WO2016174539A1 - Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции - Google Patents

Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции Download PDF

Info

Publication number
WO2016174539A1
WO2016174539A1 PCT/IB2016/052152 IB2016052152W WO2016174539A1 WO 2016174539 A1 WO2016174539 A1 WO 2016174539A1 IB 2016052152 W IB2016052152 W IB 2016052152W WO 2016174539 A1 WO2016174539 A1 WO 2016174539A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
composition
devulcanization
devulcanizing
sulfide
Prior art date
Application number
PCT/IB2016/052152
Other languages
English (en)
French (fr)
Inventor
Леонид Р. ВОРОБЬЕВ
Владимир Борисович БОСНИК
Original Assignee
Руббинтес, Сиа
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Руббинтес, Сиа filed Critical Руббинтес, Сиа
Priority to RU2016149193A priority Critical patent/RU2651203C1/ru
Priority to US15/569,177 priority patent/US9982107B1/en
Priority to CN201680024393.7A priority patent/CN107531953B/zh
Publication of WO2016174539A1 publication Critical patent/WO2016174539A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L17/00Compositions of reclaimed rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/28Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • composition for devulcanization of sulfide-bonded rubber and a devulcanization method using this composition
  • the invention relates to a composition for devulcanization of sulfide-bonded rubber and a method for devulcanization of rubber using this composition and can be used for processing used rubber products.
  • DBU 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • 2-a] azepine 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • DBU 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • 2-a] azepine 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • phenolic salts of DBU carboxylate salts of DBU
  • thiuramsulfide compounds 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • aromatic sulfides 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • 2-a] azepine 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • 2-a] azepine 1, 8-Diazabicyclo [5.4.0] undec-7-ene
  • 2-a] azepine 1, 8-Diazabicyclo [5.4.0] undec-7-en
  • DBU selectively breaks sulfide bonds, practically without damaging carbon-carbon bonds. As a result, the molecular weight of the polymer is much better preserved than with thermal devulcanization. However, along with the breaking of sulfide bonds, DBU also accelerates vulcanization. Because effective devulcanization requires the addition of significant amounts of DBU (0.3-1%), the resulting secondary rubber mixture has a greater tendency to vulcanization. This significantly complicates the processing of rubber. Fast vulcanization leads to a large increase in viscosity, accompanied by premature crosslinking of macromolecules. As a result, it becomes too difficult or even impossible to form rubber products and obtain the required properties of rubber in these products.
  • the vulcanization time is defined as the time required for a 5% increase in the viscosity of the rubber compound at 120 ° C. In rubber technology, it is believed that the minimum acceptable vulcanization time should be at least 8 minutes. Rubber compounds with a vulcanization time of 15-25 minutes are usually used. The secondary rubber mixture prepared on the basis of used rubber products devulcanized using DBU has a vulcanization time of 6-11 minutes.
  • the technical problem solved by the invention is the effective devulcanization of the used rubber products with the maximum possible preservation of the physico-mechanical properties of the rubber while at the same time making the resulting rubber mixture technologically acceptable in ordinary rubber production, especially the vulcanization time close to conventional rubber compounds.
  • TPF does not very well preserve the physicomechanical properties of rubber, but it allows the preparation of a secondary rubber mixture with a relatively high vulcanization time.
