WO2013147334A1 - 광 수술장치 및 이의 제어방법 - Google Patents

광 수술장치 및 이의 제어방법 Download PDF

Info

Publication number
WO2013147334A1
WO2013147334A1 PCT/KR2012/002222 KR2012002222W WO2013147334A1 WO 2013147334 A1 WO2013147334 A1 WO 2013147334A1 KR 2012002222 W KR2012002222 W KR 2012002222W WO 2013147334 A1 WO2013147334 A1 WO 2013147334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shutter
bubble
controlling
laser
Prior art date
Application number
PCT/KR2012/002222
Other languages
English (en)
French (fr)
Inventor
고광천
Original Assignee
(주)루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)루트로닉 filed Critical (주)루트로닉
Publication of WO2013147334A1 publication Critical patent/WO2013147334A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B2018/1807Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using light other than laser radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2005Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with beam delivery through an interstitially insertable device, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2065Multiwave; Wavelength mixing, e.g. using four or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/049Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against light, e.g. laser

Definitions

  • the present invention relates to an optical surgical device and a control method thereof, and more particularly, to an optical surgical device and a control method thereof used to cut abnormal tissue in the body using light.
  • the optical surgical device is applied to various procedures such as cutting or bleeding abnormal tissue in the body by using absorption characteristics according to the wavelength of the laser.
  • the lasers used in the optical surgery apparatus include Nd: YAG lasers, KTP lasers, Erbium lasers, CO2 lasers, Hoyag lasers, Lasers in various wavelength bands, such as Ruby lasers and Alexandrite lasers, are used.
  • Such optical surgery apparatus has already been disclosed by "Korea Patent Registration No. 10-0996733; light irradiation apparatus for high power laser treatment device".
  • the optical surgery apparatus is a light generating unit for generating a first light and a second light and the first light is irradiated into the body to form a bubble in the incident portion of the first light, the second light is the A control unit for controlling the incident to the tissue passing through the inside of the bubble.
  • the controller may be controlled to scan the second light for a longer time than the first light.
  • the controller may control the second light to have a larger pulse width than the first light.
  • the light generator may include a first light generator for generating the first light and a second light generator for generating the second light.
  • the optical surgery apparatus may further include a first shutter disposed in a path of the first light to intercept the first light and a second shutter disposed in a path of the second light to intercept the second light.
  • the controller may control opening and closing operations of the first shutter and the second shutter.
  • the optical surgery apparatus is disposed in a path of the first light passing through the first shutter to pass the first light and to reflect the second light, and to a path of the second light passing through the second shutter. It may further include a guide mirror disposed to guide the second light to the beam splitter and an optical fiber connected to a path of the first light or the second light passing through the beam splitter.
  • the optical surgery apparatus includes a first optical fiber connected to a path of the first light passing through the first shutter and a second optical fiber separated from the first optical fiber and connected to a path of the second light passing through the second shutter. It may further include an optical fiber.
  • the photosurgical apparatus may further include a bubble protective layer for forming a film on the outside of the bubble to prolong the time that the bubble is maintained, so that the time for introducing the body fluid toward the bubble is delayed.
  • the first light may be any one of an erbium laser (Er: YAG laser) and a carbon dioxide laser (CO2 laser), and the second light may be an endylag laser (Nd: YAG laser).
  • the light is separated into a first light and a second light according to the light generating step and the pulse width of the light is generated from the light generating unit, And controlling the first light to be irradiated into the body so that a bubble is formed at an incident portion of the first light, and the second light is incident to tissue through a space formed by the bubble.
  • the pulse width of the light may be controlled so that the second light is scanned for a longer time than the first light.
  • control method of the optical surgery apparatus includes a light generating step of generating the first light and the second light from the first light generator and the second light generator and the first light into the body A first beam disposed on the first light path and the second light path so that a bubble is formed at an incident portion of the first light, and the second light passes through a space formed by the bubble and is incident on a tissue; And controlling the opening and closing of the shutter and the second shutter.
  • opening and closing of the first shutter and the second shutter may be controlled so that the first light is irradiated for a first time and the second light is irradiated for a second time.
  • the second time may be controlled longer than the first time.
  • the first light may be any one of an erbium laser (Er: YAG laser) and a carbon dioxide laser (CO2 laser), and the second light may be an endylag laser (Nd: YAG laser).
  • the optical surgery apparatus and control method thereof according to the present invention prevent the light from being absorbed into the body fluid and thus prevent the normal tissue around the abnormal tissue from being damaged, thereby improving the precision of the surgery and the reliability of the surgery.
  • FIG. 1 is a perspective view showing an optical surgery apparatus according to a first embodiment.
  • FIG. 2 is a view briefly showing the inside of the main body of the optical surgery apparatus according to the first embodiment.
  • FIG 3 is a view showing an irradiation pattern of light generated from the light generating unit according to the first embodiment.
  • FIG. 4 is a flowchart illustrating a control method of the optical surgery apparatus according to the first embodiment.
  • FIG. 5 is a view illustrating a state in which bubbles are formed by the first light.
  • FIG. 6 is a view schematically showing the inside of the main body of the optical surgery apparatus according to the second embodiment.
  • FIG. 7 is a flowchart illustrating a control method of an optical surgery apparatus according to a second embodiment.
  • FIG. 8 is a view briefly showing the inside of the main body of the optical surgery apparatus according to the third embodiment.
  • FIG. 9 is a flowchart showing a control method of the optical surgery apparatus according to the third embodiment.
  • FIG. 1 is a perspective view showing an optical surgery apparatus according to a first embodiment.
  • the optical surgery apparatus 100 includes a main body 10.
  • the main body 10 may be provided with an input device 11 and a display device 12.
  • the input device 11 facilitates the overall operation of the optical surgery apparatus 100.
  • the display apparatus 12 displays the overall driving state, the body image, the surgical scene, and the like of the optical surgery apparatus 100.
  • FIG. 1 illustrates that the input device 11 and the display device 12 are separately installed, the input device 11 and the display device 12 may be modified as an integrated touch screen.
  • the cable 20 is connected to the main body 10.
  • the cable 20 may include power lines, signal lines, optical fibers, and the like.
  • An endoscope and lighting may be installed at the distal end of the cable 20, and the distal end of the optical fiber may be exposed.
  • the optical fiber is used as a light transmitting member so that light generated from the main body 10 can be transferred into the body.
  • the bubble protective film 40 is coupled to the tip of the cable 20, and the bubble protective film 40 will be described in detail later with reference to FIG. 5.
  • the handpiece 20 may be installed at a predetermined portion of the cable 20.
  • the operation button 31 is installed in the handpiece 30. The operation button 31 allows to easily adjust the position of the endoscope, the illumination and the optical fiber inserted into the body.
  • the optical surgery apparatus 100 includes a catheter 40.
  • the catheter 40 is provided in the form of a thin tube and inserted into the body.
  • the catheter 40 allows the leading end of the cable 20 to be smoothly inserted into the body.
  • the main body 10 is provided with a light generating unit and a control unit for generating light used for surgery.
  • FIG. 2 is a view briefly showing the inside of the main body of the optical surgery apparatus according to the first embodiment.
  • the light generating unit 110 generates light.
  • the light generator 110 may be configured as a resonator capable of oscillating a laser.
  • the laser medium 111 is installed inside the resonator.
  • the total reflection mirror 112 and the partial reflection mirror 113 are disposed at both sides of the laser medium 111. Therefore, the laser medium 111 oscillates light and is amplified while reciprocating inside the resonator by an excitation medium such as a flash lamp to generate a laser.
  • the light generator 110 may use a laser medium such as Nd: YAG, Erb, and Erg, and may generate pulsed light having a wavelength of 1064 nm, 1444 nm, 2940 nm, or the like.
  • the pulsed light may be generated by a gain-switching method, a Q-switching method, a mode-locking method, or the like. Since the generation technology of such pulsed light is already well known in the art, a detailed description thereof will be omitted.
  • the controller 120 controls the pulse width of the light generated from the light generator 110 to separate the light generated from the light generator 110 into the first light and the second light, and the first light and the second light.
  • the incident time of the light can be controlled.
  • FIG 3 is a view showing an irradiation pattern of light generated from the light generating unit according to the first embodiment.
  • the pulse width of the light generated from the light generator 110 may be controlled by the controller 120.
  • Light generated from the light generator 110 may be separated into the first light L1 and the second light L2 according to the pulse width.
  • the first light L1 may be absorbed by the body fluid before the second light L2 is irradiated to form a bubble B (see FIG. 5).
  • the second light L2 may be used to dissect abnormal tissue. Therefore, the controller 120 may control the second light L2 to be generated with a larger output than the first light L1.
  • the controller 120 may control the second light L2 to have a larger pulse width than the first light L1. Accordingly, the first light L1 may be irradiated for a first time T1, and the second light L2 may be irradiated for a second time T2 longer than the first time T1.
  • the irradiation time of the first light L1 and the second light L2 is stored in a memory (not shown) separately provided in the main body 10, and may be preset or adjusted in real time by a user.
