파장의 레이저를 조사할 수 있다. 구체적으로 약 1ns 내지 500ns의 펄스 폭(pulse width)을 가지는 레이저를 사용할 수 있다. 상기 펌핑 레이저 공급부(200)에서 출력된 나노-세컨드의 펄스폭을 가지는 레이저는 레이저 출력부(100)로 공급될 수 있다.
레이저 출력부(100)는 레이저 조사부(20) 내부에 배치되며, 상기 펌핑 레이저(L2)에 의해 펌핑되어, 상기 펌핑 레이저(L2)의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저(L1)를 발생할 수 있다. 따라서 레이저 출력부(100)의 특정 매질에 입사되는 레이저 자체를 나노-세컨드의 펄스폭을 가지도록 하여, 이후 레이저 출력부(201)에서 출력되는 레이저가 손쉽게 나노-세컨드의 펄스폭을 가지는 레이저를 출력할 수 있도록 한다.
특히, 레이저 출력부(100)의 매질(103)이 자체적으로 나노-세컨드의 펄스폭을 갖는 레이저를 출력하도록 구성하기 어려운 경우에도, 본 실시예와 같이 별도의 펌핑 레이저를 이용함으로써, 용이하게 나노-세컨드 펄스폭의 레이저를 출력하도록 구성할 수 있다. 여기서, 레이저의 파장이 길수록 숏 펄스 레이저를 구성하는 것이 곤란할 수 있으며, 본 실시예에서 출력 레이저의 파장은 펌핑 레이저의 파장보다 길고, 펌핑 레이저는 상대적으로 나노-세컨드 펄스폭의 레이저를 구성하는 것이 용이한 파장일 수 있다.
또한, 도 2에 도시된 바와 같이, 레이저 조사부(20)는 출력 레이저(L1)가 조사되는 일측에 구비되는 조사부 단부(21)가 착탈 가능하게 구성될 수 있다. 그리고, 레이저 출력부(100)가 조사부 단부(21) 내부에 배치되어, 조사부 단부(21)를 착탈함으로서 레이저 출력부(100)가 용이하게 교체될 수 있다. 따라서, 사용 중 필요할 경우 상이한 출력 레이저(L1)를 발생시키는 레이저 출력부(100)로 교체함으로서, 다양한 파장의 레이저를 이용하여 치료 또는 검사 등을 수행할 수 있다.
구체적으로, 레이저 출력부(100)는 상기 펌핑 레이저(L2)를 흡수하여 상기 펌핑 레이저(L2)와 상이한 파장을 가지는 출력 레이저(L1)를 발생시킬 수 있는 출력 레이저 매질(103)을 포함할 수 있다.
출력 레이저 매질(103) 양측에는 제 1전반사거울(106) 및 제 1출력거울(107)이 구비될 수 있다. 제 1전반사거울(106)은 출력 레이저 매질(103)의 일측에 배치되어, 출력 레이저 매질(103)로 상기 펌핑 레이저(L2)를 통과시키고 출력 레이저 매질(103)에서 발진되는 출력 레이저(L1)를 반사할 수 있다. 제 1출력거울(107)은 출력 레이저 매질(103)의 타측에 상기 제 1전반사거울(106)과 대향하여 배치되고, 출력 레이저 매질(103)에서 발진되는 출력 레이저(L1)을 부분적으로 반사 또는 투과할 수 있다.
이와 같이, 제1 전반사거울(106) 및 제1 출력거울(107)을 이용하여 출력 레이저가 공진되는 구간을 구성하였으나, 이 이외에도 출력 레이저 매질(103) 양측 또는 일측에 반사 물질을 코팅시킴으로써 공진 구간을 구성하는 것도 가능하다(이하 도 5 및 도 6에서 공진 경로를 형성하기 위한 반사거울 및 출력 거울 또한 매질의 양측 또는 일측에 반사물질을 코팅하여 구성하는 것도 가능하다).
또한, 레이저 출력부(100)는 상기 출력 레이저 매질(103) 및 제 1전반사, 제 1출력거울(106, 107)을 통과한 레이저 중 펌핑 레이저(L2)는 반사하고 출력 레이저(L1)만 투과하는 필터부(105)를 더 포함할 수 있다. 또한, 일 예로서 레이저 출력부(100) 내부에는 필터부(105)를 통과한 레이저를 집광하는 집광렌즈 및 셔터 등 다양한 광학 소자가 포함되어 구성될 수 있다.