  • a composition for devulcanization of crosslinked sulfide bonds of rubber comprising a devulcanizing agent selectively breaking sulfide bonds and containing 1, 8-Diazabicyclo [5.4.0] undec-7-ene and triphenylphosphine, and a compatibilizer having good compatibility as with polar devulcanizing agent, and with a little polar rubber, characterized in that the aforementioned devulcanizing agent is a mixture of DBU and TPF in a weight ratio of 5: 1 to 1: 5 at a weight ratio of devulcanizing agent to compatibilizer from 1: 15 to 1: 70.
  • the role of the compatibilizer in this composition is to facilitate the effective penetration of the active substance into the rubber crumb.
  • High-boiling oil distillation products consisting of a complex mixture of hydrocarbons, primarily alkyl aromatic, well compatible with a mixture of DBU and TPF and at the same time compatible with crumb rubber, the basis of which are rubbers based on isoprene, butadiene and other slightly polar rubbers.
  • the inventive composition is able to relatively easily penetrate into the rubber crumb, leading to effective and uniform devulcanization of rubber crosslinked by sulfide bonds.
  • a devulcanizing agent is a mixture of 1, 8-Diazabicyclo [5.4.0] undec-7-ene and triphenylphosphine in a weight ratio of 5: 1 to 1: 5.
  • the compatibilizer is selected from light and medium mineral oils, oil distillation products.
  • An oil distillation product with a boiling point above 250 ° C can be selected as a compatibilizer in order to minimize its evaporation in the process.
  • the proposed method for devulcanization of crosslinked sulfide-bonded rubber involves mixing said composition for devulcanization of crosslinked sulfide-bonded rubber with crumb rubber at a weight ratio of the composition to crumb rubber from 1: 9 to 1: 60 and subsequent extrusion of the mixture at a temperature of 40-120 ° C.
  • the devulcanizing agent very efficiently and selectively destroys sulfide bonds in devulcanizable rubber, and the experimentally selected compatibilizer ensures the effective penetration of the devulcanizing agent into the crumb rubber, therefore devulcanizing the agent can be used in a concentration of not more than 1% by weight of rubber crumb (preferably 0.03-0.3%). With such a low concentration of devulcanizing agent, the vulcanization time of the resulting secondary rubber mixture is 14-23 minutes, which is fully consistent with the requirements of technological processes for manufacturing rubber products.
  • the secondary rubber compound obtained as a result of devulcanization is completely soluble in toludol (with the exception of carbon black, i.e. carbon black), confirming the high efficiency of the process.
  • Products made from the resulting secondary rubber compound have properties similar to those of the primary rubber compound, confirming the high selectivity of devulcanization, which retains most of the properties of the original rubber at the level of 70-90%. Particularly high was the tear resistance, reaching 60-120 kN / m, which is not inferior to or even exceeds this indicator for primary rubbers.
  • a devulcanizing agent consisting of DBU and TPF (weight ratio 1: 1) was mixed with 10 kg of Viplex 530A oil (boiling range 320 ⁇ 500 ° C) in a 20-liter plastic bucket with a paddle mixer at a speed of 150 rpm / min for 5 minutes
  • the weight ratio of devulcanizing agent to compatibilizer was 1: 33.3.
  • the resulting homogeneous composition is a composition for devulcanization of sulfide-crosslinked rubber on a Ross mixer (500 liter capacity, blade speed 30 rpm) was added to 120 kg of crumb rubber (average particle size 0.5 mm; obtained by grinding car tires with subsequent cleaning from metal particles) and mixed for 20 minutes.
  • This mixture was loaded into the hopper of the NR extruder with a screw diameter of 4.5 inches.
