WO2019117347A1 - 3d 감마 프로브 및 이의 방사선 세기 측정 방법 - Google Patents

3d 감마 프로브 및 이의 방사선 세기 측정 방법 Download PDF

Info

Publication number
WO2019117347A1
WO2019117347A1 PCT/KR2017/014649 KR2017014649W WO2019117347A1 WO 2019117347 A1 WO2019117347 A1 WO 2019117347A1 KR 2017014649 W KR2017014649 W KR 2017014649W WO 2019117347 A1 WO2019117347 A1 WO 2019117347A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
subject
pattern
light
radiation
Prior art date
Application number
PCT/KR2017/014649
Other languages
English (en)
French (fr)
Inventor
서준석
박현숙
Original Assignee
(주)제이에스테크윈
서준석
박현숙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이에스테크윈, 서준석, 박현숙 filed Critical (주)제이에스테크윈
Publication of WO2019117347A1 publication Critical patent/WO2019117347A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1014Intracavitary radiation therapy
    • A61N5/1015Treatment of resected cavities created by surgery, e.g. lumpectomy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1051Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an active marker

Definitions

  • the present invention relates to a 3D gamma probe and a radiation intensity measuring method thereof.
  • Nuclear medicine is a medical field that diagnoses or treats the physiological and pathological condition of a patient by measuring the radiation emitted from the radiopharmaceutical or radiotracer injected into the body and implementing it as an image .
  • RIS radioimmunoscintigraphy
  • This technique is a technique for imaging a tumor by labeling a radioisotope to an antibody against the tumor, and for the purpose of detecting gamma-rays emitted from radiopharmaceuticals specifically accumulated in the tumor do.
  • nuclear diagnostic imaging equipment is essential to obtain information on the distribution and location of radiopharmaceuticals.
  • gamma probes have been used to detect gamma rays from radiopharmaceuticals accumulated in tumors during RIGS surgery. This can be attributed to the fact that compared with conventional nuclear medicine diagnostic equipment such as gamma camera, positron emission tomography (PET), and single photonemission computed tomography (SPECT) This is possible. It also has the advantage of being able to assess the presence or location of remnant cancer in real time.
  • PET positron emission tomography
  • SPECT single photonemission computed tomography
  • an electronic instrument including a position encoding circuit for image realization is additionally required in addition to an optical measuring instrument. Therefore, there is a disadvantage that the volume of the entire detection system is large.
  • the unstable nuclei in the excited state are stabilized to ground state, releasing the beta rays and gamma rays.
  • a radiation detector using a flash sensor is disclosed.
  • photomultiplier tube is mainly used as an optical measuring instrument of a flash radiation detector.
  • a photochromic pipe especially, a multi-channel photochromic pipe
  • 3D scanners are used to acquire shape information of ultra-small objects such as bolts and nuts, large objects such as airplanes, ships, and buildings. Especially, it is utilized for reverse engineering and quality control in various industries.
  • the 3D scanner is a device that creates modeling data by scanning three-dimensional objects. Such a 3D scanner projects laser or white light onto an object, extracts shape information of the object, and creates 3D modeling data.
  • the 3D scanner creates a scanning image of the object. Since the scanned image is data of each specific part, the 3D scanner combines the scanned images into one coordinate system through the alignment and registration process. Then, the 3D scanner merges the plurality of data sets sorted by the merging process into one piece of data to generate 3D modeling data.
  • the 3D scanner includes a contact 3D scanner using a contact method, a non-contact 3D scanner using a non-contact method, a photodetector 3D scanner, a handheld 3D scanner, and a white light type 3D scanner.
  • the contact type 3D scanner is used to measure the probe by directly touching the object, which has been used in most manufacturing industries for a long time.
  • Such a contact 3D scanner is excellent in accuracy, but it can be deformed and damaged because it is scanned in direct contact with an object surface.
  • the non-contact 3D scanner is a scanner that uses a method called a laser finder to project light onto the object surface and measure the time it takes for the light to return to find the distance between the object and the measurement origin.
  • the optical triangulation 3D scanner is a scanner for projecting a point or line type laser onto an object in a light emitting portion, receiving light reflected from a light receiving portion, and measuring a distance according to a triangular diagram.
  • handheld 3D scanners take this approach.
  • a white light type 3D scanner is a scanner that projects a specific pattern onto an object and grasps the shape of the pattern to obtain 3D information.
  • the present invention obtains a three-dimensional image of a subject through a three-dimensional scan, calculates a distance to the subject using the obtained three-dimensional information, and then uses the obtained three-dimensional information to compensate the radiation measured by the gamma probe, And to provide a 3D gamma probe and a radiation intensity measuring method thereof.
  • the present invention also relates to a method and apparatus for shaping a three-dimensional image obtained through a three-dimensional scan on a display and displaying the intensity of the radiation on a shaped three-dimensional image to easily determine the cancer cell or the intensity thereof And to provide a 3D gamma probe and a radiation intensity measuring method therefor.
  • a 3D gamma probe including a 3D probe and a control device for scanning a three-dimensional image of a subject and providing the 3D image to the control device and measuring the radiation emitted from the subject and providing the 3D image to the control device. And a controller for generating the radiation intensity compensation information using the distance from the 3D probe to the subject and simultaneously forming the three-dimensional image on the display.
  • the 3D probe includes a pattern light source for emitting a pattern light having a predetermined pattern of light to a diaphragm, pattern light emitted from the pattern light source through the diaphragm, An optical component for controlling reflected light to be reflected, an image sensor for sensing a two-dimensional image formed by the reflected light reflected by the subject by the pattern light, and a flash sensor for measuring radiation emitted from the subject .
  • the pattern light source includes a pattern mask having a predetermined pattern and a light source that emits light, and the pattern light of any one of the plurality of pattern light having the predetermined pattern formed thereon Can be released.
  • the controller may generate the radiation intensity compensation information using the radiation intensity of the gamma probe in inverse proportion to the distance information to the subject.
  • the step of the 3D probe scanning a three-dimensional image of a subject and providing the three-dimensional image to a control device may include emitting a pattern light among a plurality of pattern lights forming the predetermined pattern in the light And measuring a distance to the object by a triangulation method using the time difference between the time of emitting the pattern light and the time of receiving the reflected light when the reflected light of the pattern light reflected by the object is received , ≪ / RTI >
  • the step of calculating the distance to the subject using the 3D scanning information received from the 3D probe to generate the radiation intensity compensation information includes: And generating the radiation intensity compensation information using the radiation intensity of the gamma probe inversely proportional to the square.
  • the method further comprises generating the radiation intensity compensation information and simultaneously forming the three-dimensional image on the display.
  • a three-dimensional image of a subject is acquired through a three-dimensional scan, a distance to the subject is calculated using the obtained three-dimensional information, and the radiation measured by the gamma probe is compensated
  • the intensity of the accurate radiation can be measured.
  • a three-dimensional image obtained through three-dimensional scanning is shaped into a display, and the intensity of radiation is displayed on a shaped three-dimensional image to determine whether a cancer cell exists in a part of the subject, It is possible to easily grasp the degree to which the user is aware.
  • FIG. 1 is a view schematically showing a conventional three-dimensional camera.
  • FIG. 2 is a block diagram illustrating a 3D gamma probe according to an embodiment of the present invention. Referring to FIG.
  • FIG. 3 is a flowchart for explaining an embodiment of a 3D gamma probe radiation intensity measuring method according to the present invention.
  • FIG. 1 to FIG. 1
  • FIG. 1 is a view schematically showing a conventional three-dimensional camera.
  • a conventional 3D camera includes a housing 1, a light source 2, a pattern mask 3, an aperture stop 4, a prism 6, and an image sensor 7.
  • the light emitted from the light source 2 passes through the pattern mask 3 to emit light having a desired pattern to the diaphragm 4, the emitted light is refracted through the prism 1, .
  • the irradiated light is reflected by the subject S and the reflected light is refracted by the prism 1 and reaches the image sensor 7 through the diaphragm 5.
  • the image acquiring process is performed through a plurality of image acquiring processes.
  • the pattern mask 3 having the desired pattern is successively imaged while moving in the horizontal direction by separate power transmission. Thereafter, the two-dimensional image obtained from the image sensor 7 is converted into three-dimensional image data using a triangulation method.
  • FIG. 2 is a block diagram illustrating a 3D gamma probe according to an embodiment of the present invention. Referring to FIG.
  • the 3D gamma probe includes a 3D probe 100 and a control device 200.
  • the 3D probe 100 scans a three-dimensional image of the subject 300 and provides the scanned image to the control device 200.
  • the 3D probe 100 also measures the radiation emitted from the subject 300 and provides the measured radiation to the control device 200.
  • the 3D probe 100 includes a pattern light source 110, diaphragms 120_1 and 120_2, an optical component (prism) 130, an image sensor 140, a scintillation sensor 150, Processing unit 170, and sights 180_1, 180_2, 180_3, and 180_4.
  • the sights 180-1 and 180_4 and the sights 180_2 and 180_3 may be provided in an individual configuration or in an annular configuration.
  • the pattern light source 110 forms a predetermined pattern on the light and then outputs the pattern light having the pattern formed thereon to the diaphragm 120_1. Since the pattern light source 110 includes a pattern mask having a predetermined pattern and a light source that emits light, it can emit any one of a plurality of pattern lights having the predetermined pattern formed thereon.
  • the optical component (prism) 130 controls the pattern light emitted from the pattern light source 110 through the diaphragm 120_1 and the reflected light reflected by the pattern light.
  • the optical component (prism) 130 refracts the pattern light emitted to the diaphragm 120_1 by the pattern light source 110, and when the refracted pattern light receives the reflected light reflected by the object 300 Thereby refracting the reflected light.
  • the optical component (prism) 130 can adjust the path of the pattern light and the reflected light, and can be realized as a mirror in addition to the prism.
  • the pattern light of the pattern light source 110 is emitted through the diaphragm 120_1, it is refracted by the optical component (prism) 130 and irradiated to the subject.
  • a pattern light is irradiated, a pattern of a specific pattern appears on the surface of the subject 300 according to the three-dimensional shape of the subject.
  • Such a pattern pattern includes information on the three-dimensional shape of the subject 300.
  • the pattern formed on the surface of the subject 300 is refracted by the optical component (prism) 130 and reaches the image sensor 140 through the diaphragm 120_2.
  • the image acquiring process is performed through a plurality of image acquiring processes.
  • the patterns formed on the pattern light are successively acquired while moving in the horizontal direction by separate power transmission.
  • the image sensor 140 converts the reflected light reflected from the subject 300 into an electrical image signal to generate a two-dimensional image. Thereafter, the two-dimensional image obtained from the image sensor 140 is converted into three-dimensional image data using a triangulation method.
  • the distance from the three-dimensional image data obtained by the three-dimensional measurement method to the subject 300 is acquired and used to correct the intensity of the radiation emitted from the subject 300 simultaneously measured by the scintillation sensor 150.
  • the image sensor 40 may be a CCD (Charge-Coupled Device) color image sensor or a CCD (Charge-Coupled Device) gray image sensor 80 or a CMOS sensor.
  • CCD Charge-Coupled Device
  • CCD Charge-Coupled Device
  • the scintillation sensor 150 is an element that emits light by radiation from a patient's tumor, and may include a reflector for preventing leakage of light.
  • the scintillation sensor 150 generates the light upon receiving the radiation emitted from the subject, and transmits the light to the depression device 160.
  • the amount of light emitted from the flash sensor is proportional to the intensity of the radiation emitted from the subject and incident on the flash sensor. That is, it is proportional to the size of cancer cells.
  • inorganic scintillator crystals such as LYSO, BGO and CsI (Tl) or organic scintillators such as semiconductor crystals and plastic scintillators such as GAGG and CZT (CdZnTe) may be used.
  • the light diffusion element 160 amplifies the light radiated from the scintillation sensor 150 from several tens of thousands to several millions of times and converts the light into an electrical signal and provides it to the control device 200 through the signal preprocessing unit 170.
  • the light diffusing device 160 may be implemented by SiPM (Silicon Photomultiplier) or PMT (Photomultiplier Tube).
  • the SiPM can be coupled with a small scintillator having a cross-sectional area of several mm 2, the light receiving performance for collecting the light emitted from the scintillation sensor 150 can be maximized.
  • the sights 180_1, 180_2, 180_3, and 180_4 are mechanical focusing devices that block high energy gamma rays, such as gamma rays, from entering the undesired direction, and tungsten is mainly used.
  • the control device 200 generates the radiation intensity compensation information using the distance from the 3D probe 100 to the object 300.
  • control device 200 may generate the radiation intensity compensation information using the radiation intensity of the gamma probe in inverse proportion to the distance information to the subject.
  • control device 200 provides the 3D scan image and the radiation intensity compensation information through the display 400, and the display 400 shapes the 3D scan image provided in the control device 200 in three dimensions, The intensity of the radiation provided by the control device 200 is displayed on the three-dimensional image.
  • FIG. 3 is a flowchart for explaining an embodiment of a 3D gamma probe radiation intensity measuring method according to the present invention.
  • the 3D probe 100 scans a three-dimensional image of a subject and measures the intensity of the radiation emitted from the subject and provides it to the control device 200 (step S310).
  • the controller 200 calculates the distance to the subject using the three-dimensional image data received from the 3D probe 100 to generate the radiation intensity compensation information (step S320), and outputs the three-dimensional image and the radiation intensity compensation information To the display 400 (step S330).
  • the display 400 shapes the 3D scan image provided by the controller in three dimensions and displays the intensity of the radiation provided by the controller in the 3D image (step S340).
  • the present invention obtains a three-dimensional image of a subject through a three-dimensional scan, calculates a distance to the subject using the obtained three-dimensional information, and then uses the obtained three-dimensional information to compensate the radiation measured by the gamma probe, And to provide a 3D gamma probe and a radiation intensity measuring method thereof.
  • the present invention also relates to a method and apparatus for shaping a three-dimensional image obtained through a three-dimensional scan on a display and displaying the intensity of the radiation on a shaped three-dimensional image to easily determine the cancer cell or the intensity thereof And to provide a 3D gamma probe and its radiation intensity measuring method which can be used by those skilled in the art in the following.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명의 일 기술적 측면에 따른 3D 감마 프로브 및 제어 장치를 포함하는 3D 감마 프로브는 피사체의 3차원 이미지를 스캔하여 상기 제어 장치에 제공하며, 상기 피사체에서 방출된 방사선을 측정하여 상기 제어장치에 제공하는 3D 프로브 및 상기 3D 프로브로부터 수신된 상기 피사체까지의 거리를 이용하여 상기 방사선 세기 보상 정보를 생성하여 디스플레이에 3차원 이미지와 동시에 형상화하는 제어 장치를 포함한다.

Description

[규칙 제26조에 의한 보정 29.01.2018] 3D 감마 프로브 및 이의 방사선 세기 측정 방법
본 발명은 3D 감마 프로브 및 이의 방사선 세기 측정 방법에 관한 것이다.
핵의학(nuclear medicine)은 체내에 주입된 방사성 의약품(radiopharmaceutical) 또는 방사성 트레이서(radiotracer)로부터 발생되는 방사선을 측정한 뒤, 영상으로 구현하여 환자의 생리적, 병리적 상태를 진단하거나 치료하는 의학 분야이다.
일반적으로 핵의학 영상 진단과 치료분야에 있어 지속적인 연구를 통한 기반지식의 구축으로 방사성 의약품을 이용하여 종양을 촬영하는 기술인 방사 면역 신티그라피(radioimmunoscintigraphy, RIS)와 종양을 제거하는 기술인 방사 면역지침 수술(radioimmunoguided surgery, RIGS)이 크게 발전하였다.
*이러한 기술은 종양에 대한 항체에 방사성 동위원소(radioisotope)를 표지(labeling)하여 종양을 영상화하는 기술로서 종양에만 특이적으로 집적된 방사성 의약품에서 방출되는 감마선(gamma-ray)의 검출을 목적으로 한다.
이는 적절한 종양 표식자를 이용하여 개별 암세포를 확인한 후 수술을 진행하는 방사면역 유도하 수술에도 사용되어 갑상선암, 위암 또는 대장암 치료에 있어 표준수술로 이용되는 절개 및 항암 약물 치료의 낮은 치료성적으로 인한 한계성을 극복할 수 있는 중요한 기술로 각광받고 있다.
앞서 서술한 바와 같이 방사성 의약품을 이용한 종양의 진단과 치료를 위해서는 방사성 의약품의 분포와 위치에 대한 정보를 획득하기 위한 핵의학용 영상 진단장비가 필수적이다.
일반적으로 RIGS 수술 시, 종양에 축적된 방사성 의약품에서 발생하는 감마선을 검출하기 위하여 감마 프로브(gamma probe)가 사용되고 있다. 이는 기존의 핵의학 진단 장비인 감마 카메라(gamma camera), 양전자 방출 단층 촬영 장치(positron emission tomography, PET), 단일광자 방출 전산화 단층 촬영장치(single photonemission computed tomography, SPECT) 등에 비해 수술실 내에서 자유롭게 이동이 가능하다. 또한, 실시간으로 잔류 종양(remnant cancer)의 유무 또는 위치를 평가할 수 있다는 장점이 있다.
그런데, 상용화된 영상용 감마 프로브(imaging gamma probe)는 낮은 공간분해능(spatial resolution)을 가지며, 영상 구현을 위해 긴 데이터 획득시간을 필요로 한다는 단점이 있다.
또한, 계수용 감마 프로브(counting gamma probe)와는 달리 광 계측기기 외에 영상 구현을 위한 위치 검출 회로(position encoding circuit)를 포함한 전자장비가 부수적으로 필요하다. 따라서, 전체 검출 시스템의 부피가 크다는 단점도 있다.
그리고 몇몇 방사성 의약품의 경우에는 양전자(positron)를 방출한 후, 여기상태(excited state)의 불안정한 원자핵이 기저상태(ground state)로 안정화되는 과정에서 베타선 및 감마선을 방출한다.
이를 위해, 섬광센서를 이용한 방사선 검출기가 개시되어 있다. 일반적으로 섬광 방사선 검출기의 광 계측기기로 광증배관(photomultiplier tube, PMT)이 주로 사용된다. 광증배관(특히, 다채널 광증배관)의 경우, 각 채널에서 증폭률(amplication factor) 및 오프셋 전압(offset voltage)을 동일하게 조절해야하는 어려움이 있다.
부연하면, 섬광신호의 광강도(light intensity)가 매우 낮기 때문에 광증배관을 이용하여 전기신호로 변환, 증폭 및 오프셋 등의 수행을 위해 여러 개의 증폭기와 이벤트(event)의 위치 판별 및 영상 구현을 위한 위치 검출 회로 등과 같은 부수적인 회로들이 요구된다는 단점이 있다.
한편, 3D 스캐너는 볼트와 너트 같은 초소형 대상물부터 비행기, 선박, 빌딩 등 초대형 대상물의 형상 정보를 얻는데 사용된다. 특히 다양한 산업군에 필요한 역설계(Reverse Engineering)과 품질관리 분야에 적극 활용되고 있다.
3D 스캐너는 입체의 사물을 스캔하여 모델링 데이터를 만들어주는 장치이다. 이러한 3D 스캐너는 레이저나 백색광을 대상물에 투사하여 대상물의 형상 정보를 추출한 뒤 3D 모델링 데이터를 만들어 준다.
이를 위해, 3D 스캐너는 물체의 스캐닝 이미지를 생성한다. 스캐닝 이미지는 각각의 특정 부분의 데이터이기 때문에 3D 스캐너는 정렬 및 정합 과정을 거쳐 스캐닝 이미지를 하나의 좌표계로 합친다. 그런 다음, 3D 스캐너는 머징 과정을 통해 정렬된 여러 데이터 집합을 하나의 데이터로 합하여 3D 모델링 데이터를 생성한다.
상기의 3D 스캐너는 접촉식 방법을 사용하는 접촉식 3D 스캐너, 비접촉식 방법을 사용하는 비접촉식 3D 스캐너, 광 삼각법 3D 스캐너, 핸드헬드 3D 스캐너, 백색광 방식 3D 스캐너를 포함한다.
접촉식 3D 스캐너는 탐촉자를 물체에 직접 닿게 해서 측정하는 방식으로써 대부분의 제조업에서 오래전부터 사용하였다. 이러한 접촉식 3D 스캐너는 정확도가 우수하지만, 물체 표면에 직접 접촉하여 스캔하므로 물체의 변형 및 손상을 가져올 수 있다.
비접촉식 3D 스캐너는 레이저 파인더라고 불리는 빛을 물체 표면에 투사하여 그 빛이 돌아오는 시간을 측정해 물체와 측정 원점 사이의 거리를 구하는 방식을 사용하는 스캐너이다.
광 삼각법 3D 스캐너는 발광부에서 점 또는 선 타입의 레이저를 물체에 투사하고, 수광부에서 반사된 빛을 입력받아 삼각 도식에 따라 거리를 측정하는 방식의 스캐너이다. 일반적으로, 핸드헬드 3D 스캐너가 이러한 방식을 취한다.
백색광 방식 3D 스캐너는 특정 패턴을 물체에 투영하고 그 패턴의 변형 형태를 파악해 3D 정보를 얻어내는 방식의 스캐너이다.
본 발명은 3차원 스캔을 통해 피사체의 3차원 이미지를 획득하고 획득된 3차원 정보를 이용하여 피사체까지의 거리를 계산한 후 이를 이용하여 감마 프로브에서 측정한 방사선을 보상하여 정확한 방사선의 세기를 측정할 수 있도록 하는 3D 감마 프로브 및 이의 방사선 세기 측정 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 3차원 스캔을 통해 획득된 3차원 이미지를 디스플레이에 형상화하고 형상화된 3차원 이미지에 방사선의 세기를 표시하여 피사체의 어느 부위에 암세포가 존재하는지 또는 그 세기가 어느 정도인지를 쉽게 파악할 수 있도록 하는 3D 감마 프로브 및 이의 방사선 세기 측정 방법을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.
상기한 바와 같은 목적은 3D 프로브 및 제어 장치를 포함하는 3D 감마 프로브는 피사체의 3차원 이미지를 스캔하여 상기 제어 장치에 제공하며, 상기 피사체에서 방출된 방사선을 측정하여 상기 제어장치에 제공하는 3D 프로브 및 상기 3D 프로브로부터 수신된 상기 피사체까지의 거리를 이용하여 상기 방사선 세기 보상 정보를 생성하여 디스플레이에 3차원 이미지와 동시에 형상화하는 제어 장치를 포함한다.
본 발명의 하나의 측면에 의하면, 상기 3D 프로브는 광에 소정의 패턴을 형성한 패턴 광을 조리개로 출사하는 패턴 광원, 상기 조리개를 통해 패턴 광원에서 출사된 패턴 광 및 상기 패턴 광에 의해 피사체에 반사되는 반사 광을 제어하는 광학 부품, 상기 패턴 광에 의해 상기 피사체에 반사되는 반사광에 의해 형성되는 2차원 영상을 센싱하는 이미지 센서 및 상기 피사체에서 방출되는 방사선을 측정하는 섬광 센서를 포함할 수 있다.
본 발명의 다른 측면에 의하면, 상기 패턴 광원은 소정의 패턴을 가지는 패턴 마스크 및 광을 조사하는 광원을 포함하며, 상기 광에 상기 소정의 패턴을 형성한 복수의 패턴 광 중 어느 하나의 패턴 광을 방출할 수 있다.
본 발명의 다른 측면에 의하면, 상기 제어 장치는 상기 피사체까지의 거리 정보에 반비례하는 감마 프로브의 방사선 세기를 이용하여 상기 방사선 세기 보상 정보를 생성할 수 있다.
본 발명의 다른 목적은 3D 프로브가 피사체의 3차원 이미지를 스캔하여 제어 장치에 제공하는 단계, 상기 제어 장치가 상기 3D 프로브로부터 수신된 3차원 스캔정보를 이용하여 상기 피사체까지의 거리를 계산하여 상기 방사선 세기 보상 정보를 생성하는 단계 및 상기 3차원 이미지를 디스플레이하고 상기 3차원 이미지에 상기 보정된 방사선의 세기를 표시하는 단계를 포함한다.
본 발명의 하나의 측면에 의하면, 상기 3D 프로브가 피사체의 3차원 이미지를 스캔하여 제어 장치에 제공하는 단계는 상기 광에 상기 소정의 패턴을 형성한 복수의 패턴 광 중 어느 하나의 패턴 광을 방출하는 단계 및 상기 패턴 광이 피사체에 의해 반사된 반사광을 수신하면, 상기 패턴 광을 방출한 시간 및 상기 반사 광을 수신한 시간 사이의 차이 시간을 이용하여 삼각 측량법에 의해 상기 피사체까지의 거리를 측정하는 단계를 포함한다,
본 발명의 다른 측면에 의하면, 상기 제어 장치가 상기 3D 프로브로부터 수신된 3차원 스캔정보를 이용하여 상기 피사체까지의 거리를 계산하여 상기 방사선 세기 보상 정보를 생성하는 단계는 상기 피사체까지의 거리 정보의 제곱에 반비례하는 감마 프로브의 방사선 세기를 이용하여 상기 방사선 세기 보상 정보를 생성하는 단계를 포함한다.
본 발명의 다른 측면에 의하면, 상기 방사선 세기 보상 정보를 생성하여 디스플레이에 3차원 이미지와 동시에 형상화하는 단계를 더 포함한다.
상기한 과제의 해결 수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 과제 해결을 위한 다양한 수단들은 이하의 상세한 설명의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명의 일 실시형태에 따르면, 3차원 스캔을 통해 피사체의 3차원 이미지를 획득하고 획득된 3차원 정보를 이용하여 피사체까지의 거리를 계산한 후 이를 이용하여 감마 프로브에서 측정한 방사선을 보상하여 정확한 방사선의 세기를 측정할 수 있다.
또한, 본 발명의 일 실시형태에 따르면, 3차원 스캔을 통해 획득된 3차원 이미지를 디스플레이에 형상화하고 형상화된 3차원 이미지에 방사선의 세기를 표시하여 피사체의 어느 부위에 암세포가 존재하는지 또는 그 세기가 어느 정도인지를 쉽게 파악할 수 있다는 장점이 있다.
도 1은 종래의 3차원 카메라의 모습을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 3D 감마 프로브를 설명하기 위한 블록도이다.
도 3은 본 발명에 따른 3D 감마 프로브 방사선 세기 측정 방법의 일 실시예를 설명하기 위한 흐름도이다.
이하, 첨부된 예시도면 도 1 내지 도 3을 참조하여 본 발명의 바람직한 실시를 상세히 설명하기로 한다.
도 1은 종래의 3차원 카메라의 모습을 개략적으로 나타낸 도면이다.
도 1을 참조하면, 종래의 3D 카메라는 하우징(1), 광원(2), 패턴 마스크(3), 조리개(4; 5), 프리즘(6) 및 이미지 센서(7)를 포함하여 구성된다.
즉, 광원(2)으로부터 출사되는 빛은 패턴 마스크(3)를 통과하여 원하는 패턴을 가지는 빛을 조리개(4)로 출사시키고, 출사된 빛은 프리즘(1)을 통하여 굴절된 후 피사체(S)에 조사된다. 조사된 빛은 피사체(S)에 의해 반사되어 반사된 빛은 프리즘(1)에 의해 굴절되어 조리개(5)를 통해 이미지 센서(7)에 도달된다.
이러한 영상 획득 과정은 다수의 이미지 획득 과정을 거치게 되고, 이 과정에서 원하는 패턴이 형성된 패턴 마스크(3)는 별도의 동력 전달에 의해 수평방향으로 이동하면서 연속적으로 이미지 획득이 이루어지게 된다. 그 후, 이미지 센서(7)로부터 얻어진 2차원 이미지는 삼각 측량법(Triangulation method)을 이용하여 3차원 이미지 데이터로 변환된다.
도 2는 본 발명의 일 실시예에 따른 3D 감마 프로브를 설명하기 위한 블록도이다.
도 2를 참조하면, 3D 감마 프로브는 3D 프로브(100) 및 제어 장치(200)를 포함한다.
3D 프로브(100)는 피사체(300)의 3차원 이미지를 스캔하여 제어 장치(200)에 제공하며, 또한 상기 피사체(300)에서 방출된 방사선을 측정하여 제어 장치(200)에 제공한다.
이러한 3D 프로브(100)는 패턴 광원(110), 조리개(120_1, 120_2), 광학부품(프리즘)(130), 이미지 센서(140), 섬광 센서(150), 광증배 소자(160), 신호 전 처리부(170), 조준기(180_1, 180_2, 180_3, 180_4)를 포함한다.
여기서, 조준기(180-1)(180_4)와 조준기(180_2)(180_3)는 개별적인 구성으로 제공될 수도 있고, 하나의 환형으로 연결된 구성으로 제공될 수 있다.
패턴 광원(110)은 광에 소정의 패턴을 형성한 후 패턴이 형성된 패턴 광을 조리개(120_1)로 출사한다. 이러한 패턴 광원(110)은 소정의 패턴을 가지는 패턴 마스크 및 광을 조사하는 광원을 포함하기 때문에 광에 상기 소정의 패턴을 형성한 복수의 패턴 광 중 어느 하나의 패턴 광을 방출할 수 있다.
광학부품(프리즘)(130)은 조리개(120_1)를 통해 패턴 광원(110)에서 출사된 패턴 광 및 상기 패턴 광에 의해 피사체에 반사되는 반사 광을 제어한다.
즉, 광학부품(프리즘)(130)은 패턴 광원(110)에 의해 조리개(120_1)로 출사된 패턴 광을 굴절시키고, 상기 굴절된 패턴 광이 피사체(300)에 의해 반사된 반사 광을 수신하면 상기 반사광을 굴절시킨다. 이와 같이, 광학부품(프리즘)(130)은 패턴 광 및 반사 광의 경로를 조정할 수 있으며, 프리즘 이외에도 거울으로 구현될 수 있다.
이와 같이, 패턴 광원(110)의 패턴 광이 조리개(120_1)를 통해 출사되면, 광학부품(프리즘)(130)에 의해 굴절되어 피사체에 조사된다. 패턴 광이 조사되면 피사체(300)의 표면에는 피사체의 입체적 형상에 따라 특정한 패턴의 무늬가 나타나게 되는데, 이러한 특정한 패턴 무늬는 피사체(300)의 입체적 형상에 대한 정보를 포함하게 된다. 이렇게 피사체(300) 표면에 형성된 무늬는 광학부품(프리즘)(130)에 의해 굴절되어 조리개(120_2)를 통해 이미지 센서(140)에 도달하게 된다.
이러한 영상 획득 과정은 다수의 이미지 획득 과정을 거치게 되고, 이 과정에서 패턴 광에 형성된 패턴은 별도의 동력 전달에 의해 수평방향으로 이동하면서 연속적으로 이미지 획득이 이루어지게 된다.
이미지 센서(140)는 피사체(300)에서 반사된 반사광을 전기적 영상신호로 변환하여 2차원 이미지를 생성한다. 그 후, 이미지 센서(140)로부터 얻어진 2차원 이미지는 삼각 측량법(Triangulation method)을 이용하여 3차원 이미지 데이터로 변환된다.
또한 3차원 측량법으로 얻은 3차원 이미지 데이터로부터 피사체(300)까지의 거리를 획득하여 섬광 센서(150)에서 동시에 측정된 피사체(300)에서 방출된 방사선의 세기를 보정하는데 사용된다.
상기의 이미지 센서(40)는 CCD(Charge-Coupled Device) 컬러(color) 이미지 센서 또는 CCD(Charge-Coupled Device) 그레이(gray) 이미지 센서(80) 또는 CMOS 센서로 구성될 수 있다.
섬광 센서(150)는 환자의 종양으로부터의 방사선에 의해 발광하는 소자이며, 광의 누설을 방지하기 위한 반사체를 포함할 수 있다.
이러한 섬광 센서(150)는 피사체에서 방출된 방사선이 입사됨과 동시에 빛을 발생하여 광증배 소자(160)로 전달한다. 섬광 센서에서 발광된 빛의 양은 피사체로부터 방출되어 섬광 센서에 입사된 방사선의 세기에 비례한다. 즉, 암세포의 크기에 비례한다.
섬광 센서(150)의 재질로는 주로 LYSO, BGO, CsI(Tl) 등의 무기섬광체 크리스탈 또는 GAGG, CZT(CdZnTe)등의 반도체 크리스탈이나 플라스틱 섬광체와 같은 유기섬광체가 사용될 수 있다.
*광증배 소자(160)는 섬광 센서(150)에서 방사된 빛을 수십만 배에서 수백만 배로 증배하고 전기 신호로 변환해 신호 전 처리부(170)를 통해 제어 장치(200)에 제공한다. 이러한 광증배 소자(160)는 SiPM(Silicon Photomultiplier) 나 PMT(Photomultiplier Tube)로 구현될 수 있다.
상기의 SiPM은 수 ㎟의 단면적을 갖는 작은 섬광체와 일대일 결합(coupling)이 가능하므로 섬광 센서(150)에서 방사된 빛을 수집하는 수광 성능을 극대화 시킬 수 있다.
조준기(180_1, 180_2, 180_3, 180_4)는 감마선과 같은 높은 에너지의 감마선이 원하지 않는 방향에서 들어오는 것을 차단하는 기계적 집속 장치이며 텅스텐(tungsten)이 주로 이용된다.
제어 장치(200)는 3D 프로브(100)로부터 수신된 피사체(300)까지의 거리를 이용하여 상기 방사선 세기 보상 정보를 생성한다.
일 실시예에서, 제어 장치(200)는 피사체까지의 거리 정보에 반비례하는 감마 프로브의 방사선 세기를 이용하여 상기 방사선 세기 보상 정보를 생성할 수 있다.
그런 다음, 제어 장치(200)는 3차원 스캔 이미지와 방사선 세기 보상 정보를 디스플레이(400)를 통해 제공하고, 디스플레이(400)는 제어 장치(200)에서 제공된 3D 스캔 이미지를 3차원으로 형상화하고, 제어 장치(200)에서 제공된 방사선의 세기를 상기 3차원 이미지에 표시한다.
도 3은 본 발명에 따른 3D 감마 프로브 방사선 세기 측정 방법의 일 실시예를 설명하기 위한 흐름도이다.
도 3을 참조하면, 3D 프로브(100)는 피사체의 3차원 이미지를 스캔하고 피사체에서 방출된 방사선의 세기를 측정하여 제어 장치(200)에 제공한다(단계 S310).
제어 장치(200)는 3D 프로브(100)로부터 수신된 3차원 이미지 데이터를 이용하여 상기 피사체까지의 거리를 계산하여 상기 방사선 세기 보상 정보를 생성하고(단계 S320), 3차원 이미지와 방사선 세기 보상 정보를 디스플레이(400)에 제공한다(단계 S330).
상기 디스플레이(400)는 제어 장치에서 제공된 3D 스캔 이미지를 3차원으로 형상화하고, 제어장치에서 제공된 방사선의 세기를 상기 3차원 이미지에 표시한다(단계 S340).
이상에서 설명한 본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있으므로 본 발명의 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있다. 그에 따라, 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.
본 발명은 3차원 스캔을 통해 피사체의 3차원 이미지를 획득하고 획득된 3차원 정보를 이용하여 피사체까지의 거리를 계산한 후 이를 이용하여 감마 프로브에서 측정한 방사선을 보상하여 정확한 방사선의 세기를 측정할 수 있도록 하는 3D 감마 프로브 및 이의 방사선 세기 측정 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 3차원 스캔을 통해 획득된 3차원 이미지를 디스플레이에 형상화하고 형상화된 3차원 이미지에 방사선의 세기를 표시하여 피사체의 어느 부위에 암세포가 존재하는지 또는 그 세기가 어느 정도인지를 쉽게 파악할 수 있도록 하는 3D 감마 프로브 및 이의 방사선 세기 측정 방법을 제공하는 것을 목적으로 하기에 이 기술분야에 숙련된 사람들에 의해 유용하게 활용할 수 있다.

Claims (9)

  1. 3D 프로브 및 제어 장치를 포함하는 3D 감마 프로브에 있어서,
    피사체의 3차원 이미지를 스캔하여 상기 제어 장치에 제공하며, 상기 피사체에서 방출된 방사선을 측정하여 상기 제어장치에 제공하는 3D 프로브; 및
    상기 3D 프로브로부터 수신된 상기 피사체까지의 거리를 이용하여 상기 방사선 세기 보상 정보를 생성하여 디스플레이에 3차원 이미지와 동시에 형상화하는 제어 장치를 포함하는 것을 특징으로 하는 3D 감마 프로브.
  2. 제1항에 있어서,
    상기 3D 프로브는
    광에 소정의 패턴을 형성한 패턴 광을 조리개로 출사하는 패턴 광원;
    상기 조리개를 통해 패턴 광원에서 출사된 패턴 광 및 상기 패턴 광에 의해 피사체에 반사되는 반사 광을 제어하는 광학 부품;
    상기 패턴 광에 의해 상기 피사체에 반사되는 반사광에 의해 형성되는 2차원 영상을 센싱하는 이미지 센서; 및
    상기 피사체에 방사선을 측정하는 섬광 센서를 포함하는 것을 특징으로 하는 3D 감마 프로브.
  3. 제2항에 있어서,
    상기 패턴 광원은
    소정의 패턴을 가지는 패턴 마스크 및 광을 조사하는 광원을 포함하며, 상기 광에 상기 소정의 패턴을 형성한 복수의 패턴 광 중 어느 하나의 패턴 광을 방출하는 것을 특징으로 하는 3D 감마 프로브.
  4. 제1항에 있어서,
    상기 제어 장치는
    상기 피사체까지의 거리 정보에 반비례하는 감마 프로브의 방사선 세기를 이용하여 상기 방사선 세기 보상 정보를 생성하는 것을 특징으로 하는 3D 감마 프로브.
  5. 3D 프로브가 피사체의 3차원 이미지를 스캔하여 제어 장치에 제공하는 단계;
    상기 제어 장치가 상기 3D 프로브로부터 수신된 3차원 스캔정보를 이용하여 상기 피사체까지의 거리를 계산하여 상기 방사선 세기 보상 정보를 생성하는 단계;
    상기 3차원 이미지를 디스플레이하고 상기 3차원 이미지에 상기 보정된 방사선의 세기를 표시하는 단계를 포함하는 것을 특징으로 하는 3D 감마 프로브 방사선 세기 측정 방법.
  6. 제5항에 있어서,
    상기 3D 프로브가 피사체의 3차원 이미지를 스캔하여 제어 장치에 제공하는 단계는
    상기 광에 상기 소정의 패턴을 형성한 복수의 패턴 광 중 어느 하나의 패턴 광을 방출하는 단계; 및
    상기 패턴 광이 피사체에 의해 반사된 반사 광을 수신하면, 상기 패턴 광을 방출한 시간 및 상기 반사 광을 수신한 시간 사이의 차이 시간을 이용하여 삼각 측량법에 의해 상기 피사체까지의 거리를 측정하는 단계를 포함하는 것을 특징으로 하는 3D 감마 프로브 방사선 세기 측정 방법.
  7. 제5항에 있어서,
    상기 제어 장치가 상기 3D 프로브로부터 수신된 3차원 스캔정보를 이용하여 상기 피사체까지의 거리를 계산하여 상기 방사선 세기 보상 정보를 생성하는 단계는
    상기 피사체까지의 거리 정보의 제곱에 반비례하는 감마 프로브의 방사선 세기를 이용하여 상기 방사선 세기 보상 정보를 생성하는 단계를 포함하는 것을 특징으로 하는 3D 감마 프로브 방사선 세기 측정 방법.
  8. 제5항에 있어서,
    상기 방사선 세기 보상 정보를 생성하여 디스플레이에 3차원 이미지와 동시에 형상화하는 단계를 더 포함하는 것을 특징으로 하는 3D 감마 프로브 방사선 세기 측정 방법.
  9. 제 5항에 있어서,
    상기 방사선 세기 보상 정보를 생성하여 3차원 이미지는 디스플레이 하지 않고 보정된 방사선의 세기만 독자적으로 디스플레이하는 것을 특징으로 하는 3D 감마 프로브 방사선 세기 측정 방법.
PCT/KR2017/014649 2017-12-13 2017-12-13 3d 감마 프로브 및 이의 방사선 세기 측정 방법 WO2019117347A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170171026A KR102030255B1 (ko) 2017-12-13 2017-12-13 3d 감마 프로브 및 이의 방사선 세기 측정 방법
KR10-2017-0171026 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019117347A1 true WO2019117347A1 (ko) 2019-06-20

Family

ID=66819555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014649 WO2019117347A1 (ko) 2017-12-13 2017-12-13 3d 감마 프로브 및 이의 방사선 세기 측정 방법

Country Status (2)

Country Link
KR (1) KR102030255B1 (ko)
WO (1) WO2019117347A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104545B1 (ko) * 2018-12-12 2020-04-24 (주) 제이에스테크윈 3d 무선 감마 프로브 및 이의 방사선 세기 측정방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085995A (ja) * 2010-02-04 2012-05-10 Fujifilm Corp 放射線撮影システム
KR20140127268A (ko) * 2012-03-01 2014-11-03 라이카 게오시스템스 아게 간섭 측정을 이용한 거리 변화 판단 방법
KR20140137065A (ko) * 2013-05-21 2014-12-02 한양대학교 산학협력단 방사선 센서 프로브 및 그를 구비한 광섬유 기반 방사선 센서 시스템
KR20160028634A (ko) * 2014-09-03 2016-03-14 경북대학교 산학협력단 스테레오 방사선 영상화 장치 및 방법
KR20160073174A (ko) * 2014-12-16 2016-06-24 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 제조 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795600B1 (ko) * 2011-07-07 2017-11-08 삼성전자주식회사 디지털 촬영 장치, 그 제어방법, 및 컴퓨터 판독가능 저장매체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085995A (ja) * 2010-02-04 2012-05-10 Fujifilm Corp 放射線撮影システム
KR20140127268A (ko) * 2012-03-01 2014-11-03 라이카 게오시스템스 아게 간섭 측정을 이용한 거리 변화 판단 방법
KR20140137065A (ko) * 2013-05-21 2014-12-02 한양대학교 산학협력단 방사선 센서 프로브 및 그를 구비한 광섬유 기반 방사선 센서 시스템
KR20160028634A (ko) * 2014-09-03 2016-03-14 경북대학교 산학협력단 스테레오 방사선 영상화 장치 및 방법
KR20160073174A (ko) * 2014-12-16 2016-06-24 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 제조 장치

Also Published As

Publication number Publication date
KR20190070484A (ko) 2019-06-21
KR102030255B1 (ko) 2019-11-08

Similar Documents

Publication Publication Date Title
CN101111781B (zh) 利用放射源的定时校准
KR101360380B1 (ko) 이동 방사선 설비의 포지션 조절
US7772563B2 (en) Gamma imagery device
WO2014193066A1 (ko) 양전자방출 단층촬영장치용 검출기 및 이를 이용한 양전자방출 단층촬영 시스템
KR20040022437A (ko) Pet 스캐너
CN106539591A (zh) Pet飞行时间状态质量检测方法和pet扫描装置
CN108535768B (zh) 一种基于双探测器技术的伽马相机
KR101088057B1 (ko) 양전자방출 단층촬영장치(pet)용 검출기 모듈 및 이를 이용한 양전자방출 단층촬영장치
WO2010074400A2 (ko) 감마선 영상측정을 위한 다층 평판형 검출기 및 3차원 위치검출방법
CN105395208A (zh) 具有单光子发射成像功能的pet探测装置
KR102104545B1 (ko) 3d 무선 감마 프로브 및 이의 방사선 세기 측정방법
WO2019117347A1 (ko) 3d 감마 프로브 및 이의 방사선 세기 측정 방법
KR101330117B1 (ko) 다채널 광전소자를 이용하는 양전자방출 단층촬영장치
US10539686B2 (en) Method for the signal processing of a photosensor
WO2016175360A1 (ko) 가변형 핀홀 콜리메이터 장치 및 이를 이용한 방사선 영상 장치 및 방사능 감지 장치
KR20120070864A (ko) 광가이드를 삽입한 검출기 및 이를 이용한 양전자방출단층촬영기기
KR101265006B1 (ko) 광섬유 부재를 구비한 방사선 검출장치
KR100897154B1 (ko) 감마선 및 광학 이중 영상기기
KR102340521B1 (ko) 에너지 분리에 기반한 방사선 검출기기용 방사선(감마선) 반응 깊이 측정 방법 및 방사선(감마선) 반응 깊이 측정 장치
KR102205739B1 (ko) 거리 보정 무선 감마 프로브
Yamamoto et al. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface
WO2023277306A1 (ko) 다층 평판형 섬광체를 이용한 양전자 방출 단층 촬영 장치 및 방법
KR102104537B1 (ko) 거리 보정 감마 프로브 및 이에 의한 방사선 세기 측정 방법
WO2023120922A1 (ko) 섬광 검출기 및 이를 이용한 양전자방출단층촬영장치
KR101845436B1 (ko) 적재형 팬텀 방사선량계 및 그를 이용한 적재형 팬텀 방사선량계 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934797

Country of ref document: EP

Kind code of ref document: A1