도 3은 도 2에 도시된 실시예와 상이한 실시예를 도시하고 있다. 도 3을 참조한 다른 실시예에 따르면, 본체(10) 내부에는 펌핑 레이저(L2)를 방출할 수 있는 펌핑 레이저 공급부(200)를 구비하고, 레이저 조사부(20) 내부에는 상기 펌핑 레이저(L2)을 이용하여 피부에 출력 레이저(L1)를 조사할 수 있는 레이저 출력부(100)가 구비될 수 있다.
펌핑 레이저 공급부(200)가 본체(10) 내부에 배치될 경우, 레이저 조사부(20)에 배치된 레이저 출력부(100)와 케이블(13)을 통해 연결 가능하다. 즉, 펌핑 레이저 공급부(200)에서 방출된 펌핑 레이저(L2)는 케이블(13)의 광파이버를 통하여 레이저 출력부(100)로 공급될 수 있다.
한편, 레이저 출력부(100)는 레이저 조사부(20) 내부에 배치되며, 상기 펌핑 레이저(L2)에 의해 펌핑되어, 상기 펌핑 레이저(L2)의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저(L1)를 발생할 수 있다. 이하, 레이저 출력부(100)의 구체적인 내용은 상기 일 실시예에서 전술하였으므로, 이하에서 상세한 설명은 생략하기로 한다.
이하에서는, 상기와 같은 레이저 출력부(100)에서 출력된 출력 레이저(L1)로 인한 인체 피부 조직의 치료시 발생하는 효과와 레이저 출력부(100)에서 높은 효율로 흡수하는 파장 레이저에 대하여 설명한다.
다시 도 2 및 도 3를 참조하면, 전술한 대로, 레이저 출력부(100)는 상기 펌핑 레이저(L2)를 흡수하여 상기 펌핑 레이저(L2)와 상이한 파장을 가지는 출력 레이저(L1)가 발생되는 출력 레이저 매질(103)을 포함한다.
여기서, 펌핑 레이저(L2)의 파장은 650nm일 수 있으며, 출력 레이저 매질(103)에서 발생되는 출력 레이저(L1)의 파장은 2940nm일 수 있다. 이러한 출력 레이저 매질(103)은 Er:YAG를 포함할 수 있다.
레이저나 자외선과 같은 빛을 흡수하는 피부 조직 성분인 색소포(chromophore)는 물과 콜라겐(collagen)이 대부분을 차지한다. 여기서, 물의 주요 흡수 피크는 2940nm(Er:YAG 레이저의 파장)와 10.6um(CO2 laser의 파장)에 있으며 가장 흡수가 잘되는 파장은 2940nm 영역이다. 이러한 2940nm 대역의 파장을 갖는 레이저가 피부에 조사되어 수 um의 깊이로 침투하는 경우, 레이저가 조사된 조직 이외에는 거의 열손상을 주지 않는 장점이 있다. 따라서, 이러한 레이저를 이용함으로써, 인접 조직 손상이 없이 피부 박피 등의 치료를 정교하게 수행할 수 있으며, 상피 표면에 있는 색소 병변인 solar lentigines 및 흉터 치료에 아주 탁월한 효과를 가질 수 있다.
따라서, 본 실시예에 따른 레이저 장치(1)는 Er:YAG를 이용하여 출력 레이저 매질(103)을 구성하며, 이에 의해 2940nm 파장의 출력 레이저를 피부로 조사하도록 구성될 수 있다. 다만, Er:YAG를 출력 레이저 매질(103)로 이용하는 구성은 일 예이며, 이 이외에도 다양한 레이저 매질을 이용하여 구성하는 것도 가능하다.
한편, 출력 레이저 매질(103)로 Er:YAG를 이용하는 경우, 출력 레이저 매질을 효과적으로 펌핑시킬 수 있도록 Er:YAG에 흡수 특성이 우수한 파장의 레이저를 펌핑 레이저(L2)로 구성할 수 있다.
도 4는 파장에 따른 Er:YAG의 흡수특성을 도시한 그래프이다. 도 4의 그래프를 참조하면, Er:YAG는 특정한 파장 영역의 광에 대해 높은 흡수 특성을 갖는 것을 알 수 있다. 도 4에 도시된 바와 같이, 250~280nm, 350~380nm, 520~550nm, 630~670nm 및 780~820nm에서 높은 흡수 특성을 보여주고 있다. 따라서, 본 실시예의 레이저 장치는 높은 흡수 특성을 갖는 파장의 레이저를 펌핑 레이지로 이용하여, 출력 레이저 매질을 펌핑시킬 수 있다. 일 예로서, 본 실시예에서는 630~670nm의 파장의 레이저를 펌핑 레이저(L2)로 이용하며, 이를 이용하여 2940nm의 출력 레이저를 생성하도록 구성된다.