  • the temperature in the heating zones of the extruder was set as follows: 1st zone - 45 ° C, 2nd zone - 55 ° C, 3rd zone - 65 ° C.
  • the mixture passed through a slot head with a slot size of 1.5 mm to create the resistance necessary for effective shear.
  • the obtained devulcanized rubber crumb for studying the properties of secondary used rubber made from it was mixed on rollers (roller diameter 300 mm, roll speed ratio 1: 1, 14) with sulfur and Altax vulcanization accelerator (dibenzothiazole disulfide) in a proportion of 100 mass parts of devulcanized rubber crumb: mass fraction of sulfur: 0.5 mass parts of altax.
  • Altax vulcanization accelerator dibenzothiazole disulfide
  • a composition was prepared for devulcanization of sulfide-crosslinked rubber, different from Example 1 only in that 0, 15 kg of DBU and TPF (weight ratio 1: 1) were used as the devulcanizing agent.
  • the mixture was passed through an extruder under the same conditions as in Example 1.
  • a composition was prepared for devulcanization of sulfide-crosslinked rubber, differing from Example 1 only in that 0.3 kg of DBU and TPF were used as the devulcanizing agent (weight ratio 5: 1). The mixture was passed through a starter under the same conditions as in Example 1.
  • a composition was prepared for devulcanization of sulfide-crosslinked rubber, differing from Example 1 only in that 0.3 kg of DBU and TPF (weight ratio 1: 5) were used as the devulcanizing agent.
  • the mixture was passed through Zkstruder under the same conditions as in Example 1.
  • Example 1 a composition was prepared for devulcanization of sulfide-crosslinked rubber, differing from Example 1 only in that 0.3 kg of TFF was used as the devulcanizing agent. The mixture was passed through zkstruder under the same conditions as in Example 1
  • Example 1 a composition was prepared for devulcanization of sulfide-crosslinked rubber, differing from Example 1 only in that 0.3 kg of DBU was used as the devulcanizing agent. The mixture was passed through an extruder under the same conditions as in Example 1.
  • Example 1 shows that together DBU and TPF as a devulcanizing agent give the properties of the secondary rubber compound better than each of them individually (examples 5 and 6), while significantly increasing the vulcanization time important for the technology.
  • Example 2 shows that even half as much as in Example 1, the amount of devulcanizing agent gives good physical and mechanical properties of the secondary rubber and even more than in Example 1, the vulcanization time.
  • Examples 3 and 4 show that the synergistic effect of DBU and TPF is manifested even at their ratios other than 1: 1.
  • Example 5 shows that TPP is not very effective as a devulcanizing agent, giving relatively low stress at 100% elongation, tear resistance and tear strength of secondary rubber.
  • Example 6 shows the high efficiency of DBU as a devulcanizing agent, but the scorching time is relatively short.
  • Example 7 shows that without a devulcanizing agent, secondary rubber has very low physical and mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Реферат Изобретение относится к композиции для девулканизации сшитой сульфидными связями резины и способу девулканизации резины посредством этой композиции и может быть использовано для переработки использованных резиновых изделий. Композиция также содержит компатибилизатор, обладающий хорошей совместимостью с девулканизующим агентом и с резиной, при весовом соотношении девулканизующего агента к компатибилизатору от 1:15 до 1:70. Девулканизующий агент очень эффективно и селективно разрушает сульфидные связи в девулканизируемой резине, в то время как экспериментально выбранный компатибилизатор способствует эффективному проникновению активного вещества в резиновую крошку. В результате необходимая концентрация девулканизующего агента в полученной вторичной резиновой смеси не превышает 1% (преимущественно 0,03-0,3%).

