WO2016174930A1 - 円偏波アンテナおよび姿勢算出装置 - Google Patents

円偏波アンテナおよび姿勢算出装置 Download PDF

Info

Publication number
WO2016174930A1
WO2016174930A1 PCT/JP2016/057284 JP2016057284W WO2016174930A1 WO 2016174930 A1 WO2016174930 A1 WO 2016174930A1 JP 2016057284 W JP2016057284 W JP 2016057284W WO 2016174930 A1 WO2016174930 A1 WO 2016174930A1
Authority
WO
WIPO (PCT)
Prior art keywords
circularly polarized
cavity
conductor
polarized antenna
slot
Prior art date
Application number
PCT/JP2016/057284
Other languages
English (en)
French (fr)
Inventor
明大 肥野
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2017515421A priority Critical patent/JP6419318B2/ja
Priority to US15/569,967 priority patent/US10615503B2/en
Priority to EP16786207.7A priority patent/EP3291374B1/en
Publication of WO2016174930A1 publication Critical patent/WO2016174930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to a circularly polarized antenna that transmits and receives circularly polarized waves, and an attitude calculation apparatus that includes the circularly polarized antenna.
  • Patent Document 1 describes a slot bow tie antenna that transmits and receives circularly polarized waves.
  • the antenna of Patent Document 1 includes a loop conductor and a conductive casing.
  • the loop conductor is a C-ring that lacks a part of a circle.
  • the housing is disposed so as to surround the loop conductor.
  • a bow tie slot is formed in the wall on the radiation surface side of the loop conductor in the housing. The bow tie slot and the loop conductor overlap each other when viewed from the direction perpendicular to the radiation surface of the loop conductor.
  • the antenna of Patent Document 1 includes a slot conductor formed with a bow tie slot and a loop conductor.
  • the slot conductor is formed on the first dielectric substrate, and the loop conductor is formed on the second dielectric substrate.
  • the first dielectric substrate and the second dielectric substrate are overlapped.
  • the loop conductor is sandwiched between the first dielectric substrate and the second dielectric substrate.
  • the slot conductor is opposed to the loop conductor across the first dielectric substrate.
  • an object of the present invention is to provide a small circularly polarized antenna while obtaining desired antenna characteristics.
  • the circularly polarized antenna according to the present invention includes an antenna substrate on which a flat membrane conductor for transmitting and receiving circularly polarized waves is formed, and a cavity disposed on the surface of the antenna substrate opposite to the radiation surface. When viewed in the depth direction of the cavity, the cavity overlaps at least a part of the flat membrane conductor. The length of the cavity in at least one direction is shorter than the half wavelength of the circularly polarized wave.
  • the length of the cavity in the depth direction is shorter than the wavelength of the circularly polarized wave, so that there is a wavelength shortening effect. Can be shortened.
  • the flat membrane conductor includes a loop conductor.
  • the cavity includes a first cavity arranged to enclose the loop conductor.
  • the length of the loop conductor can be shortened with respect to the circularly polarized wave transmitted and received, and the formation area of the loop conductor can be reduced.
  • the flat membrane conductor includes a slot conductor in which a slot is formed.
  • the cavity When viewed in the depth direction of the cavity, the cavity includes a second cavity that overlaps a portion of the slot conductor.
  • the slot length can be shortened with respect to the circularly polarized wave to be transmitted and received, and the slot conductor forming area can be reduced.
  • the circularly polarized antenna can be reduced in size while realizing desired antenna characteristics.
  • FIG. 1 is an external perspective view of a circularly polarized antenna according to the first embodiment of the present invention.
  • 1 is an exploded perspective view of a circularly polarized antenna according to a first embodiment of the present invention.
  • (A) is a top view of the circularly polarized antenna according to the first embodiment of the present invention
  • (B) is a side sectional view of the circularly polarized antenna.
  • (A) is the top view which looked at the surface of the antenna substrate which concerns on the 1st Embodiment of this invention
  • (B) is the top view which looked at the back surface of the same antenna substrate
  • (A) is a top view of the 1st conductor board concerning a 1st embodiment of the present invention
  • (B) is a side sectional view of the 1st conductor board
  • the graph which shows the radiation directivity characteristic of the circularly polarized antenna which concerns on the 1st Embodiment of this invention
  • External appearance perspective view of the circularly polarized antenna according to the second embodiment of the present invention Exploded perspective view of a circularly polarized antenna according to the second embodiment of the present invention.
  • (A) is a top view of the circularly polarized antenna according to the second embodiment of the present invention
  • (B) is a side sectional view of the circularly polarized antenna according to the second embodiment of the present invention.
  • (A) is the top view which looked at the surface of the antenna substrate which concerns on the 2nd Embodiment of this invention
  • (B) is the top view which looked at the back surface of the antenna substrate which concerns on the 2nd Embodiment of this invention.
  • (A) is a top view of the 1st conductor board concerning the 2nd embodiment of the present invention
  • (B) is a side sectional view of the 1st conductor board concerning the 2nd embodiment of the present invention.
  • FIG. 1 is a block diagram of an attitude calculation device according to an embodiment of the present invention.
  • FIG. 1 is an external perspective view of a circularly polarized antenna according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the circularly polarized antenna according to the first embodiment of the present invention.
  • FIG. 3A is a plan view of the circularly polarized antenna according to the first embodiment of the present invention. In FIG. 3A, some conductors are hatched for easy understanding of the positional relationship of the conductors.
  • FIG. 3B is a side cross-sectional view of the circularly polarized antenna according to the first embodiment of the present invention.
  • FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG.
  • the circularly polarized antenna 10 includes an antenna substrate 20 and conductor plates 30 and 40.
  • the back surface of the antenna substrate 20 is in contact with the surface of the conductor plate 30, and the back surface of the conductor plate 30 is in contact with the surface of the conductor plate 40. That is, the antenna substrate 20, the conductor plate 30, and the conductor plate 40 are laminated in this order.
  • a through hole 25 is formed in the antenna substrate 20.
  • a conductor is formed on the inner wall of the through hole 25 and is electrically connected to a slot conductor 22 and a relay conductor 24 described later. The conductor on the inner wall of the through hole 25 can be omitted.
  • a through hole 34 is formed in the conductor plate 30.
  • a through hole 43 is formed in the conductor plate 40.
  • the through hole 25, the through hole 34, and the through hole 43 communicate with each other in a state where the antenna substrate 20, the conductor plate 30, and the conductor plate 40 are laminated.
  • the shape of the circularly polarized antenna 10 is fixed by fixing the antenna substrate 20, the conductor plate 30, and the conductor plate 40 using conductive screws (not shown) or the like that pass through the through holes 25, 34, and 43. Is retained.
  • the conductive screw or the like is connected to a ground (not shown).
  • FIG. 4A is a plan view of the surface of the antenna substrate according to the first embodiment of the present invention.
  • FIG. 4B is a plan view of the back surface of the antenna substrate according to the first embodiment of the present invention.
  • the antenna substrate 20 includes a dielectric substrate 21, a slot conductor 22, a loop conductor 23, and a relay conductor 24.
  • the dielectric substrate 21 is rectangular in plan view. More specifically, in the case of the present embodiment, the dielectric substrate 21 is square in plan view.
  • the slot conductor 22 and the loop conductor 23 correspond to the “flat film conductor” of the present invention.
  • the slot conductor 22 is formed on the surface of the dielectric substrate 21.
  • the slot conductor 22 has a shape covering substantially the entire surface.
  • the material of the slot conductor 22 is, for example, copper (Cu).
  • a bow tie slot 220 is formed in the slot conductor 22.
  • the bow tie slot 220 is realized by a non-forming portion of the conductor in the slot conductor 22.
  • Each bow tie slot 220 has a shape extending along the diagonal line of the dielectric substrate 21 from the center position of the slot conductor 22 in plan view of the dielectric substrate 21.
  • the width of each bow tie slot 220 becomes wider as it approaches the corner from the center position side.
  • the ends of the bow tie slots 220 on the center position side are connected to each other.
  • the length of the bow tie slot 220 is set based on the wavelength ⁇ of the radio wave (transmitted / received signal) transmitted / received by the circularly polarized antenna 10 and is about the wavelength ⁇ / 2, which is shorter than the wavelength ⁇ / 2. .
  • the loop conductor 23 is formed on the back surface of the dielectric substrate 21.
  • the loop conductor 23 has a shape (C ring) in which an annular linear conductor is cut out at one place along the circumferential direction.
  • the material of the loop conductor 23 is, for example, copper (Cu).
  • the center of the loop conductor 23 (the center of the ring shape) substantially coincides with the center of the dielectric substrate 21 as viewed in plan (viewed in the direction orthogonal to the radiation surface).