도 5는 본 발명의 다른 실시예에 따른 레이저 장치의 개략도이다.
본 실시예에 따른 레이저 장치(1) 또한 전술한 실시예와 마찬가지로, 본체(10), 레이저 조사부(20), 펌핑 레이저 공급부(200) 및 레이저 출력부(100)를 포함하여 구성된다. 다만, 전술한 실시예와 달리, 본 실시예에 따른 레이저 장치(1)는 펌핑 레이저 공급부(200)가 레이저 발진부(220) 및 다이 레이저 소스(210)를 포함하여 구성할 수 있다.
본체(10), 레이저 조사부(20) 및 레이저 출력부(100)는 앞선 실시예에서 설명하였으므로 이에 대한 상세한 설명은 생략하며, 펌핑 레이저 공급부(200)의 구성을 중심으로 구체적으로 설명한다. 펌핑 레이저 공급부(200)는 광원(201), 레이저 발진부(220) 및 다이 레이저 소스(210)를 포함하여 구성된다.
레이저 발진부(220)는 본체(10) 내부에 배치되며, 전원 공급부로부터 전원을 공급받아서 발광하는 플래쉬 램프와 같은 광원(201) 및 상기 광원(201)으로부터 입력된 여기광(O)을 흡수하여 공급 레이저(L4) 또는 발진 레이저(L3)를 생성하는 발진용 레이저 매질(223)을 포함할 수 있다.
또한, 레이저 발진부(220)는 상기 발진용 레이저 매질(223)의 양측에 위치하며, 발진용 레이저 매질(223)로부터 출력되는 광을 각각 전반사 및 부분 반사하여 레이저를 증폭시키는 제 3전반사거울(226) 및 제 3출력거울(227)을 포함할 수 있다. 이후 충분히 증폭된 발진 레이저(L3) 또는 공급 레이저(L4)를 방출시킬 수 있다.
본 실시예의 발진용 레이저 매질(223)은, 일 예로서, 1064nm 파장을 가지는 나노-세컨드의 공급 레이저(L4)를 출력하는 Nd:YAG를 포함할 수 있다.
그리고 레이저 발진부(220)는 KTP결정(228) 및 KTP거울(229)을 선택적으로 포함할 수 있다. KTP결정(228) 및 KTP거울(229)은 상기 발진용 레이저 매질(223)의 일측에 배치되고, 공급 레이저(L4)가 입사되어 공급 레이저와 상이한 파장의 발진 레이저(L3)로 출력하는 구성이다. 여기서, KTP결정(228)은 입사되는 공급 레이저(L4)의 일부 또는 전부를 상이한 파장의 공급 레이저(L4)로 변환시키고, KTP거울(229)은 KTP결정(228) 후단에 구비되어 발진 레이저(L3)에 해당하는 파장을 투과시키고 공급 레이저(L4)에 해당하는 파장은 반사하도록 구성된다.
예를 들면, KTP결정(228)은 1064nm의 파장의 레이저가 입사하게 되면 532nm의 파장의 레이저로 일부 변환이 되며, 변환된 1064nm 파장의 레이저는 KTP거울(229)을 통과하고, 변환되지 못한 532nm 파장의 레이저는 KTP거울(229)에 의해 반사된다. KTP거울(229)의 전면(발진 레이저가 입사되는 방향)은 1064nm 파장의 레이저는 전반사하고 532nm 파장의 레이저는 투과할 수 있도록 코팅되어 있고, KTP거울(229)의 후면(공급 레이저가 출력되는 방향)은 532nm 파장의 레이저에 해당하는 레이저만 투과되도록 코팅될 수 있다.
따라서 본 실시예에 따른 레이저 발진부(220)는 1064nm 또는 532nm의 파장의 발진 레이저(L3)를 선택적으로 발생시킬 수 있다. 다만, 본 실예에서는 Nd:YAG를 발진용 레이저 매질로 이용하고 있으나, 이는 일 예에 불고하며, 이외에도 다양한 매질을 이용하여 발진용 레이저 매질을 구성할 수 있다.
이후, 다이 레이저 소스(210)는 상기 레이저 발진부(220)로부터 출력된 발진 레이저(L3)를 흡수하여 나노-세컨드의 펄스폭을 가지는 펌핑 레이저(L2)를 방출할 수 있다.
다이 레이저 소스(210)는 펌핑 레이저 공급부(200) 내부에 포함되어 있는바, 전술한 펌핑 레이저 공급부(200)와 마찬가지로 본체(10) 내부에 배치되거나, 레이저 조사부(20) 내부에 배치될 수 있다(도 2 및 3참조).