Description

Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции
Изобретение относится к композиции для девулканизации сшитой сульфидными связями резины и способу девулканизации резины с использованием этой композиции и может быть использовано для переработки использованных резиновых изделий.
Традиционная серная вулканизация резины приводит к соединению макромолекул каучука сульфидными (C-S) и дисульфидными (S-S) связями. Для того, чтобы повторно использовать вулканизованную таким образом резину с максимальным сохранением свойств получаемой вторичной резины, необходимо разрушить вышеуказанные связи (именуемые в данном изобретении сульфидными), по возможности сохраняя неповреждёнными углерод-углеродные (С-С) связи главной полимерной цепи. В патенте США US4211676 предложено использовать в качестве девулканизующих агентов 1 ,8-Диазабицикло[5.4.0]ундец-7-ен (ДБУ; также известный как 2,3,4,6,7,8,9, 10-октагидропиримидо[1 ,2-а]азепин), фенольные соли ДБУ, карбоксилатные соли ДБУ, тиурамсульфидные соединения, ароматические сульфиды, соединения бензолсульфокислоты и бензолсульфогидразиды. Европейская заявка ЕР 2796491 А1 также предлагает использовать ДБУ для девулканизации.
ДБУ селективно разрывает сульфидные связи, практически не повреждая углерод-углеродные связи. В результате молекулярная масса полимера сохраняется намного лучше, чем при термической девулканизации. Однако наряду с разрывом сульфидных связей ДБУ также ускоряет вулканизацию. Т.к. эффективная девулканизация требует добавления значительных количеств ДБУ (0,3-1 %), получаемая вторичная резиновая смесь имеет большую склонность к подвулканизации. Это заметно усложняет переработку резины. Быстрая подвулканизация приводит к большому росту вязкости, сопровождаемому преждевременной сшивкой макромолекул. В результате становится слишком сложно или даже невозможно сформовать резиновые изделия и получить требуемые свойства резины в этих изделиях.
Обычно время подвулканизации определяется, как время, необходимое для 5%-го увеличения вязкости резиновой смеси при 120°С. В технологии резины считается, что минимально приемлемое время подвулканизации должно быть не меньше 8 минут. Обычно используются резиновые смеси с временем подвулканизации 15-25 минут. Вторичная резиновая смесь, приготовленная на основе использованных резиновых изделий, девулканизированных с помощью ДБУ, имеет время подвулканизации 6-11 минут. Технической проблемой, решаемой предлагаемым изобретением, является эффективная девулканизация использованных резиновых изделий с максимально возможным сохранением физико-механических свойств резины при одновременном придании получаемой резиновой смеси приемлемой в обычном резиновом производстве технологичности, прежде всего времени подвулканизации, близкой к обычным резиновым смесям.
Kannan Ganesh and Kaushal Kishore в статье "Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine" (Macromolecules, 1995, 28(7), pp. 2483-2490) описали взаимодействие трифенилфосфина (ТФФ) с дисульфидными связями, ведущее к разрыву этих связей или переносу атомов серы. Однако они не пытались использовать ТФФ для девулканизации резины, сшитой сульфидными связями.
При проверке применимости ТФФ для девулканизации резины, сшитой сульфидными связями, мы обнаружили, что ТФФ не очень хорошо сохраняет физико-механические свойства резины, но позволяет приготовить вторичную резиновую смесь со сравнительно высоким временем подвулканизации.
Согласно данному изобретению, заявляется композиция для девулканизации сшитой сульфидными связями резины, включающая девулканизующий агент, селективно разрушающий сульфидные связи и содержащий 1 ,8-Диазабицикло[5.4.0]ундец-7-ен и трифенилфосфин, и компатибилизатор, обладающий хорошей совместимостью как с полярным девулканизующим агентом, так и с мало полярной резиной, отличающаяся тем, что вышеупомянутый девулканизующий агент представляет собой смесь ДБУ и ТФФ в весовом соотношении от 5: 1 до 1 :5 при весовых соотношениях девулканизующего агента к компатибилизатору от 1 : 15 до 1 :70. Смесь ДБУ и ТФФ синергетически очень эффективно и селективно разрушает сульфидные связи в девулканизируемой резине, вместе работая намного лучше, чем каждый из компонентов по отдельности. Роль компатибилизатора в этой композиции - способствовать эффективному проникновению активного вещества в резиновую крошку. Высококипящие продукты перегонки нефти, состоящие из сложной смеси углеводородов, прежде всего алкилароматических, хорошо совместимых со смесью ДБУ и ТФФ и при этом совместимы с резиновой крошкой, основу которой составляют резины на основе изопренового, бутадиенового и других мало полярных каучуков. В результате заявляемая композиция способна относительно легко проникать внутрь резиновой крошки, приводя к эффективной и равномерной девулканизации резины, сшитой сульфидными связями.