  • FIG. 4 is a flowchart illustrating a control method of the optical surgery apparatus according to the first embodiment
  • FIG. 5 is a view illustrating a state in which bubbles are formed by the first light.
  • the user inserts the catheter 40 into the patient's body and inserts the cable 20 into the catheter 40. Accordingly, endoscopes, lights, optical fibers, and the like can be inserted into the patient's body.
  • the internal body image is photographed by the endoscope inserted into the body, and the internal body image captured by the endoscope is displayed on the display device 12.
  • the user refers to the image displayed on the display device 12 and adjusts the position of the optical fiber so that light can be irradiated toward abnormal tissue.
  • the open end of the bubble protective film 40 may be in close contact with the surrounding tissue of the abnormal tissue.
  • the user manipulates the input device 11 of the main body 10 to adjust the light output. That is, as the input device 11 is operated, the controller 120 controls the light generator 110 to generate light from the light generator 110 (step S11).
  • the control unit 120 separates the light from the light generating unit 110 into the first light L1 and the second light L2, and adjusts the scanning time of the first light L1 and the second light L2. To control (step S12).
  • the first light L1 is transmitted to the optical fiber and irradiated toward abnormal tissue for the first time T1 (step S12).
  • Body fluid may be located between the abnormal tissue and the optical fiber. Therefore, the first light L1 may be absorbed into the body fluid before reaching the abnormal tissue. As the first light L1 is absorbed into the body fluid, bubbles B are formed while the body fluid is evaporated (step S13).
  • a discharge hole () may be formed in the bubble protection layer 40 so that the body fluid inside the bubble protection layer 40 may be smoothly discharged to the outside of the bubble protection layer 40 while the bubble B is formed.
  • the bubble protective film 40 allows the time for which the bubble B is maintained to be extended. That is, the bubble protection film 40 delays the time that the body fluid outside the bubble protection film 40 flows into the bubble protection film 40 so that the time that the bubble B is maintained is extended.
  • the bubble B is formed between the abnormal tissue and the optical fiber by the first light L1, and the bubble protective layer 40 extends the time for which the bubble B is maintained.
  • the second light L2 is transmitted to the optical fiber and irradiated toward the abnormal tissue for the second time T2 (step S14). Since the bubble B is already formed by the first light L1 between the abnormal tissue and the optical fiber, the second light L2 may pass through the bubble B and enter the abnormal tissue. The second light L2 incident on the abnormal tissue is absorbed by the abnormal tissue, and the abnormal tissue may be deteriorated and removed.
  • the optical surgery apparatus 100 generates the first light L1 and the second light L2 by adjusting the pulse width of the light generated by the single light generator 110.
  • the light L1 and the second light L2 may be irradiated toward the surgical site through the same optical path.
  • FIG. 6 is a view schematically showing the inside of the main body of the optical surgery apparatus according to the second embodiment.
  • the light generator 110 includes a first light generator 210 and a second light generator 220.
  • the first light generator 210 and the second light generator 220 may be configured as resonators as described above, respectively. That is, the first light generator 210 is composed of a first laser medium 211, a first total reflection mirror 212, a first partial reflection mirror 213, and the second light generator 220 is a second laser medium. 221, the second total reflection mirror 222, and the second partial reflection mirror 223.
  • the first light generator 210 and the second light generator 220 generate the first light L1 and the second light L2, respectively.
  • the first light generator 210 may generate an Erbium laser (Er: YAG laser), a carbon dioxide laser (CO2 laser), and the like, which are relatively light absorbers as the first light L1.
  • the second light generator 220 may generate a Nd (YAG laser), which is easily penetrated into the body tissue as the second light L2.
  • the first shutter 240 may be installed at one side of the first light generator 210.
  • the first shutter 240 interrupts the first light L1.
  • a beam splitter 250 is installed in a path of the first light L1 passing through the first shutter 240.
  • the beam splitter 250 transmits the first light L1 and reflects the second light L2.
  • the second shutter 260 may be installed at one side of the second light generator 220.
  • the second shutter 260 interrupts the second light L2.
  • the guide mirror 270 is installed in the path of the second light L2 passing through the second shutter 260.
  • the guide mirror 270 guides the second light L2 to the beam splitter 250.
  • the optical fiber may be connected after the beam splitter 250.
  • the controller 230 controls the opening and closing operations of the first shutter 240 and the second shutter 260. That is, the controller 230 opens the first shutter 240 and closes the second shutter 260 so that the first light L1 can be irradiated for the first time T1, and the second light L2. The first shutter 240 may be closed and the second shutter 260 may be opened to be irradiated for the second time T2.
  • the first light generator 210 and the second light generator 220 separately generate the first light L1 and the second light L2, respectively. It may be irradiated toward the surgical site through the same optical path after the beam splitter 250.
  • FIG. 7 is a flowchart illustrating a control method of an optical surgery apparatus according to a second embodiment.
  • the controller 230 controls the first light generator 210 and the second light generator 220.
  • the first light L1 and the second light L2 are sequentially generated (step S21).
  • the controller 230 opens the first shutter 240 for the first time T1 and closes the second shutter 260 (step S22).
  • the first light L1 passes through the first shutter 240 and is incident to the beam splitter 250.
  • the first light L1 passes through the beam splitter 250 (S23).
  • the first light L1 transmitted through the beam splitter 250 is transmitted to the optical fiber and irradiated toward the abnormal tissue.
  • the first light L1 generates a bubble B between the optical fiber and the abnormal tissue (step S24), and the bubble protective film 40 maintains the bubble B. Extend your time.
  • the controller 230 closes the first shutter 240 and opens the second shutter 260 for the second time T2 (step S25).
  • the second light L2 passes through the first shutter 240, is reflected by the guide mirror 270, and enters the beam splitter 250 (S26).
  • the second light L2 is reflected by the beam splitter 250 (step S27).
  • the second light L2 reflected by the beam splitter 250 is transmitted to the optical fiber and irradiated toward the abnormal tissue (step S28).
  • the second light L2 passes through the bubble B and is incident on the abnormal tissue, and the abnormal tissue may be deteriorated and removed.
  • FIG. 8 is a view briefly showing the inside of the main body of the optical surgery apparatus according to the third embodiment.
  • the light generator 110 includes a first light generator 310 and a second light generator 320.
  • the first light generator 310 and the second light generator 320 may be configured as resonators as described above, respectively. That is, the first light generator 310 is composed of the first laser medium 311, the first total reflection mirror 312, the first partial reflection mirror 313, the second light generator 320 is the second laser medium 321, a second total reflection mirror 322, and a second partial reflection mirror 323.
  • the first light generator 310 and the second light generator 310 generate the first light L1 and the second light L2, respectively.
  • the first light generator 210 generates the first light L1 having excellent absorption into water, and the second light generator 220 easily penetrates into abnormal tissue.
  • the second light L2 may be generated.
  • the first shutter 340 may be installed at one side of the first light generator 310.
  • the first shutter 340 interrupts the first light L1.
  • the second shutter 350 may be installed at one side of the second light generator 310.
  • the second shutter 350 interrupts the second light L2.
  • a first optical fiber for transmitting the first light L1 to the body may be connected to a path of the first light L1 passing through the first shutter 340, and a second light passing through the second shutter 350 may be connected.
  • a second optical fiber for transmitting the second light L2 into the body may be connected to the path of the light L2.
  • the first optical fiber and the second optical fiber are bent toward the center of the cable 20 at the distal end of the cable 20 so that the first light L1 and the second light L2 can be irradiated toward the abnormal tissue. Can be installed as.
  • controller 330 controls the operations of the first shutter 340 and the second shutter 350 as described in the second embodiment.
  • the first light generator 310 and the second light generator 320 separately generate the first light L1 and the second light L2, respectively.
  • the first light L1 and the second light L2 may be irradiated toward abnormal tissues by being transmitted to the body along separate optical paths.
  • FIG. 9 is a flowchart illustrating a control method of an optical surgery apparatus according to a third embodiment.
  • the controller 330 may control the first light generator 310 and the second light.
  • the generator 320 is controlled to sequentially generate the first light L1 and the second light L2 (step S31).
  • the controller 330 opens the first shutter 340 for the first time T1 and closes the second shutter 350 (step S32).
  • the first light L1 passes through the first shutter 340 and is irradiated toward the surgical site along the first light transmission member connected to the path of the first light L1 (S33).
  • the first light L1 generates a bubble B between the optical fiber and the abnormal tissue (step S34), and the bubble protective film 40 maintains the bubble B. Extend your time.
  • the controller 330 closes the first shutter 340 and opens the second shutter 350 for the second time T2 (step S35).
  • the second light L2 passes through the first shutter 340 (step S36) and is irradiated toward the surgical site along the second light transmission member connected to the path of the second light L2 (step S37). .
  • the second light L2 passes through the bubble B and is incident on the abnormal tissue, and the abnormal tissue may be deteriorated and removed.
  • the optical surgery apparatus and control method thereof according to the present invention allows a bubble to be formed between the optical fiber inserted into the body and the abnormal tissue, and the light is incident to the abnormal tissue through the empty space inside the bubble. . Therefore, the optical surgery apparatus and the control method thereof according to the present invention can prevent the light is absorbed by the body fluid to conduct heat to the surrounding tissue of the abnormal tissue to damage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)

Abstract

광이 체액에 흡수되지 않고, 조직으로 조사되도록 한 광 수술장치 및 이의 제어방법이 개시된다. 본 발명에 따른 광 수술장치는 제 1광과 제 2광을 발생시키는 광 발생부 및 상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블의 내부를 통과하여 비정상 조직에 조사되도록 제어하는 제어부를 포함한다.

Description

광 수술장치 및 이의 제어방법
본 발명은 광 수술장치 및 이의 제어방법에 관한 것으로, 더욱 상세하게는 광을 이용하여 체내의 비정상적 조직을 절개하는 데 사용되는 광 수술장치 및 이의 제어방법에 관한 것이다.
최근에는 각종 수술 도구를 체내로 삽입하여 시술하는 방식을 대신하여, 광 파이버를 통하여 체내로 레이저를 조사하는 광 수술장치를 이용한 시술 방식이 각광 받고 있다.
광 수술장치는 레이저의 파장에 따른 흡수 특성을 이용하여 체내의 비정상 조직을 절개하거나 지혈시키는 등의 다양한 시술에 적용된다. 광 수술장치에서 사용되는 사용되는 레이저는 엔디야그(Nd:YAG) 레이저, 케이티피(KTP) 레이저, 어븀야그(Er:YAG) 레이저, 이산화탄소(CO2) 레이저, 호야그(Ho:YAG) 레이저, 루비(Luby) 레이저, 알렉산드라이트(Alexandrite) 레이저 등 다양한 파장대역의 레이저가 사용되고 있다. 이러한 광 수술장치에 대해서는 이미 "대한민국 등록특허 제10-0996733호;고출력 레이저 치료기용 광조사장치"에 의해 개시된 바 있다.
한편, 체내의 많은 부위, 예를 들어 복막과 내장의 사이와 같은 부위에는 체액으로 채워져 있다. 하지만, 레이저가 체액에 흡수되면 체액이 가열되고, 가열된 체액에 의해 비정상 조직의 주변으로 열이 전도되어 정상 조직이 손상되는 문제점이 있다.
본 발명의 목적은 광이 체액에 흡수되지 않고, 조직으로 조사되도록 한 광 수술장치 및 이의 제어방법을 제공하는 데 있다.
본 발명에 따른 광 수술장치는 제 1광과 제 2광을 발생시키는 광 발생부 및 상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블의 내부를 통과하여 조직에 입사되도록 제어하는 제어부를 포함한다.
상기 제어부는 상기 제 1광보다 상기 제 2광이 더 긴 시간동안 주사되도록 제어될 수 있다.
상기 제어부는 상기 제 1광보다 상기 제 2광이 더 큰 펄스 폭을 가지도록 제어할 수 있다.
상기 광 발생부는 상기 제 1광을 발생시키는 제 1광 발생기 및 상기 제 2광을 발생시키는 제 2광 발생기를 포함할 수 있다.
상기 광 수술장치는 상기 제 1광의 경로에 배치되어 상기 제 1광을 단속하는 제 1셔터 및 상기 제 2광의 경로에 배치되어 상기 제2광을 단속하는 제 2셔터를 더 포함할 수 있다.
상기 제어부는 상기 제 1셔터와 상기 제 2셔터의 개폐 동작을 제어할 수 있다.
상기 광 수술장치는 상기 제 1셔터를 통과한 상기 제 1광의 경로에 배치되어 상기 제 1광은 통과시키고 상기 제 2광은 반사시키는 빔 스플리터, 상기 제 2셔터를 통과한 상기 제 2광의 경로에 배치되어 상기 제 2광을 상기 빔 스플리터로 안내하는 안내미러 및 상기 빔 스플리터를 통과한 상기 제 1광 또는 상기 제 2광의 경로에 접속되는 광 파이버를 더 포함할 수 있다.
상기 광 수술장치는 상기 제 1셔터를 통과한 상기 제 1광의 경로에 접속되는 제 1광 파이버 및 상기 제 1광 파이버로부터 이격되고 상기 제 2셔터를 통과한 상기 제 2광의 경로에 접속되는 제 2광 파이버를 더 포함할 수 있다.
상기 광 수술장치는 상기 버블을 향해 체액이 유입되는 시간이 지연되도록 상기 버블의 외측에 막을 형성하여 상기 버블이 유지되는 시간을 연장시키는 버블보호막을 더 포함할 수 있다.
상기 제 1광은 어븀야그 레이저(Er:YAG laser), 이산화탄소 레이저(CO2 laser) 중 어느 하나이며, 상기 제 2광은 엔디야그 레이저(Nd:YAG laser)일 수 있다.
한편, 본 발명의 일 실시예에 따른 광 수술장치의 제어방법은 광 발생부로부터 광이 발생되는 광 발생단계 및 상기 광의 펄스 폭에 따라 상기 광이 제 1광과 제 2광으로 분리되며, 상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블에 의해 형성된 공간을 통과하여 조직에 입사되도록 제어되는 제어단계를 포함한다.
상기 제어단계는 상기 제 1광보다 상기 제 2광이 더 긴 시간동안 주사되도록 상기 광의 펄스 폭이 제어될 수 있다.
한편, 본 발명의 다른 실시예에 따른 광 수술장치의 제어방법은 제 1광 발생기와 제 2광 발생기로로부터 제 1광과 제 2광이 각각 발생되는 광 발생단계 및 상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블에 의해 형성된 공간을 통과하여 조직에 입사되도록 상기 제 1광 경로와 상기 제 2광 경로에 각각 배치되는 제 1셔터와 제 2셔터의 개폐가 제어되는 제어단계를 포함한다.
상기 제어단계는 상기 제 1광이 제 1시간동안 조사되고, 상기 제 2광이 제 2시간동안 조사되도록 상기 제 1셔터와 제 2셔터의 개폐가 제어될 수 있다.
상기 제어단계는 상기 제 1시간보다 상기 제 2시간이 더 길게 제어될 수 있다.
상기 제 1광은 어븀야그 레이저(Er:YAG laser), 이산화탄소 레이저(CO2 laser) 중 어느 하나이며, 상기 제 2광은 엔디야그 레이저(Nd:YAG laser)일 수 있다.
본 발명에 따른 광 수술장치 및 이의 제어방법은 체액으로 광이 흡수되는 것이 방지되어 비정상 조직 주변의 정상 조직이 손상되는 것을 방지하므로, 수술의 정밀도 및 수술의 신뢰도를 향상시킬 수 있는 효과가 있다.
도 1은 제 1실시예에 따른 광 수술장치를 나타낸 사시도이다.
도 2는 제 1실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 3은 제 1실시예에 따른 광 발생부로부터 발생되는 광의 조사패턴을 나타낸 도면이다.
도 4는 제 1실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이다.
도 5는 제 1광에 의해 버블이 형성되는 상태를 나타낸 도면이다.
도 6은 제 2실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 7은 제 2실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이다.
도 8은 제 3실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 9은 제 3실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이다.
이하, 본 발명에 따른 광 수술장치 및 이의 제어방법의 실시예에 대하여 첨부된 도면을 참조하여 설명하도록 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 다양한 형태로 구현될 수 있으며, 단지 이하에서 설명되는 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
제 1실시예
도 1은 제 1실시예에 따른 광 수술장치를 나타낸 사시도이다.
도 1을 참조하면, 제 1실시예에 따른 광 수술장치(100)(이하, '광 수술장치'라 함.)는 본체(10)를 포함한다. 본체(10)에는 입력장치(11) 및 디스플레이장치(12)가 설치될 수 있다. 입력장치(11)는 광 수술장치(100)의 전반적인 조작이 용이하도록 한다. 디스플레이장치(12)는 광 수술장치(100)의 전반적인 구동 상태, 체내 영상, 수술 장면 등을 디스플레이한다. 도 1에서는 입력장치(11)와 디스플레이장치(12)가 별도로 설치되는 것으로 도시하고 있으나, 입력장치(11)와 디스플레이장치(12)는 일체형의 터치스크린으로 변형실시 될 수 있다.
이러한 본체(10)에는 케이블(20)이 연결된다. 케이블(20)에는 전원선, 신호선, 광 파이버(fiber) 등이 내설될 수 있다. 케이블(20)의 선단부에는 내시경과 조명이 설치될 수 있으며, 광 파이버의 선단이 노출될 수 있다. 광 파이버는 본체(10)로부터 발생되는 광이 체내로 전달될 수 있도록 광 전달부재로 사용된다. 케이블(20)의 선단부에는 버블보호막(40)이 결합되는데, 버블보호막(40)에 대해서는 이후에서 도 5를 참조하여 상세히 설명하도록 한다.
이러한 케이블(20)의 소정 부위에는 핸드피스(20)가 설치될 수 있다. 핸드피스(30)에는 조작버튼(31)이 설치된다. 조작버튼(31)은 체내에 삽입된 내시경, 조명 및 광 파이버의 위치를 용이하게 조절할 수 있도록 한다.
광 수술장치(100)는 카테터(catheter;40)를 포함한다. 카테터(40)는 가는 관 형태로 마련되어 체내에 삽입된다. 카테터(40)는 케이블(20)의 선단부가 체내로 원활하게 삽입될 수 있도록 한다.
한편, 본체(10)의 내부에는 수술에 사용되는 광을 발생시키는 광 발생부 및 제어부가 설치된다.
도 2는 제 1실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 2를 참조하면, 광 발생부(110)는 광을 발생시킨다. 광 발생부(110)는 레이저를 발진할 수 있는 공진기로 구성될 수 있다. 공진기의 내부에는 레이저매질(111)이 설치된다. 레이저매질(111)의 양측방에는 전반사미러(112)와 부분반사미러(113)가 배치된다. 따라서 플래시 램프와 같은 여기 매체에 의해 레이저매질(111)은 광을 발진하고 공진기 내측을 왕복하면서 증폭되어 레이저를 발생시킨다.
광 발생부(110)는 엔디야그(Nd:YAG), 어붐야그(Er:YAG) 등의 레이저매질을 사용할 수 있으며, 1064nm, 1444nm, 2940nm 등의 파장을 가지는 펄스 광을 발생시킬 수 있다. 펄스 광은 게인-스위칭(Gain-Switching) 방식, 큐-스위칭(Q-Switching) 방식, 모드-로킹(Mode-Locking) 방식 등에 의해 발생될 수 있다. 이러한 펄스 광의 발생기술은 이미 이 기술 분야에 널리 알려진 기술이므로 상세한 설명은 생략하도록 한다.
한편, 제어부(120)는 광 발생부(110)로부터 발생되는 광의 펄스 폭을 제어하여 광 발생부(110)로부터 발생되는 광을 제 1광과 제 2광으로 분리하고, 제 1광과 제 2광의 입사시간을 제어할 수 있다.
도 3은 제 1실시예에 따른 광 발생부로부터 발생되는 광의 조사패턴을 나타낸 도면이다.
도 3을 참조하면, 광 발생부(110)로부터 발생되는 광은 제어부(120)에 의해 펄스 폭(pulse width)이 제어될 수 있다. 광 발생부(110)로부터 발생되는 광은 펄스 폭에 따라 제 1광(L1)과 제 2광(L2)으로 분리될 수 있다.
제 1광(L1)은 제 2광(L2)이 조사되기 이전에 체액에 흡수되어 버블(B)(도 5 참조.)을 형성하는 데 사용될 수 있다. 제 2광(L2)은 비정상 조직을 절개하는 데 사용될 수 있다. 따라서 제어부(120)는 제 2광(L2)이 제 1광(L1)보다 더 큰 출력으로 발생되도록 제어할 수 있다.
즉, 제어부(120)는 제 2광(L2)이 제 1광(L1)보다 더 큰 펄스 폭을 가지도록 제어할 수 있다. 이에 따라 제 1광(L1)은 제 1시간(T1) 동안 조사되고, 제 2광(L2)은 제 1시간(T1)보다 긴 제 2시간(T2) 동안 조사될 수 있다. 이러한 제 1광(L1)과 제 2광(L2)의 조사시간은 본체(10)에 별도로 마련되는 메모리(미도시)에 저장되어 기 설정되거나, 사용자에 의해 실시간으로 조절될 수 있다.
이하, 제 1실시예에 따른 광 수술장치의 제어방법에 대하여 설명하도록 한다.
도 4는 제 1실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이며, 도 5는 제 1광에 의해 버블이 형성되는 상태를 나타낸 도면이다.
도 4 및 도 5를 참조하면, 사용자는 카테터(40)를 환자의 체내에 삽입시시키고, 케이블(20)을 카테터(40)에 삽입시킨다. 이에 따라 내시경, 조명, 광 파이버 등이 환자의 체내로 삽입될 수 있다.
이어, 체내로 삽입된 내시경에 의해 체내 영상이 촬영되고, 디스플레이장치(12)에는 내시경에 의해 촬영되는 체내 영상이 디스플레이된다. 사용자는 디스플레이장치(12)에 디스플레이되는 영상을 참조하며, 비정상 조직을 향해 광이 조사될 수 있도록 광 파이버의 위치를 조절한다. 이때, 버블보호막(40)의 개방 단부는 비정상 조직의 주변 조직에 밀착될 수 있다.
이어, 사용자는 본체(10)의 입력장치(11)를 조작하여 광 출력을 조절한다. 즉, 입력장치(11)가 조작됨에 따라 제어부(120)는 광 발생부(110)로부터 광이 발생되도록 광 발생부(110)를 제어한다(단계;S11).
그리고 제어부(120)은 광 발생부(110)로부터 광이 제 1광(L1)과 제 2광(L2)으로 분리되도록 하고, 제 1광(L1)과 제 2광(L2)의 주사시간을 제어한다(단계;S12).
먼저, 제 1광(L1)은 광 파이버로 전달되어 제 1시간(T1) 동안 비정상 조직을 향해 조사된다(단계;S12). 비정상 조직과 광 파이버의 사이는 체액이 위치할 수 있다. 따라서 제 1광(L1)은 비정상 조직에 도달하기 이전에 체액에 흡수될 수 있다. 제 1광(L1)이 체액에 흡수됨에 따라, 체액이 증발되면서 버블(B)이 형성된다(단계;S13).
여기서, 버블(B)이 형성되면서 버블보호막(40) 내부의 체액이 버블보호막(40)의 외측으로 원활하게 배출될수 있도록 버블보호막(40)에는 배출구()가 형성될 수 있다. 이러한 버블보호막(40)은 버블(B)이 유지되는 시간이 연장되도록 한다. 즉, 버블보호막(40)은 버블보호막(40)의 외부의 체액이 버블보호막(40)의 내부로 유입되는 시간을 지연시켜 버블(B)이 유지되는 시간이 연장되도록 한다.
이와 같이 비정상 조직과 광 파이버의 사이에는 제 1광(L1)에 의해 버블(B)이 형성되며, 버블보호막(40)은 버블(B)이 유지되는 시간을 연장시킨다.
이어, 제 2광(L2)은 광 파이버로 전달되어 제 2시간(T2) 동안 비정상 조직을 향해 조사된다(단계;S14). 비 정상 조직과 광 파이버의 사이에는 이미 제 1광(L1)에 의해 버블(B)이 형성된 상태이므로, 제 2광(L2)은 버블(B) 내부를 통과하여 비정상 조직에 입사될 수 있다. 비정상 조직에 입사된 제 2광(L2)은 비정상 조직에 흡수되고, 비정상 조직은 열화되어 제거될 수 있다.
이와 같이 제 1실시예에 따른 광 수술장치(100)는 단일 광 발생부(110)에서 발생되는 광의 펄스 폭을 조절하여 제 1광(L1)과 제 2광(L2)을 발생시키고, 제 1광(L1)과 제 2광(L2)이 동일한 광 경로를 통해 수술부위를 향해 조사될 수 있다.
이하, 본 발명의 다른 실시예에 따른 광 수술장치 및 이의 제어방법에 대해 설명하도록 한다. 이하의 설명에서는 상술된 제 1실시예에서 설명된 유사한 구성요소에 대해서는 동일한 참조부호를 부여하고 상세한 설명은 생략하도록 한다. 따라서 이하의 설명에서 상세한 설명이 생략된 구성요소에 대해서는 상술된 제 1실시예의 설명을 참조하여 이해할 수 있을 것이다.
제 2실시예
도 6은 제 2실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 6을 참조하면, 제 2실시예에 따른 광 발생부(110)는 제 1광 발생기(210)와 제 2광 발생기(220)를 포함한다. 제 1광 발생기(210)와 제 2광 발생기(220)는 상술된 바와 같은 공진기로 각각 구성될 수 있다. 즉, 제 1광 발생기(210)는 제 1레이저매질(211), 제 1전반사미러(212), 제 1부분반사미러(213)로 구성되며, 제 2광 발생기(220)는 제 2레이저매질(221), 제 2전반사미러(222), 제 2부분반사미러(223)로 구성될 수 있다. 이러한 제 1광 발생기(210)와 제 2광 발생기(220)는 제 1광(L1)과 제 2광(L2)을 각각 발생시킨다.
여기서, 제 1광 발생기(210)는 제 1광(L1)으로, 비교적 물에 대한 흡수도가 뛰어난 어븀야그 레이저(Er:YAG laser), 이산화탄소 레이저(CO2 laser) 등을 발생시킬 수 있다. 제 2광 발생기(220)는 제 2광(L2)으로, 신체 조직에 침투가 용이한 엔디야그 레이저(Nd:YAG laser)를 발생시킬 수 있다.
제 1광 발생기(210)의 일측방에는 제 1셔터(240)가 설치될 수 있다. 제 1셔터(240)는 제 1광(L1)을 단속한다. 제 1셔터(240)를 통과하는 제 1광(L1)의 경로에는 빔 스플리터(beam splitter;250)가 설치된다. 빔 스플리터(250)는 제 1광(L1)은 투과시키고, 제 2광(L2)은 반사시킨다.
제 2광 발생기(220)의 일측방에는 제 2셔터(260)가 설치될 수 있다. 제 2셔터(260)는 제 2광(L2)을 단속한다. 제 2셔터(260)를 통과하는 제 2광(L2)의 경로에는 안내미러(270)가 설치된다. 안내미러(270)는 제 2광(L2)을 빔 스플리터(250)로 안내한다.
빔 스플리터(250) 이후에는 광 파이버가 접속될 수 있다.
한편, 제어부(230)는 제 1셔터(240)와 제 2셔터(260)의 개폐동작을 제어한다. 즉, 제어부(230)는 제 1광(L1)이 제 1시간(T1) 동안 조사될 수 있도록 제 1셔터(240)를 개방키고 제 2셔터(260)를 폐쇄시키며, 제 2광(L2)이 제 2시간(T2) 동안 조사될 수 있도록 제 1셔터(240)를 폐쇄시키고, 제 2셔터(260)의 개방시킬 수 있다.
이와 같이 제 2실시예에 따른 광 수술장치(200)는 제 1광 발생기(210)와 제 2광 발생기(220)가 각각 제 1광(L1)과 제 2광(L2)을 개별 발생시키며, 빔 스플리터(250) 이후의 동일한 광 경로를 통해 수술부위를 향해 조사될 수 있다.
이하, 제 2실시예에 따른 광 수술장치의 제어방법에 대하여 설명하도록 한다.
도 7은 제 2실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이다.
도 7을 참조하면, 제 1실시예에서 설명된 바와 같이, 광 파이버가 비정상 조직의 전방에 위치하면, 제어부(230)는 제 1광 발생기(210)와 제 2광 발생기(220)를 제어하여 제 1광(L1)과 제 2광(L2)이 순차적으로 발생되도록 한다(단계;S21).
먼저, 제어부(230)는 제 1시간(T1) 동안 제 1셔터(240)를 개방시키고, 제 2셔터(260)를 폐쇄시킨다(단계;S22). 제 1광(L1)은 제 1셔터(240)를 통과하고 빔 스플리터(250)로 입사된다. 제 1광(L1)은 빔 스플리터(250)를 투과한다(S23). 빔 스플리터(250)를 투과한 제 1광(L1)은 광 파이버로 전달되어 비정상 조직을 향해 조사된다.
제 1실시예에서 설명된 바와 같이, 제 1광(L1)은 광 파이버와 비정상 조직의 사이에 버블(B)을 발생시키고(단계;S24), 버블보호막(40)은 버블(B)이 유지되는 시간을 연장시킨다.
이어, 제어부(230)는 제 2시간(T2) 동안 제 1셔터(240)를 폐쇄시키고, 제 2셔터(260)를 개방시킨다(단계;S25). 제 2광(L2)은 제 1셔터(240)를 통과하고, 안내미러(270)에 반사되어 빔 스플리터(250)로 입사된다(단계;S26). 제 2광(L2)은 빔 스플리터(250)에 의해 반사된다(단계;S27). 빔 스플리터(250)에 의해 반사된 제 2광(L2)은 광 파이버로 전달되어 비정상 조직을 향해 조사된다(단계;S28).
제 1실시예에서 설명된 바와 같이, 제 2광(L2)은 버블(B) 내부를 통과하여 비정상 조직에 입사되고, 비정상 조직은 열화되어 제거될 수 있다.
제 3실시예
도 8은 제 3실시예에 따른 광 수술장치의 본체 내부를 간략하게 나타낸 도면이다.
도 8을 참조하면, 제 3실시예에 따른 광 발생부(110)는 제 1광 발생기(310)와 제 2광 발생기(320)를 포함한다. 제 1광 발생기(310)와 제 2광 발생기(320)는 상술된 바와 같은 공진기로 각각 구성될 수 있다. 즉, 제 1광 발생기(310)는 제 1레이저매질(311), 제 1전반사미러(312), 제 1부분반사미러(313)로 구성되며, 제 2광 발생기(320)는 제 2레이저매질(321), 제 2전반사미러(322), 제 2부분반사미러(323)로 구성될 수 있다. 이러한 제 1광 발생기(310)와 제 2광 발생기(310)는 제 1광(L1)과 제 2광(L2)을 각각 발생시킨다.
제 2실시예에서 설명된 바와 같이, 제 1광 발생기(210)는 물에 대한 흡수도가 뛰어난 제 1광(L1)을 발생시키며, 제 2광 발생기(220)는 비정상 조직에 침투가 용이한제 2광(L2)을 발생시킬 수 있다.
제 1광 발생기(310)의 일측방에는 제 1셔터(340)가 설치될 수 있다. 제 1셔터(340)는 제 1광(L1)을 단속한다. 제 2광 발생기(310)의 일측방에는 제 2셔터(350)가 설치될 수 있다. 제 2셔터(350)는 제 2광(L2)을 단속한다.
제 1셔터(340)를 통과하는 제 1광(L1)의 경로에는 제 1광(L1)을 체내로 전달하는 제 1광 파이버가 접속될 수 있으며, 제 2셔터(350)를 통과하는 제 2광(L2)의 경로에는 제 2광(L2)을 체내로 전달하는 제 2광 파이버가 접속될 수 있다. 제 1광 파이버와 제 2광 파이버는 제 1광(L1) 및 제 2광(L2)이 비정상 조직을 향해 조사될 수 있도록 케이블(20)의 선단부에서 케이블(20)의 중심부를 향해 절곡되는 형상으로 설치될 수 있다.
한편, 제어부(330)는 제 2실시예에서 설명된 바와 같이, 제 1셔터(340)와 제 2셔터(350)의 동작을 제어한다.
이와 같이 제 3실시예에 따른 광 수술장치(300)는 제 1광 발생기(310)와 제 2광 발생기(320)가 각각 제 1광(L1)과 제 2광(L2)을 개별 발생시키며, 제 1광(L1)과 제 2광(L2)이 독립된 광 경로를 따라 체내로 전달도록 하여 비정상 조직을 향해 조사될 수 있다.
이하, 제 3실시예에 따른 광 수술장치의 제어방법에 대하여 설명하도록 한다.
도 9는 제 3실시예에 따른 광 수술장치의 제어방법을 나타낸 순서도이다.
도 9를 참조하면, 제 1실시예에서 설명된 바와 같이, 제 1광 파이버와 제 2광 파이버가 비정상 조직의 전방에 위치하면, 제어부(330)는 제 1광 발생기(310)와 제 2광 발생기(320)를 제어하여 제 1광(L1)과 제 2광(L2)이 순차적으로 발생되도록 한다(단계;S31).
먼저, 제어부(330)는 제 1시간(T1) 동안 제 1셔터(340)를 개방시키고, 제 2셔터(350)를 폐쇄시킨다(단계;S32). 제 1광(L1)은 제 1셔터(340)를 통과하고 제 1광(L1)의 경로에 접속된 제 1광 전달부재를 따라 수술부위로 향해 조사된다(S33).
제 1실시예에서 설명된 바와 같이, 제 1광(L1)은 광 파이버와 비정상 조직의 사이에 버블(B)을 발생시키고(단계;S34), 버블보호막(40)은 버블(B)이 유지되는 시간을 연장시킨다.
이어, 제어부(330)는 제 2시간(T2) 동안 제 1셔터(340)를 폐쇄시키고, 제 2셔터(350)를 개방시킨다(단계;S35). 제 2광(L2)은 제 1셔터(340)를 통과하고(단계;S36) 제 2광(L2)의 경로에 접속된 제 2광 전달부재를 따라 수술부위로 향해 조사된다(단계;S37).
제 1실시예에서 설명된 바와 같이, 제 2광(L2)은 버블(B) 내부를 통과하여 비정상 조직에 입사되고, 비정상 조직은 열화되어 제거될 수 있다.
상술된 바와 같이, 본 발명에 따른 광 수술장치 및 이의 제어방법은 체내로 삽입된 광 파이버와 비정상 조직의 사이에 버블이 형성되도록 하고, 광이 버블 내부의 빈 공간을 통해 비정상 조직으로 입사되도록 한다. 따라서 본 발명에 따른 광 수술장치 및 이의 제어방법은 체액에 광이 흡수되어 비정상 조직의 주변 조직으로 열이 전도되어 손상되는 것을 방지할 수 있다.
앞에서 설명되고, 도면에 도시된 본 발명의 실시예들은 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호 범위에 속하게 될 것이다.

Claims (14)

  1. 제 1광과 제 2광을 발생시키는 광 발생부;및
    상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블의 내부를 통과하여 조직에 입사되도록 제어하는 제어부;를 포함하는 것을 특징으로 하는 광 수술장치.
  2. 제 1항에 있어서, 상기 제어부는
    상기 제 1광보다 상기 제 2광이 더 긴 시간동안 주사되도록 제어하는 것을 특징으로 하는 광 수술장치.
  3. 제 1항에 있어서, 상기 제어부는
    상기 제 1광보다 상기 제 2광이 더 큰 펄스 폭을 가지도록 제어하는 것을 특징으로 하는 광 수술장치.
  4. 제 1항에 있어서, 상기 광 발생부는
    상기 제 1광을 발생시키는 제 1광 발생기;및
    상기 제 2광을 발생시키는 제 2광 발생기;를 포함하며,
    상기 제 1광의 경로에 배치되어 상기 제 1광을 단속하는 제 1셔터;및
    상기 제 2광의 경로에 배치되어 상기 제2광을 단속하는 제 2셔터;를 더 포함하며,
    상기 제어부는
    상기 제 1셔터와 상기 제 2셔터의 개폐 동작을 제어하는 것을 특징으로 하는 광 수술장치.
  5. 제 4항에 있어서,
    상기 제 1셔터를 통과한 상기 제 1광의 경로에 배치되어 상기 제 1광은 통과시키고 상기 제 2광은 반사시키는 빔 스플리터;
    상기 제 2셔터를 통과한 상기 제 2광의 경로에 배치되어 상기 제 2광을 상기 빔 스플리터로 안내하는 안내미러;및
    상기 빔 스플리터를 통과한 상기 제 1광 및 상기 제 2광의 경로에 접속되는 광 파이버를 더 포함하는 것을 특징으로 하는 광 수술장치.
  6. 제 4항에 있어서,
    상기 제 1셔터를 통과한 상기 제 1광의 경로에 접속되는 제 1광 파이버;및
    상기 제 1광 파이버로부터 이격되고 상기 제 2셔터를 통과한 상기 제 2광의 경로에 접속되는 제 2광 파이버;를 더 포함하는 것을 특징으로 하는 광 수술장치.
  7. 제 1항에 있어서, 상기 버블을 향해 체액이 유입되는 시간이 지연되도록 상기 버블의 외측에 막을 형성하여 상기 버블이 유지되는 시간을 연장시키는 버블보호막을 더 포함하는 것을 특징으로 하는 광 수술장치.
  8. 제 1항에 있어서,
    상기 제 1광은 어븀야그 레이저(Er:YAG laser), 이산화탄소 레이저(CO2 laser) 중 어느 하나이며,
    상기 제 2광은 엔디야그 레이저(Nd:YAG laser)인 것을 특징으로 하는 광 수술장치.
  9. 광을 이용하여 수술을 수행하는 광 수술장치의 제어방법에 있어서,
    광 발생부로부터 광이 발생되는 광 발생단계;및
    상기 광의 펄스 폭에 따라 상기 펄스 광이 제 1광과 제 2광으로 분리되며, 상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블의 내부를 통과하여 조직에 입사되도록 제어되는 제어단계;를 포함하는 것을 특징으로 하는 광 수술장치의 제어방법.
  10. 제 9항에 있어서, 상기 제어단계는
    상기 제 1광보다 상기 제 2광이 더 긴 시간동안 주사되도록 상기 광의 펄스 폭이 제어되는 것을 특징으로 하는 광 수술장치의 제어방법.
  11. 광을 이용하여 수술을 수행하는 광 수술장치의 제어방법에 있어서,
    제 1광 발생기와 제 2광 발생기로로부터 제 1광과 제 2광이 각각 발생되는 광 발생단계;및
    상기 제 1광이 체내로 조사되어 상기 제 1광의 입사부위에 버블이 형성되도록 하고, 상기 제 2광이 상기 버블의 내부를 통과하여 조직에 입사되도록 상기 제 1광 경로와 상기 제 2광 경로에 각각 배치되는 제 1셔터와 제 2셔터의 개폐가 제어되는 제어단계;를 포함하는 것을 특징으로 하는 광 수술장치의 제어방법.
  12. 제 11항에 있어서, 상기 제어단계는
    상기 제 1광이 제 1시간동안 조사되고, 상기 제 2광이 제 2시간동안 조사되도록 상기 제 1셔터와 제 2셔터의 개폐가 제어되는 것을 특징으로 하는 광 수술장치의 제어방법.
  13. 제 12항에 있어서, 상기 제어단계는
    상기 제 1시간보다 상기 제 2시간이 더 길게 제어되는 것을 특징으로 하는 광 수술장치의 제어방법.
  14. 제 11항에 있어서,
    상기 제 1광은 어븀야그 레이저(Er:YAG laser), 이산화탄소 레이저(CO2 laser) 중 어느 하나이며,
    상기 제 2광은 엔디야그 레이저(Nd:YAG laser)인 것을 특징으로 하는 광 수술장치의 제어방법.
PCT/KR2012/002222 2012-03-27 2012-03-27 광 수술장치 및 이의 제어방법 WO2013147334A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0031074 2012-03-27
KR1020120031074A KR101349122B1 (ko) 2012-03-27 2012-03-27 광 수술장치 및 이의 제어방법

Publications (1)

Publication Number Publication Date
WO2013147334A1 true WO2013147334A1 (ko) 2013-10-03

Family

ID=49260561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002222 WO2013147334A1 (ko) 2012-03-27 2012-03-27 광 수술장치 및 이의 제어방법

Country Status (2)

Country Link
KR (1) KR101349122B1 (ko)
WO (1) WO2013147334A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968885A4 (en) * 2019-05-14 2023-06-07 Board of Regents, The University of Texas System METHOD AND DEVICE FOR PROCESSING LASER SUBTRACTIVE MATERIALS AT HIGH SPEED AND HIGH ASPECT RATIO

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668235B1 (ko) * 2016-06-16 2016-10-21 주식회사 제이티에스인더스트리 의료용 어븀야그 레이저의 관절암 대체형 광 화이버 전달장치
KR20190044221A (ko) * 2017-10-20 2019-04-30 원텍 주식회사 레이저 발생장치
KR20190044227A (ko) * 2017-10-20 2019-04-30 원텍 주식회사 레이저 발생장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321715A (en) * 1993-05-04 1994-06-14 Coherent, Inc. Laser pulse format for penetrating an absorbing fluid
US20070219601A1 (en) * 2006-03-20 2007-09-20 Ceramoptec Industries, Inc. Benign prostatic hyperplasia treatment method and device
JP2008194455A (ja) * 2007-01-17 2008-08-28 Keio Gijuku 血管拡張装置
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
KR100314093B1 (ko) * 1998-05-13 2001-11-15 윤종용 레이저 핸드피스
KR100821532B1 (ko) 2006-11-13 2008-04-14 (주)알마레이저스아시아 레이저 핸드피스
US8888767B2 (en) * 2008-12-02 2014-11-18 Biolitec Pharma Marketing Ltd Diode laser induced vapor/plasma mediated medical procedures and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321715A (en) * 1993-05-04 1994-06-14 Coherent, Inc. Laser pulse format for penetrating an absorbing fluid
US20070219601A1 (en) * 2006-03-20 2007-09-20 Ceramoptec Industries, Inc. Benign prostatic hyperplasia treatment method and device
JP2008194455A (ja) * 2007-01-17 2008-08-28 Keio Gijuku 血管拡張装置
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968885A4 (en) * 2019-05-14 2023-06-07 Board of Regents, The University of Texas System METHOD AND DEVICE FOR PROCESSING LASER SUBTRACTIVE MATERIALS AT HIGH SPEED AND HIGH ASPECT RATIO

Also Published As

Publication number Publication date
KR101349122B1 (ko) 2014-01-10
KR20130109379A (ko) 2013-10-08

Similar Documents

Publication Publication Date Title
US4487489A (en) Endoscopic photographing apparatus
WO2013147334A1 (ko) 광 수술장치 및 이의 제어방법
CA2562976C (en) Endoscopic light source safety and control system with optical sensor
US20080287936A1 (en) Telescope with Integrated Optical Filter
WO1999055218A1 (en) Apparatus and method for performing a myringotomy
WO2005052648A2 (en) Endoscopic imaging and intervention system
EP1832225A2 (en) Endoscopic light source safety and control system with optical sensor
JP4895674B2 (ja) 共焦点内視鏡による拡大観察部位特定方法
WO2020159017A1 (ko) 의료용 멀티 레이저 증폭 출력 장치
JP2004008381A (ja) プローブ用レーザー光源装置
KR20190106993A (ko) 반사거울과 안전 연동장치를 구비한 치료 레이저
WO2012133979A1 (ko) 광 수술장치 및 이의 제어방법
JP2001087217A (ja) 内視鏡
CN1025148C (zh) 用于血管外科的激光手术器械
JP4224545B2 (ja) 医療用レーザ治療機器
WO2016175629A1 (ko) 레이저 장치 및 레이저 장치 구동방법
JPS6034243Y2 (ja) レ−ザメスを備えた内視鏡の安全装置
JP3199779B2 (ja) 眼内光凝固装置
WO2023243738A1 (ko) 내시경 수술장치 및 이를 포함하는 시스템
US7620289B2 (en) Spring-loaded fiber coupler cover with cam profile
JPS5917288Y2 (ja) レ−ザメスを備えた内視鏡の安全回路
JP4864496B2 (ja) 赤外線カットフィルタを備えた内視鏡装置
JP4864495B2 (ja) 赤外線カットフィルタを備えた内視鏡装置
JP3939021B2 (ja) レーザ治療装置
WO2018190596A1 (ko) 내시경 장치 및 이를 이용한 내시경 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872872

Country of ref document: EP

Kind code of ref document: A1