다이 레이저 소스(210)가 레이저 조사부(20) 내부에 배치될 경우 레이저 출력부(100)와 나란하게 배치되어, 방출된 펌핑 레이저(L2)를 레이저 출력부(100)로 직접 공급할 수 있다. 다이 레이저 소스(210)가 본체(10) 내부에 배치될 경우, 레이저 조사부(20)에 배치된 레이저 출력부(100)와 케이블(13)을 통해 연결 가능하다. 펌핑 레이저 공급부(200)에서 방출된 펌핑 레이저(L2)는 케이블(13)의 광파이버를 통하여 레이저 출력부(100)로 공급될 수 있다.
다이 레이저 소스(210)는 다이 레이저(dye laser)를 발생시킬 수 있도록, 매질로서 고체 레이저 다이(laser dye)(213)를 사용할 수 있다. 본 실시예에서는 650nm 파장의 광을 발생시킬 수 있는 레이저 다이(213)를 이용할 수 있다.
또한, 다이 레이저 소스(210)는 내부에 배치된 고체 레이저 다이(213) 양측으로 제 2전반사거울(216) 및 제 2출력거울(217)을 포함할 수 있다. 제 2전반사거울(216)은 고체 레이저 다이(213)의 일면에 이격되어 배치되고, 제 2출력거울(217)은 고체 레이저 다이(213)의 타면에 상기 제 2전반사거울(216)과 대향하여 배치된다. 여기서, 다이 레이저 소스(210)로 공급되는 펌핑광(공급 레이저)이 532nm인 경우, 제 2전반사거울(216)은 고체 레이저 다이(213)로 상기 532nm 광은 투과시키고 585nm 및 650nm의 광은 반사시키도록 구성된다. 또한, 제2 출력거울(217)은 상기 532nm 광은 반사시키고 585nm 및 650nm의 광은 일부 반사되고 일부는 투과되도록 구성된다. 따라서, 다이 레이저 소스(210)로부터 출력되는 펌핑 레이저(L2)은 585nm 또는 650nm가 될 수 있으며, 본 실시예에서는 나노-세컨드의 펄스폭을 가지는 650nm의 광을 이용한다.
이후, 펌핑 레이저 공급부(200)에 출력된 650nm의 파장을 가지는 나노-세컨드의 펌핑 레이저(L2)는 상기 레이저 출력부(100)로 전달될 수 있다.
다만, 상기 예에서는 650nm 파장의 광을 발생시킬 수 있는 레이저 다이(213)를 나타내고 있으나, 고체 레이저 다이(213)는 상기 레이저 다이 이외에도 다양한 종류의 레이저 다이를 이용하여 구성할 수도 있다.
나아가, 다이 레이저 소스(210) 내부에는 제 1광학 소자부(218) 및 제 2광학 소자부(219) 등을 포함할 수 있다. 여기서, 제 1광학 소자부(218)는 외부로부터 입사된 광 경로 상에 배치되어 레이저 다이(213)로 레이저를 입사시킨다. 그리고 제 2광학 소자부(219)는 레이저 다이(213) 일측에 제 1광학 소자부(218)와 대향하여 배치되며, 레이저 발진부(220)로 펌핑 레이저(L2)가 진행하는 경로를 형성한다. 이러한 제1 광학 소자부(218) 및 제2 광학 소자부(219)는 각각 복수개의 렌즈, 필터, 셔터 등 적어도 하나 이상의 광학소자를 포함하여 구성될 수 있다.
따라서 레이저 발진부(220) 및 다이 레이저 소스(210)는 상기 구성에 의해, 나노-세컨드의 펄스폭을 가지면서 레이저 출력부(100)의 매질에 흡수 대역이 높은 파장의 레이저를 레이저 출력부(100)로 공급할 수 있다. 상기 출력 레이저(L1)로 파장이 변환된 레이저는 시술이 필요한 환자의 국부 면적에 조사하여 전술한 내용과 같이 효과적인 치료 및 검사를 진행 할 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 레이저 장치의 개략도이다. 도 6에 도시된 실시예는, 전술한 실시예와 마찬가지로 레이저 장치(1)는 본체(10), 레이저 조사부(20), 펌핑 레이저 공급부(200) 및 레이저 출력부(100)를 포함하여 구성된다.
다만, 본 발명의 실시예의 레이저 장치(1)는 펌핑 레이저 공급부(200)에 배치된 레이저 발진부(220)가 펌핑 레이저(L2)를 방출하고, 상기 방출된 펌핑 레이저(L2)가 레이저 출력부(100)로 직접 공급되도록 구성할 수 있다.