Девулканизующий агент— это смесь 1 ,8-Диазабицикло[5.4.0]ундец-7- ена и трифенилфосфина в весовом соотношении от 5: 1 до 1 :5.
Предпочтительно компатибилизатор выбирается из лёгких и средних минеральных масел, продуктов перегонки нефти. В качестве компатибилизатора может быть выбран продукт перегонки нефти с температурой кипения выше 250 °С, чтобы минимизировать испарение его в технологическом процессе.
Предложенный способ девулканизации сшитой сульфидными связями резины включает смешение указанной композиции для девулканизации сшитой сульфидными связями резины с резиновой крошкой при весовых соотношениях композиции к резиновой крошке от 1 :9 до 1 :60 и последующую экструзию смеси при температуре 40-120 °С. Девулканизующий агент очень эффективно и селективно разрушает сульфидные связи в девулканизируемой резине, а экспериментально подобранный компатибилизатор обеспечивает эффективное проникновение девулканизующего агента в резиновую крошку, поэтому девулканизующий агент можно использовать в концентрации не более 1 % от веса резиновой крошки (предпочтительно 0,03-0,3%). При такой низкой концентрации девулканизующего агента время подвулканизации получаемой вторичной резиновой смеси оказывается 14-23 минут, что вполне соответствует требованиям технологических процессов изготовления изделий из резины.
При экструзии нагрев и сдвиговые усилия способствуют проникновению заявленной композиции для девулканизации сшитой сульфидными связями резины в резиновую крошку, значительно облегчая и ускоряя процесс девулканизации. После этого полученный материал может быть использован для изготовления резиновых изделий сам по себе или как добавка к стандартным резиновым смесям.
Полученная в результате девулканизации вторичная резиновая смесь полностью растворима в толудле (за исключением технического углерода, т.е. сажи), подтверждая высокую эффективность процесса. Изделия, изготовленные из полученной вторичной резиновой смеси, имеют свойства, близкие к свойствам изделий из первичной резиновой смеси, подтверждая высокую селективность девулканизации, сохраняющую большинство свойств исходной резины на уровне 70-90%. Особенно высоким оказалось сопротивление раздиру, достигавшее 60-120 кН/м, что не уступает и даже превышает этот показатель для первичных резин.
Далее приведены конкретные примеры реализации предложенного изобретения, которые являются предпочтительными, но не единственно возможными.
Пример 1 .
0,3 кг девулканизующего агента, состоящего из ДБУ и ТФФ (весовое соотношение 1 : 1 ), смешали с 10 кг нефтяного масла Viplex 530А (диапазон кипения 320~500°С) в 20-литровом пластиковом ведре лопастной мешалкой при скорости вращения 150 об/мин в течение 5 мин. Весовое соотношение девулканизующего агента к компатибилизатору составляло 1 :33,3. Полученная однородная композиция композиция для девулканизации сшитой сульфидными связями резины на смесителе Ross (объём 500 литров, скорость вращения лопастей 30 об/мин) была добавлена к 120 кг резиновой крошки (средний размер частиц 0,5 мм; получена измельчением автомобильных шин с последующей очисткой от металлических частиц) и перемешана в течение 20 минут. Эта смесь была загружена в бункер экструдера NR с диаметром шнека 4,5 дюйма. Температура по зонам нагрева экструдера бьта установлена следующим образом: 1 -я зона - 45°С, 2-я зона - 55°С, 3-я зона - 65°С. На выходе экструдера смесь проходила через щелевую головку с размером щели 1 ,5 мм, чтобы создать сопротивление, необходимое для эффективного сдвига.
Полученная девулканизованная резиновая крошка для изучения свойств изготзвливемой из неё вторичной резины бьта смешана на вальцах (диаметр вальцев 300 мм, соотношение скоростей валков 1 : 1 , 14) с серой и ускорителем вулканизации альтакс (дибензотиазолдисульфид ) в пропорции 100 массовых частей девулканизированной резиновой крошки: 1 массовая часть серы : 0,5 массовой части альтакса. Для изготовления тестовых образцов эта резиновая смесь бьта вулканизована в электрическом прессе в течение 15 минут при 140°С. Результаты испытаний приведены в таблице 1 (Р-1 ).
Пример 2.