  • the loop conductor 23 overlaps each of the two pairs of bow tie slots 220 to the same extent.
  • the notched position in the loop conductor 23 is arranged so as to substantially coincide with a line connecting the center of the dielectric substrate 21 and one corner.
  • One end of the notch portion of the loop conductor 23 is routed to one corner by the power supply conductor 231.
  • the other end of the cutout portion of the loop conductor 23 is routed to the vicinity of one corner by the power supply conductor 232 and is connected to the relay conductor 24 via a terminating resistor (not shown).
  • the length of the loop conductor 23 along the circumferential direction is set based on the wavelength ⁇ of the transmission / reception signal of the circularly polarized antenna 10 and is about the wavelength ⁇ , which is shorter than the wavelength ⁇ .
  • the relay conductor 24 is formed on the back surface of the dielectric substrate 21.
  • the relay conductor 24 is a linear conductor.
  • the relay conductor 24 is formed in the vicinity of the outer periphery on the back surface of the dielectric substrate 21 so as to follow the outer periphery.
  • the slot conductor 22 and the relay conductor 24 are electrically connected by screws or the like to be described later.
  • the material of the relay conductor 24 is, for example, copper (Cu), like the loop conductor 23.
  • FIG. 5A is a plan view of the first conductor plate (conductor plate 30) according to the first embodiment of the present invention.
  • FIG. 5B is a side cross-sectional view of the first conductor plate (conductor plate 30) according to the first embodiment of the present invention.
  • FIG. 5B shows a BB ′ cross section in FIG.
  • the conductive plate 30 is made of a highly conductive material.
  • the material of the conductor plate 30 is SUS, aluminum (Al), or the like.
  • the conductive plate 30 is preferably made of a material with good workability.
  • a first cavity 32 and a wiring hole 33 are formed in the conductor plate 30.
  • the first cavity 32 and the wiring hole 33 penetrate the conductor plate 30 from the front surface to the back surface.
  • the shapes of the opening surfaces of the first cavity 32 and the wiring hole 33 are substantially rectangular.
  • the center of the first cavity 32 in plan view substantially coincides with the center of the conductor plate 30 in plan view.
  • the first cavity 32 has a shape in which the loop conductor 23 can be accommodated in the first cavity 32 in a plan view in a state where the antenna substrate 20 and the conductor plate 30 are laminated.
  • the wiring hole 33 is formed between the first cavity 32 and one corner of the conductor plate 30.
  • the wiring hole 33 communicates with the first cavity 32.
  • the wiring hole 33 has a shape in which the end portion of the power supply conductor 231 is accommodated in the wiring hole 33 in a plan view in a state where the antenna substrate 20 and the conductor plate 30 are laminated.
  • the conductor plate 40 is made of a highly conductive material, like the conductor plate 30.
  • the material of the conductor plate 40 is SUS, aluminum (Al), or the like.
  • the conductive plate 40 is preferably made of a material with good workability.
  • a wiring hole 42 is formed in the conductor plate 40.
  • the wiring hole 42 penetrates the conductor plate 40 from the front surface to the back surface.
  • the shape of the opening surface of the wiring hole 42 is substantially rectangular.
  • the corner of the inner wall of the wiring hole 42 is preferably chamfered.
  • the wiring hole 42 is a position where the wiring hole 33 and the wiring hole 42 overlap in a plan view in a state where the conductor plate 30 and the conductor plate 40 are laminated. , And shape.
  • the antenna substrate 20 and the conductor plates 30 and 40 which are the respective constituent members, are configured as described above, and these are laminated as shown in FIGS. 1, 3A, and 3B.
  • the following structural features are provided.
  • the first cavity 32 is formed so that the loop conductor 23 is included when the circularly polarized antenna 10 is viewed in plan (viewed in the depth direction of the first cavity 32).
  • the first cavity 32 partially overlaps each bowtie slot 220 when the circularly polarized antenna 10 is viewed in plan. At this time, the area where the first cavity 32 overlaps each bowtie slot 220 is substantially the same.
  • the size of the first cavity 32 is determined as follows.
  • the size of the first cavity 32 is determined by the electrical length, and is determined by the length in the depth direction, the length in the longitudinal direction, and the length in the lateral direction.
  • the vertical direction and the horizontal direction of the first cavity 32 are orthogonal to each other. These vertical and horizontal directions are orthogonal to the depth direction.
  • the length in the vertical direction and the length in the horizontal direction are lengths that allow the loop conductor 23 to be accommodated in the first cavity 32.
  • the lengths of the first cavity 32 in the vertical direction, the horizontal direction, and the depth direction are more preferably shorter than the wavelength ⁇ of the transmission / reception wave signal and shorter than the half wavelength ⁇ / 2.
  • the wavelength shortening effect by the first cavity 32 of the loop conductor 23 and the bow tie slot 220 with respect to the transmission / reception signal is generated. Therefore, the length of the loop conductor 23 (length along the circumferential direction) and the length of the bow tie slot 220 can be shortened, and the planar area of the circularly polarized antenna 10 can be reduced.
  • size of the 1st cavity 32 is shorter than the wavelength (lambda) of a transmission / reception signal, the impedance by the side of the 1st cavity 32 from the antenna board
  • the slot conductor 22 is electrically connected to the relay conductor 24 and the conductor plate 30 by a conductive screw or the like that is inserted through the through hole 25. Thereby, unnecessary radio wave radiation at the end of the slot conductor 22 is suppressed, and the radiation characteristics are further improved.
  • FIG. 6 is a graph showing the radiation directivity characteristics of the circularly polarized antenna according to the first embodiment of the present invention.
  • the right-handed circularly polarized wave which is a desired wave
  • the left-handed circularly polarized wave which is an unnecessary wave
  • the circularly polarized antenna 10 according to the present embodiment can obtain excellent radiation characteristics. Therefore, by using the configuration of the circularly polarized antenna 10 according to the present embodiment, excellent radiation characteristics and downsizing can be realized.
  • FIG. 7 is an external perspective view of a circularly polarized antenna according to the second embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of a circularly polarized antenna according to the second embodiment of the present invention.
  • FIG. 9A is a plan view of a circularly polarized antenna according to the second embodiment of the present invention. In FIG. 9A, some conductors are hatched for easy understanding of the positional relationship of the conductors.
  • FIG. 9B is a side sectional view of the circularly polarized antenna according to the second embodiment of the present invention.
  • FIG. 9B is a cross-sectional view along CC ′ in FIG.
  • the circularly polarized antenna 10A according to the present embodiment differs from the circularly polarized antenna 10 according to the first embodiment in the shape of the antenna substrate 20A, and further includes a second cavity 35 added to the conductor plate 30. It is different.
  • FIG. 10A is a plan view of the surface of the antenna substrate 20A according to the second embodiment of the present invention.
  • FIG. 10B is a plan view of the back surface of the antenna substrate 20A according to the second embodiment of the present invention.
  • the antenna substrate 20A includes a dielectric substrate 21, a slot conductor 22A, a loop conductor 23, and a relay conductor 24.
  • the dielectric substrate 21, the loop conductor 23, and the relay conductor 24 are the same as the antenna substrate 20 according to the first embodiment.
  • the slot conductor 22A and the loop conductor 23 correspond to the “flat film conductor” of the present invention.
  • a bow tie slot 220A and an extending slot 221 are formed.
  • the bow tie slot 220A has the same structure as the bow tie slot 220 according to the first embodiment except that the length is different.
  • the extending slot 221 communicates with the end portion on the corner portion side of the dielectric substrate 21 in each bow tie slot 220A.
  • the extending slot 221 is realized by providing a linear conductor non-forming portion with respect to the conductor between adjacent bow tie slots 220A.
  • the extension slot 221 is a slot in which the first straight portion and the second straight portion are continuous. The first straight line portion and the second straight line portion are continuous in the order of the first straight line portion and the second straight line portion from the side connected to the bow tie slot 220.
  • the first straight portion is formed along the outer periphery of the dielectric substrate 21 that is close to the first straight portion.
  • the first straight portion extends to a substantially intermediate position between adjacent bow tie slots 220A.
  • the second straight portion is formed in a shape extending from the vicinity of the outer periphery toward the center position of the dielectric substrate 21.
  • FIG. 11A is a plan view of the first conductor plate (conductor plate 30) according to the second embodiment of the present invention.
  • FIG. 11B is a side cross-sectional view of the first conductor plate (conductor plate 30) according to the second embodiment of the present invention.
  • FIG. 11B shows a cross section along DD ′ in FIG.