레이저 발진부(220)는 본체(10) 내부에 배치되며, 전원 공급부로부터 전원을 공급받아서 발광하는 플래쉬 램프와 같은 광원(201) 및 상기 광원(201)으로부터 입력된 광(O)을 흡수하여 펌핑 레이저(L2)를 생성하는 발진용 레이저 매질(223)을 포함할 수 있다.
또한, 레이저 발진부(220)는 상기 발진용 레이저 매질(223)의 양측에 위치하며, 발진용 레이저 매질(223)로부터 출력되는 광을 각각 전반사 및 부분 반사하여 레이저를 증폭시키는 제 3전반사거울(226) 및 제 3출력거울(227)을 포함할 수 있다. 이후 충분히 증폭된 펌핑 레이저(L2)를 방출시킬 수 있다.
여기서, 상기 레이저 발진부(220)에서 출력된 나노-세컨드의 펄스폭을 가지는 펌핑 레이저(L2)는 레이저 출력부(100)로 공급될 수 있다.
레이저 출력부(100)는 레이저 조사부(20) 내부에 배치되며, 상기 펌핑 레이저(L2)에 의해 펌핑되어, 상기 펌핑 레이저(L2)의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저(L1)를 발생할 수 있다. 따라서 레이저 출력부(100)의 특정 매질에 입사되는 레이저 자체를 나노-세컨드의 펄스폭을 가지도록 하여, 이후 레이저 출력부(201)에서 출력하는 레이저가 손쉽게 나노-세컨드의 펄스폭을 가지는 레이저를 출력할 수 있도록 한다. 이는 기존에 구현하기 힘들었던 나노-세컨드 펄스폭을 갖는 높은 파장대의 레이저를 쉽게 구현할 수 있는 효과가 있다.
레이저 발진부(220) 및 레이저 출력부(100)의 구체적인 구성은 상기 실시예에서 전술하였으므로, 이하에서 상세한 설명은 생략하기로 한다.
도 7은 본 발명의 일 실시예에 따른 레이저 장치 구동방법을 나타낸 순서도이다.
도 7에 도시된 바와 같이 본 발명의 실시예들에 따른 레이저 장치의 구동방법을 이하에서 살펴보면 다음과 같다.
우선, 레이저 발진부(220)에서 나노-세컨드(nano-second)의 펄스폭을 갖는 발진 레이저를 방출시킨다(S10). 구체적으로 레이저 발진부(220)는 전원을 공급받아서 발광하는 광원(201)으로부터 광(O) 흡수하고, 나노-세컨드의 펄스폭을 갖는 공급 레이저(L4)를 생성할 수 있다.
여기서, 레이저 발진부(220)는 상기 발진용 레이저 매질(223)의 양측에 배치된 제 3전반사거울(226) 및 제 3출력거울(227)에 의해, 발진용 레이저 매질(223)로부터 출력되는 광을 각각 전반사 및 부분 반사하여 레이저를 증폭시킬 수 있다. 이후 충분히 증폭된 공급 레이저(L4)를 방출시킬 수 있다.
일 실시예에 따라, 발진용 레이저 매질(223)은 1064nm 파장의 공급 레이저(L4)를 출력할 수 있는 Nd:YAG를 포함할 수 있다.
이후, Nd:YAG 매질로 발생된 1064nm 파장의 레이저는 KTP결정(228)과 KTP거울(229)을 통과하여 발진 레이저(L3)를 생성할 수 있다. KTP결정(228) 및 KTP거울(229)을 투과하여 변환된 발진 레이저(L3)의 파장은 532nm일 수 있다.
이후, 상기 나노-세컨드의 펄스폭을 가지는 발진 레이저(L3)는 다이 레이저 소스(210)로 진행하게 된다.
그리고 레이저 다이(laser dye)를 매질로 하는 다이 레이저 소스(210)는 상기 발진 레이저(L3)를 흡수하여 펌핑 레이저(L2)를 발생할 수 있다(S30).
상기 전술한 대로, 레이저 발진부(220)로부터 다이 레이저 소스(210)로 공급되는 펌핑 레이저가 532nm인 경우, 제 2전반사거울(216) 및 제 2출력거울(217)에 의하여 585nm 또는 650nm파장의 펌핑 레이저(L2)가 발생 될 수 있다. 상기 펌핑 레이저(L2)가 발생되는 구체적인 설명은 전술한 바, 생략한다. 본 발명의 일 실시예에서는 나노-세컨드의 펄스폭을 가지는 650nm 파장의 광(펌핑 레이저(L2))을 발생시킬 수 있는 레이저 다이(213)를 이용하는 것을 나타내고 있다.