По технологии, описанной в примере 1 , была приготовлена композиция для девулканизации сшитой сульфидными связями резины, отличающаяся от Примера 1 только тем, что в качестве девулканизующего агента использовалось 0, 15 кг ДБУ и ТФФ (весовое соотношение 1 : 1 ), Смесь была пропущена через экструдер при тех же условиях, что и в Примере 1 .
Полученная девулканизованная резиновая крошка была протестирована так же, как и в примере 1 , Результаты испытаний приведены в таблице 1 (Р-2). Пример 3.
По технологии, описанной в примере 1 , была приготовлена композиция для девулканизации сшитой сульфидными связями резины, отличающаяся от Примера 1 только тем, что в качестве девулканизующего агента использовалось 0,3 кг ДБУ и ТФФ (весовое соотношение 5: 1 ). Смесь была пропущена через зкструдер при тех же условиях, что и в Примере 1 .
Полученная девулканизованная резиновая крошка была протестирована так же, как и в примере 1 . Результаты испытаний приведены в таблице 1 (Р-3).
Пример 4.
По технологии, описанной в примере 1 , была приготовлена композиция для девулканизации сшитой сульфидными связями резины, отличающаяся от Примера 1 только тем, что в качестве девулканизующего агента использовалось 0,3 кг ДБУ и ТФФ (весовое соотношение 1 :5), Смесь была пропущена через зкструдер при тех же условиях, что и в Примере 1 .
Полученная девулканизованная резиновая крошка была протестирована так же, как и в примере 1 . Результаты испытаний приведены в таблице 1 (Р-4).
Пример 5,
По технологии, описанной в примере 1 , была приготовлена композиция для девулканизации сшитой сульфидными связями резины, отличающаяся от Примера 1 только тем, что в качестве девулканизующего агента использовалось 0,3 кг ТФФ. Смесь была пропущена через зкструдер при тех же условиях, что и в Примере 1
Полученная девулканизованная резиновая крошка была протестирована так же, как и в примере 1 . Результаты испытаний приведены в таблице 1 (Р-5).
Пример 8.
По технологии, описанной в примере 1 , была приготовлена композиция для девулканизации сшитой сульфидными связями резины, отличающаяся от Примера 1 только тем, что в качестве девулканизующего агента использовалось 0,3 кг ДБУ. Смесь была пропущена через экструдер при тех же условиях, что и в Примере 1 .
Полученная девул анизованная резиновая крошка была протестирована так же, как и в примере 1 , Результаты испытаний приведены в таблице 1 (Р-8).
Пример 7.
Этот пример иллюстрирует то, что без девулканизующего агента один компатибилизатор неэффективен. 10 кг Viplex 530А было смешано со 120 кг резиновой крошки, и данная смесь пропущена через экструдер при тех же условиях, что и в Примере 1 .
Полученная девулканизованная резиновая крошка была протестирована так же, как и в примере 1 . Результаты испытаний приведены в таблице 1 (Р-7).
Таблица 1. Характеристики резиновых смесей.
Показатели Р-1 Р-2 Р-3 Р-4 Р-5 Р-6 Р-7
Время под вулканизации* 120°С t5 , мин 16 20 13 18 16 11 >25
Напряжение при удлинении 100 %, МПа 2,53 2,56 2,44 2,54 1 ,95 2,42 0,86
Условная прочность при разрыве, МПа 13,6 13,2 12,4 13,6 7,8 12,3 4,8
Относительное удлинение при разрыве, % 390 380 350 380 250 330 225 Твердость, Шор A, ASTM D2240 58 58 58 58 57 58 53
Эластичность по отскоку, ASTM D2632, % 43 41 42 43 34 40 23
Сопротивление раздиру, ASTM, D624, кН/м 107 97 100 111 38 62 18
* - время подвулканизации определялось по времени, при котором вязкость резиновой смеси на реометре Monsanto 100S при 120 °С возрастала на 5% по сравнению с исходной.
Примеры 1 -4 иллюстрируют данное изобретение. Пример 1 показывает, что вместе ДБУ и ТФФ в качестве девулканизующего агента дают свойства вторичной резиновой смеси лучше, чем каждый из них по отдельности (примеры 5 и 6), в то же время существенно увеличивая важное для технологии время подвулканизации.
Пример 2 показывает, что даже вдвое меньшее, чем в примере 1 , количество девулканизующего агента дает хорошие физико-механические свойства вторичной резины и при этом еще большее, чем в примере 1 , время подвулканизации.
Примеры 3 и 4 показывают, что синергетический эффект ДБУ и ТФФ проявляется даже при их соотношениях, отличающихся от 1 : 1 . Пример 5 показывает, что ТФФ не очень эффективен как девулканизующий агент, давая относительно низкие напряжение при удлинении 100 %, сопротивление раздиру и прочность при разрыве вторичной резины.
Пример 6 показывает высокую эффективность ДБУ как девулканизующего агента, но при этом время подвулканизации получается относительно коротким.
Пример 7 показывает, что без девулканизующего агента вторичная резина имеет очень низкие физико-механические свойства.

