WO2016175597A1 - Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant - Google Patents

Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant Download PDF

Info

Publication number
WO2016175597A1
WO2016175597A1 PCT/KR2016/004498 KR2016004498W WO2016175597A1 WO 2016175597 A1 WO2016175597 A1 WO 2016175597A1 KR 2016004498 W KR2016004498 W KR 2016004498W WO 2016175597 A1 WO2016175597 A1 WO 2016175597A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
shell
core
electrode active
Prior art date
Application number
PCT/KR2016/004498
Other languages
English (en)
Korean (ko)
Inventor
권용훈
이기영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/567,213 priority Critical patent/US10581110B2/en
Priority to CN201680024745.9A priority patent/CN107534140B/zh
Priority to JP2017556664A priority patent/JP6564064B2/ja
Priority to EP16786783.7A priority patent/EP3291340B1/fr
Priority claimed from KR1020160052634A external-priority patent/KR101918345B1/ko
Publication of WO2016175597A1 publication Critical patent/WO2016175597A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • composition of the first lithium oxide of Formula 1 is an average composition of the entire core.
  • Such a core 1 may have a thickness of 0.5 ⁇ m to 3 ⁇ m when the distance from the center of the cathode active material particles to the interface between the core and the intermediate layer is the thickness of the core.
  • the thickness is in the above range, the battery performance is greatly improved due to the structure stabilization of the cathode active material.
  • the second lithium oxide has a lithium nickel manganese cobalt oxide having a content of 50 atomic% or more, more specifically 55 atomic% or more, in the second lithium oxide in that the capacity and stability of the battery may be improved. Can be.
  • Such intermediate layer 2 has a thickness of 2 ⁇ m to 10 ⁇ m when the distance from the interface between the core 1 and the intermediate layer 2 to the interface between the intermediate layer 2 and the shell 3 is the thickness of the intermediate layer.
  • the shell 3 is formed on the surface of the said intermediate
  • the NMC-based third lithium oxide included in the shell 3 may specifically be a compound of Formula 3 below.
  • the third lithium oxide has a lithium nickel manganese cobalt oxide having a content of 50 atomic% or more, more specifically 55 atomic% or more, in the third lithium oxide in that the capacity and stability of the battery can be improved. Can be.
  • At least one metal element of nickel, cobalt and manganese contained in the shell 3 may have a concentration gradient that increases or decreases from an interface between the intermediate layer 2 and the shell 3 to the surface of the cathode active material particle.
  • concentration of the metal element described above may be continuously increased or decreased throughout the positive electrode active material, or the concentration of the metal element is discontinuously changed at the interface between the intermediate layer 2 and the shell 3, or Inflection points may appear.
  • the concentration of nickel, cobalt and manganese contained in the shell 3 may be constant. As such, when the concentration of all metal elements in the shell 3 is constant, the stability and electrochemical properties of the structure itself may be improved.
  • the concentration of the metal element continuously shows the concentration gradient means that the concentration of the metal element is from the center of the core 1, the intermediate layer 2, the shell 3, and the positive electrode active material particle 10. It means that it exists in the concentration distribution which changes gradually from the center of the particle
  • the concentration of nickel contained in the positive electrode active material may decrease while having a continuous concentration gradient from the center of the positive electrode active material particles to the interface between the intermediate layer and the shell.
  • the gradient of the concentration gradient of nickel may be constant from the center of the cathode active material particle to the interface between the intermediate layer and the shell.
  • the concentration of manganese contained in the positive electrode active material is from the center of the positive electrode active material particles 10 to the interface between the intermediate layer 2 and the shell 3. Can be increased with a continuous concentration gradient.
  • the concentration gradient of manganese may be constant from the center of the cathode active material particle 10 to the surface.
  • the concentration of nickel contained in the positive electrode active material is from the center of the positive electrode active material particles 10 to the interface between the intermediate layer 2 and the shell 3, or
  • the difference in the average concentration of nickel in the core (1) and shell (3) is 10 atoms based on the total atomic weight of nickel contained in the positive electrode active material % To 70 atomic%, more specifically 10 atomic% to 45 atomic%, even more specifically 20 atomic% to 40 atomic%.