  • the conductor plate 30A is formed with the same first cavity 32, wiring hole 33, and through hole 34 as those of the configuration shown in the first embodiment. Furthermore, a plurality (four in this embodiment) of second cavities 35 are formed in the conductor plate 30A.
  • the second cavity 35 is a hole penetrating the conductor plate 30A from the front surface to the back surface.
  • the plurality of second cavities 35 are formed between the first cavity 32 and each outer periphery of the conductor plate 30A. That is, the second cavity 35 is formed near the outer periphery of the conductor plate 30A.
  • the second cavity 35 has a long length in the direction along the outer periphery to which the second cavity 35 is adjacent, and a short length in a direction orthogonal to the outer periphery.
  • the second cavity 35 is closed by the conductor plate 40 at the opening opposite to the antenna substrate 20A.
  • the end surface of the second cavity 35 opposite to the antenna substrate 20A may not be sealed by the conductor plate. It is sufficient that this end surface is a discontinuous surface with respect to the transmission / reception signal.
  • the length (electric length) of the second cavity 35 in the depth direction is shorter than the half wavelength ⁇ / 2 of the transmission / reception signal, for example, 1 ⁇ 4 wavelength ⁇ / 4.
  • the circularly polarized wave antenna 10A the antenna substrate 20A and the conductor plate 30A, which are the respective constituent members, are configured as described above, and as shown in FIGS. 7, 8, 9A, and 9B, By being laminated, the circularly polarized antenna 10 according to the first embodiment has the following structural features.
  • the electrical length of the slot for the transmission / reception signal is extended to a length obtained by adding the length of the bow tie slot 220A and the length of the extension slot 221. be able to.
  • the first straight portion of the extending slot 221 extends in a direction different from the direction in which the bow tie slot 220A extends, and the second straight portion extends from the end on the first straight portion side toward the center side of the antenna substrate 20A. ing.
  • the circularly polarized antenna 10A can be reduced in size.
  • the second cavity 35 is located outside the circularly polarized antenna 10A more than the connection portion between the first straight portion and the second straight portion of the extension slot 221. It is arranged so as to overlap with the peripheral slot conductor 22A. Further, when viewed in the depth direction of the first and second cavities 32 and 35, each second cavity 35 overlaps a portion where the slot conductor 22 ⁇ / b> A and the relay conductor 24 overlap along the side where the extending slot 221 is formed.
  • the slot conductor 22A and the relay conductor 24 are preferably connected by a conductive via conductor in this overlapping portion.
  • the wavelength shortening effect by the second cavity 35 is obtained, and the length (electric length) of the bow tie slot 220A and the extending slot 221 with respect to the transmission / reception signal can be shortened.
  • the planar area of the antenna substrate 20A relative to the wavelength ⁇ of the transmitted / received signal can be further reduced, and the circularly polarized antenna 10A can be further reduced in size.
  • the circularly polarized antenna 10A can be further reduced in size by using the configuration of the present embodiment. Even when the second slot is formed without forming the extension slot 221 in this embodiment, the planar area of the antenna substrate can be similarly reduced, and the circularly polarized antenna can be downsized. In this case, the second cavity only needs to be formed so as to overlap the slot conductor 22A in the vicinity of the end of the bow tie slot 220A on the corner portion side of the dielectric substrate 21A.
  • FIG. 12 is an external perspective view of a circularly polarized antenna according to the third embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of a circularly polarized antenna according to the third embodiment of the present invention.
  • FIG. 14A is a plan view of a circularly polarized antenna according to the third embodiment of the present invention. In FIG. 14A, some conductors are hatched for easy understanding of the positional relationship of the conductors.
  • FIG. 14B is a side cross-sectional view of the circularly polarized antenna according to the second embodiment of the present invention.
  • FIG. 14B is a cross-sectional view taken along the line EE ′ in FIG.
  • the circularly polarized antenna 10B includes a circularly polarized antenna 10A ′ according to the second embodiment, an auxiliary radiation member 50, a conductor plate 60, a dielectric substrate 70, and a conductor plate 80.
  • the circularly polarized antenna 10A ′ has a configuration in which the conductor plate 40 is omitted from the circularly polarized antenna 10A according to the second embodiment.
  • the circularly polarized antenna 10A ′, the auxiliary radiating member 50, the conductor plate 60, the dielectric substrate 70, and the conductor plate 80 are They are stacked in order. More specifically, the surface of the base member 51 of the auxiliary radiation member 50 is in contact with the back surface of the circularly polarized antenna 10A ′, and the dielectric substrate 70 is disposed on the back surface of the base member 51 of the auxiliary radiation member 50. The conductor plate 80 is in contact with the back surface of the dielectric substrate 70.
  • FIG. 15 is a three-side view (plan view, first side view, second side view) of the auxiliary radiation member according to the third embodiment of the present invention.
  • the auxiliary radiation member 50 includes a base member 51 and a plurality of standing members 52.
  • the base member 51 and the standing member 52 are integrally formed.
  • the base member 51 and the standing member 52 are formed by bending a single conductor plate.
  • the base member 51 is rectangular (square in the present embodiment) in plan view.
  • a through hole 511 is formed in the base member 51.
  • the through hole 511 is a hole that penetrates the base member 51 from the front surface to the back surface.
  • the shape of the through hole 511 in plan view is substantially the same as the shape of the first cavity 32 provided in the conductor plate 30 in plan view.
  • the plurality of standing members 52 are formed so as to be connected to each side of the rectangular base member 51.
  • the flat plate surface of each standing member 52 is orthogonal to the flat plate surface of the base member 51.
  • An opening 53 is provided at a portion where the standing member 52 and the base member 51 are connected. Through the openings 53, each standing member 52 is connected to the base member 51 with a predetermined width near the corner of the base member 51.
  • a slit 521 is formed at the end of the standing member 52 opposite to the side connected to the base member 51.
  • the slit 521 communicates with the opening 53.
  • FIG. 16 is a plan view, first, second and third side cross-sectional views of a conductor plate according to a third embodiment of the present invention.
  • the first sectional view shows the FF ′ section in the plan view of FIG. 16
  • the second sectional view shows the GG ′ section in the plan view of FIG. 16
  • the third sectional view is FIG. 17 shows an HH ′ cross section in the plan view of FIG. 16.
  • the conductive plate 60 is a disc.
  • the conductor plate 60 is made of a highly conductive material, like the conductor plates 30 and 40.
  • the material of the conductor plate 60 is SUS or the like.
  • a plurality of slots 62 and 63 are formed in the conductor plate 60.
  • the length along the direction in which the slots 62 and 63 extend is set based on the wavelength ⁇ of the transmission / reception signal.
  • the slots 62 and 63 penetrate the conductor plate 60 from the front surface to the back surface.
  • the slots 62 and 63 are bent at approximately 90 ° in the middle of the extending direction.
  • the slots 62 and 63 are formed such that the bent portion is on the center side of the conductor plate 60 and both ends are on the outer peripheral side of the conductor plate 60.
  • the plurality of (four in this embodiment) slots 62 are formed with a predetermined angle (90 ° in this embodiment) difference from the center of the conductor plate 60 in plan view as a reference point.
  • the plurality of (four in this embodiment) slots 63 are formed with a difference of a predetermined angle (90 ° in this embodiment) with the center of the conductor plate 60 in plan view as a reference point.
  • the slot 62 and the slot 63 are formed such that the bent portion of the slot 62 is arranged closer to the center side of the conductor plate 60 than the bent portion of the slot 63.
  • These slots 62 and 63 correspond to the “back side slot” of the present invention.
  • the auxiliary radiating member 50 and the conductor plate 60 having such a configuration are shown in FIGS. 12, 14A, and 14B together with the circularly polarized antenna 10A ′, the dielectric substrate 70, and the conductor plate 80. So that they are stacked.
  • the through hole 511 of the auxiliary radiation member 50 overlaps and communicates with the first cavity 32 of the circularly polarized antenna 10A ′.
  • the auxiliary radiating member 50 is arranged so that the standing member 52 surrounds the circularly polarized antenna 10A ′.
  • the conductor plate 60 is disposed so that the bent portions of the slots 62 and 62 overlap the bow tie slot 220A.
  • the slots 62 and 63 by bending the slots 62 and 63, the number of slots that can be formed in a specified area can be increased. Thereby, enlargement of the conductor plate 60 can be suppressed while improving the radiation characteristics, and the circularly polarized antenna 10B can be reduced in size.
  • the dielectric substrate 70 is disposed between the conductor plates 60 and 80, but this may be omitted.