Claims

Формула изобретения
1 . Композиция для девулканизации сшитой сульфидными связями резины, включающая девулканизующий агент, селективно разрушающий сульфидные связи, который содержит 1 ,8-диазабицикло[5.4.0]ундец-7-ен и компатибилизатор, обладающий хорошей совместимостью как с девулканизующим агентом, так и с сшитой сульфидными связями резиной, отличающаяся тем, что девулканизующий агент представляет собой смесь, дополнительно содержащую трифенилфосфин при весовом соотношении 1 ,8-диазабицикло[5.4.0]ундец-7-ена к трифенилфосфин у от 5: 1 до 1 :5, а девулканизующий агент и компатибилизатору введены при весовом соотношении от 1 : 15 до 1 :70.
2. Композиция по п. 1 , отличающаяся тем, что компатибилизатором является продукт перегонки нефти с температурой кипения выше 250 °С.
3. Способ девулканизации сшитой сульфидными связями резины, включающий смешение композиции для девулканизации сшитой сульфидными связями резины по одному из п. п. 1 -2 с резиновой крошкой при весовом соотношении композиции для девулканизации сшитой сульфидными связями резины к резиновой крошке от 1 :9 до 1 :60 и последующую экструзию этой смеси при температуре 40-120 °С.
PCT/IB2016/052152 2015-04-28 2016-04-15 Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции WO2016174539A1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016149193A RU2651203C1 (ru) 2015-04-28 2016-04-15 Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции
US15/569,177 US9982107B1 (en) 2015-04-28 2016-04-15 Method of devulcanization of sulfur-cured rubber
CN201680024393.7A CN107531953B (zh) 2015-04-28 2016-04-15 用于对通过硫键交联的橡胶脱硫的组合物和使用所述组合物脱硫的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15165489.4A EP3088455B1 (en) 2015-04-28 2015-04-28 Method of devulcanization of sulfur-cured rubber
EP15165489.4 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016174539A1 true WO2016174539A1 (ru) 2016-11-03

Family

ID=53015636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/052152 WO2016174539A1 (ru) 2015-04-28 2016-04-15 Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции

Country Status (5)

Country Link
US (1) US9982107B1 (ru)
EP (1) EP3088455B1 (ru)
CN (1) CN107531953B (ru)
RU (1) RU2651203C1 (ru)
WO (1) WO2016174539A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690219A (zh) * 2017-04-07 2018-10-23 徐州工业职业技术学院 一种再生橡胶的液相制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047182A1 (en) 2017-08-10 2019-02-14 Avonisys Ag Methods and systems for rubber removal from vulcanization molds
CN107857916A (zh) * 2017-11-15 2018-03-30 四川塑金科技有限公司 再生橡胶制品
CN107903463A (zh) * 2017-11-15 2018-04-13 四川塑金科技有限公司 循环橡胶制品的制备方法
PT115191B (pt) * 2018-12-05 2021-10-22 Alerta Plateia Lda Processo de desvulcanização de borracha
CN116348312A (zh) * 2020-10-15 2023-06-27 株式会社普利司通 脱硫橡胶、橡胶组合物、轮胎用橡胶组合物、轮胎、软管、带、履带
CN114621472B (zh) * 2022-04-08 2024-02-06 华南理工大学 一种界面交联橡胶的制备方法及回收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU175645A1 (ru) * В. Ф. Дроздовский, Б. С. Атепков , И. А. Шохин Научно исследовательский институт шинной промышленности Способ термоокислительной деструкции
US4211676A (en) * 1977-06-07 1980-07-08 Bridgestone Tire Company Limited Process for reclaiming scrap vulcanized rubber
EP2796491A1 (en) * 2013-04-26 2014-10-29 Leonid Vorobyev Composition for devulcanization of sulfur-cured rubber and method of devulcanization using this composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118431A (en) * 1980-02-25 1981-09-17 Bridgestone Corp Decomposition method of vulcanized rubber
RU2088608C1 (ru) * 1994-03-11 1997-08-27 Малое частное научно-производственное предприятие "Ира" Регенерируемая резиновая смесь
US5602186A (en) * 1995-10-27 1997-02-11 Exxon Research And Engineering Company Rubber devulcanization process
US20040166241A1 (en) * 2003-02-20 2004-08-26 Henkel Loctite Corporation Molding compositions containing quaternary organophosphonium salts
CN102030968B (zh) * 2009-09-30 2012-02-01 北京科化新材料科技有限公司 用于半导体器件封装的环氧树脂组合物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU175645A1 (ru) * В. Ф. Дроздовский, Б. С. Атепков , И. А. Шохин Научно исследовательский институт шинной промышленности Способ термоокислительной деструкции
US4211676A (en) * 1977-06-07 1980-07-08 Bridgestone Tire Company Limited Process for reclaiming scrap vulcanized rubber
EP2796491A1 (en) * 2013-04-26 2014-10-29 Leonid Vorobyev Composition for devulcanization of sulfur-cured rubber and method of devulcanization using this composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690219A (zh) * 2017-04-07 2018-10-23 徐州工业职业技术学院 一种再生橡胶的液相制备方法
CN108690219B (zh) * 2017-04-07 2022-05-17 徐州工业职业技术学院 一种再生橡胶的液相制备方法

Also Published As

Publication number Publication date
CN107531953B (zh) 2020-05-22
US20180148560A1 (en) 2018-05-31
EP3088455A1 (en) 2016-11-02
US9982107B1 (en) 2018-05-29
CN107531953A (zh) 2018-01-02
RU2651203C1 (ru) 2018-04-18
EP3088455B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
RU2651203C1 (ru) Композиция для девулканизации сшитой сульфидными связями резины и способ девулканизации с использованием этой композиции
De et al. Processing and material characteristics of a reclaimed ground rubber tire reinforced styrene butadiene rubber
US9902831B2 (en) Re-processed rubber and a method for producing same
JP6031598B2 (ja) タイヤトレッド及びその製造方法
RU2662006C2 (ru) Способ модификации полимеров
Gopi Sathi et al. Facilitating high-temperature curing of natural rubber with a conventional accelerated-sulfur system using a synergistic combination of bismaleimides
US3563922A (en) Method of regenerating vulcanized rubber,resulting products,and compositions containing the regenerated products
Mohamed et al. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound
Joseph et al. Incorporation of devulcanised rubber in fresh rubber compounds: Impact of filler correction on vulcanisate properties
AU2016312896A1 (en) Novel method for producing rubber-modified bitumen using vulcanized rubber
Premachandra et al. A novel reclaiming agent for ground rubber tyre (GRT). Part 1: property evaluation of virgin natural rubber (NR)/novel reclaimed GRT blend compounds
JP4338365B2 (ja) タイヤ用ゴム組成物
EP2796491A1 (en) Composition for devulcanization of sulfur-cured rubber and method of devulcanization using this composition
Dutta et al. Utilization of modified soybean oil in passenger car radial tyre tread and sidewall compound to promote green mobility
US20220332925A1 (en) Ecofriendly bio-waste extract agent and a general-purpose rubber composition thereof
EP4240792B1 (en) Devulcanizing additive, relative method of devulcanization and devulcanized product
Agustini The Effect of Natural Rubber Composite using Monomer Diene Ethylene Propylene on Mechanical Properties in Tubes Collar
WO2022234443A1 (en) Method of functionalising an elastomeric material and the use thereof in rubber formulations
Bermudez et al. The Effect of Natural Rubber Composite using Monomer Diene Ethylene Propylene on Mechanical Properties in Tubes Collar
CN111440360A (zh) 一种带束层钢帘线用橡胶组合物
Minigaliev A study of the possibility of using a softener based on tyre pyrolysis fraction in carcass rubber mixes
Fedorova et al. Effect of different grades of sulphur on the properties of tread rubber mixes for radial car tyres
Miloslavskii et al. Tests of epoxidised sunflower oil as a plasticiser/modifier of carcass rubber compounds
BRPI0704070B1 (pt) processo para a reciclagem de elastômeros vulcanizados, composições desses elastômeros e artigos moldados
BE496560A (ru)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016149193

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786027

Country of ref document: EP

Kind code of ref document: A1