이후, 상기 나노-세컨드의 펄스폭을 가지는 펌핑 레이저(L2)는 레이저 출력부(100)로 진행하게 된다.
레이저 출력부(100)는 상기 펌핑 레이저(L2)에 의해 펌핑되어, 상기 펌핑 레이저(L2)의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저(L1)는 출력할 수 있다(S50).
또한, 레이저 출력부(100)는 상기 펌핑 레이저(L2)를 흡수하여 상기 펌핑 레이저(L2)와 상이한 파장을 가지는 출력 레이저(L1)로 변환할 수 있는 출력 레이저 매질(103)을 포함할 수 있으며, 일 실시예에 따르면, 출력 레이저 매질(103)은 Er:YAG를 포함할 수 있다.
예를 들면, Er:YAG를 포함하는 레이저 출력부(100)는 상기 제시된 650nm 파장을 가지는 나노-세컨드의 펌핑 레이저(L2)을 2940nm 파장을 가지는 나노-세컨드의 출력 레이저(L1)로 변환할 수 있다. 즉, 상기 전술한 대로, 다이 레이저 소스(210)로부터 레이저 출력부(100)로 공급되는 펌핑 레이저(L1)가 650nm인 경우, 출력 레이저 매질(103)의 양측에 배치된 제 1전반사거울(106) 및 제 1출력거울(107)에 의하여 증폭된 2940nm파장의 펌핑 레이저(L1)가 발생 될 수 있다.
이후, 상기 펌핑 레이저(L1)는 각 병변에 필요한 에너지로 제공되어 치료 효과를 개선시킬 수 있다.
여기서, 상기 2940nm 파장을 가지는 레이저는 물에 대한 흡수도가 가장 크기 때문에 피부 침투 깊이가 수 um로 레이저가 조사된 이외의 조직에는 열손상을 거의 주지 않는다. 따라서 본 발명에 따른 레이저 장치(1)를 이용하여 피부 박피 등의 치료를 할 경우에, 주변 조직에 열손상 없이 아주 정교한 박피 등의 치료를 할 수 있다. 이는 상피 표면에 있는 색소 병변인 solar lentigines 및 흉터 치료에 아주 탁월한 효과를 가질 수 있다.
또한, 본 레이저 장치는 상업적으로 불가능하였던 충분한 에너지를 보유하면서, 나노-세컨드 펄스폭을 갖는 2940nm 파장의 레이저를 손쉽게 구현할 수 있어 새로운 치료 영역의 확대를 기대할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 나노-세컨드(nano-second)의 펄스폭을 갖는 펌핑 레이저를 방출하는 펌핑 레이저 공급부; 및
    상기 펌핑 레이저 공급부의 일측에 배치되며, 상기 펌핑 레이저에 의해 펌핑되어, 상기 펌핑 레이저의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저를 발생시키는 레이저 출력부를 포함하는 것을 특징으로 하는 레이저 장치.
  2. 제 1항에 있어서,
    상기 레이저 출력부는, 상기 펌핑 레이저를 흡수하여 상기 펌핑 레이저와 상이한 파장을 갖는 상기 출력 레이저를 발생시키는 출력 레이저 매질을 포함하는 것을 특징으로 하는 레이저 장치.
  3. 제 2항에 있어서,
    상기 출력 레이저 매질은 Er:YAG를 포함하는 것을 특징으로 하는 레이저 장치.
  4. 제 2항에 있어서, 상기 레이저 출력부는
    상기 출력 레이저 매질의 일측에 배치되고, 상기 출력 레이저 매질로 상기 펌핑 레이저를 통과시키고 상기 출력 레이저 매질에서 발진되는 상기 출력 레이저를 반사하는 전반사거울 및
    상기 출력 레이저 매질의 타측에 상기 전반사거울과 대향하여 배치되고, 상기 출력 레이저 매질에서 발진되는 상기 출력 레이저를 부분적으로 반사 또는 투과하는 출력거울을 포함하는 것을 특징으로 하는 레이저 장치.
  5. 제 2항에 있어서,
    상기 레이저 출력부에 공급되는 상기 펌핑 레이저는 650nm의 파장을 가지는 것을 특징으로 하는 레이저 장치.
  6. 제 3항에 있어서,
    상기 레이저 출력부에서 방출되는 상기 출력 레이저는 2940nm의 파장을 가지는 것을 특징으로 하는 레이저 장치.
  7. 제 1항에 있어서,
    상기 펌핑 레이저 공급부는 상기 펌핑 레이저를 발생시키는 다이 레이저 소스(dye laser source)를 포함하여 구성되는 것을 특징으로 하는 레이저 장치.
  8. 제 7항에 있어서,
    상기 펌핑 레이저 공급부는 나노-세컨드 펄스폭을 갖는 발진 레이저를 방출시킬 수 있도록 구성되는 레이저 발진부를 더 포함하고,
    상기 다이 레이저 소스는 상기 레이저 발진부에서 방출되는 발진 레이저에 의해 증폭되어 상기 펌핑 레이저를 발생시키는 것을 특징으로 하는 레이저 장치.
  9. 제 8항에 있어서,
    상기 레이저 발진부는 외부로부터 입사된 광을 흡수하여 상기 발진 레이저를 출력하는 발진용 레이저 매질을 포함하고,
    상기 발진용 레이저 매질은 Nd:YAG를 포함하는 것을 특징으로 하는 레이저 장치.
  10. 제 8항에 있어서,
    상기 발진 레이저는 532nm 파장을 가지는 것을 특징으로 하는 레이저 장치.
  11. 제 1항에 있어서,
    상기 레이저 출력부 내부에 배치되며, 상기 펌핑 레이저는 반사하고 상기 출력 레이저는 투과하는 필터부를 더 포함하는 것을 특징으로 하는 레이저 장치.
  12. 나노-세컨드(nano-second)의 펄스폭을 가지는 펌핑 레이저를 방출하는 단계; 및
    상기 펌핑 레이저에 의해 펌핑되어, 상기 펌핑 레이저의 펄스폭과 상응하는 나노-세컨드의 펄스폭을 갖는 출력 레이저를 출력하는 단계;를 포함하는 것을 특징으로 하는 레이저 장치 구동방법.
  13. 제 12항에 있어서, 상기 나노-세컨드(nano-second)의 펄스폭을 가지는 펌핑 레이저를 방출하는 단계는,
    레이저 다이(laser dye)를 매질로 하는 다이 레이저 소스에서 상기 펌핑 레이저를 발생시키는 단계를 포함하는 것을 특징으로 하는 레이저 장치 구동방법.
  14. 제 13항에 있어서, 다이 레이저 소스에서 상기 펌핑 레이저를 발생시키는 단계 이전에,
    레이저 발진부에서 나노-세컨드(nano-second)의 펄스폭을 갖는 발진 레이저를 방출시키는 단계를 더 포함하며,
    상기 다이 레이저 소스는 상기 레이저 발진부에서 방출되는 발진 레이저에 의해 증폭되어 상기 펌핑 레이저를 발생시키는 것을 특징으로 하는 레이저 장치 구동방법.
  15. 제 14항에 있어서,
    상기 출력 레이저, 상기 펌핑 레이저와 상기 발진 레이저는 각각 나노-세컨드의 펄스폭을 가지면서, 2940nm, 650nm와 532nm의 파장을 갖는 것을 특징으로 하는 레이저 장치 구동방법.
  16. 제 14항에 있어서,
    상기 레이저 출력부와 상기 레이저 발진부는 각각 Er:YAG와 Nd:YAG를 포함하는 매질을 사용하는 것을 특징으로 하는 레이저 장치 구동방법.
PCT/KR2016/004590 2015-04-30 2016-05-02 레이저 장치 및 레이저 장치 구동방법 WO2016175629A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,623 US10340652B2 (en) 2015-04-30 2016-05-02 Laser device and method for driving laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150061644A KR102432285B1 (ko) 2015-04-30 2015-04-30 레이저 장치 및 레이저 장치 구동방법
KR10-2015-0061644 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175629A1 true WO2016175629A1 (ko) 2016-11-03

Family

ID=57199266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004590 WO2016175629A1 (ko) 2015-04-30 2016-05-02 레이저 장치 및 레이저 장치 구동방법

Country Status (3)

Country Link
US (1) US10340652B2 (ko)
KR (1) KR102432285B1 (ko)
WO (1) WO2016175629A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459949A (zh) * 2019-08-16 2019-11-15 中国科学院苏州生物医学工程技术研究所 多波长激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523789B1 (ko) * 1997-03-14 2005-10-26 빅스 인코포레이티드 외과용 단펄스 중적외선 파라메트릭 발진기
US20080247425A1 (en) * 2007-04-03 2008-10-09 David Welford Q-switched microlaser apparatus and method for use
KR100884512B1 (ko) * 2006-01-18 2009-02-18 도에이 고교 가부시키가이샤 고-전력 Er:YAG 레이저
KR20110003628A (ko) * 2009-07-06 2011-01-13 주식회사 루트로닉 Νd:YAG 레이저 장치
WO2014145707A2 (en) * 2013-03-15 2014-09-18 Cynosure, Inc. Picosecond optical radiation systems and methods of use

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144630A (en) * 1991-07-29 1992-09-01 Jtt International, Inc. Multiwavelength solid state laser using frequency conversion techniques
US20030105456A1 (en) * 2001-12-04 2003-06-05 J.T. Lin Apparatus and methods for prevention of age-related macular degeneration and other eye diseases