  • the dielectric substrate 70 by disposing the dielectric substrate 70, the distance between the conductor plate 60 and the conductor plate 80 can be shortened while realizing the effect of suppressing the backside leakage. Thereby, a lower circularly polarized antenna 10B, that is, a smaller circularly polarized antenna 10B can be realized.
  • FIG. 17 is an exploded perspective view of a circularly polarized antenna according to the fourth embodiment of the present invention.
  • the circularly polarized antenna 10C according to this embodiment is different from the circularly polarized antenna 10B according to the third embodiment in that the auxiliary radiation member 50 is omitted.
  • a small circularly polarized antenna 10C having excellent radiation characteristics can be realized as in the above-described embodiments.
  • the radiation characteristics are further improved by providing the auxiliary radiation member 50 as shown in the circularly polarized antenna 10B described above.
  • FIG. 18 is an exploded perspective view of a circularly polarized antenna according to the fifth embodiment of the present invention.
  • the circularly polarized antenna 10D according to the present embodiment is different from the circularly polarized antenna 10C according to the fourth embodiment in the configuration of the conductor plate 60D.
  • the conductor plate 60D includes a plurality of slots 62. That is, the circularly polarized antenna 10D according to this embodiment is different from the circularly polarized antenna 10C according to the fourth embodiment in that a plurality of slots 63 are omitted.
  • a small circularly polarized antenna 10D having excellent radiation characteristics can be realized as in the above-described embodiments.
  • the radiation characteristics can be further improved with respect to a plurality of frequencies.
  • two types of positioning signals of GPS, GLONASS, and Galileo in GNSS can be received with high gain. Since these positioning signals are close in frequency, it is possible to set so as to obtain a desired gain only by the slot 62.
  • FIG. 19 is a block diagram of the posture calculation apparatus according to the embodiment of the present invention.
  • the attitude calculation device 90 includes an antenna device 100, a reception unit 51, and a calculation unit 60.
  • the antenna device 100 includes antenna elements 101, 102, 103, and 104.
  • the antenna elements 101, 102, 103, and 104 have the configuration of the circularly polarized antenna shown in any of the above embodiments.
  • the antenna elements 101, 102, 103, and 104 are arranged on a single plane so that at least one antenna element does not line up in a straight line.
  • the receiving unit 911 is connected to the antenna element 101.
  • the receiving unit 911 detects and tracks the positioning signal received by the antenna element 101 and detects the carrier phase.
  • the receiving unit 912 is connected to the antenna element 102.
  • the receiving unit 912 detects and tracks the positioning signal received by the antenna element 102 and detects the carrier phase.
  • the receiving unit 913 is connected to the antenna element 103.
  • the receiving unit 913 detects and tracks the positioning signal received by the antenna element 103 and detects the carrier phase.
  • the receiving unit 914 is connected to the antenna element 104.
  • the receiving unit 914 detects and tracks the positioning signal received by the antenna element 104 and detects the carrier phase.
  • Receiving units 911, 912, 913, and 914 output the detected carrier phase to computing unit 92.
  • the computing unit 92 calculates the difference in carrier phase between the same positioning signals detected by the two receiving units.
  • the computing unit 92 sequentially calculates a difference in carrier wave phase (carrier wave phase difference), and calculates an attitude from these carrier wave phase differences using a known method.
  • the attitude calculation apparatus 90 can be saved in space by using the circularly polarized antenna described above.
  • attitude is calculated as the navigation information
  • other navigation information such as position and speed may be calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】所望のアンテナ特性を得ながら小型の円偏波アンテナを提供する。 【解決手段】円偏波アンテナ10は、円偏波を送受波する平膜導体が形成されたアンテナ基板20と、アンテナ基板20における放射面と反対側の面に配置されたキャビティと、を備える。キャビティの深さ方向に視て、キャビティは、平膜導体の少なくとも一部に重なっている。キャビティにおける少なくとも一方向の長さは、円偏波の半波長よりも短い。

Description

円偏波アンテナおよび姿勢算出装置
 本発明は、円偏波を送受波する円偏波アンテナ、および当該円偏波アンテナを備えた姿勢算出装置に関する。
 従来、各種の円偏波アンテナが実用化されている。例えば、特許文献1には、円偏波を送受波するスロットボウタイアンテナが記載されている。
 特許文献1のアンテナは、ループ導体と導電性の筐体を備える。ループ導体は、円の一部を欠いたC環状である。筐体は、ループ導体を囲むように配置されている。筐体におけるループ導体の放射面側の壁には、ボウタイスロットが形成されている。ループ導体の放射面に直交する方向から視て、ボウタイスロットとループ導体は重なっている。
