WO2016175554A1 - 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2016175554A1
WO2016175554A1 PCT/KR2016/004409 KR2016004409W WO2016175554A1 WO 2016175554 A1 WO2016175554 A1 WO 2016175554A1 KR 2016004409 W KR2016004409 W KR 2016004409W WO 2016175554 A1 WO2016175554 A1 WO 2016175554A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
positive electrode
secondary battery
electrode active
Prior art date
Application number
PCT/KR2016/004409
Other languages
English (en)
French (fr)
Inventor
최지훈
전인국
조승범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160050071A external-priority patent/KR101840541B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/567,228 priority Critical patent/US10651500B2/en
Priority to JP2017556647A priority patent/JP6543726B2/ja
Priority to CN201680024959.6A priority patent/CN107534132B/zh
Publication of WO2016175554A1 publication Critical patent/WO2016175554A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same, and more particularly, to a cathode active material for a lithium secondary battery having lithium ion conductivity, a method for manufacturing the same, and a lithium secondary battery including the same. .
  • lithium secondary batteries are mainly used as a power source for mobile IT devices such as mobile phones, and as demand for electric vehicles (plug-in vehicles) and energy storage systems (ESS) increases, The need for larger capacity is increasing.
  • lithium ions (Li + ) present in an ionic state move from a cathode to a cathode when discharged and from a cathode to a cathode when charged.
  • a cathode active material of a lithium secondary battery As a cathode active material of a lithium secondary battery, a layered layer (LiCoO 2 , LiNi 1 -x- y Co x Mn y O 2 There are a variety of metal oxides being used, such as (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1), spinel (LiMn 2 O 4), and post bingye (LiFePO 4).
  • the surface modification technology of the positive electrode active material can effectively improve the deterioration of battery characteristics and thermal stability caused by side reactions due to the direct contact between the positive electrode active material and the electrolyte, and has been reported as an important technology for developing high capacity / high energy materials. .
  • the surface modifying material used for the surface modification of the positive electrode active material is chemically stable, but since a metal oxide having low electrical or ionic conductivity is mainly used, the movement of lithium ions is limited, thereby reducing the capacity. This may cause problems.
  • the first technical problem of the present invention is to provide a positive electrode active material for a secondary battery comprising lithium metal phosphate nanoparticles that can increase the structural stability of the positive electrode active material, while giving a high lithium ion conductivity.
  • a second technical problem of the present invention is to provide a method for producing the positive electrode active material.
  • the third technical problem of the present invention is to provide a positive electrode for a secondary battery having improved capacity, thermal safety, and high temperature lifetime by including the surface-modified cathode active material.
  • a fourth technical problem of the present invention is to provide a secondary battery having the secondary battery positive electrode.
  • Lithium transition metal oxide particles represented by Formula 1 Lithium transition metal oxide particles represented by Formula 1;
  • cathode active material for a secondary battery comprising a; lithium metal phosphate nanoparticles represented by the following formula (2) disposed on the surface of the lithium transition metal oxide particles.
  • M is at least one metal selected from the group consisting of Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc and Y, 0 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1.
  • M ' is Al, Y, Cr or Ca
  • M' ' is Ge, Ti, Sn, Hf, Zn or Zr, where 0 ⁇ x ⁇ 0.5.
  • the method may further include a heat treatment step after the coating step according to the crystal state of the lithium metal phosphate nanoparticles disposed on the lithium transition metal oxide particle surface.
  • the present invention also provides a secondary battery including a positive electrode including the surface-modified positive electrode active material of the present invention, a negative electrode including the negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • a cathode active material having increased structural stability and lithium ion conductivity may be manufactured.
  • the side-modification of the electrolyte and the positive electrode active material may be prevented by the surface-modified positive electrode active material, and thus, a lithium secondary battery having improved rate rate characteristics, high temperature, high voltage stability, and cycle life characteristics may be manufactured.
  • FIG. 2 is an XRD graph of lithium metal phosphate nanoparticles prepared in Preparation Example 1.
  • FIG. 4 is an XRD graph of lithium metal phosphate nanoparticles prepared in Preparation Example 2.
  • Example 5 is an electron micrograph of the surface of the positive electrode active material including lithium metal phosphate nanoparticles prepared according to Example 1 of the present invention.
  • Example 6 is an electron micrograph of the surface of the positive electrode active material including lithium metal phosphate nanoparticles prepared according to Example 2 of the present invention.
  • Example 7 is an electron micrograph of the surface of the cathode active material including lithium metal phosphate nanoparticles prepared according to Example 3 of the present invention.
  • Example 8 is an electron micrograph of the surface of the positive electrode active material including lithium metal phosphate nanoparticles prepared according to Example 4 of the present invention.
  • FIG. 11 is a graph showing the capacity change according to the charge and discharge cycle of the cell according to Experimental Example 2 of the present invention.
  • FIG. 13 is a graph showing the capacity change according to the charge and discharge cycle of the cell according to Experimental Example 3 of the present invention.
  • ionic conductivity should be understood to have the same meaning as the terms “ion conductivity”, “ion conductivity” and the like.
  • the conventional cathode active material can improve the structural safety of the secondary battery by freeing the flow of electrons by the surface modification and by acting as a protective shell mechanically and chemically to improve the efficiency for the high rate.
  • Chemically stable carbonaceous materials or metal oxides having low electrical and ionic conductivity such as Al 2 O 3 or ZrO 2 , were used as materials used for the surface modification.
  • a material having low electrical and ionic conductivity such as a metal oxide, the movement of lithium ions between the electrolyte and the positive electrode active material is limited, and the interface resistance may increase.
  • the present invention is to provide a surface modification material that can increase the structural stability of the positive electrode active material while giving a high lithium ion conductivity.
  • Lithium transition metal oxide particles represented by Formula 1 Lithium transition metal oxide particles represented by Formula 1;
  • cathode active material for a secondary battery comprising a; lithium metal phosphate nanoparticles represented by the following formula (2) disposed on the surface of the lithium transition metal oxide particles.
  • M is at least one metal selected from the group consisting of Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc and Y, 0 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1.
  • M ' is Al, Y, Cr or Ca
  • M' ' is Ge, Ti, Sn, Hf, Zn or Zr, where 0 ⁇ x ⁇ 0.5.
  • the LiNi 1 -x- y Co x Mn y O 2 (NMC) lithium transition metal oxide is a three-component material represented by Formula 1 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), for example, LiNi 0.6 Mn 0.2 Co 0.2 O 2 , and the like.
  • the lithium transition metal oxide may further include at least one compound having a spinel structure or an olivine structure together with the lithium transition metal oxide particles represented by Chemical Formula 1.
  • the lithium metal phosphate nanoparticles represented by Chemical Formula 2 refers to a lithium ion conductor material that provides high lithium ion conductivity of a NASICON structure.
  • nanocon is an abbreviation of Na Super Ion Conductor, and examples thereof include Na 3 Zr 2 Si 2 PO 12 , NaZr 2 (PO 4 ) 3 , and the like.
  • the lithium metal phosphate-based nanoparticles of the present invention have the same or similar crystal structure as that of the nacicon compound, wherein Na is substituted with lithium and Zr is partially or entirely substituted with other metals.
  • the lithium metal phosphate nanoparticles represented by Chemical Formula 2 may be LiTi 2 (PO 4 ) 3 , LiZr 2 (PO 4 ) 3 , or Li 1 + x Al x Ti in which Li is partially substituted with Al or Y. 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 0.5, referred to as “LATP”), Li 1 + x Al x Zr 2 -x (PO 4 ) 3 (0 ⁇ x ⁇ 0.5) and Li 1 + x Y x Zr 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 0.5, referred to as “LYZP”).
  • the lithium metal phosphate nanoparticles represented by Chemical Formula 2 are representative examples of Li 1 . 4 Al 0 . 4 Ti 1 .6 (PO 4) 3, Li 1. 15 Al 0 . 15 Zr 1 .85 (PO 4) 3, or Li 1.15 Y 0.15 Zr 1.85 (PO 4) 3 Can be mentioned.
  • the LiTi 2 (PO 4 ) 3 , and LiZr 2 (PO 4 ) 3 shows a lithium ion conductivity of 1 ⁇ 10 -6 S / cm at room temperature, while Li is partially substituted with Al or Y Li 1 + x Al x Ti 2 -x (PO 4 ) 3 , Li 1 + x Al x Zr 2 -x (PO 4 ) 3 (0 ⁇ x ⁇ 0.5) and Li 1 + x Y x Zr 2 -x ( PO 4 ) 3 is 1 ⁇ 10 -3 S / cm at room temperature Higher lithium ion conductivity may be exhibited, from 1 ⁇ 10 ⁇ 5 S / cm.
  • the lithium metal phosphate nanoparticles may have an average particle diameter (D50) of 200 nm or less, specifically, 10 nm to 200 nm, more specifically, 10 nm to 100 nm, based on a long axis.
  • D50 average particle diameter
  • the lithium metal phosphate nanoparticles may be included in 0.1 wt% to 2 wt%, specifically 0.3 wt% to 1 wt% based on the total weight of the cathode active material. If the content of the lithium metal phosphate nanoparticles is less than 0.1% by weight, the effect of the coating may be insignificant. When the content of the lithium metal phosphate is less than 2% by weight, the amount of the cathode active material is relatively reduced, so that the capacity per gram decreases. There is.
  • the lithium ion conductivity of the cathode active material including the lithium metal phosphate nanoparticles of the present invention is 1 ⁇ 10 -3 S / cm to 1 ⁇ 10 -6 S / cm, specifically 1 ⁇ 10 -4 S / cm to 1 ⁇ It can be 10 -5 S / cm.
  • the lithium metal phosphate nanoparticles disposed on the transition metal oxide particle surface have a very stable structure by strong PO bonds.
  • the thermal stability is increased on the surface of the transition metal oxide particles, and the lithium metal phosphate nanoparticles are very stable even in the reaction with the electrolyte. Can be placed.
  • the lithium metal phosphate nanoparticles may serve as a protective layer along with surface modification on the surface of the lithium transition metal oxide particle.
  • a nanoparticle-lithiated lithium metal phosphate compound having a size of 200 nm or less on the surface of the lithium transition metal oxide particle, the surface of the transition metal oxide particle reacts with an electrolyte based on LiPF 6 during charge and discharge.
  • Forming a thin film of "Co-Al-OF" form in the to increase the structural stability it is possible to prevent the side reaction with the electrolyte solution to prevent the dissolution of the transition metal such as cobalt (Co dissolution).
  • Co dissolution Co dissolution
  • It provides a method for producing a cathode active material for a secondary battery comprising a; (c) mixing the coating solution and the lithium transition metal oxide particles, coating the lithium metal phosphate nanoparticles on the surface of the lithium transition metal oxide particles.
  • lithium metal phosphate nanoparticles having a uniform size with an average particle diameter of 200 nm or less are first synthesized, and then coated on the surface of the transition metal oxide particles to form lithium metal phosphate nanoparticles on the surface of the transition metal oxide particles. Can be placed.
  • the method may further include or omit the heat treatment step after the coating step according to the crystal state of the lithium metal phosphate nanoparticles.
  • the synthesized lithium metal phosphate nanoparticles are in a crystallized NASICON state, it is not necessary to perform a subsequent heat treatment step, but when the synthesized lithium metal phosphate nanoparticles are in an amorphous state, additionally perform a subsequent heat treatment step. Can be crystallized.
  • Preparing a mixed solution by adding a reaction solvent, a lithium precursor, a phosphorus precursor, and at least two or more metal precursors together in an atmospheric pressure reactor;
  • lithium metal phosphate nanoparticles may include.
  • the size of the crystallized lithium metal phosphate nanoparticles may have an average particle diameter (D50) of 200 nm or less, specifically 10 nm to 200 nm, more specifically 10 nm to 100 nm on the basis of a long axis.
  • D50 average particle diameter
  • the atmospheric pressure reactor used in the method of the present invention may use a reactor commonly used in the art for producing a cathode active material, the type is not particularly limited.
  • a reactor commonly used in the art for producing a cathode active material the type is not particularly limited.
  • it may be an open reactor or a closed reactor.
  • a solvent containing a diol, a polyol, or a glycol having at least two hydroxyl groups in a molecule may be used, and specific examples thereof include ethylene glycol, 1,2- Propylene glycol, 1,3-propylene glycol, glycerin, glycerol, diethyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol or Mixtures of two or more of these can be used.
  • lithium metal phosphate particles of several tens of nm in size since a simple grinding method is used, it is difficult to produce lithium metal phosphate particles of several tens of nm in size.
  • the present invention by performing a polyol synthesis reaction using a solvent containing a diol, a polyol, or a glycol having at least two hydroxyl groups, lithium metal phosphate nanoparticles of several to several tens of nm in size can be prepared. have. Furthermore, by increasing the temperature during the polyol reaction or lengthening the reaction time, the particles can be crystallized or the particle size can be controlled.
  • reaction solvent may be used 100 parts by weight to 10,000 parts by weight, specifically 100 parts by weight to 1,000 parts by weight based on 100 parts by weight of the total content of the precursor.
  • the lithium precursor may be, for example, lithium acetate dihydrate (CH 3 COOLi ⁇ 2H 2 O), lithium hydroxide monohydrate (LiOH.H 2 O), lithium hydroxide (LiOH), Selected from the group consisting of lithium carbonate (Li 2 CO 3 ), lithium phosphate (Li 3 PO 4 ), lithium phosphate dodecahydrate (Li 3 PO 4 12H 2 O) and lithium oxalate (Li 2 C 2 O 4 ) It may be one or a mixture of two or more.
  • the phosphorus precursors also include ammonium phosphate ((NH 4 ) 2 HPO 4 ), phosphoric acid, tri-ammonium phosphate trihydrate ((NH 4 ) 3 PO 4 .3H 2 O), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) may be a mixture of one or two or more selected from the group consisting of.
  • the two or more metal precursors may include an aluminum precursor, a titanium precursor, a yttrium precursor, a zirconium precursor, or the like.
  • the aluminum precursor may be aluminum acetate and aluminum nitrate and aluminum oxide (Al 2 O 3 ).
  • the titanium precursor is titanium (IV) butoxide (Ti (OCH 2 CH 2 CH 2 CH 3 ) 4 ), titanium (IV) isopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ), titanium chloride (TiCl 4 ), titanium fluoride (TiF 4 ) and tetrakis dimethylamino titanium (TDMAT, Ti [N (CH 3 ) 2 ] 4 ), or a mixture of two or more thereof.
  • the yttrium precursors also include yttrium nitrate hexahydrate (Y (NO 3 ) 3 .6H 2 O), yttrium acetate hydrate ((CH 3 CO 2 ) 3 YH 2 O), and yttrium chloride hexahydrate (Cl 3 Y. 6H 2 O), yttrium oxide (Y 2 O 3 ) or a mixture of two or more selected from the group consisting of.
  • the zirconium precursor is zirconium (IV) oxy-nitrate hydrate (ZrO (NO 3) 2 ⁇ xH 2 O), zirconium propoxide (C 12 H 28 O 4 Zr ), zirconium oxychloride octa-hydrate (Cl 2 OZr ⁇ 8H 2 O), or zirconium (IV) acetylacetonate (Zr (C 5 H 7 O 2 ) 4 ) It may be a single or a mixture of two or more selected from the group consisting of.
  • the molar ratio of the lithium precursor: phosphorus precursor: two or more metal precursors may be 1.1 to 1.5: 3: 0.6 to 2.5, specifically, lithium precursor:
  • the molar ratio of phosphorus precursor: first metal precursor: second metal precursor is 1.1 to 1.5: 3: 0.1 to 0.55: 0.5 to 1.95, more specifically 1.15 to 1.4: 3: 0.15 to 0.4: 1.6 to 1.85, more specifically 1.4 3: 3: 0.4: 1.6.
  • a NASICON structural material having an ion conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more may be prepared, If the range is over or below the range, the nanoparticle compound of the NASICON structure having the above ion conductivity cannot be prepared.
  • the mixed solution may be stirred while raising the temperature to 200 ° C, thereby preparing a lithium metal phosphate compound.
  • the mixing and stirring step may be carried out while heating to 190 °C to 220 °C, specifically 200 °C, stirring for 3 to 24 hours.
  • the mixed solution was cooled to room temperature and then filtered to obtain lithium metal phosphate nanoparticles.
  • the obtained lithium phosphate nanoparticles can be washed sequentially using acetone and methanol.
  • the lithium metal phosphate nanoparticles are dispersed in (b) a dispersion solvent to prepare a coating solution.
  • the solvent used may be an alcohol solvent such as ethanol or methanol.
  • the coating solution and the lithium transition metal oxide particles may be mixed to place lithium metal phosphate nanoparticles on the surface of the transition metal oxide particles.
  • the wet method may prepare a coating solution by dispersing the nanoparticles lithium phosphate compound in a dispersion solvent, and then mixed and immersed lithium transition metal oxide particles in the coating solution, it can be carried out while stirring at 80 °C temperature. .
  • the heat treatment step may be further included or omitted depending on the crystal state of the lithium metal phosphate nanoparticles formed after the coating step. That is, when the lithium metal phosphate nanoparticles are in the crystallized nasicon state, it is not necessary to perform the subsequent heat treatment step, but when the lithium metal phosphate nanoparticles are in the amorphous state, the subsequent heat treatment step is further performed to crystallize It is desirable to convert to state.
  • the heat treatment step may be carried out by heating to a temperature range of 400 to 900 °C under an atmospheric pressure of 10 bar or less in an oxygen atmosphere or an air atmosphere, heat treatment time is not particularly limited, for example, to be carried out within 0.5 to 5 hours desirable.
  • lithium metal phosphate nanoparticles may be disposed or coated on the surface of the lithium transition metal oxide particle of the present invention based on the total weight of the positive electrode active material.
  • an embodiment of the present invention provides a positive electrode including the positive electrode active material.
  • the positive electrode may be manufactured as follows.
  • the cathode active material composition After preparing at least one of a cathode active material, a solvent, optionally a conductive material, a binder and a filler of the present invention to prepare a cathode active material composition, the cathode active material composition is coated and dried on a cathode current collector to form a cathode active material layer A positive electrode plate can be manufactured.
  • the cathode active material composition may be cast on a separate support, and then a film obtained by peeling from the support may be laminated on the aluminum current collector to prepare a cathode electrode plate having a cathode active material layer formed thereon.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite and artificial graphite
  • Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • the binder is not particularly limited as long as the component assists in bonding the active material and the conductive material and bonding to the current collector, and is not particularly limited.
  • the binder may be typically included in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • the filler may be optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material that does not cause chemical change in the battery, for example, an olefin polymer such as polyethylene, polypropylene; Fibrous materials, such as glass fiber and carbon fiber, can be used.
  • an olefin polymer such as polyethylene, polypropylene
  • Fibrous materials such as glass fiber and carbon fiber, can be used.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon, nickel, titanium on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the current collector may have a thickness of 3 to 500 ⁇ m typically, may form a fine concavo-convex on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a cathode comprising a cathode active material of the present invention
  • a negative electrode comprising a negative electrode active material
  • a separator interposed between the positive electrode and the negative electrode, and
  • a lithium secondary battery including a nonaqueous electrolyte.
  • the negative electrode is manufactured by applying a negative electrode mixture containing a negative electrode active material on a negative electrode current collector and then drying the negative electrode mixture.
  • the negative electrode mixture may include components such as a conductive material, a binder, and a filler as described above, if necessary. May be included.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the current collector may have a thickness of typically 3 to 500 ⁇ m, and like the positive electrode current collector, it is also possible to form a fine concavo-convex on the surface of the current collector to enhance the bonding strength of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength may be used.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, the thickness may be generally 5 to 300 ⁇ m.
  • the separator may be, for example, an olefin polymer such as polypropylene having chemical resistance and hydrophobicity; Sheets or non-woven fabrics made of glass fibers or polyethylene, etc. may be used.
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent or an organic solid electrolyte is used as the electrolyte solution.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dime Methoxyethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, Phosphate triester, trimethoxy methane, dioxoron derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, ethyl propionate
  • An aprotic organic solvent such as may be used.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, and ions. Polymers including sex dissociating groups and the like can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, and imide Can be.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • Li 1 of the crystalline phase . 4 Al 0 . 4 Ti 1 .6 (PO 4) 3 is the generation can be confirmed as compared with the XRD graph of the LiTi 2 (PO 4) 3 crystalline phases.
  • FIG, LiTi 2 (PO 4) as shown is of a similar intensity to a similar position and the crystal phase XRD graph of peak 3 Li 1 as shown in Fig. 4 Al 0 . 4 Ti 1 .6 (PO 4) it can be seen that the 3 is generated.
  • Al is partially substituted.
  • Li 1 obtained above . 15 Y 0 . 15 to 1 .85 Zr (PO 4) 3 added to the nanoparticles at a temperature above 750 °C heat treatment to prepare a Li 1.4 Y 0.4 Ti 1.6 (PO 4) 3 crystal phase (see Fig. 3).
  • Li 1 of the crystalline phase . 4 Y 0 . 4 Ti 1 .6 (PO 4) 3 is the generation can be confirmed as compared with the XRD graph of the LiZr 2 (PO 4) 3 crystalline phases.
  • LiZr 2 (PO 4) as Li 1 may appear similar to that of a similar intensity to the crystalline phase locations and XRD graph of the third peak.
  • 4 Y 0 . 4 Ti 1 .6 (PO 4) it can be seen that the 3 is generated.
  • Y is partially substituted.
  • Preparation Example 1 the lithium metal phosphate (LATP) and distributed to the appropriate concentration of nanoparticles in ethanol to prepare a coating solution, the lithium-transition metal oxide particles in the coating solution of (LiNi 0. 85 Co 0. 10 Al 0. 05 O 2 , NCA) (20 g) were mixed, followed by stirring until the solvent evaporated at a temperature of 80 ° C. to prepare a cathode active material in which lithium metal phosphate nanoparticles were disposed on the surface of the transition metal oxide particle.
  • LATP lithium metal phosphate
  • NCA NCA
  • the cathode active material slurry was prepared by mixing the cathode active material, the conductive material (SC65), and the binder (polyvinylidene fluoride) in a weight ratio of 93: 4: 3.
  • the prepared positive electrode slurry was coated on Al foil and then rolled to prepare a positive electrode plate for a coin cell.
  • the prepared positive electrode plate was punched to 1.6 cm, used as a counter electrode, and placed in a glove box containing an electrolyte solution (a mixed solution of ethylene carbonate and dimethyl carbonate (1: 1 volume ratio) in which 1M LiPF 6 was dissolved).
  • Coin cells were prepared.
  • LATP lithium metal phosphate
  • a coin cell was manufactured in the same manner as in Example 1, except that the NMC cathode active material was used instead of the cathode active material (NCA) of Example 1.
  • NMC cathode active material was used instead of the cathode active material (NCA) of Example 1.
  • the positive electrode active material LiCoO 2 ) (20g) is added to the coating solution and then the solvent is evaporated at a temperature of 80 °C By stirring until the positive electrode active material in which the phosphate nanoparticles are disposed on the surface of the lithium transition metal oxide particles.
  • Example 2 instead of the positive electrode active material (NCA) of Example 1, the LiCoO 2 positive electrode active material was used, and a positive electrode active material, a conductive material (SC65), and a binder (polyvinylidene fluoride) were used in a weight ratio of 96: 2: 2.
  • a coin cell was manufactured in the same manner as in Example 1 except for using the same.
  • Preparative Example 2 a lithium metal phosphate nanoparticles (LYZP) having an average particle size of several tens nm dispersed in a suitable concentration in ethanol to prepare a coating solution, and then, the positive electrode active material in the coating solution (LiCoO 2) the incorporation of (20g) and then After stirring, the solvent was evaporated at a temperature of 80 ° C. to prepare a cathode active material in which phosphate nanoparticles were disposed on the surface of the lithium transition metal oxide particle.
  • LYZP lithium metal phosphate nanoparticles
  • the positive electrode active material coated with the lithium metal phosphate nanoparticles of Preparation Example 2 a conductive material (SC65), and a binder (polyvinylidene fluoride) were used in a weight ratio of 96: 2: 2.
  • a coin cell was manufactured in the same manner as in Example 1, except that.
  • Example 2 A coin cell and in the same manner as Example 1 except for using the lithium metal phosphate (LATP) positive electrode active material (LiNi 0.85 Co 0.10 Al 0. 05 O 2, NCA) are not coated nanoparticles were prepared.
  • LATP lithium metal phosphate
  • NCA negative electrode active material
  • Coin cells were prepared in the same manner as in Example 2, except that lithium metal phosphate (LATP) nanoparticles were not coated with a cathode active material (LiNi 0.6 Mn 0.2 Co 0.2 O 2 , NMC).
  • LATP lithium metal phosphate
  • a coin cell was prepared in the same manner as in Example 3 except for using a cathode active material (LiCoO 2 ) not coated with lithium metal phosphate (LATP) nanoparticles.
  • LiCoO 2 cathode active material
  • LiATP lithium metal phosphate
  • LiOH.H 2 O, (NH 4 ) 2 HPO 4 was dissolved in water at a molar ratio of 3: 1, and then the dry powder was ground using a ball mill.
  • the positive electrode active material (LiCoO 2 ) (20g) was mixed and mixed with the coating solution, and then the solvent at 80 °C temperature After stirring until the evaporation and heat treatment at a temperature of 450 °C to prepare a cathode active material containing lithium metal phosphate nanoparticles.
  • Example 1 and Comparative Example 1 were subjected to 50 charge / discharge cycles at 3.0V to 4.6V voltage and rate c-rate 0.5C to change capacity and charge / discharge according to charge / discharge cycles. The change was measured and the results are shown in FIGS. 9 and 10, respectively.
  • Example 2 For the coin cells of Example 2 and Comparative Example 2, 50 charge and discharge at 3.0V to 4.6V voltage and the rate (c-rate) 0.5C to perform the capacity change and charge / discharge according to the charge and discharge cycle The change was measured and the results are shown in FIGS. 11 and 12, respectively.
  • the coin cell prepared using the positive electrode active material containing the lithium phosphate (LATP) nanoparticles of Example 2 and the lithium metal phosphate nanoparticles of Comparative Example 2 When the capacity change of the coin cell containing the positive electrode active material was measured for the charge / discharge cycle, the cell of Example 2 and the cell of Comparative Example 2 showed similar capacities up to 20 cycles, and thereafter, the cell of Comparative Example 2 It can be seen that the reduction in capacity is greater than that in Example 2.
  • the coin cells of Example 2 and Comparative Example 2 show similar charge / discharge graphs in the first cycle when the 4.6V cycle proceeds, but as the cycle progresses, Compared with the coin cell of Example 2, it can be seen that the cell of Example 2 has a lower voltage drop and a lower capacity, and thus has better electrochemical properties.
  • the coin cells of Examples 3 and 4 and Comparative Examples 3 and 4 were charged and discharged at a voltage of 3.0 V to 4.5 V at 0.5 C when charging and rate c-rate, and 1.0 C when discharging. Capacity change and charge / discharge change according to charge / discharge cycles were measured. The results are shown in FIGS. 13 to 17, respectively.
  • the coin cells of Comparative Example 3 and Comparative Example 4 were continuously subjected to the cycle. While the capacity decreased, the coin cells of Examples 3 and 4 decreased in capacity as the cycle progressed, but it was confirmed that the deceleration width was smaller than that of Comparative Examples 3 and 4. This may be determined that lithium metal phosphate nanoparticles disposed on the surface of the lithium transition metal oxide particles prevent direct contact between the positive electrode active material and the electrolyte solution, thereby preventing Co elution to decrease capacity reduction.
  • the coin cell of Example 3 (see FIG. 14) and the coin cell of Example 4 (see FIG. 15) prepared using the cathode active material including lithium metal phosphate nanoparticles prevent side reactions with the electrolyte. It was confirmed that the OCV at the initial stage of discharge was maintained by improving the structural safety.
  • the capacity retention ratio was calculated by dividing the discharge capacity after 30 cycles of charge and discharge measured in FIG. 13 by the discharge capacity of the initial cycle, and the values are shown in Table 1 below.
  • Example 3 Example 4 Comparative Example 3 Comparative Example 4 Capacity retention after 30 cycles 95.5% 96.8% 68.6% 85.2%
  • the coin cells of Examples 3 and 4 and the coin cells of Comparative Examples 3 and 4 were subjected to one-time charging and discharging at a voltage of 3.0 V to 4.5 V and an initial rate of 0.2 C, followed by the same charging rate at 0.5 C.
  • the discharge rate was increased to 2 0.1C, 3 1.0C and 4 2.0C.
  • Example 3 Example 4 Comparative Example 3 Comparative Example 4 Initial charge (0.2C) mAh / g 196.2 195.4 195.7 195.1 Initial discharge (0.2C) 190.6 190.6 189.6 188.8 Initial charge and discharge efficiency % 97.1 97.5 96.9 96.8 1.0C (discharge) / 0.2 (discharge) 96.1 98.6 94.9 96.2 2.0C (discharge) /0.2 (discharge) 92.0 94.9 88.6 89.7
  • the coin cells of Examples 3 and 4 have a capacity of 92.0% and 94.9%, respectively, compared to 0.2C at 2C, while the capacity of the coin cells of Comparative Examples 3 and 4 is 88.6% and 89.7%, respectively. have.
  • the positive electrode active material containing the lithium metal phosphate nanoparticles of the present invention improves the lithium ion conductivity of the surface of the positive electrode active material during charge and discharge, thereby increasing the rate and decreasing the rate of capacity reduction.
  • Example 3 The coin cell of Example 3 and the coin cells prepared in Comparative Examples 3 and 4 after charging and discharging 30 times with 0.5C and 1.0C constant current charge at a voltage range of 3.0 to 4.5V compared to lithium metal at a high temperature of 45 °C The result was measured, and the result is shown in FIG.
  • the capacity retention ratio was calculated from the discharge capacity after the charge / discharge cycle 30 measured in FIG. 18 as the discharge capacity of the initial cycle, and the values are shown in Table 3 below.
  • the capacity retention rate after measuring the life of 30 cycles is 95.5%, while instead of the coin cell and nanoparticles of Comparative Example 3 made of a cathode active material containing no lithium metal phosphate nanoparticles
  • the capacity retention rate is low at 81.5% and 90.2%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및 상기 리튬 전이금속 산화물 입자 표면에 배치된 하기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자;를 포함하는 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것이다. [화학식 1] Li(1+a)(Ni1-b-cMbCoc)O2 상기 식에서, M은 Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc 및 Y로 이루어진 군으로부터 선택된 적어도 하나 이상의 금속이고, 0≤a≤0.2, 0≤b≤1, 0≤c≤1이다. [화학식 2] Li1+xM'xM''2-x(PO4)3 상기 식에서, M'는 Al, Y, Cr 또는 Ca 이고, M''는 Ge, Ti, Sn, Hf, Zn 또는 Zr 이며, 0≤x≤0.5이다.

Description

리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2015년 04월 30일자 한국 특허 출원 제10-2015-0061634호 및 2016년 4월 25일자 한국 특허 출원 제10-2016-0050071호에 기초한 우선권 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 리튬 이온전도성을 가지는 리튬 이차전지용 양극활물질과, 이의 제조 방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
현재 리튬 이차전지는 주로 휴대폰 등 모바일 IT 기기의 전원으로 사용되고 있으며, 전기차 (플러그인 전기자동차 (plug-in vehicle)) 및 에너지 저장 장치(energy storage system, ESS) 등에 대한 수요가 증가함에 따라, 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.
리튬 이차전지는 이온 상태로 존재하는 리튬 이온(Li+)이 방전 시에는 양극(cathode)에서 음극(anode)으로, 충전 시에는 음극에서 양극으로 이동하고, 이때 리튬 이온과 같이 전자가 이동하면서 전기를 생성하는 원리를 가진다.
리튬 이차전지의 양극활물질로는 층상계 (LiCoO2, LiNi1 -x- yCoxMnyO2 (0<x<1,0<y<1), 스피넬계 (LiMn2O4) 및 올리빈계 (LiFePO4) 등의 다양한 금속 산화물들이 사용되고 있다.
최근 이러한 리튬 이차전지용 양극활물질의 전기 화학적 특성을 더욱 향상시키기 위하여 양극활물질의 조성 변경, 입도 제어 또는 양극활물질의 표면 개질 기술 등에 대한 연구가 다양하게 진행되고 있다.
상기 양극활물질의 표면 개질 기술은 양극활물질과 전해액의 직접적인 접촉으로 인한 부반응에 기인하는 전지 특성의 열화와 열안정성 문제를 효과적으로 개선할 수 있어, 고용량/고에너지 소재 개발을 위한 중요한 기술로 보고되고 있다.
다만, 상기 양극활물질의 표면 개질에 사용되는 표면 개질 물질로는 화학적으로 안정하지만, 전기 또는 이온 전도도(ionic conductivity)가 낮은 금속 산화물이 주종을 이루기 때문에, 리튬 이온의 이동이 제한되어, 용량이 감소하는 문제가 발생할 수 있다.
따라서, 높은 리튬 이온의 전도성을 가지면서, 양극활물질의 구조적 안정성을 부여할 수 있는 표면 개질 물질 및 표면 개질 방법에 대한 연구의 개발이 시급한 실정이다.
선행기술문헌
한국 등록특허공보 제10-1463996호
한국 공개특허공보 제10-2015-0024564호
상기한 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 높은 리튬 이온전도도를 부여하면서, 양극활물질의 구조적 안정성을 높일 수 있는 리튬 금속 포스페이트 나노입자를 포함하는 이차전지용 양극활물질을 제공하는 것이다.
또한, 본 발명의 제2 기술적 과제는 상기 양극활물질의 제조 방법을 제공하는 것이다.
또한, 본 발명의 제3 기술적 과제는 상기 표면 개질된 양극활물질을 포함함으로써 고용량, 열안전성 및 고온 수명특성이 향상된 이차전지용 양극을 제공하는 것이다.
또한, 본 발명의 제4 기술적 과제는 상기 이차전지용 양극을 구비한 이차전지를 제공하는 것이다.
상기의 목적을 달성하기 위한 본 발명의 일실시예에서는,
하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및
상기 리튬 전이금속 산화물 입자 표면에 배치된 하기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자;를 포함하는 이차전지용 양극활물질을 제공한다.
[화학식 1]
Li(1+a)(Ni1-b-cMbCoc)O2
상기 식에서, M은 Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc 및 Y로 이루어진 군으로부터 선택된 적어도 하나 이상의 금속이고, 0≤a≤0.2, 0≤b≤1, 0≤c≤1이다.
[화학식 2]
Li1+xM'xM''2-x(PO4)3
상기 식에서, M'는 Al, Y, Cr 또는 Ca 이고, M''는 Ge, Ti, Sn, Hf, Zn 또는 Zr 이며, 0≤x≤0.5이다.
또한, 본 발명에서는
(a) 상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자를 합성하는 단계;
(b) 분산용매에 상기 리튬 금속 포스페이트 나노입자를 분산시켜 코팅 용액을 제조하는 단계; 및
(c) 상기 코팅 용액과 리튬 전이금속 산화물 입자를 혼합하여, 리튬 전이금속 산화물 입자 표면에 리튬 전도성을 가지는 리튬 금속 포스페이트 나노입자를 코팅하는 단계;를 포함하는 이차전지용 양극활물질의 제조 방법을 제공한다.
또한, 상기 방법은 리튬 전이금속 산화물 입자 표면에 배치된 리튬 금속 포스페이트 나노입자의 결정 상태에 따라 상기 코팅 단계 후에, 열처리 단계를 추가로 포함할 수 있다.
또한, 본 발명에서는 본 발명의 표면 개질된 양극활물질을 포함하는 양극과, 음극활물질을 포함하는 음극, 상기 양극과 음극 사이에 개재된 분리막, 및 비수 전해질을 포함하는 이차전지를 제공한다.
이상 설명한 바와 같이, 본 발명에서는 리튬 전이금속 산화물 표면에 리튬 전도성을 가지는 리튬 금속 포스페이트 나노입자를 코팅함으로써, 구조적 안정성 및 리튬 이온전도도가 증가된 양극활물질을 제조할 수 있다. 더욱이, 상기 표면 개질된 양극활물질에 의해 전해액과 양극활물질의 부반응을 방지할 수 있어, 율속 특성과, 고온 고전압 안정성 및 싸이클 수명 특성이 향상된 리튬 이차전지를 제조할 수 있다.
도 1은 제조예 1에서 제조된 리튬 금속 포스페이트 나노입자에 대한 전자현미경(SEM) 사진이다.
도 2는 제조예 1에서 제조된 리튬 금속 포스페이트 나노입자에 대한 XRD 그래프이다.
도 3은 제조예 2에서 제조된 리튬 금속 포스페이트 나노입자에 대한 전자현미경(SEM) 사진이다.
도 4는 제조예 2에서 제조된 리튬 금속 포스페이트 나노입자에 대한 XRD 그래프이다.
도 5는 본 발명의 실시예 1에 따라 제조된 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질 표면에 대한 전자현미경 사진이다.
도 6은 본 발명의 실시예 2에 따라 제조된 리튬 금속 포스페이트 나노입자를 포함하는 양극 활물질 표면에 대한 전자현미경 사진이다.
도 7은 본 발명의 실시예 3에 따라 제조된 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질 표면에 대한 전자현미경 사진이다.
도 8은 본 발명의 실시예 4에 따라 제조된 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질 표면에 대한 전자현미경 사진이다.
도 9는 본 발명의 실험예 1에 따른 셀의 충방전 싸이클에 따른 용량 변화 그래프이다.
도 10은 본 발명의 실험예 1에 따른 셀의 충방전 싸이클에 따른 충방전 변화 그래프이다.
도 11은 본 발명의 실험예 2에 따른 셀의 충방전 싸이클에 따른 용량 변화 그래프이다.
도 12는 본 발명의 실험예 2에 따른 셀의 충방전 싸이클에 따른 충방전 변화 그래프이다.
도 13은 본 발명의 실험예 3에 따른 셀의 충방전 싸이클에 따른 용량 변화 그래프이다.
도 14 내지 도 17은 본 발명의 실험예 3에 따른 셀의 충방전 싸이클에 따른 충방전 변화 그래프이다.
도 18은 본 발명의 실험예 5에 따른 셀에 대한 고온에서 충방전 싸이클에 따른 용량 변화 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서, "이온 전도도(ionic conductivity)"는 "이온 전도성", "이온 도전성" 등의 용어와 동일한 의미로 이해되어야 한다.
종래 양극활물질은 표면 개질에 의해, 전자의 흐름을 자유롭게 하고, 또한 기계적 화학적으로 보호 쉘 작용을 하여 이차전지의 구조적 안전성을 향상시켜 고율에 대한 효율을 향상시킬 수 있음이 알려졌다. 이러한 표면 개질에 사용되는 물질로는 화학적으로 안정한 탄소질, 또는 Al2O3 또는 ZrO2 등과 같이 전기, 이온전도도가 낮은 금속 산화물이 이용되었다. 하지만, 금속 산화물과 같이 전기, 이온전도도가 낮은 물질을 코팅하는 경우, 전해액과 양극활물질 간의 리튬 이온의 이동이 제한되고, 계면 저항이 증가하는 문제가 발생할 수 있다.
따라서, 본 발명에서는 높은 리튬 이온의 전도성을 부여하면서, 양극활물질의 구조적 안정성을 높일 수 있는 표면 개질 물질을 제공하고자 한다.
양극활물질
구체적으로, 본 발명의 일 실시예에서는
하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및
상기 리튬 전이금속 산화물 입자 표면에 배치된 하기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자;를 포함하는 이차전지용 양극활물질을 제공한다.
[화학식 1]
Li(1+a)(Ni1-b-cMbCoc)O2
상기 식에서, M은 Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc 및 Y로 이루어진 군으로부터 선택된 적어도 하나 이상의 금속이고, 0≤a≤0.2, 0≤b≤1, 0≤c≤1이다.
[화학식 2]
Li1+xM'xM''2-x(PO4)3
상기 식에서, M'는 Al, Y, Cr 또는 Ca 이고, M''는 Ge, Ti, Sn, Hf, Zn 또는 Zr 이며, 0≤x≤0.5이다.
먼저, 본 발명의 양극활물질에 있어서, 상기 화학식 1로 표시되는 리튬 전이금속 산화물은 평균작동전위가 4.3V 이상 5.0V 이하인 리튬 전이금속 산화물을 포함할 수 있으며, 그 대표적인 예로 LiCoO2, LiNi0 . 85Co0 . 10Al0.05O2 (NCA), 및 LiNi1 -x-yCoxMnyO2 (NMC) (0≤x≤1, 0≤y=1)로 이루어진 군으로부터 선택된 적어도 하나 이상의 물질을 포함할 수 있다. 구체적으로 상기 화학식 1로 표시되는 리튬 전이금속 산화물은 3성분계 물질인 LiNi1 -x- yCoxMnyO2 (NMC) (0≤x≤1, 0≤y≤1), 예를 들면 LiNi0.6Mn0.2Co0.2O2 등을 포함할 수 있다.
또한, 상기 리튬 전이금속 산화물은 상기 화학식 1로 표시되는 리튬 전이금속 산화물 입자와 함께, 스피넬 구조의 화합물 또는 올리빈 구조의 화합물을 적어도 하나 이상 추가로 포함할 수 있다. 구체적으로 상기 올리빈 구조의 화합물은 LiMnxO2x(x=1, 2), LiNi1 - xMnxO2(0<x<1), LiNi1 -x- yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), LiFeO2, V2O5, TiS, 또는 MoS 등이 사용될 수 있다.
또한, 본 발명의 양극활물질에 있어서, 상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자는 나시콘(NASICON) 구조의 높은 리튬 이온전도도를 제공하는 리튬 이온전도체 물질을 말한다.
상기 “나시콘”이란, 소듐이온초전도체(Na Super Ion Conductor)의 약자로서, 예를 들어 Na3Zr2Si2PO12, 또는 NaZr2(PO4)3 등을 들 수 다.
본 발명의 리튬 금속 포스페이트계 나노입자는 상기 나시콘 화합물과 동일하거나 유사한 결정구조를 가지되, 상기 Na이 리튬으로 치환되고, 상기 Zr이 다른 금속들로 일부 또는 전부가 치환된 구조를 가진다.
구체적으로, 상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자는 LiTi2(PO4)3, LiZr2(PO4)3, 또는 상기 Li이 Al 또는 Y로 부분적으로 치환된 Li1+xAlxTi2-x(PO4)3 (0≤x≤0.5, "LATP" 라 칭함), Li1 + xAlxZr2 -x(PO4)3 (0≤x≤0.5) 및 Li1+xYxZr2-x(PO4)3 (0≤x≤0.5, "LYZP"라 칭함)로 이루어진 군으로부터 선택된 적어도 하나의 물질을 포함할 수 있다. 구체적으로, 상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자는 그 대표적인 예로 Li1 . 4Al0 . 4Ti1 .6(PO4)3, Li1 . 15Al0 . 15Zr1 .85(PO4)3, 또는 Li1.15Y0.15Zr1.85(PO4)3 들 수 있다.
이때, 상기 LiTi2(PO4)3, 및 LiZr2(PO4)3은 상온에서 1 × 10-6 S/cm의 리튬 이온전도도를 보이는 반면에, 상기 Li이 Al 또는 Y로 부분적으로 치환된 Li1 + xAlxTi2 -x(PO4)3, Li1 + xAlxZr2 -x(PO4)3 (0≤x≤0.5) 및 Li1 + xYxZr2 -x(PO4)3은 상온에서 1×10-3 S/cm 내지 1×10-5 S/cm로 더욱 높은 리튬 이온전도도를 나타낼 수 있다.
상기 리튬 금속 포스페이트 나노입자는 장축 기준으로 평균 입경(D50)이 200 nm 이하, 구체적으로 10 nm 내지 200nm, 더욱 구체적으로 10 nm 내지 100nm 형상으로 제조될 수 있다.
또한, 상기 본 발명의 양극활물질에 있어서, 상기 리튬 금속 포스페이트 나노입자는 양극활물질의 전체 중량을 기준으로 0.1 중량% 내지 2 중량%, 구체적으로 0.3 중량% 내지 1 중량%로 포함될 수 있다. 만약, 상기 리튬 금속 포스페이트 나노입자의 함량이 0.1 중량% 미만인 경우 코팅의 효과가 미미할 수 있으며, 2 중량%를 초과하는 경우에는 양극활물질 양이 상대적으로 감소하기 때문에, 단위 그램당 용량이 감소하는 문제가 있다.
상기 본 발명의 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질의 리튬 이온 전도도는 1×10-3 S/cm 내지 1×10-6 S/cm, 구체적으로 1×10-4 S/cm 내지 1×10-5 S/cm일 수 있다.
본 발명의 양극활물질에 있어서, 전이금속 산화물 입자 표면에 배치된 리튬 금속 포스페이트 나노입자는 강한 P-O 결합에 의하여 매우 안정된 구조를 가진다. 즉, 전이금속 산화물 입자 표면과 PO4 - 음이온 (polyanions)의 강한 공유원자가 (covalency) 결합에 인해 전이금속 산화물 입자 표면에 열적안정성을 증대시키고, 전해질과의 반응에서도 매우 안정한 리튬 금속 포스페이트 나노입자를 배치할 수 있다.
또한, 상기 리튬 금속 포스페이트 나노입자는 리튬 전이금속 산화물 입자 표면에서 표면 개질과 함께 보호막(protective layer) 역할을 수행할 수 있다. 구체적으로, 본 발명에서는 리튬 전이금속 산화물 입자 표면에 200nm 이하의 크기로 나노입자화된 리튬 금속 포스페이트 화합물을 배치 또는 코팅함으로써, 충방전 동안 LiPF6를 기본으로 하는 전해질과 반응하여 전이금속 산화물 입자 표면에 "Co-Al-O-F" 형태의 박막을 형성하여 구조적 안정성을 증대시키므로, 전해액과의 부반응을 방지하여 코발트 등과 같은 전이금속이 용출 (Co dissolution)되는 것을 억제할 수 있다. 그 결과, 양극활물질의 리튬 이온전도도를 증가시키고, 율속 특성을 향상시켜, 싸이클 수명 특성이 우수한 이차전지를 제공할 수 있다.
양극활물질 제조 방법
또한, 본 발명의 일 실시예에서는
(a) 상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자를 합성하는 단계;
(b) 분산용매에 상기 리튬 금속 포스페이트 나노입자를 분산시켜 코팅 용액을 제조하는 단계; 및
(c) 상기 코팅 용액과 리튬 전이금속 산화물 입자를 혼합하여, 리튬 전이금속 산화물 입자 표면에 리튬 금속 포스페이트 나노입자를 코팅하는 단계;를 포함하는 이차전지용 양극활물질의 제조 방법을 제공한다.
상기와 같이, 본 발명의 방법에서는 평균 입경 200nm 이하의 균일한 크기를 가지는 리튬 금속 포스페이트 나노입자를 먼저 합성한 다음, 이를 전이금속 산화물 입자 표면에 코팅하여 전이금속 산화물 입자 표면에 리튬 금속 포스페이트 나노입자를 배치할 수 있다.
이때, 상기 방법은 리튬 금속 포스페이트 나노입자의 결정 상태에 따라 코팅 단계 후에, 열처리 단계를 추가로 포함하거나, 또는 생략할 수 있다. 예컨대, 상기 합성된 리튬 금속 포스페이트 나노입자가 결정화된 NASICON 상태인 경우, 후속 열처리 단계를 반드시 실시할 필요는 없으나, 상기 합성된 리튬 금속 포스페이트 나노입자가 비정질 상태인 경우, 후속 열처리 단계를 추가로 실시하여 결정화할 수 있다.
한편, 상기 본 발명의 양극활물질의 제조 방법에 있어서, 상기 (a) 리튬 금속 포스페이트 나노입자 합성 단계는
상압 반응기에 반응 용매와 리튬 전구체, 인 전구체 및 적어도 2종 이상의 금속 전구체를 함께 투입하여 혼합 용액을 제조하는 단계;
상기 혼합 용액을 200℃까지 승온하면서 교반하는 단계; 및
반응 종결 후, 혼합 용액을 냉각하여 리튬 금속 포스페이트 나노입자를 수득하는 단계;를 포함할 수 있다.
이때, 상기 결정화된 리튬 금속 포스페이트 나노입자의 크기는 장축 기준으로 평균 입경(D50)이 200 nm 이하, 구체적으로 10 nm 내지 200nm, 더욱 구체적으로 10 nm 내지 100nm 일 수 있다.
이때, 본 발명의 방법에서 사용되는 상압 반응기는 당해 기술분야에서 양극활물질을 제조하기 위하여 통상적으로 사용되는 반응기를 사용할 수 있으며, 그 종류는 특별히 제한되지 않는다. 예를 들어 개방형 반응기 또는 밀폐형 반응기일 수 있다.
또한, 본 발명의 방법에서, 상기 반응 용매는 비수용액으로서 분자 내에 히드록시기를 적어도 2개 이상 가지는 다이올, 폴리올, 또는 글리콜을 포함하는 용매를 사용할 수 있으며, 구체적인 예로는 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 글리세린, 글리세롤, 디에틸 글리콜, 1,2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 및 2,3-부탄디올로 이루어지는 군에서 선택되는 단일물 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
종래 고상법의 경우 단순한 분쇄 방법을 이용하기 때문에, 수십 nm 크기의 리튬 금속 포스페이트 입자를 제조하기 어렵다. 반면에, 본 발명의 경우, 히드록시기를 적어도 2개 이상 가지는 다이올, 폴리올, 또는 글리콜을 포함하는 용매를 이용한 폴리올 합성 반응을 실시함으로써, 수 내지 수십 nm 크기의 리튬 금속 포스페이트 나노입자를 제조할 수 있다. 더욱이, 폴리올 반응 시에 온도를 높이거나, 반응 시간을 길게 함으로써, 입자를 결정화시키거나, 입자 크기를 제어할 수 있다.
이때, 상기 반응 용매는 상기 전구체 전체 함량 100 중량부에 대하여 100 중량부 내지 10,000 중량부, 구체적으로 100 중량부 내지 1,000 중량부를 사용할 수 있다.
또한, 본 발명의 방법에서 상기 리튬 전구체는 그 구체적인 예로 리튬 아세테이트 디하이드레이트 (CH3COOLi·2H2O), 리튬 히드록사이드 모노하이드레이트 (LiOH·H2O), 리튬 히드록사이드(LiOH), 리튬 카보네이트(Li2CO3), 리튬 포스페이트(Li3PO4), 리튬 포스페이트 도데카하이드레이트(Li3PO4·12H2O) 및 리튬 옥살레이트(Li2C2O4)로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물일 수 있다.
또한, 상기 인 전구체는 암모늄 포스페이트((NH4)2HPO4), 인산, 트리-암모늄포스페이트 트리하이드레이트((NH4)3PO4·3H2O), 및 암모늄 디하이드로젠 포스페이트(NH4H2PO4)로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물일 수 있다.
또한, 상기 2종 이상의 금속 전구체는 알루미늄 전구체, 티타늄 전구체, 이트륨 전구체, 또는 지르코늄 전구체 등을 포함할 수 있다.
구체적으로, 상기 알루미늄 전구체는 알루미늄 아세테이트 및 알루미늄 나이트레이트와 알루미늄 옥사이드(Al2O3) 일 수 있다.
또한, 상기 티타늄 전구체는 티타늄(IV) 부톡사이드 (Ti(OCH2CH2CH2CH3)4), 티타늄(IV) 이소프로폭사이드 (Ti[OCH(CH3)2]4), 티타늄 클로라이드 (TiCl4), 티타늄 플루오라이드 (TiF4) 및 테트라키스 디메틸아미노 티타늄 (TDMAT, Ti[N(CH3)2]4)으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물일 수 있다.
또한, 상기 이트륨 전구체는 이트륨 나이트레이트 헥사하이드레이트 (Y(NO3)3·6H2O), 이트륨 아세테이트 하이드레이트 ((CH3CO2)3Y·H2O), 및 이트륨 클로라이드 헥사하이드레이트 (Cl3Y·6H2O), 이트륨 옥사이드 (Y2O3)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물일 수 있다.
상기 지르코늄 전구체는 지르코늄(IV) 옥시나이트레이트 하이드레이트 (ZrO(NO3)2·xH2O), 지르코늄 프로폭사이드(C12H28O4Zr), 지르코늄 옥시클로라이드 옥타하이드레이트 (Cl2OZr·8H2O), 또는 지르코늄(IV) 아세틸아세토네이트(Zr(C5H7O2)4)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물일 수 있다.
또한, 본 발명의 (a) 리튬 금속 포스페이트 나노입자 합성 단계에서, 상기 리튬 전구체 : 인 전구체 : 2종 이상의 금속 전구체의 몰비는 1.1 내지 1.5 : 3 : 0.6 내지 2.5일 수 있으며, 구체적으로 리튬 전구체 : 인 전구체 : 제1 금속 전구체 : 제2 금속 전구체의 몰비는 1.1 내지 1.5 : 3 : 0.1 내지 0.55 : 0.5 내지 1.95, 더욱 구체적으로 1.15 내지 1.4 : 3 : 0.15 내지 0.4 : 1.6 내지 1.85, 보다 구체적으로 1.4 : 3 : 0.4 : 1.6일 수 있다.
만약, 상기 인 전구체, 제1 금속 전구체 및 제2 금속 전구체의 몰비가 상기 범위 내에 포함되는 경우에, 1×10-6 S/cm 이상의 이온전도도를 가지는 NASICON 구조 물질을 제조할 수 있고, 만약 상기 범위를 초과하거나, 미만인 경우 상기와 같은 이온전도도를 가지는 NASICON 구조의 나노입자 화합물을 제조할 수 없다.
또한, 본 발명의 (a) 리튬 금속 포스페이트 나노입자 합성 단계에서는, 상기 혼합 용액을 200℃까지 승온하면서 교반하여, 리튬 금속 포스페이트 화합물을 제조할 수 있다.
이때, 상기 혼합 교반 단계는 190℃ 내지 220℃, 구체적으로 200℃까지 승온하고, 3 내지 24시간 동안 교반하면서 실시할 수 있다.
이어서, 반응 종결 후, 혼합 용액을 실온까지 냉각한 다음, 여과하여 리튬 금속 포스페이트 나노입자를 수득하였다. 상기 수득된 리튬 포스페이트 나노입자를 아세톤과 메탄올을 순차적으로 사용하여 세척할 수 있다.
이어서, 본 발명의 방법에서는 (b) 분산용매에 상기 리튬 금속 포스페이트 나노입자를 분산시켜 코팅 용액을 제조한다.
이때, 사용되는 분산 용매는 에탄올 또는 메탄올 등의 알코올 용매를 이용할 수 있다.
그 다음으로, 본 발명의 방법에서는 (c) 상기 코팅 용액과 리튬 전이금속 산화물 입자를 혼합하여, 전이금속 산화물 입자 표면에 리튬 금속 포스페이트 나노입자를 배치할 수 있다.
구체적으로 상기 습식 방법은 나노입자화된 리튬 포스페이트 화합물을 분산 용매에 분산시켜 코팅 용액을 제조한 다음, 상기 코팅 용액에 리튬 전이금속 산화물 입자를 혼입 침지하고, 80℃ 온도에서 교반하면서 수행할 수 있다.
한편, 본 발명의 방법과 같이 용매를 사용하지 않고, 상기 나노입자화된 리튬 포스페이트 화합물과 리튬 전이금속 산화물을 기계적인 에너지를 가하면서 건식 혼합 반응을 실시하는 경우, 전이금속 산화물 입자 표면이 손상될 뿐만 아니라, 표면에 리튬 금속 포스페이트 나노입자를 배치하기 어렵다는 단점이 있다.
또한, 본 발명의 방법에 있어서, 코팅 단계 후에 형성된 리튬 금속 포스페이트 나노입자의 결정 상태에 따라 열처리 단계를 추가로 포함하거나, 또는 생략할 수 있다. 즉, 상기 리튬 금속 포스페이트 나노입자가 결정화된 나시콘 상태인 경우, 후속 열처리 단계를 반드시 실시할 필요는 없으나, 상기 리튬 금속 포스페이트 나노입자가 비정질 상태인 경우, 후속 열처리 단계를 추가로 실시하여 결정화된 상태로 변환시키는 것이 바람직하다.
이때, 상기 열처리 단계는 산소 분위기 또는 공기 분위기에서 10bar 이하의 상압 조건하에서 400 내지 900℃ 온도 범위로 가열하여 진행할 수 있고, 열처리 시간은 특별히 제한되지 않으나, 예를 들어 0.5 내지 5시간 이내로 실시하는 것이 바람직하다.
이러한 본 발명의 방법에 의해, 본 발명의 리튬 전이금속 산화물 입자 표면에는 양극활물질의 전체 중량을 기준으로 약 0.1 중량% 내지 2 중량%의 리튬 금속 포스페이트 나노입자가 배치 또는 코팅될 수 있다.
양극
또한, 본 발명의 일 실시예에서는 상기 양극활물질을 포함하는 양극을 제공한다.
상기 양극은 다음과 같이 제조될 수 있다.
본 발명의 양극활물질, 용매, 선택적으로 도전재, 바인더 및 충진제 중 적어도 하나 이상을 혼합하여 양극활물질 조성물을 준비한 다음, 상기 양극활물질 조성물을 양극 집전체상에 코팅 및 건조 압연하여 양극활물질층이 형성된 양극 극판을 제조할 수 있다. 또는, 상기 양극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 알루미늄 집전체 상에 라미네이션하여 양극활물질층이 형성된 양극 극판을 제조할 수 있다.
이때, 상기 도전재는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 써멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 바인더는 통상적으로 양극활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용될 수 있으며, 당해 전지에 화학적 변화를 유발하지 않는 섬유상 재료라면 특별히 제한되지 않으며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용될 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
한편, 상기 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
리튬 이차전지
아울러, 본 발명의 일 실시예에서는
본 발명의 양극활물질을 포함하는 양극,
음극활물질을 포함하는 음극,
상기 양극과 음극 사이에 개재된 분리막, 및
비수 전해질을 포함하는 리튬 이차전지를 제공한다.
상기 음극은 예를 들어 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진제 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
한편, 상기 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다.
분리막의 기공 직경은 일반적으로 0.01 내지 10㎛이고, 두께는 일반적으로 5 내지 300㎛일 수 있다.
상기 분리막은 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다.
전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매 또는 유기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐붕산리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
I. 리튬 금속 포스페이트 나노입자 제조
(제조예 1: Li1 . 4Al0 . 4Ti1 .6(PO4)3 나노입자 제조)
상압 반응기에 500mL의 1,4-부탄디올을 투입한 다음, 리튬 히드록사이드, 인산, 알루미늄 아세테이트, 및 티타늄(IV) 부톡사이드를 몰 기준으로 1.4 : 3 : 0.4 : 1.6 비율로 순차적으로 혼입하였다. 상기 혼합 용액을 200℃로 승온하면서 10 시간 동안 교반하면서 반응시켰다. 반응 종결 후, 남아있는 반응액을 냉각하고, 원심분리기를 이용하여 분리한 다음, 이를 메탄올을 이용하여 세척하여 입자크기가 수십 nm인 결정화 되지 않은 Li1 . 4Al0 . 4Ti1 .6(PO4)3 나노입자를 제조하였다 (도 1 참조). 이어서, 상기 수득된 Li1 . 4Al0 . 4Ti1 .6(PO4)3 나노입자를 750℃ 이상의 온도에서 추가 열처리하여 결정상의 Li1.4Al0.4Ti1.6(PO4)3 를 제조하였다.
상기 결정상의 Li1 . 4Al0 . 4Ti1 .6(PO4)3 이 생성된 것은 LiTi2(PO4)3 결정상에 대한 XRD 그래프와 비교하여 확인할 수 있다. 예컨대, 도 2에 나타낸 바와 같이, LiTi2(PO4)3의 결정상 XRD 그래프와 유사한 위치에 유사한 세기의 피크가 나타나는 것으로 Li1 . 4Al0 . 4Ti1 .6(PO4)3 가 생성된 것을 확인할 수 있다. 특히, 본 발명의 경우, 일부 피크가 쉬프트(shift) 됨에 따라, Al이 일부 치환되어 있는 것을 알 수 있다.
(제조예 2: Li1 . 15Y0 . 15Zr1 .85(PO4)3 나노입자 제조)
상압 반응기에 500mL의 1,4-부탄디올에 투입하고, 리튬 히드록사이드, 인산, 이트륨 아세테이트 하이드레이트, 및 지르코늄(IV) 아세틸아세토네이트를 몰 기준으로 1.15 : 3 : 0.15 : 1.85 비율로 순차적으로 혼입하였다. 상기 혼합 용액을 200℃로 승온하면서 10시간 동안 교반하면서 반응시켰다. 반응 종결 후, 남아있는 반응액을 냉각하고, 원심분리기를 이용하여 분리한 다음, 이를 메탄올을 이용하여 세척하여 입자크기가 수십 nm인 결정화 되지 않은 Li1 . 15Y0 . 15Zr1 .85(PO4)3 나노입자 제조하였다.
이어서, 상기 수득된 Li1 . 15Y0 . 15Zr1 .85(PO4)3 나노입자를 750℃ 이상의 온도에서 추가 열처리하여 결정상의 Li1.4Y0.4Ti1.6(PO4)3 를 제조하였다(도 3 참조).
상기 결정상의 Li1 . 4Y0 . 4Ti1 .6(PO4)3 이 생성된 것은 LiZr2(PO4)3 결정상에 대한 XRD 그래프와 비교하여 확인할 수 있다. 예컨대, 도 4에 나타낸 바와 같이, LiZr2(PO4)3의 결정상 XRD 그래프와 유사한 위치에 유사한 세기의 피크가 나타나는 것으로 Li1 . 4Y0 . 4Ti1 .6(PO4)3 가 생성된 것을 확인할 수 있다. 특히, 본 발명의 경우, 일부 피크가 쉬프트(shift) 됨에 따라, Y이 일부 치환되어 있는 것을 알 수 있다.
II. 양극활물질 및 이차전지 제조
실시예 1.
(양극활물질 제조)
상기 제조예 1의 리튬 금속 포스페이트 (LATP) 나노입자를 에탄올에 적당한 농도로 분산하여 코팅 용액을 제조한 다음, 상기 코팅 용액에 리튬 전이금속 산화물 입자 (LiNi0.85Co0 . 10Al0.05O2 , NCA) (20g)를 혼입한 다음, 80℃ 온도에서 용매가 증발할 때까지 교반하여 전이금속 산화물 입자 표면에 리튬 금속 포스페이트 나노입자가 배치된 양극 활물질을 제조하였다.
이어서, 산소 분위기하에 750℃ 온도에서 열처리하였다.
상기 제조된 양극 활물질을 전자현미경을 이용하여 분석한 결과, 리튬 전이금속 산화물 입자 표면에 양극활물질의 전체 중량을 기준으로 0.5 중량% 가량의 리튬 금속 포스페이트 나노입자가 코팅된 것을 확인하였다 (도 5 참조).
(이차전지 제조)
상기 양극활물질과 도전재 (SC65), 바인더(폴리비닐리덴 플루오라이드)를 93:4:3의 중량비로 혼합하여 양극활물질 슬러리를 제조하였다. 제조된 양극 슬러리를 Al 호일에 도포한 후 압연하여 코인 셀용 양극 극판을 제조하였다. 제조된 양극 극판을 1.6cm로 펀칭하여 사용하고, 리튬 금속을 상대 전극으로 하고, 전해액 (1M LiPF6가 용해된 에틸렌 카보네이트와 디메틸 카보네이트 (1:1 부피비)의 혼합 용액)이 투입된 글로브 박스 내에 넣어서 코인 셀을 제조하였다.
실시예 2.
(양극활물질 제조)
상기 제조예 1의 리튬 금속 포스페이트 (LATP) 나노입자를 에탄올에 적당한 농도로 분산하여 코팅 용액을 제조한 다음, 상기 코팅 용액에 전이금속 산화물 입자 (LiNi0 . 6Mn0 . 2Co0 . 2O2, NMC) (20g)를 혼입한 다음, 80℃ 온도에서 용매가 증발할 때까지 교반하여 리튬 전이금속 산화물 입자 표면에 포스페이트 나노입자가 배치된 양극 활물질을 제조하였다.
이어서, 산소 분위기하에 450℃ 온도에서 열처리하였다.
상기 제조된 양극 활물질을 전자현미경을 이용하여 분석한 결과, 리튬 전이금속 산화물 입자 표면에 양극활물질의 전체 중량을 기준으로 0.3 중량% 가량의 리튬 금속 포스페이트 나노입자가 코팅된 것을 확인하였다 (도 6 참조).
(이차전지 제조)
상기 실시예 1의 양극활물질(NCA) 대신 상기 NMC 양극활물질을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
실시예 3.
(양극활물질 제조)
상기 제조예 1의 리튬 금속 포스페이트 나노입자를 에탄올에 적당한 농도로 분산하여 코팅 용액을 제조한 다음, 상기 코팅 용액에 양극활물질 (LiCoO2) (20g)를 혼입한 다음 80℃ 온도에서 용매가 증발할 때까지 교반하여 리튬 전이금속 산화물 입자 표면에 포스페이트 나노입자가 배치된 양극 활물질을 제조하였다.
이어서, 산소 분위기하에 750℃ 온도에서 열처리하였다.
상기 제조된 양극활물질을 전자현미경을 이용하여 분석한 결과, 리튬 전이금속 산화물 입자 표면에 양극활물질의 전체 중량을 기준으로 0.5 중량% 가량의 리튬 금속 포스페이트 나노입자가 코팅된 것을 확인하였다 (도 7 참조).
(이차전지 제조)
상기 실시예 1의 양극활물질(NCA) 대신 상기 LiCoO2 양극활물질을 사용하였고, 양극활물질과 도전재 (SC65), 바인더(폴리비닐리덴 플루오라이드)를 96: 2: 2의 중량비를 사용하였다. 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
실시예 4.
(양극활물질 제조)
상기 제조예 2의 평균입경 수십 nm의 리튬 금속 포스페이트 나노입자 (LYZP)를 에탄올에 적당한 농도로 분산하여 코팅 용액을 제조한 다음, 상기 코팅 용액에 양극활물질 (LiCoO2) (20g)를 혼입한 다음, 80℃ 온도에서 용매가 증발할 때까지 교반하여 리튬 전이금속 산화물 입자 표면에 포스페이트 나노입자가 배치된 양극 활물질을 제조하였다.
이어서, 산소 분위기하에 750℃ 온도에서 열처리하였다.
상기 제조된 양극활물질을 전자현미경을 이용하여 분석한 결과, 리튬 전이금속 산화물 입자 표면에 양극활물질의 전체 중량을 기준으로 0.5 중량% 가량의 리튬 금속 포스페이트 나노입자가 코팅된 것을 확인하였다 (도 8 참조).
(이차전지 제조)
상기 제조예 1의 리튬 금속 포스페이트 나노입자 대신 제조예 2의 리튬 금속 포스페이트 나노입자가 코팅된 양극활물질과 도전재 (SC65), 바인더(폴리비닐리덴 플루오라이드)를 96:2:2 의 중량비를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
비교예 1.
리튬 금속 포스페이트 (LATP) 나노입자가 코팅되지 않은 양극활물질(LiNi0.85Co0.10Al0.05O2, NCA)를 사용하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
비교예 2.
리튬 금속 포스페이트 (LATP) 나노입자가 코팅되지 않은 양극활물질(LiNi0.6Mn0.2Co0.2O2, NMC)를 사용하는 것을 제외하고 상기 실시예 2와 동일한 방법으로 코인 셀을 제조하였다.
비교예 3.
리튬 금속 포스페이트 (LATP) 나노입자가 코팅되지 않은 양극활물질(LiCoO2)을 사용하는 것을 제외하고 상기 실시예 3과 동일한 방법으로 코인 셀을 제조하였다.
비교예 4.
LiOH·H2O, (NH4)2HPO4를 몰비를 3:1의 비율로 물에 넣어 녹인 후에 건조한 분말을 볼밀을 이용해 분쇄하였다. 에탄올에 상기 분쇄된 분말 비정질 Li3PO4 (3000 ppm)를 투입하여 코팅 용액을 제조한 다음, 상기 코팅 용액에 양극활물질(LiCoO2) (20g)을 혼합하고 믹싱한 다음, 80℃ 온도에서 용매가 증발할때까지 교반하고, 450℃ 온도에서 열처리하여, 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질을 제조하였다.
이어서, 상기 양극활물질을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
실험예
실험예 1.
상기 제조된 실시예 1과 비교예 1의 코인 셀에 대한 전기화학적 특성을 평가하였다.
구체적으로, 실시예 1 및 비교예 1의 코인셀에 대하여, 3.0V 내지 4.6V 전압 및 율 속도(c-rate) 0.5C에서 50회의 충방전을 실시하여 충방전 싸이클에 따른 용량 변화 및 충방전 변화를 측정하고, 그 결과를 도 9 및 도 10에 각각 나타내었다.
도 9의 충방전 싸이클에 따른 용량 변화를 살펴보면, 실시예 1의 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질을 이용해 제조된 코인셀과, 비교예 1의 리튬 금속 포스페이트 나노입자를 포함하지 않는 양극활물질을 이용해 제조된 코인셀의 충방전 싸이클에 대한 용량 변화를 측정한 결과, 비교예 1의 코인 셀의 경우 용량이 지속적으로 감소하는데 반해 실시예 1의 셀은 용량 감소 폭이 비교예 1 보다 적은 것을 확인할 수 있었다.
또한, 도 10의 충방전 싸이클에 따른 충방전 변화를 살펴보면, 실시예 1의 코인 셀의 경우 첫 번째 싸이클에 초기 용량이 약간 감소하였지만, 싸이클이 진행됨에 따라 비교예 1의 코인 셀과 비교하여 전압 강하도 적고 용량 감소도 낮은 것으로 나타났다.
실험예 2.
상기 제조된 실시예 2와 비교예 2의 코인 셀에 대한 전기화학적 특성을 평가하였다.
구체적으로, 실시예 2 및 비교예 2의 코인셀에 대하여, 3.0V 내지 4.6V 전압 및 율 속도(c-rate) 0.5C에서 50회의 충방전을 실시하여 충방전 싸이클에 따른 용량 변화 및 충방전 변화를 측정하고, 그 결과를 도 11 및 도 12에 각각 나타내었다.
도 11의 충방전 싸이클에 따른 용량 변화를 살펴보면, 상기 실시예 2의 리튬 포스페이트 (LATP) 나노입자를 포함하는 양극활물질을 이용하여 제조된 코인 셀과 비교예 2의 리튬 금속 포스페이트 나노입자를 포함하지 않는 양극활물질을 포함하는 코인 셀의 충방전 싸이클에 대한 용량 변화를 측정한 결과, 실시예 2의 셀과 비교예 2의 셀은 20 싸이클까지 비슷한 용량을 보이다가, 그 이후에는 비교예 2의 셀의 용량 감소폭이 실시예 2보다 큰 것을 확인할 수 있다.
또한, 도 12의 충방전 싸이클에 따른 충방전 변화를 살펴보면, 4.6V 싸이클 진행 시에 첫번째 싸이클에서는 실시예 2 및 비교예 2의 코인셀은 서로 비슷한 충방전 그래프를 보이지만, 싸이클이 진행됨에 따라 비교예 2의 코인셀에 비하여 실시예 2의 셀은 전압 강하도 적고 용량 감소가 낮아 전기화학적 특성이 보다 우수한 것을 알 수 있다.
실험예 3.
상기 제조된 실시예 3 및 4와 비교예 3 및 4의 코인 셀에 대한 전기화학적 특성을 평가하였다.
구체적으로, 실시예 3 및 4와 비교예 3 및 4의 코인셀에 대하여, 3.0V 내지 4.5V 전압 및 율 속도(c-rate) 충전시 0.5C, 방전시 1.0C로 충방전을 실시하고, 충방전 싸이클에 따른 용량 변화 및 충방전 변화를 측정하였다. 그 결과를 도 13 내지 도 17에 각각 나타내었다.
도 13의 충방전 싸이클에 따른 용량 변화를 살펴보면, 리튬 금속 포스페이트 나노입자가 형성된 양극활물질을 포함하는 실시예 3 및 4의 코인 셀과, 리튬 금속 포스페이트 나노입자를 포함하지 않는 비교예 3의 양극활물질과, 비정질 리튬 포스페이트로 이루어진 코팅층을 포함하는 비교예 4의 코인 셀의 충방전 싸이클 그래프에 대한 용량 변화를 측정한 결과, 비교예 3과 비교예 4의 코인 셀의 경우 싸이클이 진행됨에 따라 지속적으로 용량이 감소하는 반면, 실시예 3 및 4의 코인 셀은 싸이클이 진행됨에 따라 용량은 감소하지만, 감속 폭이 비교예 3 및 4에 비하여 적은 것은 확인할 수 있었다. 이는 표면에 리튬 전이금속 산화물 입자 표면에 배치된 리튬 금속 포스페이트 나노입자가 양극활물질과 전해액의 직접적인 접촉을 막아, Co 용출을 방지하여 용량 감소를 저하시키는 것으로 판단할 수 있다.
특히, 도 14 내지 도 17에서 각각의 셀의 충방전 싸이클에 따른 충방전 변화를 살펴보면, 4.5V에서 리튬 금속 포스페이트 나노입자를 포함하지 않는 양극활물질로 이루어진 비교예 3의 코인셀 (도 16 참조)과 나노입자 대신 리튬 포스페이트 함유 코팅층을 포함하는 양극활물질로 이루어진 비교예 4의 코인셀 (도 17 참조)의 경우에는 충방전시 Co가 용출되어 방전 초기시의 개방회로 전압 (open circuit voltage, OCV)이 싸이클이 진행됨에 따라 지속적으로 감소하는 것을 확인할 수 있다.
반면에, 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질을 이용하여 제조된 실시예 3의 코인셀 (도 14 참조) 및 실시예 4의 코인셀 (도 15 참조)의 경우에는 전해액과의 부반응을 막아주어 구조적 안전성을 향상시켜 방전 초기시의 OCV를 유지시켜 주는 것을 확인하였다.
한편, 상기 도 13에서 측정한 충방전 30 싸이클 후의 방전용량을 초기 싸이클의 방전용량으로 나누어 용량유지율을 산출하고, 그 값을 하기 표 1에 나타내었다.
실시예3 실시예4 비교예3 비교예4
30 싸이클 후 용량 유지율 95.5% 96.8% 68.6% 85.2%
상기 표 1을 참조하면, 실시예 3과 4의 코인셀의 경우에는 30 싸이클 수명 측정후 용량 유지율이 각각 95.5%, 및 96.8%로 높은 용량 유지율을 보이는 반면에, 비교예 3과 비교예 4의 코인셀의 경우에는 각각 68.6%, 및 85.2%로 용량 유지율이 낮은 것을 알 수 있다.
실험예 4.
상기 실시예 3 및 4의 코인셀과 비교예 3 및 4의 코인셀에 대하여 ① 3.0V 내지 4.5V 전압 및 초기 율속 0.2 C에서 1회 충방전을 실시한 다음, 충전 속도는 0.5C로 동일하게 실시하면서, 방전 속도를 ② 0.1C, ③ 1.0C 및 ④ 2.0C로 증가하면서 실시하였다.
초기 충방전 및 율속에 따른 측정결과를 하기 표 2에 나타내었다.
실시예3 실시예4 비교예3 비교예4
초기 충전(0.2C) mAh/g 196.2 195.4 195.7 195.1
초기 방전 (0.2C) 190.6 190.6 189.6 188.8
초기 충방전 효율 % 97.1 97.5 96.9 96.8
1.0C(방전)/0.2(방전) 96.1 98.6 94.9 96.2
2.0C(방전)/0.2(방전) 92.0 94.9 88.6 89.7
상기 표 2를 살펴보면, 초기 충방전 용량 및 효율은 실시예 3과 4, 비교예 3과 4가 비슷한 수준을 나타내고 있다.
하지만, 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질을 이용한 실시예 3 및 4의 코인 셀의 경우 초기 방전용량 대비 1.0 C 및 2.0 C의 방전용량이, 비교예 3과 4에 비해 높은 것을 알 수 있다.
특히, 실시예 3 및 4의 코인 셀은 2C에서의 0.2C 대비 용량이 각각 92.0 % 과 94.9%인 반면에, 비교예 3 및 4의 코인 셀의 용량은 88.6% 과 89.7%로 낮은 것을 알 수 있다.
이러한 결과로부터, 본 발명의 리튬 금속 포스페이트 나노입자를 포함하는 양극활물질은 충방전시에 양극활물질 표면의 리튬 이온전도도가 향상되어, 율속이 증가하고, 용량 감소의 비율이 저감되는 것을 알 수 있다.
실험예 5.
상기 실시예 3의 코인셀과 비교예 3과 4에서 제조된 상기 코인셀을 45℃의 고온에서 리튬 금속 대비 3.0 내지 4.5V의 전압범위에서 충전 0.5C와 방전 1.0C 정전류로 30회 충방전 후의 결과를 측정하고, 그 결과를 도 18에 나타내었다.
도 18을 살펴보면, 비교예 3과 비교예 4의 코인 셀의 경우 싸이클이 진행됨에 따라 지속적으로 용량이 감소하는 반면, 실시예 3의 코인 셀은 싸이클이 진행됨에 따라 용량 감소가 적은 것은 확인할 수 있었다.
한편, 상기 도 18에서 측정한 충방전 30 싸이클 후의 방전용량을 초기 싸이클의 방전용량으로 용량유지율을 산출하고, 그 값을 하기 표 3에 나타내었다.
실시예3 비교예3 비교예4
30 싸이클 후 용량 유지율 95.5% 81.5% 90.2%
상기 표 3을 참고하며, 실시예 3의 경우에는 30 싸이클 수명 측정 후 용량 유지율이 95.5%인 반면에, 리튬 금속 포스페이트 나노입자를 포함하지 않는 양극활물질로 이루어진 비교예 3의 코인셀과 나노입자 대신 리튬 포스페이트 함유 코팅층을 포함하는 양극활물질로 이루어진 비교예 4의 코인셀의 경우에는 각각 81.5%, 및 90.2%로 용량 유지율이 낮은 것을 알 수 있다.
이러한 결과에 따라, 리튬 금속 포스페이트 나노입자가 형성된 양극활물질의 경우, 상온뿐만 아니라, 고온에서도 수명특성이 우수한 것을 확인 할 수 있다.

Claims (24)

  1. 하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및
    상기 리튬 전이금속 산화물 입자 표면에 배치된 하기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자;를 포함하는 포함하는 이차전지용 양극활물질:
    [화학식 1]
    Li(1+a)(Ni1-b-cMbCoc)O2
    상기 식에서, M은 Mn, Al, Cu, Fe, Mg, Cr, Sr, V, Sc 및 Y로 이루어진 군으로부터 선택된 적어도 하나 이상의 금속이고, 0≤a≤0.2, 0≤b≤1, 0≤c≤1이다.
    [화학식 2]
    Li1 + xM'xM''2-x(PO4)3
    상기 식에서, M'는 Al, Y, Cr 또는 Ca 이고, M''는 Ge, Ti, Sn, Hf, Zn 또는 Zr 이며, 0≤x≤0.5이다.
  2. 청구항 1에 있어서,
    상기 리튬 전이금속 산화물은 LiNi0 . 85Co0 . 10Al0.05O2 (NCA), LiNi1 -x- yCoxMnyO2 (NMC) (0≤x≤1, 0≤y≤1) 및 LiCoO2로 이루어진 군으로부터 선택된 적어도 하나 이상의 물질을 포함하는 것인 이차전지용 양극활물질.
  3. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자는 나시콘(NASICON) 구조를 가지는 것인 이차전지용 양극활물질.
  4. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자는 LiTi2(PO4)3, LiZr2(PO4)3, Li1 + xAlxTi2 -x(PO4)3 (0≤x≤0.5), Li1 + xAlxZr2 -x(PO4)3 (0≤x≤0.5) 및 Li1+xYxZr2-x(PO4)3 (0≤x≤0.5)로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것인 이차전지용 양극활물질.
  5. 청구항 4에 있어서,
    상기 리튬 금속 포스페이트 나노입자는 Li1 . 4Al0 . 4Ti1 .6(PO4)3, Li1.15Al0.15Zr1.85(PO4)3, 및 Li1 . 15Y0 . 15Zr1 .85(PO4)3 로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것인 이차전지용 양극활물질.
  6. 청구항 5에 있어서,
    상기 리튬 금속 포스페이트 나노입자의 리튬 이온전도도는 상온에서 1×10-3 S/cm 내지 1×10-5 S/cm인 것인 이차전지용 양극활물질.
  7. 청구항 1에 있어서,
    상기 리튬 금속 포스페이트 나노입자의 평균입경(D50)은 200nm 이하인 것인 이차전지용 양극활물질.
  8. 청구항 7에 있어서,
    상기 리튬 금속 포스페이트 나노입자의 평균입경(D50)은 10nm 내지 200nm인 것인 이차전지용 양극활물질.
  9. 청구항 1에 있어서,
    상기 리튬 금속 포스페이트 나노입자는 양극활물질의 전체 중량을 기준으로 0.1 중량% 내지 2 중량%로 포함되는 것인 이차전지용 양극활물질.
  10. 청구항 9에 있어서,
    상기 리튬 금속 포스페이트 나노입자는 양극활물질의 전체 중량을 기준으로 0.3 중량% 내지 1 중량%로 포함되는 것인 이차전지용 양극활물질.
  11. 청구항 1에 있어서,
    상기 양극활물질의 리튬 이온 전도도는 1×10-3 S/cm 내지 1×10-6 S/cm인 것인 이차전지용 양극활물질.
  12. (a) 하기 화학식 2로 표시되는 리튬 금속 포스페이트 나노입자를 합성하는 단계;
    (b) 분산용매에 상기 리튬 금속 포스페이트 나노입자를 분산시켜 코팅 용액을 제조하는 단계; 및
    (c) 상기 코팅 용액과 리튬 전이금속 산화물 입자를 혼합하여, 리튬 전이금속 산화물 입자 표면에 리튬 금속 포스페이트 나노입자를 코팅하는 단계;를 포함하는 것인 청구항 1의 이차전지용 양극활물질의 제조 방법:
    [화학식 2]
    Li1 + xM'xM''2-x(PO4)3
    상기 식에서, M'는 Al, Y, Cr 또는 Ca 이고, M''는 Ge, Ti, Sn, Hf, Zn 또는 Zr 이며, 0≤x≤0.5이다.
  13. 청구항 12에 있어서,
    상기 방법은 코팅 단계 후에, 열처리 단계를 추가로 포함하는 것인 이차전지용 양극활물질의 제조 방법.
  14. 청구항 12에 있어서,
    상기 (a) 리튬 금속 포스페이트 나노입자 합성 단계는
    상압 반응기에 반응 용매와 리튬 전구체, 인 전구체 및 적어도 2종 이상의 금속 전구체를 함께 투입하여 혼합 용액을 제조하는 단계;
    상기 혼합 용액을 200℃까지 승온하면서 교반하는 단계; 및
    반응 종결 후, 혼합 용액을 냉각하여 리튬 금속 포스페이트 나노입자를 수득하는 단계;를 포함하는 것인 이차전지용 양극활물질의 제조 방법.
  15. 청구항 14에 있어서,
    상기 반응 용매는 분자 내에 히드록시기를 적어도 2개 이상 가지는 다이올, 폴리올, 또는 글리콜 용매를 포함하는 것인 이차전지용 양극활물질의 제조 방법.
  16. 청구항 15에 있어서,
    상기 반응 용매는 에틸렌글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 글리세린, 글리세롤, 디에틸 글리콜, 1,2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 및 2,3-부탄디올로 이루어지는 군으로 선택된 단일물 또는 이들의 2종 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질의 제조 방법.
  17. 청구항 14에 있어서,
    상기 리튬 전구체는 리튬 아세테이트 디하이드레이트, 리튬 히드록사이드 모노하이드레이트, 리튬 히드록사이드, 리튬 카보네이트, 리튬 포스페이트, 리튬 포스페이트 도데카하이드레이트 및 리튬 옥살레이트(Li2C2O4)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것인 이차전지용 양극활물질 제조 방법.
  18. 청구항 14에 있어서,
    상기 인 전구체는 암모늄 포스페이트, 인산, 트리-암모늄포스페이트 트리하이드레이트 및 암모늄 디하이드로젠 포스페이트로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것인 이차전지용 양극활물질 제조 방법.
  19. 청구항 14에 있어서,
    상기 2종 이상의 금속 전구체는 알루미늄 전구체, 티타늄 전구체, 이트륨 전구체, 및 지르코늄 전구체로 이루어진 군으로부터 선택된 적어도 2종 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질 제조 방법.
  20. 청구항 14에 있어서,
    상기 리튬 전구체 : 인 전구체 : 2종 이상의 금속 전구체의 몰비는 1.1 내지 1.5 : 3 : 0.6 내지 2.5인 것인 이차전지용 양극활물질 제조 방법.
  21. 청구항 20에 있어서,
    상기 리튬 전구체 : 인 전구체 : 제1 금속 전구체 : 제2 금속 전구체의 몰비는 1.1 내지 1.5 : 3 : 0.1 내지 0.55 : 0.5 내지 1.95인 것인 이차전지용 양극활물질 제조 방법.
  22. 청구항 21에 있어서,
    상기 리튬 전구체 : 인 전구체 : 제1 금속 전구체 : 제2 금속 전구체의 몰비는 1.15 내지 1.4 : 3 : 0.15 내지 0.4 : 1.6 내지 1.85인 것인 이차전지용 양극활물질 제조 방법.
  23. 청구항 1 기재의 이차전지용 양극활물질을 포함하는 이차전지용 양극.
  24. 양극활물질을 포함하는 양극,
    음극활물질을 포함하는 음극,
    상기 양극과 음극 사이에 개재된 분리막, 및
    비수 전해질을 포함하며,
    상기 양극은 청구항 23의 이차전지용 양극을 포함하는 리튬 이차전지.
PCT/KR2016/004409 2015-04-30 2016-04-27 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 WO2016175554A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/567,228 US10651500B2 (en) 2015-04-30 2016-04-27 Positive electrode active material for lithium secondary battery, method for preparing the same, and secondary battery including the same
JP2017556647A JP6543726B2 (ja) 2015-04-30 2016-04-27 リチウム二次電池用正極活物質、この製造方法、及びこれを含むリチウム二次電池
CN201680024959.6A CN107534132B (zh) 2015-04-30 2016-04-27 锂二次电池用正极活性材料、其制备方法和包含其的二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150061634 2015-04-30
KR10-2015-0061634 2015-04-30
KR10-2016-0050071 2016-04-25
KR1020160050071A KR101840541B1 (ko) 2015-04-30 2016-04-25 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2016175554A1 true WO2016175554A1 (ko) 2016-11-03

Family

ID=57199262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004409 WO2016175554A1 (ko) 2015-04-30 2016-04-27 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2016175554A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711412A (zh) * 2016-12-13 2017-05-24 北京理工大学 一种复合富锂锰基正极材料及其制备方法
CN107492643A (zh) * 2017-07-31 2017-12-19 三峡大学 一种磷酸钛锂包覆LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
CN107591529A (zh) * 2017-10-10 2018-01-16 中南大学 一种磷酸钛锂包覆镍钴锰三元正极材料及其制备方法
CN107768631A (zh) * 2017-10-16 2018-03-06 桑顿新能源科技有限公司 一种包覆磷酸钛铝锂的富锂锰基材料及其制备方法
JP2020511740A (ja) * 2017-09-26 2020-04-16 エルジー・ケム・リミテッド リチウムマンガン系酸化物を含む高電圧用正極活物質およびその製造方法
CN113346079A (zh) * 2021-05-11 2021-09-03 浙江帕瓦新能源股份有限公司 钪体相掺杂与磷酸钛铬锂修饰正极材料前驱体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098433A (ko) * 2013-01-31 2014-08-08 주식회사 엘지화학 내구성이 향상된 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098433A (ko) * 2013-01-31 2014-08-08 주식회사 엘지화학 내구성이 향상된 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO, J. ET AL.: "Comparison of Overcharge Behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 Cathode Materials in Li-Ion Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 151, no. 10, 2004, pages A1707 - A1711, XP055154222 *
MORIMOTO, H. ET AL.: "Preparation of Lithium Ion Conducting Solid Electrolyte of NASICON-Type Li 1+xAlxTi2-x(PO4)3(x= 0.3) Obtained by Using the Mechanochemical Method and its Application as Surface Modification Materials of LiCoO2 Cathode for Lithium Cell", JOURNAL OF POWER SOURCES, vol. 240, 2013, pages 646 - 643, XP028577184 *
WU, X. ET AL.: "Synthesis and Characterization of Li1.3Al0.3Ti1.7(P04)3-coated LiMn2O4 by Wet Chemical Route", RARE METALS, vol. 28, no. 2, 2009, pages 122 - 126, XP055212158 *
WU, X. ET AL.: "Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by Sol-gel Technique", MATERIALS LETTERS, vol. 58, no. 7, 2004, pages 1227 - 1230, XP004486707 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711412A (zh) * 2016-12-13 2017-05-24 北京理工大学 一种复合富锂锰基正极材料及其制备方法
CN107492643A (zh) * 2017-07-31 2017-12-19 三峡大学 一种磷酸钛锂包覆LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
JP2020511740A (ja) * 2017-09-26 2020-04-16 エルジー・ケム・リミテッド リチウムマンガン系酸化物を含む高電圧用正極活物質およびその製造方法
JP7041798B2 (ja) 2017-09-26 2022-03-25 エルジー エナジー ソリューション リミテッド リチウムマンガン系酸化物を含む高電圧用正極活物質およびその製造方法
US11600820B2 (en) 2017-09-26 2023-03-07 Lg Energy Solution, Ltd. High voltage positive electrode active material including lithium manganese-based oxide and method for producing the same
CN107591529A (zh) * 2017-10-10 2018-01-16 中南大学 一种磷酸钛锂包覆镍钴锰三元正极材料及其制备方法
CN107768631A (zh) * 2017-10-16 2018-03-06 桑顿新能源科技有限公司 一种包覆磷酸钛铝锂的富锂锰基材料及其制备方法
CN113346079A (zh) * 2021-05-11 2021-09-03 浙江帕瓦新能源股份有限公司 钪体相掺杂与磷酸钛铬锂修饰正极材料前驱体及其制备方法

Similar Documents

Publication Publication Date Title
WO2018101809A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2016175554A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2018101806A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2016068594A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2012148157A9 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2015020486A1 (ko) 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
WO2018101808A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2010030131A2 (ko) 리튬 이차전지용 양극 활물질
WO2022139290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020055017A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2021132762A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095134A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2018084652A2 (ko) 리튬이온이차 전지
WO2022260383A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2018034553A1 (ko) 실리콘 플레이크를 포함하는 음극재 및 실리콘 플레이크의 제조방법
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567228

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017556647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786740

Country of ref document: EP

Kind code of ref document: A1