KR100789278B1 (ko) * 2006-11-29 2008-01-02 주식회사 이오테크닉스 고체 레이저 시스템
KR100947820B1 (ko) * 2009-07-27 2010-03-15 주식회사 루트로닉 고체색소 공진기 및 이를 구비한 고체색소 핸드피스 레이저
ES2871148T3 (es) * 2010-02-24 2021-10-28 Univ Macquarie Sistemas y procedimientos de láser raman de diamante de infrarrojo de medio a lejano
US20120253333A1 (en) * 2011-04-01 2012-10-04 Garden Jerome M Combination Laser Treatment of Skin Conditions
US8908737B2 (en) * 2011-04-04 2014-12-09 Coherent, Inc. Transition-metal-doped thin-disk laser
US8968875B2 (en) * 2012-03-21 2015-03-03 Larry Takiff Eyewear including nitrophenyl functionalized boron pyrromethene dye for neutralizing laser threat
KR101435436B1 (ko) * 2012-12-11 2014-09-23 주식회사 루트로닉 광 치료장치, 이의 동작 방법
KR101494683B1 (ko) 2014-11-18 2015-02-23 (주) 블루코어컴퍼니 2940nm파장과 10600nm파장을 이용한 흉터치료 및 혈관 지혈응고가 가능한 레이저시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523789B1 (ko) * 1997-03-14 2005-10-26 빅스 인코포레이티드 외과용 단펄스 중적외선 파라메트릭 발진기
KR100884512B1 (ko) * 2006-01-18 2009-02-18 도에이 고교 가부시키가이샤 고-전력 Er:YAG 레이저
US20080247425A1 (en) * 2007-04-03 2008-10-09 David Welford Q-switched microlaser apparatus and method for use
KR20110003628A (ko) * 2009-07-06 2011-01-13 주식회사 루트로닉 Νd:YAG 레이저 장치
WO2014145707A2 (en) * 2013-03-15 2014-09-18 Cynosure, Inc. Picosecond optical radiation systems and methods of use

Also Published As

Publication number Publication date
US10340652B2 (en) 2019-07-02
KR102432285B1 (ko) 2022-08-16
US20180280086A1 (en) 2018-10-04
KR20160129456A (ko) 2016-11-09

Similar Documents

Publication Publication Date Title
US3906953A (en) Endoscopic surgical laser system
US5514127A (en) Apparatus for irradiating an area with a controllable pattern of light
US11273321B2 (en) Phototherapy apparatus, method for operating same, and treatment method using same
US20080287936A1 (en) Telescope with Integrated Optical Filter
BR112012017860B1 (pt) Aparelho de detecção de falha ultrassônico a laser
JPH10243915A (ja) 蛍光観察装置
WO2016175629A1 (ko) 레이저 장치 및 레이저 장치 구동방법
JPH0538369A (ja) 癌の治療装置
KR20080081222A (ko) 고출력 레이저 핸드피스
WO2013147334A1 (ko) 광 수술장치 및 이의 제어방법
JP2004008381A (ja) プローブ用レーザー光源装置
JP2700702B2 (ja) 医療装置用レーザ発生装置
WO2023003174A1 (ko) 복합 다중 레이저 펄스를 이용한 피부 치료 장치 및 방법
WO2016167604A1 (ko) 큐스위치 nd:yag 레이저 발생 장치 및 발생 방법
JP2016021978A (ja) Pdt用内視鏡システム
Tuttle et al. Delivery of therapeutic laser light using a singlemode silica fiber for a scanning fiber endoscope system
JPH02111089A (ja) レーザー装置
IT201800010009A1 (it) Sistema di trasporto di un fascio laser
WO2021118280A1 (ko) 레이저 장치
WO2023075498A1 (ko) 레이저 장치
JP2009039464A (ja) 内視鏡の照明装置
KR100949086B1 (ko) 핸드피스 형태의 의료용 레이저
RU2045298C1 (ru) Медицинское лазерное устройство
WO2022169014A1 (ko) 치과용 광치료 장치
RU2001134714A (ru) Устройство для люминесцентной диагностики и фотодинамической терапии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786815

Country of ref document: EP

Kind code of ref document: A1