 また、特許文献1のアンテナは、ボウタイスロットが形成されたスロット導体と、ループ導体を備える。スロット導体は第1の誘電体基板に形成されており、ループ導体は、第2の誘電体基板に形成されている。第1の誘電体基板と第2の誘電体基板は、重ねられている。この際、ループ導体は、第1の誘電体基板と第2の誘電体基板に挟まれている。スロット導体は、第1の誘電体基板を挟んでループ導体に対向している。
特開2010-109623号公報
 しかしながら、特許文献1に記載のアンテナでは、所望とするアンテナ特性(利得、指向性)を得ながら小型化することが容易ではない。
 したがって、本発明の目的は、所望のアンテナ特性を得ながら小型の円偏波アンテナを提供することにある。
 この発明の円偏波アンテナは、円偏波を送受波する平膜導体が形成されたアンテナ基板と、アンテナ基板における放射面と反対側の面に配置されたキャビティと、を備える。キャビティの深さ方向に視て、キャビティは、平膜導体の少なくとも一部に重なっている。キャビティにおける少なくとも一方向の長さは、円偏波の半波長よりも短い。
 この構成では、キャビティの深さ方向の長さが円偏波の波長よりも短いことによって、波長短縮効果があり、送受波する円偏波の波長に対して平膜導体における放射に寄与する部分の長さを短くすることができる。
 また、この発明の円偏波アンテナでは、平膜導体はループ導体を備える。キャビティは、ループ導体を内包するように配置された第1キャビティを備える。
 この構成では、送受波する円偏波に対してループ導体の長さを短くでき、ループ導体の形成面積を小さくできる。
 また、この発明の円偏波アンテナでは、平膜導体は、スロットが形成されたスロット導体を備える。キャビティの深さ方向に視て、キャビティは、スロット導体の一部に重なっている第2キャビティを備える。
 この構成では、送受波する円偏波に対してスロットの長さを短くでき、スロット導体の形成面積を小さくできる。
 この発明によれば、所望のアンテナ特性を実現しながら、円偏波アンテナを小型にすることができる。
本発明の第1の実施形態に係る円偏波アンテナの外観斜視図 本発明の第1の実施形態に係る円偏波アンテナの分解斜視図 (A)は本発明の第1の実施形態に係る円偏波アンテナの平面図、(B)は同円偏波アンテナの側面断面図 (A)は本発明の第1の実施形態に係るアンテナ基板の表面を視た平面図、(B)は同アンテナ基板の裏面を視た平面図 (A)は本発明の第1の実施形態に係る第1の導体板の平面図、(B)は同第1の導体板の側面断面図 本発明の第1の実施形態に係る円偏波アンテナの放射指向特性を示すグラフ 本発明の第2の実施形態に係る円偏波アンテナの外観斜視図 本発明の第2の実施形態に係る円偏波アンテナの分解斜視図 (A)は本発明の第2の実施形態に係る円偏波アンテナの平面図、(B)は本発明の第2の実施形態に係る円偏波アンテナの側面断面図 (A)は本発明の第2の実施形態に係るアンテナ基板の表面を視た平面図、(B)は本発明の第2の実施形態に係るアンテナ基板の裏面を視た平面図 (A)は本発明の第2の実施形態に係る第1の導体板の平面図、(B)は本発明の第2の実施形態に係る第1の導体板の側面断面図 本発明の第3の実施形態に係る円偏波アンテナの外観斜視図 本発明の第3の実施形態に係る円偏波アンテナの分解斜視図 (A)は本発明の第3の実施形態に係る円偏波アンテナの平面図、(B)は本発明の第2の実施形態に係る円偏波アンテナの側面断面図 本発明の第3の実施形態に係る補助放射部材の三面図 本発明の第3の実施形態に係る導体板の平面図、第1、第2、第3側面断面図 本発明の第4の実施形態に係る円偏波アンテナの分解斜視図 本発明の第5の実施形態に係る円偏波アンテナの分解斜視図 は、本発明の実施形態に係る姿勢算出装置のブロック図
 本発明の第1の実施形態に係る円偏波アンテナについて、図を参照して説明する。図1は、本発明の第1の実施形態に係る円偏波アンテナの外観斜視図である。図2は、本発明の第1の実施形態に係る円偏波アンテナの分解斜視図である。図3(A)は、本発明の第1の実施形態に係る円偏波アンテナの平面図である。図3(A)は、導体の位置関係を分かり易くするために、一部の導体にハッチングを施してある。図3(B)は、本発明の第1の実施形態に係る円偏波アンテナの側面断面図である。図3(B)は、図3(A)におけるA-A'断面の図である。
 円偏波アンテナ10は、アンテナ基板20、導体板30,40を備える。アンテナ基板20の裏面は、導体板30の表面に当接しており、導体板30の裏面は、導体板40の表面に当接している。すなわち、アンテナ基板20、導体板30、および導体板40は、この順で積層されている。アンテナ基板20には貫通孔25が形成されている。貫通孔25の内壁には導体が形成されており、後述するスロット導体22および中継導体24に導通している。なお、貫通孔25の内壁の導体は、省略することができる。導体板30には貫通孔34が形成されている。導体板40には貫通孔43が形成されている。貫通孔25、貫通孔34、および貫通孔43は、アンテナ基板20、導体板30、および導体板40を積層した状態で連通している。これら貫通孔25,34,43を挿通する導電性のネジ(図示せず)等を用いて、アンテナ基板20、導体板30、および導体板40を固定することによって、円偏波アンテナ10の形状が保持される。なお、この導電性のネジ等は、図示しないグランドに接続されている。
 図4(A)は、本発明の第1の実施形態に係るアンテナ基板の表面を視た平面図である。図4(B)は、本発明の第1の実施形態に係るアンテナ基板の裏面を視た平面図である。
 アンテナ基板20は、誘電体基板21、スロット導体22、ループ導体23、および、中継導体24を備える。誘電体基板21は、平面視して矩形である。より具体的には、本実施形態の場合であれば、誘電体基板21は、平面視して正方形である。スロット導体22およびループ導体23が本発明の「平膜導体」に相当する。
 スロット導体22は、誘電体基板21の表面に形成されている。スロット導体22は、表面の略全面に亘る形状である。スロット導体22の材質は、例えば銅(Cu)である。スロット導体22には、ボウタイスロット220が形成されている。ボウタイスロット220は、スロット導体22における導体の非形成部によって実現される。
 ボウタイスロット220は、2対形成されている。各ボウタイスロット220は、誘電体基板21を平面視したスロット導体22の中心位置から誘電体基板21の対角線に沿って延びる形状である。各ボウタイスロット220の幅は、前記中心位置側から角部に近づくにしたがって広くなっている。各ボウタイスロット220の前記中心位置側の端部は、互いに繋がっている。ボウタイスロット220の長さは、円偏波アンテナ10で送受波する電波(送受波信号)の波長λに基づいて設定されており、当該波長λ/2程度であり、波長λ/2よりも短い。
 ループ導体23は、誘電体基板21の裏面に形成されている。ループ導体23は、円環形状の線状導体を円周方向に沿った1箇所で切り欠いた形状(C環状)である。ループ導体23の材質は、例えば銅(Cu)である。ループ導体23の中心(円環形状の中心)は、誘電体基板21を平面視した(放射面に直交する方向に視た)中心に略一致している。ループ導体23は、2対のボウタイスロット220のそれぞれに対して同程度に重なっている。ループ導体23における切り欠かれた位置は、誘電体基板21の中心と1つの角部とを結ぶ線上に略一致するように配置されている。
 ループ導体23の切り欠き部分の一端は、給電導体231によって1つの角部付近まで引き回されている。ループ導体23の切り欠き部分の他端は、給電導体232によって1つの角部付近まで引き回され、終端抵抗(図示せず)を介して中継導体24に接続されている。
 ループ導体23の円周方向に沿った長さは、円偏波アンテナ10の送受波信号の波長λに基づいて設定されており、当該波長λ程度であり、波長λよりも短い。
 中継導体24は、誘電体基板21の裏面に形成されている。中継導体24は、線状導体である。中継導体24は、誘電体基板21の裏面における外周の近傍に、当該外周に沿うように形成されている。スロット導体22と中継導体24は、後述するネジ等によって電気的に接続されている。中継導体24の材質は、ループ導体23と同様に、例えば銅(Cu)である。
 図5(A)は、本発明の第1の実施形態に係る第1の導体板(導体板30)の平面図である。図5(B)は、本発明の第1の実施形態に係る第1の導体板(導体板30)の側面断面図である。図5(B)は、図5(A)におけるB-B'断面を示している。
 導体板30は、導電性が高い材質からなる。例えば、導体板30の材料は、SUS、アルミニウム(Al)等である。導体板30は、加工性の良い材質であるとよりよい。
 導体板30には、第1キャビティ32、および配線孔33が形成されている。第1キャビティ32および配線孔33は、導体板30を表面から裏面に亘って貫通している。第1キャビティ32および配線孔33の開口面の形状は、略矩形である。
 第1キャビティ32を平面視した中心は、導体板30を平面視した中心に略一致している。図3(A)に示すように、第1キャビティ32は、アンテナ基板20と導体板30が積層された状態で平面視して、ループ導体23が第1キャビティ32内に収まる形状である。
 配線孔33は、第1キャビティ32と導体板30の1つの角部との間に形成されている。配線孔33は、第1キャビティ32に連通している。配線孔33は、アンテナ基板20と導体板30が積層された状態で平面視して、給電導体231の端部が配線孔33内に収まる形状である。
 導体板40は、導体板30と同様に、導電性が高い材質からなる。例えば、導体板40の材料は、SUS、アルミニウム(Al)等である。導体板40は、加工性の良い材質であるとよりよい。
 図2、図5(A)、図5(B)に示すように、導体板40には、配線孔42が形成されている。配線孔42は、導体板40を表面から裏面に亘って貫通している。配線孔42の開口面の形状は、略矩形である。なお、配線孔42の内壁の角は面取りされているとよい。図3(A)、図3(B)に示すように、配線孔42は、導体板30と導体板40が積層された状態で平面視して、配線孔33と配線孔42とが重なる位置、および形状である。
 円偏波アンテナ10は、各構成部材であるアンテナ基板20、導体板30,40が上述の構成であり、図1、図3(A)、図3(B)に示すように、これらが積層されていることによって、次に示す構造の特徴を有する。
 導体板30がアンテナ基板20と導体板40との間に挟まれていることによって、第1キャビティ32におけるアンテナ基板20と反対側の端面は、導体板40によって封止されている。なお、第1キャビティ32におけるアンテナ基板20と反対側の端面は、導体板40によって封止されていなくても、この端面が送受波信号に対して不連続面になっていればよい。第1キャビティ32は、円偏波アンテナ10を平面視して(第1キャビティ32の深さ方向に視て)、ループ導体23が内包されるように形成されている。また、第1キャビティ32は、円偏波アンテナ10を平面視して、各ボウタイスロット220に対して部分的に重なっている。この際、第1キャビティ32が各ボウタイスロット220に重なる面積は、略同じである。
 ここで、第1キャビティ32の大きさは、次のように決定されている。第1キャビティ32の大きさは、電気長によって決定されており、深さ方向の長さ、縦方向の長さ、および横方向の長さによって決定される。第1キャビティ32の縦方向および横方向は、互いに直交している。これら縦方向および横方向は、深さ方向に直交している。縦方向の長さおよび横方向の長さは、ループ導体23が第1キャビティ32内に収まる長さである。また、第1キャビティ32の縦方向、横方向および深さ方向の長さは、送受波信号の波長λよりも短く、半波長λ/2よりも短いとより好ましい。
 このように、第1キャビティ32の大きさを決定することによって、送受波信号に対するループ導体23およびボウタイスロット220の第1キャビティ32による波長短縮効果が生じる。したがって、ループ導体23の長さ(円周方向に沿った長さ)およびボウタイスロット220の長さを短くすることができ、円偏波アンテナ10の平面面積を小さくすることが可能である。
 また、第1キャビティ32の大きさを構成するそれぞれの長さが送受波信号の波長λよりも短いことにより、アンテナ基板20から第1キャビティ32側のインピーダンスが無限大(開放端)に見え、第1キャビティ32に電波が侵入しにくい。これにより、放射面であるアンテナ基板20の表面側に電波が放射しやすく、放射特性が向上する。
 また、上述の構成では、スロット導体22は、貫通孔25を挿通する導電性のネジ等によって、中継導体24および導体板30に電気的に接続されている。これにより、スロット導体22の端部での不要な電波の放射が抑制され、放射特性がさらに向上する。
 図6は、本発明の第1の実施形態に係る円偏波アンテナの放射指向特性を示すグラフである。図6に示すように、本実施形態に係る円偏波アンテナ10を用いることによって、所望波である右旋円偏波は、天頂方向に対して広い角度範囲で高い放射利得が得られる。また、不要波である左旋円偏波は、天頂方向に対して放射利得が極低く抑えられる。
 これにより、本実施形態に係る円偏波アンテナ10は、優れた放射特性を得られることがわかる。したがって、本実施形態に係る円偏波アンテナ10の構成を用いることによって、優れた放射特性と小型化を実現することができる。
 次に、本発明の第2の実施形態に係る円偏波アンテナについて、図を参照して説明する。図7は、本発明の第2の実施形態に係る円偏波アンテナの外観斜視図である。図8は、本発明の第2の実施形態に係る円偏波アンテナの分解斜視図である。図9(A)は、本発明の第2の実施形態に係る円偏波アンテナの平面図である。図9(A)は、導体の位置関係を分かり易くするために、一部の導体にハッチングを施してある。図9(B)は、本発明の第2の実施形態に係る円偏波アンテナの側面断面図である。図9(B)は、図9(A)におけるC-C'断面の図である。
 本実施形態に係る円偏波アンテナ10Aは、第1の実施形態に係る円偏波アンテナ10に対して、アンテナ基板20Aの形状で異なり、さらに、導体板30に第2キャビティ35を追加した点で異なる。
 図10(A)は、本発明の第2の実施形態に係るアンテナ基板20Aの表面を視た平面図である。図10(B)は、本発明の第2の実施形態に係るアンテナ基板20Aの裏面を視た平面図である。
 アンテナ基板20Aは、誘電体基板21、スロット導体22A、ループ導体23、および、中継導体24を備える。誘電体基板21、ループ導体23、および、中継導体24は、第1の実施形態に係るアンテナ基板20と同じである。本実施形態では、スロット導体22Aおよびループ導体23が、本発明の「平膜導体」に相当する。
 スロット導体22には、ボウタイスロット220Aと延伸スロット221が形成されている。ボウタイスロット220Aは、長さが異なる以外は第1の実施形態に係るボウタイスロット220と同様の構造である。延伸スロット221は、各ボウタイスロット220Aにおける誘電体基板21の角部側の端部に連通している。延伸スロット221は、隣り合うボウタイスロット220A間の導体に対して線状の導体非形成部を設けることによって実現される。延伸スロット221は、第1直線部と第2直線部とが連続するスロットである。第1直線部と第2直線部は、ボウタイスロット220に接続する側から第1直線部、第2直線部の順で連続している。第1直線部は、誘電体基板21における当該第1直線部に近接する外周辺に沿って形成されている。第1直線部は、隣り合うボウタイスロット220A間の略中間位置まで延びている。第2直線部は、当該外周辺付近から誘電体基板21の中心位置に向かって延びる形状で形成されている。
 図11(A)は、本発明の第2の実施形態に係る第1の導体板(導体板30)の平面図である。図11(B)は、本発明の第2の実施形態に係る第1の導体板(導体板30)の側面断面図である。図11(B)は、図11(A)におけるD-D'断面を示している。
 導体板30Aには、第1の実施形態に示した構成と同じ第1キャビティ32、配線孔33、および貫通孔34が形成されている。さらに、導体板30Aには、複数(本実施形態では4個)の第2キャビティ35が形成されている。
 第2キャビティ35は、導体板30Aを表面から裏面に亘って貫通する穴である。複数の第2キャビティ35は、第1キャビティ32と導体板30Aの各外周辺との間にそれぞれ形成されている。すなわち、第2キャビティ35は、導体板30Aの外周辺付近に形成されている。第2キャビティ35は、当該第2キャビティ35が近接する外周辺に沿った方向の長さが長く、当該外周辺に直交する方向の長さが短い。
 第2キャビティ35は、導体板40によって、アンテナ基板20A側と反対側の開口が塞がれている。なお、第2キャビティ35についても、第1の実施形態に示した第1キャビティ32と同様に、第2キャビティ35におけるアンテナ基板20Aと反対側の端面は、導体板によって封止されていなくても、この端面が送受波信号に対して不連続面になっていればよい。ここで、第2キャビティ35の深さ方向の長さ(電気長)は、送受波信号の半波長λ/2よりも短く、例えば、1/4波長λ/4である。
 円偏波アンテナ10Aは、各構成部材であるアンテナ基板20A、導体板30Aが上述の構成であり、これらが図7、図8、図9(A)、図9(B)に示すように、積層されていることによって、第1の実施形態に係る円偏波アンテナ10に対して、さらに次に示す構造の特徴を有する。
 上述のように、延伸スロット221をボウタイスロット220Aに連通して形成することによって、送受波信号に対するスロットの電気長を、ボウタイスロット220Aの長さと延伸スロット221の長さとを加算した長さまで伸延することができる。
 この際、延伸スロット221の第1直線部は、ボウタイスロット220Aの延びる方向と異なる方向に延び、第2直線部は、第1直線部側の端部からアンテナ基板20Aの中心側に向けて延びている。
 これにより、送受波信号に対するボウタイスロット220の長さを短くしながら、アンテナ基板20Aの平面面積が大きくなることを抑制できる。したがって、円偏波アンテナ10Aを小型化することができる。
 また、図9(A)、図9(B)に示すように、第2キャビティ35は、延伸スロット221の第1直線部と第2直線部との接続部分よりも円偏波アンテナ10Aの外周辺側のスロット導体22Aと重なるように配置されている。さらに、第1、第2キャビティ32、35の深さ方向に視て、各第2キャビティ35は、延伸スロット221が形成される辺に沿ったスロット導体22Aと中継導体24とが重なる部分に重なるように配置されている。この場合、この重なる部分において、スロット導体22Aと中継導体24とが導電性ビア導体によって接続されているとよい。
 このような構成により、第2キャビティ35による波長短縮効果が得られ、送受波信号に対するボウタイスロット220Aおよび延伸スロット221の長さ(電気長)を短くすることができる。
 したがって、延伸スロット221と第2キャビティ35とを形成することによって、送受波信号の波長λに対比したアンテナ基板20Aの平面面積をさらに小さくでき、円偏波アンテナ10Aをさらに小型化することができる。
 以上のように、本実施形態の構成を用いることによって、円偏波アンテナ10Aをさらに小型に形成することができる。なお、本実施形態における延伸スロット221を形成せず、第2キャビティを形成する場合であっても同様に、アンテナ基板の平面面積を小さくでき、円偏波アンテナを小型化することができる。この場合、第2キャビティは、ボウタイスロット220Aにおける誘電体基板21Aの角部側の端部付近のスロット導体22Aに重なるように形成されていればよい。
 次に、本発明の第3の実施形態に係る円偏波アンテナについて、図を参照して説明する。図12は、本発明の第3の実施形態に係る円偏波アンテナの外観斜視図である。図13は、本発明の第3の実施形態に係る円偏波アンテナの分解斜視図である。図14(A)は、本発明の第3の実施形態に係る円偏波アンテナの平面図である。図14(A)は、導体の位置関係を分かり易くするために、一部の導体にハッチングを施してある。図14(B)は、本発明の第2の実施形態に係る円偏波アンテナの側面断面図である。図14(B)は、図14(A)におけるE-E'断面の図である。
 本実施形態に係る円偏波アンテナ10Bは、第2の実施形態に係る円偏波アンテナ10A'、補助放射部材50、導体板60、誘電体基板70、および導体板80を備える。円偏波アンテナ10A'は、第2の実施形態に係る円偏波アンテナ10Aから導体板40を省略した構成を備える。
 図12、図13、図14(A)、図14(B)に示すように、円偏波アンテナ10A'、補助放射部材50、導体板60、誘電体基板70、および導体板80は、この順に積層されている。より具体的には、円偏波アンテナ10A'の裏面には、補助放射部材50のベース部材51の表面が当接しており、補助放射部材50のベース部材51の裏面には、誘電体基板70が当接しており、誘電体基板70の裏面には、導体板80が当接している。
 図15は、本発明の第3の実施形態に係る補助放射部材の三面図(平面図、第1側面図、第2側面図)である。
 補助放射部材50は、ベース部材51、複数の立設部材52を備える。ベース部材51と立設部材52は、一体に形成されている。ベース部材51と立設部材52は、一枚の導体板を屈曲させることによって形成されている。
 ベース部材51は、平面視して矩形(本実施形態では正方形)である。ベース部材51には、貫通穴511が形成されている。貫通穴511は、ベース部材51を表面から裏面に亘って貫通する穴である。貫通穴511を平面視した形状は、導体板30に設けられた第1キャビティ32を平面視した形状と略同じである。
 複数の立設部材52は、矩形のベース部材51の各辺に繋がるように形成されている。各立設部材52の平板面は、ベース部材51の平板面に直交している。
 立設部材52とベース部材51とが接続する部分には、開口53が備えられている。この開口53により、各立設部材52は、ベース部材51の角部付近において所定幅でベース部材51に接続している。
 立設部材52におけるベース部材51と接続する側と反対側の端部には、スリット521が形成されている。スリット521は、開口53に連通している。
 図16は、本発明の第3の実施形態に係る導体板の平面図、第1、第2、第3側面断面図である。第1断面図は、図16の平面図におけるF-F'断面を示しており、第2断面図は、図16の平面図におけるG-G'断面を示しており、第3断面図は、図16の平面図におけるH-H'断面を示している。
 導体板60は、円板である。導体板60は、導体板30,40と同様に、導電性が高い材質からなる。例えば、導体板60の材料は、SUS等である。
 導体板60には、スロット62,63がそれぞれ複数形成されている。スロット62,63の延びる方向に沿った長さは、送受波信号の波長λに基づいて設定されている。スロット62,63は、導体板60を表面から裏面に貫通している。スロット62,63は、延びる方向の途中で略90°に屈曲している。スロット62,63は、屈曲部が導体板60の中心側となり、両端が導体板60の外周側となるように形成されている。複数(本実施形態では4個)のスロット62は、導体板60を平面視した中心を基準点として、それぞれが所定の角度(本実施形態では90°)差をもって形成されている。同様に、複数(本実施形態では4個)のスロット63は、導体板60を平面視した中心を基準点として、それぞれが所定の角度(本実施形態では90°)差をもって形成されている。スロット62とスロット63は、スロット62の屈曲部がスロット63の屈曲部よりも導体板60の中心側に配置されるように形成されている。これらスロット62,63が本発明の「背面側スロット」に相当する。
 このような構成からなる補助放射部材50、導体板60は、円偏波アンテナ10A'、誘電体基板70、および導体板80とともに、図12、図14(A)、図14(B)に示すように、積層されている。
 具体的には、円偏波アンテナ10A'を平面視した中心、補助放射部材50を平面視した中心、導体板60を平面視した中心、円板状の誘電体基板70を平面視した中心、円板状の導体板80を平面視した中心は、円偏波アンテナ10Bを平面視して一致している。
 円偏波アンテナ10Bを平面視して、補助放射部材50の貫通穴511は、円偏波アンテナ10A'の第1キャビティ32と重なっており、連通している。補助放射部材50は、立設部材52が円偏波アンテナ10A'を囲むような向きで配置されている。導体板60は、スロット62,62の屈曲部がボウタイスロット220Aに重なるように配置されている。
 このような構成によって、円偏波アンテナ10A'の放射面の反対側である背面側に漏洩された電磁波(背面漏洩波)がスロット62またはスロット63によって励振される。この励振された背面漏洩波は、誘電体基板70を導体板60と導体板80とで挟みこんだ部分(背面漏洩抑圧部)に給電される。ここで、導体板60,80の形状、誘電体基板70の形状、および誘電体基板70の誘電率を適宜設定する。これにより、スロット62またはスロット63から背面漏洩抑圧部に給電された背面漏洩波で、円偏波アンテナ10A'の放射面側から側面を介して回り込む漏洩波を相殺することができる。これにより、円偏波アンテナ10Bは、放射面側により効率的に送受波を行うことができる。すなわち、より放射特性に優れる円偏波アンテナを実現することができる。
 また、スロット62,63を屈曲させることによって、規定の面積に形成可能なスロットの個数を増やすことができる。これにより、放射特性を向上しながら、導体板60の大型化を抑制でき、円偏波アンテナ10Bを小型化できる。
 また、本実施形態の円偏波アンテナ10Bでは、導体板60,80の間に誘電体基板70を配置しているが、これを省略することも可能である。ただし、誘電体基板70を配置することによって、背面漏洩の抑圧効果を実現しながら、導体板60と導体板80との間の距離を短くすることができる。これにより、より低背な円偏波アンテナ10B、すなわち、より小型の円偏波アンテナ10Bを実現することができる。
 次に、本発明の第4の実施形態に係る円偏波アンテナについて、図を参照して説明する。図17は、本発明の第4の実施形態に係る円偏波アンテナの分解斜視図である。
 本実施形態に係る円偏波アンテナ10Cは、第3の実施形態に係る円偏波アンテナ10Bに対して、補助放射部材50を省略した点で異なる。
 このような構成であっても、上述の各実施形態と同様に、放射特性に優れた小型の円偏波アンテナ10Cを実現することができる。ただし、上述の円偏波アンテナ10Bに示すように、補助放射部材50を備えることによって、放射特性はさらに向上する。
 次に、本発明の第5の実施形態に係る円偏波アンテナについて、図を参照して説明する。図18は、本発明の第5の実施形態に係る円偏波アンテナの分解斜視図である。
 本実施形態に係る円偏波アンテナ10Dは、第4の実施形態に係る円偏波アンテナ10Cに対して、導体板60Dの構成が異なる。導体板60Dは、複数のスロット62を備える。すなわち、本実施形態に係る円偏波アンテナ10Dは、第4の実施形態に係る円偏波アンテナ10Cに対して複数のスロット63が省略された点で異なる。
 このような構成であっても、上述の各実施形態と同様に、放射特性に優れた小型の円偏波アンテナ10Dを実現することができる。ただし、上述の円偏波アンテナ10B,10Cに示すように、長さの異なるスロット62,63を備えることによって、複数の周波数に対して放射特性をさらに向上させることができる。例えば、GNSSにおけるGPS、GLONASS、Galileoの内の2種類の測位信号を高利得で受信することができる。なお、これらの測位信号は、周波数が近接しているので、スロット62のみでも所望とする利得を得るように設定することも可能である。ただし、2種類の送受波信号の周波数が離間している場合には、それぞれに対応する長さのスロットを設けることが好ましい。
 なお、上述の各実施形態の構成は、適宜組み合わせることが可能であり、これらの組合せによって、所望とする送受波信号に対して高利得で小型の円偏波アンテナを実現することができる。
 上述の円偏波アンテナは、例えば、次に示す姿勢算出装置に適用することができる。図19は、本発明の実施形態に係る姿勢算出装置のブロック図である。
 姿勢算出装置90は、アンテナ装置100、受信部51、および、演算部60を備える。アンテナ装置100は、アンテナ素子101,102,103,104を備える。アンテナ素子101,102,103,104は、上述の実施形態のいずれかに示した円偏波アンテナの構成を備える。アンテナ素子101,102,103,104は、少なくとも1つのアンテナ素子が一直線上に並ばないように、単一平面上に配置されている。
 受信部911は、アンテナ素子101に接続されている。受信部911は、アンテナ素子101で受波した測位信号を捕捉、追尾して、搬送波位相を検出する。受信部912は、アンテナ素子102に接続されている。受信部912は、アンテナ素子102で受波した測位信号を捕捉、追尾して、搬送波位相を検出する。受信部913は、アンテナ素子103に接続されている。受信部913は、アンテナ素子103で受波した測位信号を捕捉、追尾して、搬送波位相を検出する。受信部914は、アンテナ素子104に接続されている。受信部914は、アンテナ素子104で受波した測位信号を捕捉、追尾して、搬送波位相を検出する。受信部911,912,913,914は、検出した搬送波位相を演算部92に出力する。
 演算部92は、2つの受信部で検出した同じ測位信号の搬送波位相の差を算出する。演算部92は、搬送波位相の差(搬送波位相差)を順次算出し、これらの搬送波位相差から既知の方法を用いて姿勢を算出する。
 この姿勢算出装置90では、上述の円偏波アンテナを用いることによって、姿勢算出装置90を省スペース化することができる。
 なお、上記説明では、航法情報として姿勢を算出する例を示したが、位置、速度等の他の航法情報を算出してもよい。
10,10A,10B,10C,10D:円偏波アンテナ
20,20A:アンテナ基板
21,21A:誘電体基板
22,22A:スロット導体
23:ループ導体
24:中継導体
30,30A,40:導体板
32:第1キャビティ
35:第2キャビティ
40:導体板
33,42:配線孔
43:貫通孔
50:補助放射部材
51:ベース部材
52:立設部材
53:開口
60,60D,80:導体板
62,63:スロット
70:誘電体基板
80:導体板
220,220A:ボウタイスロット
221:延伸スロット
511:貫通穴

Claims (12)

  1.  円偏波を送受波する平膜導体が形成されたアンテナ基板と、
     前記アンテナ基板における放射面と反対側の面に配置されたキャビティと、
     を備え、
     前記キャビティの深さ方向に視て、前記キャビティは前記平膜導体の少なくとも一部に重なっており、
     前記キャビティにおける少なくとも一方向の長さは、前記円偏波の半波長よりも短い、
     円偏波アンテナ。
  2.  請求項1に記載の円偏波アンテナであって、
     前記平膜導体は、ループ導体を備え、
     前記キャビティは、前記ループ導体を内包するように配置された第1キャビティを備える、
     円偏波アンテナ。
  3.  請求項2に記載の円偏波アンテナであって、
     前記第1キャビティにおける前記一方向の長さは、前記第1キャビティの深さ方向に直交する方向の長さである、
     円偏波アンテナ。
  4.  請求項1乃至請求項3のいずれかに記載の円偏波アンテナであって、
     前記平膜導体は、スロットが形成されたスロット導体を備え、
     前記キャビティの深さ方向に視て、前記キャビティは、前記スロット導体の一部に重なっている第2キャビティを備える、
     円偏波アンテナ。
  5.  請求項4に記載の円偏波アンテナであって、
     前記第2キャビティは、前記スロット導体の外周辺付近に重なるように配置されている、
     円偏波アンテナ。
  6.  請求項2または請求項3に記載の円偏波アンテナであって、
     前記平膜導体は、スロットが形成されたスロット導体を備え、
     前記キャビティの深さ方向に視て、前記キャビティは、前記第1キャビティと前記アンテナ基板の外周辺との間に配置され前記スロット導体の一部に重なっている第2キャビティを備える、
     円偏波アンテナ。
  7.  請求項4乃至請求項6のいずれかに記載の円偏波アンテナであって、
     前記第2キャビティにおける前記一方向の長さは、前記第2キャビティの深さ方向の長さである、
     円偏波アンテナ。
  8.  請求項4乃至請求項7のいずれかに記載の円偏波アンテナであって、
     前記スロットはボウタイスロットである、
     円偏波アンテナ。
  9.  請求項1乃至請求項8のいずれかに記載の円偏波アンテナであって、
     前記キャビティにおける前記アンテナ基板と反対側に、
     前記円偏波の波長に基づく長さで形成された背面側スロットと、
     前記背面側スロットで励振された漏洩波を放射する放射部と、
     を備える、円偏波アンテナ。
  10.  請求項9に記載の円偏波アンテナであって、
     前記放射部は、
     前記背面側スロットにおける前記キャビティと反対側に配置された誘電体基板を備える、
     円偏波アンテナ。
  11.  請求項9または請求項10に記載の円偏波アンテナであって、
     前記背面側スロットは、延びる方向の途中で屈曲する形状である、
     円偏波アンテナ。
  12.  請求項1乃至請求項11のいずれかに記載の円偏波アンテナと、
     前記円偏波アンテナに接続し、受波した測位信号を捕捉する受信部と、
     捕捉した測位信号に基づいて姿勢を算出する演算部と、
     を備える、姿勢算出装置。
PCT/JP2016/057284 2015-04-30 2016-03-09 円偏波アンテナおよび姿勢算出装置 WO2016174930A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017515421A JP6419318B2 (ja) 2015-04-30 2016-03-09 円偏波アンテナおよび姿勢算出装置
US15/569,967 US10615503B2 (en) 2015-04-30 2016-03-09 Circularly polarized antenna and attitude calculating device
EP16786207.7A EP3291374B1 (en) 2015-04-30 2016-03-09 Circularly polarized wave antenna and orientation calculation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-093155 2015-04-30
JP2015093155 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016174930A1 true WO2016174930A1 (ja) 2016-11-03

Family

ID=57198297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057284 WO2016174930A1 (ja) 2015-04-30 2016-03-09 円偏波アンテナおよび姿勢算出装置

Country Status (4)

Country Link
US (1) US10615503B2 (ja)
EP (1) EP3291374B1 (ja)
JP (1) JP6419318B2 (ja)
WO (1) WO2016174930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071366A1 (fr) * 2017-09-18 2019-03-22 Valeo Comfort And Driving Assistance Antenne, module electronique et ensemble de communication comprenant une telle antenne.
JP7153529B2 (ja) 2018-10-18 2022-10-14 株式会社日立製作所 アンテナ装置および無線通信システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083812A1 (en) * 2015-11-12 2017-05-18 Duke University Printed cavities for computational microwave imaging and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025264A (en) * 1989-02-24 1991-06-18 The Marconi Company Limited Circularly polarized antenna with resonant aperture in ground plane and probe feed
JP2008064555A (ja) * 2006-09-06 2008-03-21 Japan Radio Co Ltd 移動体姿勢計測装置
JP2010109623A (ja) * 2008-10-29 2010-05-13 Furuno Electric Co Ltd スロットボウタイアンテナ
JP2013141216A (ja) * 2011-12-29 2013-07-18 Mediatek Inc 円偏波アンテナ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8835401A (en) 2000-08-27 2002-03-13 Raytheon Co Folded cavity-backed slot antenna
US8305265B2 (en) * 2007-05-29 2012-11-06 Toyon Research Corporation Radio-based direction-finding navigation system using small antenna
TW200913375A (en) * 2007-09-14 2009-03-16 Univ Tatung Wideband co-planar waveguide feeding circularly polarized antenna
JP5237617B2 (ja) * 2007-11-30 2013-07-17 原田工業株式会社 アンテナ装置
JP2011049802A (ja) * 2009-08-27 2011-03-10 Mitsumi Electric Co Ltd 円偏波アンテナ
JP4988002B2 (ja) * 2010-03-25 2012-08-01 シャープ株式会社 無線通信装置
TWM464833U (zh) * 2013-05-17 2013-11-01 Lorom Ind Co Ltd 圓極天線結構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025264A (en) * 1989-02-24 1991-06-18 The Marconi Company Limited Circularly polarized antenna with resonant aperture in ground plane and probe feed
JP2008064555A (ja) * 2006-09-06 2008-03-21 Japan Radio Co Ltd 移動体姿勢計測装置
JP2010109623A (ja) * 2008-10-29 2010-05-13 Furuno Electric Co Ltd スロットボウタイアンテナ
JP2013141216A (ja) * 2011-12-29 2013-07-18 Mediatek Inc 円偏波アンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291374A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071366A1 (fr) * 2017-09-18 2019-03-22 Valeo Comfort And Driving Assistance Antenne, module electronique et ensemble de communication comprenant une telle antenne.
JP7153529B2 (ja) 2018-10-18 2022-10-14 株式会社日立製作所 アンテナ装置および無線通信システム

Also Published As

Publication number Publication date
JPWO2016174930A1 (ja) 2018-02-08
US20180159227A1 (en) 2018-06-07
EP3291374A4 (en) 2018-12-12
EP3291374A1 (en) 2018-03-07
JP6419318B2 (ja) 2018-11-07
US10615503B2 (en) 2020-04-07
EP3291374B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6723470B2 (ja) アンテナ装置
JP5737048B2 (ja) パッチアンテナ装置及び電波受信機器
US10811772B2 (en) Concentric, co-located and interleaved dual band antenna array
US10978812B2 (en) Single layer shared aperture dual band antenna
US10177464B2 (en) Communications antenna with dual polarization
US9325071B2 (en) Patch antenna
WO2018225537A1 (ja) アンテナ
TW201328026A (zh) 圓極化天線
JP6992047B2 (ja) スロット付きパッチアンテナ
JP6419318B2 (ja) 円偏波アンテナおよび姿勢算出装置
KR20220039608A (ko) 밀리미터파 및 초광대역 안테나 모듈을 갖는 전자 디바이스
JP5606338B2 (ja) アンテナ装置、アレーアンテナ装置
KR20150080927A (ko) 쿼드리필러 헬릭스 안테나
JP2009088625A (ja) アンテナ
US12088005B2 (en) Antenna device and wireless communication apparatus
WO2020090672A1 (ja) アンテナ装置、アンテナモジュール、通信装置およびレーダ装置
JPH11284429A (ja) 回折波抑圧型マイクロストリップアンテナ
US20160365646A1 (en) Array antenna device
JP2018121202A (ja) アンテナ装置
EP2946441B1 (en) Patch antenna
JP2016140046A (ja) 偏波共用アンテナ
JP4500968B2 (ja) 通信用アンテナ
JP6048531B2 (ja) パッチアンテナ装置及び電波受信機器
JP2008244733A (ja) 平面アレーアンテナ装置とそれを備えた無線通信装置
JP4841398B2 (ja) ループアンテナ、アンテナ基板、アンテナ一体モジュールおよび通信機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE