WO2016175360A1 - 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치 - Google Patents

가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치 Download PDF

Info

Publication number
WO2016175360A1
WO2016175360A1 PCT/KR2015/004527 KR2015004527W WO2016175360A1 WO 2016175360 A1 WO2016175360 A1 WO 2016175360A1 KR 2015004527 W KR2015004527 W KR 2015004527W WO 2016175360 A1 WO2016175360 A1 WO 2016175360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pinhole
collimator
variable
radiation
pinhole collimator
Prior art date
Application number
PCT/KR2015/004527
Other languages
English (en)
French (fr)
Inventor
이학재
배승빈
이기성
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016175360A1 publication Critical patent/WO2016175360A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Definitions

  • the present invention relates to a variable pinhole collimator device, a radiographic imaging device, and a radiation sensing device using the same, and more particularly, in a radiographic imaging device such as a gamma camera or a single photon emission computed tomography (SPECT) device.
  • SPECT single photon emission computed tomography
  • the present invention relates to a variable pinhole collimator device for determining a passage region or direction of radiation, a radiographic imaging device, and a radiation detection device using the same.
  • Radiation imaging apparatus is an apparatus for obtaining an image using a radioisotope, one of the devices widely used in the field of nuclear medical diagnostics and non-destructive testing.
  • Radiological imaging devices used in the field of nuclear medical diagnostics such as gamma-ray cameras or gamma-ray computed tomography apparatuses using gamma rays, are other diagnostic devices that provide structural information about the human body, such as magnetic resonance imaging (MRI) or ultrasound. Unlike diagnostic devices, radiopharmaceuticals provide functional information about the human body.
  • MRI magnetic resonance imaging
  • radiopharmaceuticals provide functional information about the human body.
  • FIG. 1 is a diagram showing the configuration of a typical gamma camera 1.
  • the general gamma camera 1 includes a collimator 10 and a radiation detector 20 that detects radiation passing through the collimator 10.
  • the collimator 10 functions as an aiming device that passes only the gamma rays in a specific direction among the gamma rays emitted from the in vivo tracer and blocks the gamma rays coming from the other direction. That is, the collimator 10 geometrically restricts the gamma rays emitted from the living body part so that only the gamma rays emitted from the necessary part enter the radiation detector 20.
  • FIG. 1 and 2 show an example of a multi-pinhole collimator (or parallel-hole collimator) in which a plurality of holes are formed
  • FIG. 3 shows a pinhole collimator having a certain angle of view. An example is shown.
  • the radiation detector 20 may include a scintillator 21, a light guide unit 22, and a light multiplier 23.
  • the gamma ray passing through the collimator 10 is incident on the scintillator 21.
  • the gamma rays passing through the collimator 10 and reacted with the scintillator 21 are converted into low-energy electromagnetic waves of a form easily detected by the scintillator 21, and are then passed through the optical guide unit 22 to the photomultiplier pipe 50. Amplified and converted into an electrical signal, and the detected position or energy is stored in the computer 70, thereby obtaining an image.
  • the single photon emission computed tomography apparatus using the principle of the gamma ray camera described above was 1976. First developed by W. I. Keys, 1979. Brain-only device was developed by R. J. Jaszczak.
  • the single photon emission computed tomography device is similar to the operating principle of the gamma camera 1, in which a single photon, for example, a radiopharmaceutical emitting a gamma ray is injected into the living body T, whereby gamma rays generated in the living body are transmitted through the living body.
  • a gamma ray camera installed in a gantry (not shown) that rotates around a living body is measured at various angles, and the detected signal is obtained by an image reconstruction algorithm.
  • the collimator 10 and the gamma ray detector 20 are applied to the single photon emission computed tomography apparatus as well as the gamma ray camera 1.
  • FIG 3 is a view for explaining the principle of the gamma ray imaging apparatus 1a using the conventional pinhole collimator 10a applied to the gamma camera 1 or a single photon emission computed tomography apparatus.
  • the pinhole collimator 10a is configured to have a constant angle of view ( ⁇ ) and a hole diameter (L). As a result, only gamma rays incident within the range of the angle of view are formed to pass through the holes, thereby selectively passing the gamma rays by a geometry different from the multiple pinhole collimator 10 as described above.
  • the resolution and sensitivity of the gamma ray imaging apparatus 1a using the pinhole collimator 10a are determined by the angle of view and hole diameter l of the pinhole collimator 10a, the distance D1 between the measurement object and the collimator, and the pinhole collimator 10a. And the distance D2 between the gamma ray detector 20a.
  • the angle of view ⁇ and the hole diameter 1 are fixed, resulting in a problem that the resolution and sensitivity decrease depending on the position and size of the region of interest.
  • gamma rays emitted in a wider area can be detected.
  • a region of interest (ROI) such as a lesion is located inside the living body T.
  • the pinhole collimator 10a having an angle of view capable of capturing the entire living body T is used, the resolution of the lesion, which is the region of interest, is inevitably lowered.
  • imaging is performed while rotating the periphery of the living body.
  • the pinhole collimator 10a having a fixed angle of view ⁇ the location of the lesion is not fixed for each patient.
  • the pinhole collimator 10a having an angle of view ⁇ capable of capturing the entirety is used.
  • the pinhole collimator 10a and the gamma ray detector 20a are rotated in a state spaced apart from the living body by a predetermined interval so that the lesion L is an actual region of interest.
  • the distance between the pinhole collimator and 10a is changed, and the resolution of the actual lesion L is inevitably lowered in the case of an image acquired from a distance from the lesion L.
  • the distance between the lesion L, which is the region of interest, and the pinhole collimator 10a is farther away, thereby reducing the sensitivity of the image, and as a result, the patient is more likely to increase the sensitivity.
  • the pinhole collimator disclosed in the Korean Patent Publication, it is configured to adjust the angle of view or direction of the pinhole by stacking a plurality of apertures, a plurality of plates must be used to configure one aperture, and as a result stacked
  • the number of plates increases by the product of the number of apertures constituting the pinhole collimator and the number of plates constituting one aperture, thereby increasing the thickness of the pinhole collimator.
  • the present invention has been made to solve the above problems, changes in the characteristics of the pinhole collimator such as the angle of view or hole diameter of the pinhole collimator applied to a radiographic apparatus such as a gamma camera or a single photon emission computed tomography apparatus
  • the object of the present invention is to provide a variable pinhole collimator device capable of implementing a thinner thickness and a radiographic imaging device and a radiation detection device using the same.
  • a variable pinhole collimator comprising: a plurality of pinhole plates having a plurality of through holes having different diameters formed on each plate surface and stacked in the direction of incidence of radiation; And a plurality of drive modules configured to move each of the pinhole plates to form a pinhole in the overlapping region such that one of the plurality of through holes formed in each of the pinhole plates is selectively positioned in the overlapping region. Achieved by a pinhole collimator.
  • the plurality of through-holes formed in one pinhole plate is arranged along the longitudinal direction of the pinhole plate;
  • the driving module may linearly move the pinhole plate in the longitudinal direction such that any one of the plurality of through holes formed in the pinhole plate is located in the overlapping region.
  • the plurality of pinhole plates are disposed radially about the overlap region;
  • the through-holes formed in each of the pinhole plates may be concentrated in the overlapping area according to the linear movement of the pinhole plate to form the pinhole or radially spaced apart from the overlapping area.
  • Each of the driving modules rotates the pinhole plate about the axis of rotation of the pinhole plate to position any one of the plurality of through holes in the overlap region.
  • the plurality of through holes may be formed along the circumferential direction with respect to the rotation axis to be selectively positioned in the overlap region according to the rotation of the pinhole plate.
  • the plurality of through holes may be formed in the pinhole plate such that the center thereof is located within the same radius from the center of the rotation axis.
  • the plurality of pinhole plates may be disposed such that the center of the through hole passes through the center of the overlapping region.
  • the pinhole plates may be stacked such that the rotation axis of the pinhole plate is radially located around the overlapping area.
  • the through holes may be arranged in the order of diameter.
  • the variable pinhole collimator in the radiographic apparatus, the variable pinhole collimator; A radiation detector for detecting radiation passing through the pinhole of the variable pinhole collimator; A radiation image processor for imaging the radiation detected by the radiation detector; And a control unit for controlling each of the driving modules of the variable pinhole collimator to adjust the angle of view of the pinhole of the variable pinhole collimator so as to focus on a measurement target emitting radiation.
  • the apparatus may further include a gantry for rotating the variable pinhole collimator and the radiation detector around the measurement target;
  • the controller may adjust the pinhole of the variable pinhole collimator to focus on the measurement target based on a change in distance between the measurement target and the variable pinhole collimator as the variable pinhole collimator rotates around the measurement target.
  • the apparatus may further include a gap adjusting module configured to move any one of the variable pinhole collimator and the radiation detector so that the distance between the variable pinhole collimator and the radiation detector is adjusted.
  • the controller may control the gap adjusting module to adjust a gap between the variable pinhole collimator and the radiation detector in synchronization with the angle of view adjustment of the pinhole of the variable pinhole collimator.
  • the measurement object includes a lesion located in the living body;
  • the distance between the measurement target and the variable pinhole collimator may change when the variable pinhole collimator and the radiation detector rotate around the human body according to the location of the inside of the living body.
  • the controller may control each of the driving modules of the variable pinhole collimator so that the diameter of the pinhole is adjusted based on the distance between the measurement target and the variable pinhole collimator.
  • the above object is also achieved by the radiation sensing device to which the variable pinhole collimator is applied according to another embodiment of the present invention.
  • the present invention it is possible to change the characteristics of the pinhole collimator such as the angle of view or the hole diameter of the pinhole collimator applied to a radiographic apparatus such as a gamma camera or a single photon emission computed tomography apparatus, Provided is a variable pinhole collimator that can be implemented in thickness and a radiographic apparatus using the same.
  • variable pinhole collimator to a single photon emission computed tomography apparatus, it is possible to obtain a shape having a significantly higher resolution than when using a conventional fixed pinhole collimator when photographing only a region of interest such as a lesion.
  • FIG. 1 is a view showing the configuration of a typical gamma camera
  • FIG. 2 is a view for explaining the principle of operation of a single photon emission computed tomography apparatus
  • FIG. 3 is a view for explaining the principle of the gamma ray imaging apparatus using a conventional pinhole collimator
  • FIG. 4 is a view showing an operation example of a conventional single-hole emission computed tomography apparatus to which a pinhole collimator is applied;
  • FIG. 5 and 6 are views for explaining the configuration of the variable pinhole collimator according to the first embodiment of the present invention.
  • FIG. 7 is a view showing an example of stacking the pinhole forming module of the variable pinhole collimator according to the first embodiment of the present invention
  • FIG. 8 is of FIG. 7 - Is a diagram showing a cross section along a line
  • FIG. 9 is a view for explaining the pinhole forming module of the variable pinhole collimator according to the second embodiment of the present invention.
  • FIG. 10 is a view showing the configuration of a radiographic imaging apparatus to which a variable pinhole collimator according to the present invention is applied,
  • FIG. 11 is a view for explaining an operation example of a radiographic imaging apparatus to which a variable pinhole collimator according to the present invention is applied;
  • FIG. 12 is a view for explaining the effect of a radiographic imaging apparatus to which a variable pinhole collimator according to the present invention is applied.
  • FIG. 13 is a view illustrating an example in which a variable pinhole collimator according to the present invention is applied to a radiation detection apparatus.
  • the present invention relates to a variable pinhole collimator, comprising: a plurality of pinhole plates having a plurality of through holes having different diameters formed on respective plate surfaces, and stacked in a direction of incidence of radiation; And a plurality of driving modules configured to move the respective pinhole plates so that one of the plurality of through holes formed in each of the pinhole plates is selectively positioned in the overlapping region, thereby forming a pinhole in the overlapping region.
  • variable pinhole collimator device 100 is applied to a radiographic apparatus such as a gamma camera or a single photon emission computed tomography device.
  • a radiographic apparatus such as a gamma camera or a single photon emission computed tomography device.
  • the variable pinhole (PH) type collimator device according to the present invention can be applied to the non-destructive inspection radiographic imaging device or radioactivity inspection device using gamma rays.
  • FIG. 5 and 6 are views for explaining the configuration of the variable pinhole collimator 100 according to the first embodiment of the present invention
  • Figure 7 is a pinhole of the variable pinhole collimator 100 according to the first embodiment of the present invention
  • FIG. 8 is a view of FIG. - It is a figure which shows the cross section along a line.
  • variable pinhole collimator 100 includes a plurality of pinhole plates 111 and a plurality of driving modules 120.
  • each pinhole plate 111 is formed with a plurality of through holes 111a, 111a, 111a, and 111n having different diameters from each other, as shown in FIG.
  • Each driving module 120 moves the corresponding pinhole plate 111 to form a pinhole PH in the overlap region PFA.
  • each of the driving modules 120 includes a pinhole plate (1) such that one of the plurality of through holes 111a, 111a, 111a, and 111n formed in the pinhole plate 111 is selectively positioned in the overlapping area PFA.
  • the pinhole PH is formed in the overlapped area PFA by moving the 111.
  • the pinhole plate 111 is provided in a bar shape, and the plurality of through holes 111a, 111a, 111a, and 111n are pinhole plates. It is taken as an example to arrange along the longitudinal direction of 111.
  • the plurality of through holes 111a, 111a, 111a, and 111n formed in one pinhole plate 111 are formed in the order of their diameters.
  • the driving module 120 includes a pinhole such that any one of the plurality of through holes 111a, 111a, 111a, and 111n formed in the pinhole plate 111 is positioned in the overlapping area PFA.
  • the driving module 120 is provided in the form of a driving motor 121 and a linear guide 122 in order to linearly move the pinhole plate 111. That is, for example, the linear guide 122 having a screw thread formed on the outer diameter of the driving motor 121 is provided such that the pinhole plate 111 moves linearly by rotation.
  • the pinhole plates 111 are stacked so as to be disposed radially with respect to the overlap region PFA with the center C1 as an example.
  • through-holes 111a, 111a, 111a, and 111n formed in the respective pinhole plates 111 according to the driving of the driving module 120 are collected in the overlap region PFA according to the linear movement of the pinhole plates 111.
  • the pinholes PH may be formed or radially spaced apart from the overlapping areas PFA to be separated from the overlapping areas PFA, and the other through holes 111a, 111a, 111a, and 111n may form the pinholes PH.
  • any one of the plurality of through holes 111a, 111a, 111a, and 111n formed in each of the plurality of pinhole plates 111 stacked in the direction of incidence of radiation is disposed in the overlap region PFA,
  • the angle of view ⁇ of the pinhole PH formed in the overlap region PFA and the hole diameter 1 of the pinhole PH can be adjusted.
  • Through-holes 111a, 111a, 111a, and 111n of diameters corresponding to are arranged in the overlap area PFA.
  • the two pinhole plates 111 form the hole diameter l as an example.
  • the through-holes 111a having a diameter larger than that of the through-holes 111a, 111a, 111a, and 111n in which the hole diameters 1 are formed in the upper and lower directions of the pinhole plate 111 having the hole diameter 1 are formed.
  • the through holes 111a, 111a, 111a, and 111n of the remaining pinhole plates 111 are disposed so that the 111a, 111a, and 111n are disposed in the overlap region PFA, as shown in FIG. 8, the pinhole PH Angle of view is determined.
  • the through-holes 111a, 111a, 111a, and 111n of the through holes 111a, 111a, 111a, and 111n formed in the respective pinhole plates 111 are formed in the driving module.
  • the angle of view ⁇ and the hole diameter 1 of the pinhole PH formed in the variable pinhole collimator 100 according to the present invention can be changed.
  • the pinhole forming module 210 of the variable pinhole collimator 100 according to the second embodiment of the present invention is an example in which a disk-shaped pinhole plate 211 is stacked in the direction of incidence of radiation.
  • the driving module (not shown) rotates the pinhole plate 211 around the rotational axis C2 of the pinhole plate 211 to pass through holes 211a, 211a, 211a, and 211n. Any one of them is located in the overlap region PFA.
  • the pinhole plate 211 is provided in the shape of a disc, the plurality of through holes (211a, 211a, 211a, 211n) are formed along the circumferential direction around the rotation axis (C2) of the pinhole plate 211, the pinhole plate According to the rotation of 211, it is selectively positioned in the overlap region PFA.
  • the plurality of through holes 211a, 211a, 211a, and 211n formed in one pinhole plate 211 may be formed such that the center thereof is located within the same radius about the rotation axis C2 of the pinhole plate 211. Can be.
  • the centers of the through holes 211a, 211a, 211a, 211n positioned in the overlapping region PFA may be formed in the overlapping region PFA.
  • the pinhole PH having a certain angle of view ⁇ can be formed by the plurality of through holes 211a, 211a, 211a and 211n, as shown in FIG. Will be.
  • the plurality of pinhole plates 211 may be disposed such that the centers of the through holes 211a, 211a, 211a and 211n may pass through the center C1 of the overlapping area PFA according to each rotation. That is, all of the through holes 211a, 211a, 211a, and 211n formed in the pinhole plates 211 stacked in the direction of incidence of radiation pass through the overlapping area PFA, and the pinhole PH to be formed in the overlapping area PFA.
  • the center of the through hole (211a, 211a, 211a, 211n) is arranged to pass through the center (C1).
  • the present invention is an example in which the pinhole plate 211 is laminated so that the rotation axis C2 of each pinhole plate 211 is radially positioned with respect to the overlapping area PFA as the center C1, and all through holes 211a are used.
  • the rotation axis C2 of the pinhole plate 211 is located at the same radius from the center C1 of the pinhole PH so that the center of the 211a, 211a, 211n can pass through the center C1 of the pinhole PH. It may be arranged to.
  • variable pinhole collimator 100 according to the first embodiment is applied.
  • the radiographic imaging apparatus includes a variable pinhole collimator 100, a radiation detector 320, an image processor, and a controller 310.
  • variable pinhole collimator 100 includes a plurality of drive modules 120 and a pinhole forming module 110 including a plurality of pinhole plates 111 that are moved or rotated by the respective drive modules 120. Include.
  • the description of the variable pinhole collimator 100 is as described above, the detailed description thereof will be omitted.
  • the radiation detector 320 detects radiation that passes through the pinhole PH formed by the variable pinhole collimator 100, that is, gamma rays.
  • the configuration of the radiation detector 320 according to the present invention may have a variety of forms known in the art capable of detecting radiation.
  • the radiation image processor 350 images the radiation detected by the radiation detector 320.
  • the radiographic image processing unit 350 uses an image reconstruction algorithm using radiation detected at various angles according to the rotation of the gantry 340. A tomographic image is formed.
  • the control unit 310 is the angle of view of the variable pinhole collimator 100 so that the pinhole PH formed by the variable pinhole collimator 100 is focused on the lesion L in the measurement object emitting the radiation, for example, the living body T. Adjust ( ⁇ ).
  • the controller 310 controls the driving module 120 of the variable pinhole collimator 100 to adjust the angle of view ⁇ of the pinhole PH formed by the pinhole forming module 110.
  • the radiographic imaging apparatus when the radiographic imaging apparatus according to the present invention is provided in the form of a single photon emission computed tomography apparatus, the radiographic imaging apparatus includes a gantry 340 which rotates the variable pinhole collimator 100 and the radiation detector 320 to the side to be measured. It may include.
  • control unit 310 is a pinhole of the variable pinhole collimator 100 to be focused on the measurement target based on the distance change between the measurement target and the variable pinhole collimator 100 as the variable pinhole collimator 100 rotates around the measurement target. (PH) can be adjusted.
  • the radiation imaging apparatus is a spacing control module 330 for moving any one of the variable pinhole collimator 100 and the radiation detector 320 so that the distance between the variable pinhole collimator 100 and the radiation detector 320 is adjusted. ) May be included. In the present invention, for example, the distance between the two members is adjusted by the interval measure module to approach or space the radiation detector 320 to the variable pinhole collimator 100.
  • control unit 310 adjusts an interval between the variable pinhole collimator 100 and the radiation detector 320 in synchronization with the adjustment of the angle of view ⁇ of the pinhole PH of the variable pinhole collimator 100 to adjust the spacing module 330. Can be controlled.
  • the object to be measured by the radiographic imaging apparatus according to the present invention is an example of the lesion (L) located in the living body (T).
  • the variable pinhole collimator 100 and the radiation detector 320 acquires a radiographic image by rotating around the living body T by the gantry 340.
  • the ecology of the lesion L is shown.
  • the radiographic imaging apparatus does not use the entire living body T as the region of interest, but uses the variable pinhole collimator 100 and the spacing control module 330 with the lesion L as the region of interest. Will be adjusted.
  • variable pinhole collimator 100 and the radiation detector 320 rotate around the living body T by the gantry 340
  • the variable pinhole collimator 100 and the lesion L may be rotated. The distance between) will change.
  • the controller 310 controls the driving module 120 such that the pinhole PH formed by the variable pinhole collimator 100 is focused on the lesion L.
  • the controller 310 drives the drive module 120 to widen the angle of view ⁇ of the pinhole PH formed by the variable pinhole collimator 100 so that the pinhole PH of the variable pinhole collimator 100 is focused on the bottle surface. Will be controlled.
  • variable pinhole collimator 100 when the variable pinhole collimator 100 is located on the right side of the living body T, the position of the variable pinhole collimator 100 and the lesion L is far from each other, and the angle of view when the left side is maintained is maintained. Since a wider area is photographed without focusing on the lesion surface, the driving module 120 is controlled to reduce the angle of view ⁇ of the variable pinhole collimator 100 so as to focus on the lesion L.
  • control unit 310 as the angle of view ( ⁇ ) of the pinhole PH of the variable pinhole collimator 100 is changed, as shown in Figure 11, between the variable pinhole collimator 100 and the radiation detector 320
  • the angle of view
  • the position and size of the lesion L in the living body T are set in advance through the ROI setting unit 360, so that the variable pinhole collimator 100 and the lesion L as the region of interest according to the rotation angle of the gantry 340.
  • Distance can be calculated, the angle of view ⁇ at the corresponding position can be automatically determined. For example, in the case of a cancer occurring in the human body, the position of the normal lesion L can be confirmed, and the setting is possible through the ROI setting unit 360.
  • variable pinhole collimator 100 can be photographed at the position as close as possible to the lesion (L) of the region of interest at each rotational position, thereby minimizing the radiation material injected into the living body (T) through improved sensitivity. do.
  • FIG. 12 (a) shows an image obtained by the method shown in FIG. 4 (a) using the fixed pinhole (PH) collimator
  • FIG. 12 (b) shows the fixed pinhole (PH) collimator
  • 4 shows an image obtained by the method as shown in FIG. 4B
  • FIG. 11C shows the method as shown in FIG. 11 using the variable pinhole collimator 100 according to the present invention.
  • This is an image obtained by.
  • FIG. 12 it can be seen that the resolution of the ROI acquired using the variable pinhole collimator 100 according to the present invention is significantly higher.
  • variable pinhole collimator 100 is applied to a radiographic apparatus such as a single photon emission computed tomography apparatus.
  • the variable pinhole collimator 100 according to the present invention can of course be applied to the radiation detection device.
  • a wider field of view ⁇ is detected to detect a wider area and then radioactivity at a specific location. If this is detected, the pinhole PH of the variable pinhole collimator 100 may be controlled to focus the pinhole PH on the corresponding region.
  • FIG. 13A illustrates an example of implementing a low resolution by increasing the hole diameter 1
  • FIG. 13B illustrates an example of implementing a high resolution by narrowing the hole diameter 1.
  • a wide range can be screened to determine the approximate location of the source.
  • the angle of view ⁇ is narrowed to focus on the position, and thus the position can be detected more intensively.
  • the measurement object is defined and described as a living body T, which is defined and described as a concept including both a human body and an animal.
  • variable pinhole collimator 110,210 pinhole forming module
  • control unit 320 radiation detection unit
  • spacing control module 340 gantry
  • the present invention relates to a variable pinhole collimator device, a radiographic imaging device and a radiation detection device using the same, and can be applied to a gamma ray camera or a single photon emission computed tomography device using gamma rays, and a detection camera for detecting a radiation leak in a nuclear power plant. Is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

본 발명은 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치에 관한 것이다. 본 발명에 따른 가변형 핀홀 콜리메이터는 각각의 판면에 상호 상이한 직경을 갖는 복수의 관통홀이 형성되고, 방사선의 입사 방향으로 적층된 복수의 핀홀 플레이트와; 각각의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 하나씩이 중첩 영역에 선택적으로 위치하도록 각각의 상기 핀홀 플레이트를 이동시켜 상기 중첩 영역에 핀홀을 형성하는 복수의 구동 모듈을 포함하는 것을 특징으로 한다. 이에 따라, 감마 카메라나 단일광자방출전산화단층촬영 장치와 같은 방사선 영상 장치에 적용되는 핀홀 콜리메이터의 화각이나 홀 직경과 같은 핀홀 콜리메이터의 특성의 변화 가능하면서도, 보다 얇은 두께로 구현이 가능하게 된다.

Description

가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치
본 발명은 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치에 관한 것으로서, 보다 상세하게는 감마 카메라나 단일광자방출전산화단층촬영(Single Photon Emission Computed Tomography, SPECT) 장치와 같은 방사선 영상 장치에서 방사선의 통과 영역이나 방향을 결정하는 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치에 관한 것이다.
방사선 영상 장치는 방사선 동위원소를 이용하여 영상을 얻는 장치로, 핵의학 진단 분야를 비롯하여 비파괴 검사 분야에서 널리 사용되고 있는 장치의 하나이다.
핵의학 진단 분야에 사용되는 방사선 영상 장치, 예컨대, 감마선을 이용하는 감마선 카메라나 단일광자방출전산화단층촬영 장치는 인체의 구조적 정보를 제공하는 다른 진단 장치들, 예컨대, 자기공명촬영장치(MRI)나 초음파 진단 장치들과는 달리 방사성 약품을 이용하여 인체의 기능적 정보를 제공하게 된다.
도 1은 통상적인 감마 카메라(1)의 구성을 도시한 도면이다. 일반적인 감마 카메라(1)는 콜리메이터(Collimator)(10)와, 콜리메이터(10)를 통과한 방사선을 감지하는 방사선 검출부(20)를 포함한다.
콜리메이터(10)는 생체 내 추적자에서 방출되는 감마선 중 특정 방향의 감마선만을 통과시키고 다른 방향에서 오는 감마선을 차단하는 조준기로서의 기능을 수행한다. 즉, 콜리메이터(10)는 생체 부위에서 방출되는 감마선을 기하학적으로 제한하여 필요한 부위에서 방출되는 감마선만이 방사선 검출부(20)에 입사시킨다.
도 1 및 도 2에 도시된 콜리메이터(10)는 다수의 홀이 형성된 다중 핀홀 콜리메이터(또는 Parallel-hole collimator)의 예를 나타낸 것이고, 도 3은 일정 화각을 갖는 핀홀 콜리메이터(Pin-hole collimator)의 예를 나타낸 도면이다.
다시 도 1을 참조하여 설명하면, 방사선 검출부(20)는 신틸레이터(21), 광 가이드부(22) 및 광증배관(23)을 포함할 수 있다. 콜리메이터(10)를 통과한 감마선은 신틸레이터(21)에 입사된다.
여기서, 콜리메이터(10)를 통과하여 신틸레이터(21)와 반응한 감마선은 신틸레이터(21)에 의해 검출하기 쉬한 형태의 낮은 에너지 전자기파로 변환되어 광가이드부(22)를 거쳐 광전자증배관(50)에서 증폭 및 전기신호로 변환되고, 검출된 위치나 에너지 등이 컴퓨터(70)에 저장됨으로써, 영상을 획득하게 된다.
상기와 같은 감마선 카메라의 원리를 이용하는 단일광자방출전산화단층촬영 장치는 1976년. W. I. Keys에 의해 처음으로 개발되었고, 1979년. R. J. Jaszczak에 의해 뇌 전용 장치가 개발되었다.
단일광자방출전산화단층촬영 장치는 감마 카메라(1)의 작동 원리와 유사한데, 생체(T) 내에 단일광자, 예컨대, 감마선을 방출하는 방사성 의약품을 주입하여 생체 내에서 발생하는 감마선이 생체를 투과한 것을, 도 2에 도시된 바와 같이, 생체의 주위를 회전하는 갠트리(미도시)에 설치된 감마선 카메라로 여러 각도에서 측정하고, 검출된 신호를 영상 재구성 알고리즘에 의해 단층 영상을 획득한다.
따라서, 단일광자방출전산화단층촬영 장치에도 감마선 카메라(1)와 마찬가지로 콜리메이터(10)와 감마선 검출부(20)가 적용된다.
도 3은 감마 카메라(1)나 단일광자방출전산화단층촬영 장치에 적용되는 종래의 핀홀 콜리메이터(10a)를 이용한 감마선 영상 장치(1a)의 원리를 설명하기 위한 도면이다.
도 3을 참조하여 설명하면, 핀홀 콜리메이터(10a)는 일정한 화각(Acceptance angle, θ)와 홀 직경(Hole diameter, l)을 갖도록 구성되어 있다. 이를 통해 화각의 범위 내에서 입사되는 감마선만이 홀을 통과하도록 형성되어, 상술한 바와 같이 다중 핀홀 콜리메이터(10)와 다른 기하학적 구조에 의해 감마선을 선택적으로 통과시키게 된다.
핀홀 콜리메이터(10a)를 이용한 감마선 영상 장치(1a)의 해상도와 민감도는 핀홀 콜리메이터(10a)의 화각과 홀 직경(l), 측정 대상과 콜리메이터 간의 거리(D1)와, 그리고, 핀홀 콜리메이터(10a)와 감마선 검출부(20a) 간의 거리(D2)에 의해 결정된다.
그런데, 종래의 핀홀 콜리메이터(10a)의 경우, 화각(θ)과 홀 직경(l)이 고정되어 있어, 관심 영역의 위치나 크기에 따라 해상도나 민감도가 저하되는 문제점이 발생하게 된다.
일예로, 화각이 넓을수록 보다 넓은 영역에서 방출되는 감마선의 검출이 가능하지만, 도 3에 도시된 바와 같이, 병변과 같은 관심 영역(Region Of Interest, ROI)이 생체(T) 내부에 위치하기 때문에 생체(T) 전체 영역을 촬영할 수 있는 화각을 갖는 핀홀 콜리메이터(10a)를 사용하게 되면, 관심 영역인 병변의 해상도는 상대적으로 낮아질 수 밖에 없다.
특히, 단일광자방출전산화단층촬영 장치의 경우, 생체의 주변을 회전하면서 촬영하게 되는데, 화각(θ)이 고정된 핀홀 콜리메이터(10a)를 이용하는 경우, 환자마다 병변의 위치가 고정되어 있지 않기 때문에 생체 전체를 촬영할 수 있는 화각(θ)을 갖는 핀홀 콜리메이터(10a)를 사용하게 된다.
이 경우, 도 4의 (a)에 도시된 바와 같이, 생체로부터 화각에 맞게 일정 간격 이격된 상태로 핀홀 콜리메이터(10a) 및 감마선 검출부(20a)가 회전하게 되는데, 실제 관심 영역인 병변(L)과 핀홀 콜리메이터(10a)의 거리가 변하게 되고, 병변(L)으로부터 먼 곳에서 획득된 영상의 경우 실제 병변(L)의 해상도는 상대적으로 낮아질 수 밖에 없다.
이와 같은 단점을 해소하기 위해, 근래에 병변(L)의 위치에 적합한 화각(θ)을 갖는 핀홀 콜리메이터(10a)로 교체한 후, 도 4의 (b)에 도시된 바와 같이, 관심 영역인 병변(L)과의 거리를 화각(θ)에 맞춰 측정하는 방법이 제안되고 있다.
그러나, 도 4의 (b)에 도시된 방법의 경우, 관심 영역인 병변(L)과 핀홀 콜리메이터(10a) 간의 거리가 멀어져 영상의 민감도가 감소하게 되고, 결과적으로 민감도를 높이기 위해 환자에게 더 많은 방사선 물질을 주입해야하는 단점이 있다.
상기와 같은 문제점을 해소하기 위해 본원 출원인에 의해 출원되어 공개된 한국등록특허공보 제10-1364339호에 개시된 '가변형 핀홀 타입 콜리메이터 장치 및 이를 이용한 방사선 영상 장치'에서는 화각이 조절 가능한 핀홀 콜리메이터를 제안한 바 있다.
그런데, 상기 한국등록특허공보에 개시된 핀홀 콜리메이터의 경우, 다수의 조리개를 적층하여 핀홀의 화각이나 방향을 조절하도록 구성되어 있는데, 하나의 조리개를 구성하는데 다수의 판을 이용하여야 하고, 결과적으로 적층되는 판의 개수가 핀홀 콜리메이터를 구성하는 조리개의 개수와, 하나의 조리개를 구성하는 판의 개수의 곱만큼 증가하여 핀홀 콜리메이터의 두께를 증가하는 문제점이 있다.
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 감마 카메라나 단일광자방출전산화단층촬영 장치와 같은 방사선 영상 장치에 적용되는 핀홀 콜리메이터의 화각이나 홀 직경과 같은 핀홀 콜리메이터의 특성의 변화 가능하면서도, 보다 얇은 두께로 구현이 가능한 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치를 제공하는데 그 목적이 있다.
상기 목적은 본 발명에 따라, 가변형 핀홀 콜리메이터에 있어서, 각각의 판면에 상호 상이한 직경을 갖는 복수의 관통홀이 형성되고, 방사선의 입사 방향으로 적층된 복수의 핀홀 플레이트와; 각각의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 하나씩이 중첩 영역에 선택적으로 위치하도록 각각의 상기 핀홀 플레이트를 이동시켜 상기 중첩 영역에 핀홀을 형성하는 복수의 구동 모듈을 포함하는 것을 특징으로 하는 가변형 핀홀 콜리메이터에 의해서 달성된다.
여기서, 하나의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀은 상기 핀홀 플레이트의 길이 방향을 따라 배열되며; 상기 구동 모듈은 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 어느 하나가 상기 중첩 영역에 위치하도록 상기 핀홀 플레이트를 상기 길이 방향으로 직선 이동시킬 수 있다.
또한, 복수의 상기 핀홀 플레이트는 상기 중첩 영역을 중심으로 방사상으로 배치되고; 각각의 상기 핀홀 플레이트에 형성된 상기 관통홀은 상기 핀홀 플레이트의 직선 이동에 따라 상기 중첩 영역으로 집중되어 상기 핀홀을 형성하거나 상기 중첩 영역으로부터 방사상으로 이격될 수 있다.
그리고, 각각의 상기 구동 모듈은 상기 핀홀 플레이트의 회전축을 중심으로 상기 핀홀 플레이트를 회전시켜 복수의 상기 관통홀 중 어느 하나를 상기 중첩 영역에 위치시키고; 복수의 상기 관통홀은 상기 핀홀 플레이트의 회전에 따라 선택적으로 상기 중첩 영역에 위치하도록 상기 회전축을 중심으로 원주 방향을 따라 형성될 수 있다.
여기서, 복수의 상기 관통홀은 그 중심이 상기 회전축을 중심으로부터 동일한 반경 내에 위치하도록 상기 핀홀 플레이트에 형성될 수 있다.
또한, 상기 핀홀 플레이트의 회전에 따라 상기 관통홀의 중심이 상기 중첩 영역의 중심을 통과하도록 복수의 상기 핀홀 플레이트가 배치될 수 있다.
그리고, 상기 핀홀 플레이트의 상기 회전축이 상기 중첩 영역을 중심으로 방사상에 위치하도록 복수의 상기 핀홀 플레이트가 적층될 수 있다.
그리고, 상기 관통홀은 직경의 크기 순으로 배열될 수 있다.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 방사선 영상 장치에 있어서, 상기의 가변형 핀홀 콜리메이터와; 상기 가변형 핀홀 콜리메이터의 상기 핀홀을 통과한 방사선을 검출하는 방사선 검출부와; 상기 방사선 검출부에 의해 검출된 방사선을 영상화하는 방사선 영상 처리부와; 방사선을 방출하는 측정 대상에 포커싱되도록 상기 가변형 핀홀 콜리메이터의 상기 핀홀의 화각이 조절되도록 상기 가변형 핀홀 콜리메이터의 각각의 상기 구동 모듈을 제어하는 제어부를 포함하는 것을 특징으로 하는 방사선 영상 장치에 의해서도 달성된다.
여기서, 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부를 상기 측정 대상 주변으로 회전시키는 갠트리를 더 포함하며; 상기 제어부는 상기 가변형 핀홀 콜리메이터가 상기 측정 대상 주변을 회전함에 따라 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리 변화에 기초하여, 상기 측정 대상에 포커싱되도록 상기 가변형 핀홀 콜리메이터의 상기 핀홀을 조절할 수 있다.
또한, 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 간의 간격이 조절되도록 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 중 어느 하나를 이동시키는 간격 조절 모듈을 더 포함하며; 상기 제어부는 상기 가변형 핀홀 콜리메이터의 상기 핀홀의 화각 조절과 동기되어 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 간의 간격이 조절되도록 상기 간격 조절 모듈을 제어할 수 있다.
그리고, 상기 측정 대상은 생체 내에 위치하는 병변을 포함하며; 상기 병변의 상기 생체 내부의 위치에 따라 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부가 상기 인체 주변을 회전할 때 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리가 변할 수 있다.
또한, 상기 제어부는 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리에 기초하여 상기 핀홀의 직경이 조절되도록 상기 가변형 핀홀 콜리메이터의 각각의 상기 구동 모듈을 제어할 수 있다.
한편, 상기 목적은 본 발명의 또 다른 실시형태에 따라, 상기의 가변형 핀홀 콜리메이터가 적용된 방사능 감지 장치에 의해서도 달성된다.
상기와 같은 구성에 따라, 본 발명에 따르면, 감마 카메라나 단일광자방출전산화단층촬영 장치와 같은 방사선 영상 장치에 적용되는 핀홀 콜리메이터의 화각이나 홀 직경과 같은 핀홀 콜리메이터의 특성의 변화 가능하면서도, 보다 얇은 두께로 구현이 가능한 가변형 핀홀 콜리메이터 및 이를 이용한 방사선 영상 장치가 제공된다.
또한, 단일광자방출전산화단층촬영 장치에 가변형 핀홀 콜리메이터을 적용함에 따라, 병변과 같은 관심 영역 만의 촬영시 기존의 고정형 핀홀 콜리메이터를 이용할 때보다 해상도가 현저히 높은 형상의 획득이 가능하게 된다.
그리고, 단일광자방출전산화단층촬영 장치에 가변형 핀홀 콜리메이터을 적용함에 따라, 생체 내부의 병변과의 거리가 바뀌더라도 병면에 포커싱하여 촬영함과 동시에 병변에 가장 가까운 위치에서 촬영이 가능하게 되어, 생체에 주입되는 방사선 물질의 량을 최소화할 수 있게 된다.
도 1은 통상적인 감마 카메라의 구성을 도시한 도면이고,
도 2는 단일광자방출전산화단층촬영 장치의 동작 원리를 설명하기 위한 도면이고,
도 3은 종래의 핀홀 콜리메이터를 이용한 감마선 영상 장치의 원리를 설명하기 위한 도면이고,
도 4는 종래의 핀홀 콜리메이터가 적용된 단일광자방출전산화단층촬영 장치의 동작 예를 나타낸 도면이고,
도 5 및 도 6은 본 발명의 제1 실시예에 따른 가변형 핀홀 콜리메이터의 구성을 설명하기 위한 도면이고,
도 7은 본 발명의 제1 실시예에 따른 가변형 핀홀 콜리메이터의 핀홀 형성 모듈의 적층 예를 나타낸 도면이고,
도 8은 도 7의
Figure 2167
-
Figure 2167
선에 따른 단면을 나타낸 도면이고,
도 9는 본 발명의 제2 실시예에 따른 가변형 핀홀 콜리메이터의 핀홀 형성 모듈을 설명하기 위한 도면이고,
도 10은 본 발명에 따른 가변형 핀홀 콜리메이터가 적용된 방사선 영상 장치의 구성을 나타낸 도면이고,
도 11은 본 발명에 따른 가변형 핀홀 콜리메이터가 적용된 방사선 영상 장치의 동작 예를 설명하기 위한 도면이고,
도 12는 본 발명에 따른 가변형 핀홀 콜리메이터가 적용된 방사선 영상 장치의 효과를 설명하기 위한 도면이고,
도 13은 본 발명에 따른 가변형 핀홀 콜리메이터가 방사능 감지 장치에 적용되는 예를 나타낸 도면이다.
본 발명은 가변형 핀홀 콜리메이터에 관한 것으로, 각각의 판면에 상호 상이한 직경을 갖는 복수의 관통홀이 형성되고, 방사선의 입사 방향으로 적층된 복수의 핀홀 플레이트와; 각각의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 하나씩이 중첩 영역에 선택적으로 위치하도록 각각의 상기 핀홀 플레이트를 이동시켜 상기 중첩 영역에 핀홀을 형성하는 복수의 구동 모듈을 포함하는 것을 특징으로 한다.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다. 본 발명에 따른 가변형 핀홀 콜리메이터(100) 장치는 감마 카메라나 단일광자방출전산화단층촬영 장치와 같은 방사선 영상 장치에 적용된다. 본 발명에서는 핵의학용 방사선 영상 장치에 적용되는 것을 예로 하고 있으나, 감마선을 이용한 비파괴 검사용 방사선 영상 장치나 방사능 검사 장치에도 본 발명에 따른 가변형 핀홀(PH) 타입 콜리메이터 장치가 적용 가능함은 물론이다.
[제1 실시예]
도 5 및 도 6은 본 발명의 제1 실시예에 따른 가변형 핀홀 콜리메이터(100)의 구성을 설명하기 위한 도면이고, 도 7은 본 발명의 제1 실시예에 따른 가변형 핀홀 콜리메이터(100)의 핀홀 형성 모듈(110)의 적층 예를 나타낸 도면이고, 도 8은 도 7의
Figure 2167
-
Figure 2167
선에 따른 단면을 나타낸 도면이다.
도 5 내지 도 8을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 가변형 핀홀 콜리메이터(100)는 복수의 핀홀 플레이트(111)와, 복수의 구동 모듈(120)을 포함한다.
복수의 핀홀(PH) 콜리메이터는 방사선의 입사 방향으로 적층되어 핀홀(PH)을 형성하는 핀홀 형성 모듈(110)을 구성한다. 여기서, 각각의 핀홀 플레이트(111)에는 도 7에 도시된 바와 같이, 상호 상이한 직경을 갖는 복수의 관통홀(111a,111a,111a,111n)이 형성된다.
각각의 구동 모듈(120)은 해당 핀홀 플레이트(111)를 이동시켜 중첩 영역(PFA)에 핀홀(PH)을 형성한다. 보다 구체적으로 설명하면, 각각의 구동 모듈(120)은 핀홀 플레이트(111)에 형성된 복수의 관통홀(111a,111a,111a,111n) 중 하나씩이 중첩 영역(PFA)에 선택적으로 위치하도록 핀홀 플레이트(111)를 이동시켜 중첩 영역(PFA)에 핀홀(PH)을 형성하게 된다.
본 발명이 제1 실시예에서는 도 5 및 도 7에 도시된 바와 같이, 핀홀 플레이트(111)가 바(Bar) 형태로 마련되고, 복수의 관통홀(111a,111a,111a,111n)이 핀홀 플레이트(111)의 길이 방향을 따라 배열되는 것을 예로 한다. 여기서, 하나의 핀홀 플레이트(111)에 형성되는 복수의 관통홀(111a,111a,111a,111n)은 그 직경의 크기 순으로 형성되는 것을 예로 한다.
그리고, 구동 모듈(120)은, 도 5에 도시된 바와 같이, 핀홀 플레이트(111)에 형성된 복수의 관통홀(111a,111a,111a,111n) 중 어느 하나가 중첩 영역(PFA)에 위치하도록 핀홀 플레이트(111)를 그 길이 방향으로 직선 이동시킴으로써, 중첩 영역(PFA)에 핀홀(PH)을 형성하게 된다. 본 발명에서는 구동 모듈(120)이 핀홀 플레이트(111)의 직선 이동을 위해, 구동 모터(121)와, 리니어 가이드(122) 형태로 마련되는 것을 예로 한다. 즉, 구동 모터(121)의 회전에 따라 외경에 나사산이 형성된 리니어 가이드(122)가 회전에 의해 핀홀 플레이트(111)가 직선 이동하도록 마련되는 것을 예로 한다.
또한, 본 발명에서는 핀홀 플레이트(111)가, 도 5 및 도 7에 도시된 바와 같이, 중첩 영역(PFA)을 중심(C1)으로 방사상으로 배치되도록 적층되는 것을 예로 한다. 이 때 구동 모듈(120)의 구동에 따라 각각의 핀홀 플레이트(111)에 형성된 관통홀(111a,111a,111a,111n)은 핀홀 플레이트(111)의 직선 이동에 따라 중첩 영역(PFA)으로 집충되어 핀홀(PH)을 형성하거나 중첩 영역(PFA)으로 방사상으로 이격되어 중첩 영역(PFA)으로부터 벗어나고 다른 관통홀(111a,111a,111a,111n)이 핀홀(PH)을 형성할 수 있게 된다.
상기와 같은 구성에 따라, 방사선의 입사 방향으로 적층된 복수의 핀홀 플레이트(111) 각각에 형성된 복수의 관통홀(111a,111a,111a,111n) 중 어느 하나씩이 중첩 영역(PFA)에 배치됨으로써, 중첩 영역(PFA)에 형성된 핀홀(PH)의 화각(θ)이나 핀홀(PH)의 홀 직경(l)이 조절 가능하게 된다.
도 8을 참조하여 보다 구체적으로 설명하면, 적층 방향으로 중앙 측에 위치하는 핀홀 플레이트(111)의 관통홀(111a,111a,111a,111n) 중 형성하고자 하는 핀홀(PH)의 홀 직경(l)에 대응하는 직경의 관통홀(111a,111a,111a,111n)이 중첩 영역(PFA)에 배치된다. 도 8에서는 2개의 핀홀 플레이트(111)가 홀 직경(l)을 형성하는 것을 예로 하고 있다.
그리고, 홀 직경(l)을 형성한 핀홀 플레이트(111)의 상부 및 하부 방향으로 홀 직경(l)을 형성한 관통홀(111a,111a,111a,111n)보다 순차적으로 큰 직경의 관통홀(111a,111a,111a,111n)이 중첩 영역(PFA)에 배치되도록 나머지 핀홀 플레이트(111)의 관통홀(111a,111a,111a,111n)들을 배치시키게 되면, 도 8에 도시된 바와 같이, 핀홀(PH)의 화각(θ)이 결정된다.
이 때, 적층 방향으로 인접한 관통홀(111a,111a,111a,111n)의 직경의 차이가 클수록 형성되는 화각(θ)이 커지게 되고, 인접한 관통홀(111a,111a,111a,111n)의 직경의 차이가 작을수록 형성되는 화각(θ)이 작아지게 된다.
상기와 같은 구성을 통해, 각각의 핀홀 플레이트(111)에 형성된 관통홀(111a,111a,111a,111n) 중 중첩 영역(PFA)에 배치될 관통홀(111a,111a,111a,111n)을 구동 모듈(120)의 구동에 따라 결정함으로서, 본 발명에 따른 가변형 핀홀 콜리메이터(100)에 형성되는 핀홀(PH)의 화각(θ)과 홀 직경(l)이 변경 가능하게 된다.
[제2 실시예]
이하에서는, 도 9를 참조하여 본 발명의 제2 실시예에 따른 가변형 핀홀 콜리메이터(100)의 핀홀 형성 모듈(210)에 대해 상세히 설명한다.
본 발명의 제2 실시예예 따른 가변형 핀홀 콜리메이터(100)의 핀홀 형성 모듈(210)은 원판 형의 핀홀 플레이트(211)가 방사선의 입사 방향으로 적층되는 것을 예로 한다.
도 9를 참조하여 보다 구체적으로 설명하면, 구동 모듈(미도시)은 핀홀 플레이트(211)의 회전축(C2)을 중심으로 핀홀 플레이트(211)를 회전시켜 관통홀(211a,211a,211a,211n) 중 어느 하나를 중첩 영역(PFA)에 위치시킨다.
여기서, 핀홀 플레이트(211)는 원판 형태로 마련되고, 복수의 관통홀(211a,211a,211a,211n)은 핀홀 플레이트(211)의 회전축(C2)을 중심으로 원주 방향을 따라 형성되어, 핀홀 플레이트(211)의 회전에 따라 선택적으로 중첩 영역(PFA)에 위치하게 된다.
이 때, 하나의 핀홀 플레이트(211)에 형성된 복수의 관통홀(211a,211a,211a,211n)은 그 중심이 해당 핀홀 플레이트(211)의 회전축(C2)을 중심으로 동일한 반경 내에 위치하도록 형성될 수 있다. 이를 통해, 핀홀 플레이트(211)가 회전축(C2)을 중심으로 회전할 때 중첩 영역(PFA)에 위치하는 관통홀(211a,211a,211a,211n)의 중심이 중첩 영역(PFA)에 형성될 핀홀(PH)의 중심(C1)과 일치함으로써, 도 8에 도시된 바와 같이, 다수의 관통홀(211a,211a,211a,211n)에 의해 일정 화각(θ)을 갖는 핀홀(PH)을 형성할 수 있게 된다.
또한, 복수의 핀홀 플레이트(211)는 각각의 회전에 따라 자신의 관통홀(211a,211a,211a,211n)들의 중심이 중첩 영역(PFA)의 중심(C1)을 통과할 수 있도록 배치된다. 즉, 방사선의 입사 방향으로 적층된 핀홀 플레이트(211)에 각각 형성된 모든 관통홀(211a,211a,211a,211n)이 중첩 영역(PFA)을 통과할 때 중첩 영역(PFA)에 형성될 핀홀(PH)의 중심(C1)을 관통홀(211a,211a,211a,211n)의 중심이 통과할 수 있도록 배치된다.
여기서, 본 발명에서는 각각의 핀홀 플레이트(211)의 회전축(C2)이 중첩 영역(PFA)을 중심(C1)으로 방사상으로 위치하도록 핀홀 플레이트(211)가 적층되는 것을 예로 하는데, 모든 관통홀(211a,211a,211a,211n)의 중심이 핀홀(PH)의 중심(C1)을 통과할 수 있도록, 핀홀 플레이트(211)의 회전축(C2)이 핀홀(PH)의 중심(C1)으로부터 동일한 반경에 위치하도록 배치될 수 있다.
상기와 같은 구성을 통해, 본 발명의 제2 실시예에 따른 가변형 핀홀 콜리메이터(100)를 통해서도 중첩 영역(PFA)에 형성되는 핀홀(PH)의 화각(θ)이나 홀 직경(l)의 조절이 가능하게 된다.
[방사선 영상 장치]
이하에서는, 도 10 및 11을 참조하여 본 발명에 따른 방사선 영상 장치에 대해 상세히 설명한다. 여기서, 본 발명에 따른 방사선 영상 장치에서는 전술한 제1 실시예에 따른 가변형 핀홀 콜리메이터(100)가 적용되는 것을 예로 한다.
본 발명에 따른 방사선 영상 장치는, 도 10에 도시된 바와 같이, 가변형 핀홀 콜리메이터(100), 방사선 검출부(320), 영상 처리부 및 제어부(310)를 포함한다.
가변형 핀홀 콜리메이터(100)는 상술한 바와 같이, 복수의 구동 모듈(120)과, 각각의 구동 모듈(120)에 의해 이동 또는 회전하는 다수의 핀홀 플레이트(111)로 구성된 핀홀 형성 모듈(110)을 포함한다. 여기서, 가변형 핀홀 콜리메이터(100)에 대한 설명은 상술한 바와 같은 바, 그 상세한 설명은 생략한다.
방사선 검출부(320)는 가변형 핀홀 콜리메이터(100)에 의해 형성된 핀홀(PH)을 통과한 방사선, 즉 감마선을 검출한다. 본 발명에 따른 방사선 검출부(320)의 구성은 방사선의 검출이 가능한 기 공지된 다양한 형태를 가질 수 있다.
방사선 영상 처리부(350)는 방사선 검출부(320)에 의해 검출된 방사선을 영상화한다. 본 발명에 따른 방사선 영상 장치가 단일광자방출전산화단층촬영 장치 형태로 마련되는 경우, 방사선 영상 처리부(350)는 갠트리(340)의 회전에 따라 여러 각도에서 검출되는 방사선을 이용하여 영상 재구성 알고리즘을 통해 단층 영상을 형성하게 된다.
제어부(310)는 방사선을 방출하는 측정 대상, 예를 들어 생체(T) 내의 병변(L)에 가변형 핀홀 콜리메이터(100)에 의해 형성되는 핀홀(PH)이 포커싱되도록 가변형 핀홀 콜리메이터(100)의 화각(θ)을 조절한다. 여기서, 제어부(310)는 가변형 핀홀 콜리메이터(100)의 구동 모듈(120)을 제어함으로써, 핀홀 형성 모듈(110)에 의해 형성되는 핀홀(PH)의 화각(θ)을 조절하게 된다.
여기서, 본 발명에 따른 방사선 영상 장치가 단일광자방출전산화단층촬영 장치 형태로 마련되는 경우, 방사선 영상 장치는 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320)를 측정 대상 부변으로 회전시키는 갠트리(340)를 포함할 수 있다.
여기서, 제어부(310)는 가변형 핀홀 콜리메이터(100)가 측정 대상 주변을 회전함에 따라 측정 대상과 가변형 핀홀 콜리메이터(100) 간의 거리 변화에 기초하여, 측정 대상에 포커싱되도록 가변형 핀홀 콜리메이터(100)의 핀홀(PH)을 조절할 수 있다.
또한, 본 발명에 따른 방사선 영상 장치는 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320) 간의 간격이 조절되도록 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320) 중 어느 하나를 이동시키는 간격 조절 모듈(330)을 포함할 수 있다. 본 발명에서는 간격 조저 모듈이 방사선 검출부(320)를 가변형 핀홀 콜리메이터(100)에 접근 또는 이격시킴으로써 두 부재 간의 간격이 조절되는 것을 예로 한다.
여기서, 제어부(310)는 가변형 핀홀 콜리메이터(100)의 핀홀(PH)의 화각(θ) 조절과 동기되어 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320) 간의 간격이 조절되도록 간격 조절 모듈(330)을 제어할 수 있다.
이하에서는, 상기와 같은 구성에 따라 본 발명에 따른 방사선 영상 장치의 구동 방법을 도 11을 참조하여 설명한다. 여기서, 본 발명에 따른 방사선 영상 장치에 의해 촬영되는 측정 대상은 생체(T) 내에 위치하는 병변(L)인 것을 예로 한다. 이 때, 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320)는 갠트리(340)에 의해 생체(T) 주변을 회전하여 방사선 영상을 취득하는데, 도 11에 도시된 바와 같이, 병변(L)의 생태 내부의 위치에 따라 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320)가 생체(T) 주변을 회전할 때 측정 대상인 병변(L)과 가변형 핀홀 콜리메이터(100) 간의 거리가 변하게 된다.
본 발명에 따른 방사선 영상 장치는, 도 11에 도시된 바와 같이, 생체(T) 전체를 관심 영역으로 하지 않고, 병변(L)을 관심 영역으로 하여 가변형 핀홀 콜리메이터(100) 및 간격 조절 모듈(330)을 조절하게 된다.
도 11을 참조하여 보다 구체적으로 설명하면, 갠트리(340)에 의해 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320)가 생체(T) 주변을 회전하게 되면, 가변형 핀홀 콜리메이터(100)와 병변(L) 간의 거리가 변하게 된다. 이 때, 제어부(310)는 가변형 핀홀 콜리메이터(100)에 의해 형성되는 핀홀(PH)이 병변(L)에 포커싱되도록 구동 모듈(120)을 제어하게 된다.
즉, 도 11에서 병면이 생체(T) 내부의 좌측으로 치우쳐 있어, 가변형 핀홀 콜리메이터(100)가 생체(T)의 좌측에 위치하게 되면, 가변형 핀홀 콜리메이터(100)와 병변(L)의 위치가 가깝게 된다. 이 때, 제어부(310)는 가변형 핀홀 콜리메이터(100)의 핀홀(PH)이 병면에 포커싱되도록 가변형 핀홀 콜리메이터(100)에 의해 형성되는 핀홀(PH)의 화각(θ)이 넓어지도록 구동 모듈(120)을 제어하게 된다.
반면, 가변형 핀홀 콜리메이터(100)가 생체(T)의 우측에 위치하게 되면, 가변형 핀홀 콜리메이터(100)와 병변(L)의 위치가 멀어져, 좌측에 위치할 때의 화각(θ)을 유지하게 되면 병면에 포커싱되지 않고 보다 넓은 영역이 촬영되는 바, 병변(L)에 포커싱되도록 가변형 핀홀 콜리메이터(100)의 화각(θ)이 작아지도록 구동 모듈(120)을 제어하게 된다.
이 때, 제어부(310)는 가변형 핀홀 콜리메이터(100)의 핀홀(PH)의 화각(θ)이 바뀜에 따라, 도 11에 도시된 바와 같이, 가변형 핀홀 콜리메이터(100)와 방사선 검출부(320) 간의 간격을 조절함으로써, 일정한 확대율이 유지되어 보다 선명하고 정확한 영상 획득이 가능하게 한다.
여기서, 생체(T) 내의 병변(L)의 위치와 사이즈는 ROI 설정부(360)를 통해 미리 설정됨으로써, 갠트리(340)의 회전 각도에 따라 가변형 핀홀 콜리메이터(100)와 관심 영역인 병변(L) 간의 거리가 산출 가능하게 되어, 해당 위치에서의 화각(θ)이 자동으로 결정될 수 있다. 일 예로, 사람의 신체에 발생한 암의 경우, 통상 병변(L)의 위치는 확인 가능한 바, ROI 설정부(360)를 통해 설정이 가능하게 된다.
상기와 같은 구성에 따라, 가변형 핀홀 콜리메이터(100)의 핀홀(PH)의 화각(θ)을 조절하면서 측정이 가능하게 되어, 관심 영역인 병변(L)에만 포커싱하여 촬영이 가능하게 되어 관심 영역인 병변(L)에 대한 보다 높은 해상도의 영상의 획득이 가능하게 된다.
또한, 가변형 핀홀 콜리메이터(100)가 각각의 회전 위치에서 관심 영역인 병변(L)에 최대한 근접한 위치에서 촬영할 수 있게 되어, 민감도의 향상을 통해 생체(T)이 주입되는 방사선 물질을 최소화시킬 수 있게 된다.
이는 도 12에 도시된 바와 같은 시뮬레이션 결과를 통해 확인할 수 있다. 도 12의 (a)는 고정형 핀홀(PH) 콜리메이터를 이용하여 도 4의 (a)에 도시된 바와 같은 방법으로 획득한 영상을 나타낸 것이고, 도 12의 (b)는 고정형 핀홀(PH) 콜리메이터를 이용하여 도 4의 (b)에 도시된 바와 같은 방법으로 획득한 영상을 나타낸 것이고, 도 11의 (c)는 본 발명에 따른 가변형 핀홀 콜리메이터(100)를 이용하여 도 11에 도시된 바와 같은 방법으로 획득한 영상이다. 도 12에 도시된 바와 같이, 본 발명에 따른 가변형 핀홀 콜리메이터(100)를 이용하여 획득된 관심 영역의 해상도가 월등히 높음을 확인할 수 있다.
전술한 실시예에서는 가변형 핀홀 콜리메이터(100)가 단일광자방출전산화단층촬영 장치와 같은 방사선 영상 장치에 적용되는 것을 예로 하였다. 이외에도, 본 발명에 따른 가변형 핀홀 콜리메이터(100)는 방사능 감지 장치에도 적용될 수 있음은 물론이다. 예를 들어, 원자력 발전소에서 방사능 누출 감지를 위한 감지 카메라에 본 발명에 따른 가변형 핀홀 콜리메이터(100)가 적용되는 경우, 일반적인 촬영에서는 화각(θ)을 넓혀 보다 넓은 영역을 감지하다가, 특정 위치에서 방사능이 검출되는 경우 해당 영역을 핀홀(PH)이 포커싱되도록 가변형 핀홀 콜리메이터(100)의 핀홀(PH)을 제어할 수 있을 것이다.
도 13을 참조하여 보다 구체적으로 설명하면, 평상시에는 도 13의 (a) 및 도 (b)에 도시된 바와 같이, 화각(θ)을 최대한 넓혀 방사선원의 유무만 파악하도록 할 수 있다. 도 13의 (a)는 홀 직경(l)을 넓혀 저해상도를 구현한 예를 나타낸 것이고, 도 13의 (b)는 홀 직경(l)을 좁혀 고해상도를 구현한 예를 나타낸 것이다.
도 13의 (a) 및 (b)에 도시된 바와 같이, 넓은 범위를 스크리닝하여 대략적인 선원의 위치를 파악할 수 있는데, 방사선이 누출되어 특정 위치에서 방사선이 감지되면, 도 13의 (c)에 도시된 바와 같이, 해당 위치로 포커싱되도록 화각(θ)을 좁혀 해당 위치를 보다 중점적으로 감지할 수 있게 된다.
또한, 전술한 실시예에서 측정 대상을 생체(T)로 정의하여 설명하였으며, 이는 사람의 인체나 동물을 모두 포함하는 개념으로 정의하여 설명한 것이다.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.
[부호의 설명]
100 : 가변형 핀홀 콜리메이터 110,210 : 핀홀 형성 모듈
111,211 : 핀홀 플레이트 112 : 구동 모듈
111a,111b,111c,111n,211a,211b,211c,211n : 관통홀
310 : 제어부 320 : 방사선 검출부
330 : 간격 조절 모듈 340 : 갠트리
350 : 방사선 영상 처리부 360 : ROI 설정부
PH : 핀홀 PFA : 중첩 영역
본 발명은 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치에 관한 것으로, 감마선을 이용하는 감마선 카메라나 단일광자방출전산화단층촬영 장치에 적용 가능하며, 원자력 발전소에서 방사능 누출 감지를 위한 감지 카메라 등에도 적용 가능하다.

Claims (14)

  1. 가변형 핀홀 콜리메이터에 있어서,
    각각의 판면에 상호 상이한 직경을 갖는 복수의 관통홀이 형성되고, 방사선의 입사 방향으로 적층된 복수의 핀홀 플레이트와;
    각각의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 하나씩이 중첩 영역에 선택적으로 위치하도록 각각의 상기 핀홀 플레이트를 이동시켜 상기 중첩 영역에 핀홀을 형성하는 복수의 구동 모듈을 포함하는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  2. 제1항에 있어서,
    하나의 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀은 상기 핀홀 플레이트의 길이 방향을 따라 배열되며;
    상기 구동 모듈은 상기 핀홀 플레이트에 형성된 복수의 상기 관통홀 중 어느 하나가 상기 중첩 영역에 위치하도록 상기 핀홀 플레이트를 상기 길이 방향으로 직선 이동시키는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  3. 제2항에 있어서,
    복수의 상기 핀홀 플레이트는 상기 중첩 영역을 중심으로 방사상으로 배치되고;
    각각의 상기 핀홀 플레이트에 형성된 상기 관통홀은 상기 핀홀 플레이트의 직선 이동에 따라 상기 중첩 영역으로 집중되어 상기 핀홀을 형성하거나 상기 중첩 영역으로부터 방사상으로 이격되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  4. 제1항에 있어서,
    각각의 상기 구동 모듈은 상기 핀홀 플레이트의 회전축을 중심으로 상기 핀홀 플레이트를 회전시켜 복수의 상기 관통홀 중 어느 하나를 상기 중첩 영역에 위치시키고;
    복수의 상기 관통홀은 상기 핀홀 플레이트의 회전에 따라 선택적으로 상기 중첩 영역에 위치하도록 상기 회전축을 중심으로 원주 방향을 따라 형성되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  5. 제4항에 있어서,
    복수의 상기 관통홀은 그 중심이 상기 회전축을 중심으로부터 동일한 반경 내에 위치하도록 상기 핀홀 플레이트에 형성되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  6. 제5항에 있어서,
    상기 핀홀 플레이트의 회전에 따라 상기 관통홀의 중심이 상기 중첩 영역의 중심을 통과하도록 복수의 상기 핀홀 플레이트가 배치되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  7. 제5항에 있어서,
    상기 핀홀 플레이트의 상기 회전축이 상기 중첩 영역을 중심으로 방사상에 위치하도록 복수의 상기 핀홀 플레이트가 적층되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  8. 제1항에 있어서,
    상기 관통홀은 직경의 크기 순으로 배열되는 것을 특징으로 하는 가변형 핀홀 콜리메이터.
  9. 방사선 영상 장치에 있어서,
    제1항 내지 제8항 중 어느 한 항에 따른 가변형 핀홀 콜리메이터와;
    상기 가변형 핀홀 콜리메이터의 상기 핀홀을 통과한 방사선을 검출하는 방사선 검출부와;
    상기 방사선 검출부에 의해 검출된 방사선을 영상화하는 방사선 영상 처리부와;
    방사선을 방출하는 측정 대상에 포커싱되도록 상기 가변형 핀홀 콜리메이터의 상기 핀홀의 화각이 조절되도록 상기 가변형 핀홀 콜리메이터의 각각의 상기 구동 모듈을 제어하는 제어부를 포함하는 것을 특징으로 하는 방사선 영상 장치.
  10. 제9항에 있어서,
    상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부를 상기 측정 대상 주변으로 회전시키는 갠트리를 더 포함하며;
    상기 제어부는 상기 가변형 핀홀 콜리메이터가 상기 측정 대상 주변을 회전함에 따라 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리 변화에 기초하여, 상기 측정 대상에 포커싱되도록 상기 가변형 핀홀 콜리메이터의 상기 핀홀을 조절하는 것을 특징으로 하는 방사선 영상 장치.
  11. 제10항에 있어서,
    상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 간의 간격이 조절되도록 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 중 어느 하나를 이동시키는 간격 조절 모듈을 더 포함하며;
    상기 제어부는 상기 가변형 핀홀 콜리메이터의 상기 핀홀의 화각 조절과 동기되어 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부 간의 간격이 조절되도록 상기 간격 조절 모듈을 제어하는 것을 특징으로 하는 방사선 영상 장치.
  12. 제11항에 있어서,
    상기 측정 대상은 생체 내에 위치하는 병변을 포함하며;
    상기 병변의 상기 생체 내부의 위치에 따라 상기 가변형 핀홀 콜리메이터와 상기 방사선 검출부가 상기 인체 주변을 회전할 때 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리가 변하는 것을 특징으로 하는 방사선 영상 장치.
  13. 제10항에 있어서,
    상기 제어부는 상기 측정 대상과 상기 가변형 핀홀 콜리메이터 간의 거리에 기초하여 상기 핀홀의 직경이 조절되도록 상기 가변형 핀홀 콜리메이터의 각각의 상기 구동 모듈을 제어하는 것을 특징으로 하는 방사선 영상 장치.
  14. 제1항 내지 제8항 중 어느 한 항에 따른 가변형 핀홀 콜리메이터가 적용된 방사능 감지 장치.
PCT/KR2015/004527 2015-04-30 2015-05-07 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치 WO2016175360A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0061557 2015-04-30
KR1020150061557A KR101684780B1 (ko) 2015-04-30 2015-04-30 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치

Publications (1)

Publication Number Publication Date
WO2016175360A1 true WO2016175360A1 (ko) 2016-11-03

Family

ID=57198483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004527 WO2016175360A1 (ko) 2015-04-30 2015-05-07 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치

Country Status (2)

Country Link
KR (1) KR101684780B1 (ko)
WO (1) WO2016175360A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452549A (zh) * 2022-01-17 2022-05-10 江苏瑞尔医疗科技有限公司 一种可实现自动快速切换的准直系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577926B1 (ko) 2021-10-26 2023-09-14 한국원자력안전기술원 시료 자체감쇠보정을 위한 콜리메이터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237927A (ja) * 1993-02-15 1994-08-30 Hitachi Medical Corp 放射線画像撮影装置
JP2009020102A (ja) * 2007-07-16 2009-01-29 General Electric Co <Ge> 焦点距離調節自在型コリメータの方法及びシステム
KR20100062492A (ko) * 2008-12-02 2010-06-10 주식회사 파나노믹스 콜리메이터와 촬영부가 연동되는 x-선 영상장치
KR101364339B1 (ko) * 2013-01-22 2014-02-19 고려대학교 산학협력단 가변형 핀홀 타입 콜리메이터 장치 및 이를 이용한 방사선 영상 장비
JP2014144368A (ja) * 2007-06-22 2014-08-14 Siemens Aktiengesellschaft コリメータ装置、コリメータ装置の制御方法および制御装置ならびにx線コンピュータ断層撮影装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119835B2 (ja) 2003-12-26 2008-07-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 被曝線量計算方法およびx線撮影装置
US9318229B2 (en) * 2012-05-29 2016-04-19 General Electric Company Collimator plate, collimator module, radiation detecting device, radiography apparatus and assembling method of collimator module
KR101482016B1 (ko) 2013-07-25 2015-01-21 한국원자력연구원 방사선 검출기용 콜리메이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237927A (ja) * 1993-02-15 1994-08-30 Hitachi Medical Corp 放射線画像撮影装置
JP2014144368A (ja) * 2007-06-22 2014-08-14 Siemens Aktiengesellschaft コリメータ装置、コリメータ装置の制御方法および制御装置ならびにx線コンピュータ断層撮影装置
JP2009020102A (ja) * 2007-07-16 2009-01-29 General Electric Co <Ge> 焦点距離調節自在型コリメータの方法及びシステム
KR20100062492A (ko) * 2008-12-02 2010-06-10 주식회사 파나노믹스 콜리메이터와 촬영부가 연동되는 x-선 영상장치
KR101364339B1 (ko) * 2013-01-22 2014-02-19 고려대학교 산학협력단 가변형 핀홀 타입 콜리메이터 장치 및 이를 이용한 방사선 영상 장비

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452549A (zh) * 2022-01-17 2022-05-10 江苏瑞尔医疗科技有限公司 一种可实现自动快速切换的准直系统

Also Published As

Publication number Publication date
KR101684780B1 (ko) 2016-12-08
KR20160129421A (ko) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017183809A1 (ko) 가변형 핀홀 콜리메이터 및 이를 이용한 방사선 영상 장치
WO2014115980A1 (ko) 가변형 핀홀 타입 콜리메이터 장치 및 이를 이용한 방사선 영상 장비
WO2009154340A1 (ko) 일체형 pet/ct시스템
WO2016125986A1 (en) X-ray apparatus and method of operating the same
WO2012141420A2 (ko) 감마선 검출 장치 및 이를 이용한 감마선 검출 방법
WO2016175360A1 (ko) 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치
JP4982880B2 (ja) 開放型pet装置
US20220050067A1 (en) Industrial x-ray workpiece measuring system and method for operating same
JP7208355B2 (ja) 医療用画像のための適応コンプトンカメラ
JP4352841B2 (ja) 放射線検出器、および、riイメージング装置
KR102236154B1 (ko) 각도 가변형 콜리메이터 및 이를 이용한 방사선 검출 장치
WO2018070678A1 (ko) 방사선 영상 획득 및 분석 장치, 그 방법
JPH0367192A (ja) オートラジオグラフィ装置
WO2019117347A1 (ko) 3d 감마 프로브 및 이의 방사선 세기 측정 방법
WO2022010199A1 (ko) 방사선 검출용 콜리메이터 및 이를 이용한 방사선 검출 장치
KR20200126034A (ko) 검출기용 섬광체 및 이를 포함하는 공간분해능 향상 검출기
WO2017105024A1 (ko) 3차원 산란 방사선 영상장치와 이를 갖는 방사선 의료장비 및 3차원 산란 방사선 영상장치의 배치 방법
WO2022080797A1 (ko) 전산단층촬영장치, 이의 제조 방법 및 구동 방법
WO2018080288A1 (ko) 가변형 pet 장치
JPH0866388A (ja) 放射線撮像装置
CN115153610A (zh) 一种增大检测视野的spect布置方法
WO2023277306A1 (ko) 다층 평판형 섬광체를 이용한 양전자 방출 단층 촬영 장치 및 방법
KR20240059966A (ko) 방사선 촬영 장치 및 방법
JP2020153734A (ja) 医用画像診断装置および点検用画像生成方法
JPH02293684A (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890801

Country of ref document: EP

Kind code of ref document: A1