  • the concentration gradient structure and concentration of the metal in the positive electrode active material particles are characterized by an Electron Probe Micro Analyzer (EPMA), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP). -AES) or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and more specifically, using EPMA from the center of the cathode active material to the surface. While moving, the atomic ratio of each metal can be measured.
  • EPMA Electron Probe Micro Analyzer
  • ICP Inductively Coupled Plasma-Atomic Emission Spectrometer
  • -AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • TOF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • the porosity in the positive electrode active material exceeds 30% by volume, there is a fear of lowering the structural stability of the positive electrode active material.
  • the porosity of 20% by volume to 25% by volume may be exhibited.
  • the porosity of the positive electrode active material can be calculated from the difference between the apparent density and the true density.
  • the cathode active material 10 of the structure according to the embodiment of the present invention the metal salt solution for forming a core containing nickel, cobalt and manganese, and nickel, cobalt and manganese at different concentrations from the core salt metal salt solution.
  • a metal salt solution for shell formation comprising a (step 1); The shell-forming metal salt solution in the core-forming metal salt solution such that the mixing ratio of the core-forming metal salt solution and the shell-forming metal salt solution is gradually changed from 100% by volume: 0% by volume to 0% by volume: 100% by volume.
  • the reaction rate may be controlled by controlling the input rate of the shell-forming metal salt solution to the core-forming metal salt solution, and additionally pH and reaction temperature may be further controlled.
  • the input rate of the metal salt solution for shell formation may be 10g / min to 20g / min, the shell formation to be added to the core salt metal salt solution for each core, intermediate layer and shell forming section within the above-mentioned input speed range It can be carried out by increasing or decreasing the speed of the metal salt solution. More specifically, the input rate of the metal salt solution for shell formation may increase within the above range from the core forming section to the shell forming section, and more specifically, in the core forming section, from 10 g / min to 15 g.
  • reaction temperature may be 50 °C to 80 °C.
  • the pH in the reaction system may be 10 to 12. If the pH is out of the above range, there is a risk of changing the size of the cathode active material precursor to be prepared or causing particle splitting.
  • metal ions may be eluted on the surface of the positive electrode active material precursor to form various oxides by side reactions. Such pH adjustment can be controlled through the addition of a basic aqueous solution.
  • the reaction may be performed while gradually reducing the pH within the above range.
  • the chelating agent may be used an aqueous ammonia solution, an ammonium sulfate solution or a mixture thereof.
  • the chelating agent may be added in an amount such that the molar ratio of 0.5 to 1 per mole of the mixed solution of the metal salt for forming the core and shell.
  • the chelating agent reacts with the metal in a molar ratio of at least 1: 1 to form a complex, but the unreacted complex which does not react with the basic aqueous solution may be converted into an intermediate product, recovered as a chelating agent, and reused.
  • the chelating usage can be lowered than usual. As a result, the crystallinity of the positive electrode active material can be increased and stabilized.
  • the basic aqueous solution may be prepared by dissolving a base such as sodium hydroxide, potassium hydroxide and the like in water.
  • reaction for the preparation of the positive electrode active material precursor may be carried out in a temperature range of 30 °C to 80 °C under an inert atmosphere such as nitrogen.
  • stirring process may be selectively performed to increase the reaction rate during the reaction, wherein the stirring rate may be 100rpm to 2000rpm.
  • a sintering agent may be optionally further added.
  • the sintering agent is specifically a compound containing ammonium ions such as NH 4 F, NH 4 NO 3 , or (NH 4 ) 2 SO 4 ; Metal oxides such as B 2 O 3 or Bi 2 O 3 ; Or a metal halide such as NiCl 2 or CaCl 2, and any one or a mixture of two or more thereof may be used.
  • the sintering agent may be used in an amount of 0.01 mol to 0.2 mol with respect to 1 mol of the cathode active material precursor.
  • the cathode active material manufactured by the above-described manufacturing method has an optimized structure and composition in consideration of the electrochemical action mechanism according to the position of the anode active material particles for each layer of the core, the intermediate layer, and the shell. Accordingly, when the cathode active material is applied to a battery, high capacity, high life and excellent stability may be exhibited, and in particular, performance degradation may be minimized even at high voltage.
  • a cathode including the cathode active material is provided.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1% to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material and optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material may be prepared by applying a positive electrode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • Nickel sulfate: cobalt sulfate: manganese sulfate was mixed in water at a molar ratio of 90: 5: 5 to prepare a metal salt solution for core formation at a concentration of 2M, and nickel sulfate: cobalt sulfate: manganese sulfate was dissolved in water at 50:20:30. By mixing in a molar ratio of to prepare a metal salt solution for shell formation of 2M concentration.
  • a coprecipitation reaction was carried out over a total of 16 hours to obtain a precipitate.
  • the obtained precipitate was washed sequentially with sodium hydroxide and deionized water, filtered and dried in a warm air dryer at 130 ° C. for 12 hours to obtain a cathode active material precursor having an average particle diameter (D 50 ) of 11 ⁇ m.
  • MCMB meocarbon microbead
  • carbon black conductive material and PVdF binder, which are artificial graphite as a negative electrode active material, were mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming a negative electrode, This was applied to a copper current collector to prepare a negative electrode.
  • An electrode assembly was manufactured by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that particles including a lithium composite metal oxide of Li (Ni 0.60 Co 0.15 Mn 0.25 ) O 2 were used as the cathode active material.
  • the porosity was calculated from the measured value, the porosity of the positive electrode active material was 20% by volume.
  • 10 points are selected from the core to the surface of the cathode active material particles prepared in Example 1, and the concentrations of lithium, nickel, manganese, and cobalt at each point are measured, and the core, intermediate layer, and shell are obtained from the results. The average composition of each lithium composite metal oxide in the mixture was confirmed.
  • the average composition of the first lithium composite metal oxide in the core formation region was Li [Ni 0.82 Co 0.07 Mn 0.13 ] O 2
  • the intermediate layer formation region the interface between the core and the intermediate layer
  • the average composition of the second lithium composite metal oxide is Li [Ni 0.67 Co 0.11 Mn 0.23 ] O 2
  • the average composition of the third lithium composite metal oxide at the interface between the intermediate layer and the shell and the shell surface was Li [Ni 0.56 Co 0.17 Mn 0.27 ] O 2 , respectively. From these results, it was confirmed that Ni shows a concentration gradient continuously decreasing from the particle center of the active material to the interface between the intermediate layer and the shell, and Co and Mn showed a continuously increasing concentration gradient.
  • the lithium secondary battery of Example 1 including the cathode active material according to the present invention had a higher capacity retention rate at the 200th cycle compared to Comparative Example 1, and it can be confirmed that the lithium secondary battery had better life characteristics therefrom. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un matériau actif de cathode pour une batterie secondaire, et une batterie secondaire le comprenant, le matériau actif de cathode comprenant : un noyau de particules secondaires formé par l'agrégation de particules primaires d'un oxyde métallique composite de lithium à base nickel, de manganèse et de cobalt ; une couche intermédiaire disposée sur le noyau et comprenant des particules d'oxyde métallique composite de lithium à base nickel, de manganèse et de cobalt en forme de tige alignées radialement du centre de particules de matériau actif vers sa surface ; et une enveloppe positionnée sur la couche intermédiaire et comprenant un oxyde métallique composite de lithium à base nickel, de manganèse et de cobalt. Selon la présente invention, le matériau actif de cathode pour une batterie secondaire peut avoir une capacité élevée, une longue durée de vie et une excellente stabilité lorsqu'il est appliqué à une batterie et, en particulier, peut réduire au minimum la détérioration de performance sous haute tension étant donné que chaque couche d'un noyau, d'une couche intermédiaire et d'une enveloppe a une structure et une composition optimisées, compte tenu du mécanisme électrochimique en fonction de la position des particules de matériau actif de cathode. Par conséquent, le matériau actif de cathode est utile en tant que matériau actif de cathode d'une batterie haute tension.
PCT/KR2016/004498 2015-04-30 2016-04-29 Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant WO2016175597A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/567,213 US10581110B2 (en) 2015-04-30 2016-04-29 Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
CN201680024745.9A CN107534140B (zh) 2015-04-30 2016-04-29 二次电池用正极活性材料、其制备方法和包含所述正极活性材料的二次电池
JP2017556664A JP6564064B2 (ja) 2015-04-30 2016-04-29 二次電池用正極活物質、この製造方法及びこれを含む二次電池
EP16786783.7A EP3291340B1 (fr) 2015-04-30 2016-04-29 Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150061836 2015-04-30
KR10-2015-0061836 2015-04-30
KR10-2016-0052634 2016-04-29
KR1020160052634A KR101918345B1 (ko) 2015-04-30 2016-04-29 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2016175597A1 true WO2016175597A1 (fr) 2016-11-03

Family

ID=57198560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004498 WO2016175597A1 (fr) 2015-04-30 2016-04-29 Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant

Country Status (1)

Country Link
WO (1) WO2016175597A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123792A (zh) * 2017-04-07 2017-09-01 山东玉皇新能源科技有限公司 双层复合结构三元正极材料及其制备方法
CN107579236A (zh) * 2017-09-13 2018-01-12 桑顿新能源科技有限公司 全梯度高镍三元前驱体及全梯度高镍三元正极材料的制备方法
JP2018098205A (ja) * 2016-12-08 2018-06-21 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
US20190190060A1 (en) * 2017-12-19 2019-06-20 3M Innovative Properties Company Electrochemical cells
CN110139834A (zh) * 2017-06-29 2019-08-16 株式会社Lg化学 用于制备锂二次电池用正极活性材料前体的方法
CN110178253A (zh) * 2016-12-22 2019-08-27 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
CN110226251A (zh) * 2016-12-02 2019-09-10 三星Sdi株式会社 镍活性物质前驱体及其制备方法、镍活性物质以及锂二次电池
WO2019182153A1 (fr) * 2018-03-23 2019-09-26 住友化学株式会社 Oxyde métallique contenant du lithium, matériau actif d'électrode positive pour batteries secondaires au lithium, électrode positive pour batteries secondaires au lithium, et batterie secondaire au lithium
EP3640215A1 (fr) * 2018-10-16 2020-04-22 Samsung SDI Co., Ltd. Précurseur de matériau actif à base de nickel pour batterie secondaire au lithium, son procédé de préparation, matériau actif à base de nickel pour batterie secondaire au lithium ainsi formé et batterie secondaire au lithium comprenant une électrode positive contenant le matériau actif à base de nickel
JP2020514970A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
US20200259173A1 (en) * 2017-11-21 2020-08-13 Lg Chem, Ltd. Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Same
JP2020535104A (ja) * 2017-09-28 2020-12-03 ビーワイディー カンパニー リミテッド 水酸化ニッケルコバルトマンガン、正極材料及びその製造方法、並びにリチウムイオン電池
CN112886001A (zh) * 2019-11-29 2021-06-01 艾可普罗 Bm 有限公司 正极活性材料及包括其的锂二次电池
WO2021194212A1 (fr) * 2020-03-26 2021-09-30 주식회사 엘지화학 Méthode de fabrication d'un matériau actif d'électrode positive
US11152618B2 (en) * 2016-12-02 2021-10-19 Samsung Sdi Co., Ltd. Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
CN115215389A (zh) * 2022-09-05 2022-10-21 中南大学 复合改性的前驱体以及正极材料、及其制备方法
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
KR20130080565A (ko) * 2012-01-05 2013-07-15 한국교통대학교산학협력단 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지
KR20130111413A (ko) * 2012-03-31 2013-10-10 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20140092492A (ko) * 2012-12-31 2014-07-24 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
KR20130080565A (ko) * 2012-01-05 2013-07-15 한국교통대학교산학협력단 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지
KR20130111413A (ko) * 2012-03-31 2013-10-10 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20140092492A (ko) * 2012-12-31 2014-07-24 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11742482B2 (en) 2016-07-20 2023-08-29 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
CN110226251B (zh) * 2016-12-02 2022-07-05 三星Sdi株式会社 镍活性物质前驱体及其制备方法、镍活性物质以及锂二次电池
US20220037662A1 (en) * 2016-12-02 2022-02-03 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery produced from the nickel-based active material precursor, and lithium secondary battery having cathode containing the nickel-based active material
CN110226251A (zh) * 2016-12-02 2019-09-10 三星Sdi株式会社 镍活性物质前驱体及其制备方法、镍活性物质以及锂二次电池
US11152618B2 (en) * 2016-12-02 2021-10-19 Samsung Sdi Co., Ltd. Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
US11837724B2 (en) 2016-12-02 2023-12-05 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery produced from the nickel-based active material precursor, and lithium secondary battery having cathode containing the nickel-based active material
JP2018098205A (ja) * 2016-12-08 2018-06-21 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11309542B2 (en) 2016-12-08 2022-04-19 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
CN110178253A (zh) * 2016-12-22 2019-08-27 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
JP2020514970A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
JP2020514972A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
US11462725B2 (en) 2016-12-22 2022-10-04 Posco Cathode active material for lithium secondary battery
CN110178253B (zh) * 2016-12-22 2022-05-10 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
JP7421039B2 (ja) 2016-12-22 2024-01-24 ポスコホールディングス インコーポレーティッド 正極活物質、その製造方法、およびこれを含むリチウム二次電池
JP2021177491A (ja) * 2016-12-22 2021-11-11 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN107123792A (zh) * 2017-04-07 2017-09-01 山东玉皇新能源科技有限公司 双层复合结构三元正极材料及其制备方法
US11183685B2 (en) 2017-06-29 2021-11-23 Lg Chem, Ltd. Method for preparing positive electrode active material precursor for lithium secondary battery
CN110139834A (zh) * 2017-06-29 2019-08-16 株式会社Lg化学 用于制备锂二次电池用正极活性材料前体的方法
CN110139834B (zh) * 2017-06-29 2022-03-08 株式会社Lg化学 用于制备锂二次电池用正极活性材料前体的方法
CN107579236A (zh) * 2017-09-13 2018-01-12 桑顿新能源科技有限公司 全梯度高镍三元前驱体及全梯度高镍三元正极材料的制备方法
JP2020535104A (ja) * 2017-09-28 2020-12-03 ビーワイディー カンパニー リミテッド 水酸化ニッケルコバルトマンガン、正極材料及びその製造方法、並びにリチウムイオン電池
US11784308B2 (en) 2017-09-28 2023-10-10 Byd Company Limited Nickel cobalt manganese hydroxide, cathode material, preparation method thereof and lithium ion battery
US20200259173A1 (en) * 2017-11-21 2020-08-13 Lg Chem, Ltd. Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Same
US20190190060A1 (en) * 2017-12-19 2019-06-20 3M Innovative Properties Company Electrochemical cells
JP2019169374A (ja) * 2018-03-23 2019-10-03 住友化学株式会社 リチウム複合金属酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019182153A1 (fr) * 2018-03-23 2019-09-26 住友化学株式会社 Oxyde métallique contenant du lithium, matériau actif d'électrode positive pour batteries secondaires au lithium, électrode positive pour batteries secondaires au lithium, et batterie secondaire au lithium
CN111056577A (zh) * 2018-10-16 2020-04-24 三星Sdi株式会社 基于镍的活性材料前体、其制备方法、基于镍的活性材料、和锂二次电池
US11444281B2 (en) 2018-10-16 2022-09-13 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
US11677076B2 (en) 2018-10-16 2023-06-13 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
US11735729B2 (en) 2018-10-16 2023-08-22 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
CN111056577B (zh) * 2018-10-16 2022-08-16 三星Sdi株式会社 基于镍的活性材料前体、其制备方法、基于镍的活性材料、和锂二次电池
EP3640215A1 (fr) * 2018-10-16 2020-04-22 Samsung SDI Co., Ltd. Précurseur de matériau actif à base de nickel pour batterie secondaire au lithium, son procédé de préparation, matériau actif à base de nickel pour batterie secondaire au lithium ainsi formé et batterie secondaire au lithium comprenant une électrode positive contenant le matériau actif à base de nickel
CN112886001A (zh) * 2019-11-29 2021-06-01 艾可普罗 Bm 有限公司 正极活性材料及包括其的锂二次电池
WO2021194212A1 (fr) * 2020-03-26 2021-09-30 주식회사 엘지화학 Méthode de fabrication d'un matériau actif d'électrode positive
US11824193B2 (en) 2020-03-26 2023-11-21 Lg Chem, Ltd. Method of manufacturing positive electrode active material
CN115215389A (zh) * 2022-09-05 2022-10-21 中南大学 复合改性的前驱体以及正极材料、及其制备方法
CN115215389B (zh) * 2022-09-05 2023-04-07 中南大学 复合改性的前驱体以及正极材料、及其制备方法

Similar Documents

Publication Publication Date Title
WO2016175597A1 (fr) Matériau actif de cathode pour batterie secondaire, procédé de préparation associé et batterie secondaire le comprenant
WO2019235885A1 (fr) Matériau actif de cathode pour batterie secondaire, son procédé de fabrication et batterie secondaire au lithium le comprenant
WO2017150945A1 (fr) Précurseur de matière active d'électrode positive pour batterie secondaire et matière active d'électrode positive préparée à l'aide de celui-ci
WO2019221497A1 (fr) Matériau actif de cathode pour batterie secondaire, son procédé de fabrication et batterie secondaire au lithium le comprenant
WO2019151834A1 (fr) Matériau actif de cathode pour batterie secondaire, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2019172568A1 (fr) Matériau actif de cathode, son procédé de fabrication, et électrode de cathode et batterie secondaire la comprenant
WO2019103363A1 (fr) Matériau actif de cathode pour batterie rechargeable, son procédé de préparation et batterie rechargeable au lithium comprenant celui-ci
WO2019168301A1 (fr) Matériau actif d'électrode positive pour batterie secondaire, sa méthode de préparation, et batterie secondaire au lithium le comprenant
WO2019074306A2 (fr) Matériau actif d'électrode positive, son procédé de préparation et batterie rechargeable au lithium le comprenant
WO2017095081A1 (fr) Matière active d'électrode positive pour batterie secondaire, électrode positive, pour batterie secondaire, la comprenant, et batterie secondaire
WO2019212321A1 (fr) Procédé de nettoyage de matériau actif d'électrode positive, procédé de fabrication de matériau actif d'électrode positive le comprenant et matériau actif d'électrode positive fabriqué par ce procédé
WO2019059654A1 (fr) Précurseur de matériau actif de cathode pour batterie secondaire, matériau actif de cathode, et batterie secondaire au lithium le comprenant
WO2021154021A1 (fr) Précurseur de matériau actif d'électrode positive pour batterie secondaire, matériau actif d'électrode positive, et batterie secondaire au lithium le comprenant
WO2016053056A1 (fr) Matériau actif d'électrode positive pour batterie rechargeable au lithium, son procédé de préparation, et batterie rechargeable au lithium le comprenant
WO2022124801A1 (fr) Précurseur de matériau actif de cathode pour batterie secondaire au lithium, matériau actif de cathode et cathode le comprenant
WO2018160023A1 (fr) Matériau actif de cathode pour pile rechargeable au lithium, son procédé de fabrication et pile rechargeable au lithium comprenant ledit matériau
WO2022139311A1 (fr) Matériau actif d'électrode positive de batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium le comprenant
WO2021187907A1 (fr) Matériau de cathode de batterie secondaire au lithium, et cathode et batterie secondaire au lithium comprenant chacune ledit matériau
WO2016053054A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium, procédé de préparation de celui-ci et batterie secondaire au lithium comprenant celui-ci
WO2016053051A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium, son procédé de fabrication, et batterie secondaire lithium comprenant celui-ci
WO2022154603A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium, son procédé de fabrication, ainsi qu'électrode positive et batterie secondaire au lithium le comprenant
WO2022114872A1 (fr) Matériau actif de cathode pour une batterie secondaire au lithium, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2021025464A1 (fr) Copolymère pour électrolyte polymère, électrolyte polymère en gel le comprenant et batterie secondaire au lithium
WO2019194609A1 (fr) Procédé de fabrication de matériau de cathode active pour batterie secondaire au lithium, matériau de cathode active pour batterie secondaire au lithium, cathode comprenant celui-ci pour batterie secondaire au lithium et batterie secondaire au lithium comprenant celui-ci
WO2021153936A1 (fr) Matériau actif d'électrode positive pour batterie secondaire et batterie secondaire au lithium comprenant celui-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567213

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017556664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE