WO2016174276A1 - Cartucho biodegradable para escopetas - Google Patents

Cartucho biodegradable para escopetas Download PDF

Info

Publication number
WO2016174276A1
WO2016174276A1 PCT/ES2015/070356 ES2015070356W WO2016174276A1 WO 2016174276 A1 WO2016174276 A1 WO 2016174276A1 ES 2015070356 W ES2015070356 W ES 2015070356W WO 2016174276 A1 WO2016174276 A1 WO 2016174276A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
cartridge
weight
shotguns
biodegradabie
Prior art date
Application number
PCT/ES2015/070356
Other languages
English (en)
French (fr)
Inventor
Enrique LÓPEZ-POZAS LANUZA
Original Assignee
López-Pozas Lanuza Enrique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2015393155A priority Critical patent/AU2015393155B2/en
Priority to BR112017023408A priority patent/BR112017023408B1/pt
Application filed by López-Pozas Lanuza Enrique filed Critical López-Pozas Lanuza Enrique
Priority to PL15890664T priority patent/PL3290858T3/pl
Priority to UAA201711740A priority patent/UA121136C2/uk
Priority to EP15890664.4A priority patent/EP3290858B1/en
Priority to CA3021981A priority patent/CA3021981C/en
Priority to MA41969A priority patent/MA41969B1/fr
Priority to US15/570,275 priority patent/US10684104B2/en
Priority to CN201580081255.8A priority patent/CN107923730B/zh
Priority to RU2017141779A priority patent/RU2679324C1/ru
Priority to PCT/ES2015/070356 priority patent/WO2016174276A1/es
Priority to PT158906644T priority patent/PT3290858T/pt
Priority to HUE15890664A priority patent/HUE059132T2/hu
Priority to LTEPPCT/ES2015/070356T priority patent/LT3290858T/lt
Priority to JP2018507779A priority patent/JP6596147B2/ja
Priority to DK15890664.4T priority patent/DK3290858T3/da
Priority to MX2017013927A priority patent/MX2017013927A/es
Priority to SI201531838T priority patent/SI3290858T1/sl
Priority to ES15890664T priority patent/ES2912975T3/es
Priority to UY0001036661A priority patent/UY36661A/es
Priority to ARP160101232A priority patent/AR104458A1/es
Publication of WO2016174276A1 publication Critical patent/WO2016174276A1/es
Priority to CL2017002744A priority patent/CL2017002744A1/es
Priority to CONC2017/0012278A priority patent/CO2017012278A2/es
Priority to ZA201708165A priority patent/ZA201708165B/en
Priority to ECIEPI201779888A priority patent/ECSP17079888A/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B7/00Shotgun ammunition
    • F42B7/02Cartridges, i.e. cases with propellant charge and missile
    • F42B7/06Cartridges, i.e. cases with propellant charge and missile with cartridge case of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B7/00Shotgun ammunition
    • F42B7/02Cartridges, i.e. cases with propellant charge and missile
    • F42B7/08Wads, i.e. projectile or shot carrying devices, therefor

Definitions

  • the present invention relates to a variety of completely biodegradable shotgun cartridges.
  • a cartridge is formed by the bib, the sheath, at least one base block and at least one block container of pellets.
  • the bib includes the detonating piston being made of brass or steel, the sheath contains inside the gunpowder, the taco container and the pellets or projectiles.
  • the taco container is a plastic piece in the form of a cup, which separates the powder load and the pellets.
  • the base block fixes the sheath to the shorts, under pressure, so that they always remain together before and after the shot.
  • the traditional cartridge comprised a sheath made of a paper tube provided with a base paper lid and a brass or steel bib, together with the explosive gunpowder, an inner block of fibers and the lead pellets. With the arrival of plastics, the sheaths and the inner blocks were replaced by synthetic, non-biodegradable petroleum-derived plastics, such as high density polyethylene.
  • the taco's mission is multiple: on the one hand, it takes full advantage of the gases produced in the combustion of the powder thanks to a perfect internal seal of the cartridge at the time of firing and, on the other, it contains and protects the pellets in its path through the inside the barrel preventing them from deforming due to friction with the walls.
  • it softens the recoil of the weapon by cushioning the initial impact that occurs at the time of firing.
  • the degradation of plastic products comprises a first stage of disintegration of the material into small particles that can be produced by the action of the sun, water, oxidation, microorganisms or heat. Only in the case of authentically compostable materials a second stage occurs in a few months (instead of decades or even centuries in the case of other materials) in which the fragments of the material are converted into volatile materials by microorganisms, mainly in CO 2 , water, biomass and energy for microorganisms in the case of aerobic decomposition, and in CH4, water, biomass and energy for microorganisms in the case of anaerobic. Therefore, degradable polymers (only a first phase of degradation) cannot be confused with bioplastics that also serve as food for microorganisms, that is, from which microorganisms obtain energy.
  • a first response to the demand for biodegradable cartridges has been oxo-degradable plastics that will degrade with the presence of oxygen on a time scale that can be determined approximately by the chemical formulation that is added to conventional plastic during the extrusion stage. They are therefore plastics with controlled lifespan. These plastics need a catalyst that fragments the long carbon molecules into smaller units to facilitate their degradation, instead of being directly by bacterial action such as bioplastics. Oxo-degradation is a process designed for conventional plastics or non-biodegradable petroleum derivatives.
  • PVA loses its plastic characteristics. Another problem added to the PVA is that its use in wetland areas, where it would dissolve in swamps, rivers and lakes, would incorporate a synthetic element in the food chain. PVA is also toxic in proportions greater than 5%.
  • ES 2100342 T3 refers to a sheath for shotgun cartridges manufactured by extrusion or equivalent pressure forming of a composition based on high density polyolefin, this composition containing biodegradable starch and a stabilizing compound, the composition formed in the sheath being stable until the sheath is triggered at which time the stabilizer compound is partially destroyed or dispersed so that biodegradation takes place in the environment in which the sheath is left.
  • This document is about a composition that contains 43.15% high density polyethylene and 43% starch, and although the starch is biodegradable, it is not alpha density polyethylene or polyolefin, it also includes in its composition cupric stearate, ferric calcium oxide, benzophenone and soybean oil.
  • GB 2496180 A describes mortar shells in which a vegetable load is used, instead of the usual mineral load, to be brittle and thus fragment at the time of impact.
  • these types of fillers and compositions are not suitable for cartridges, since they are precisely intended to avoid fragmentation.
  • this type of compositions would not withstand the pressures to which the cartridge is subjected, much greater than those suffered by the mortar shell.
  • WO 2015/033081 Al Describes cartridges comprising a mixture of alkyl polysuccinate, polyhydroxyacyanates (PHA) and vegetable fibers, wherein said PHA is present in proportions of a maximum of 20% by weight.
  • the fibers make it difficult processing, and it would be convenient to find biodegradable compositions whose mechanical properties were more favorable to processing such as, for example, injection or molding.
  • the polysuccinate does not biodegrade on its own in a reasonable time, just as it happened in the composition described in GB 2496180 A, and requires the action of catalysts and / or the action of light or water to promote its disintegration first; as indicated in WO 2015/033081 Al, no degradation is observed in the absence of light or moisture.
  • Plastic and rubber-derived rubber cartridges like the current ones, generate a great deal of pollution both in their production and in their degradation. In general, they have great inconveniences that are solved in our invention.
  • This invention is about a clean and odorless biodegradation produced by microorganisms, fungi and algae. None of the above documents describe biodegradable cartridges. BRIEF DESCRfPO ⁇ M OF THE ⁇ WEfcSCi ⁇ hJ
  • the proposed invention comes to completely solve this ecological problem that is created when after firing a cartridge, an act that develops in the countryside, in the middle of nature, the numerous pieces of pods and tacos are scattered on the ground. If this is multiplied by all the times it is fired we will result in considerable damage to nature and fauna
  • the present invention is based on a biodegradable terrno-plastic raw material of elastomeric polymers and polymers of plant and fermentative origin as the main base, mixed with biodegradable thermoplastics, which confer the necessary elasticity, while avoiding breakages in its use, maintaining its condition of biodegradability once used, the final products of aerobic biodegradation of the material being carbon dioxide, water, mineral salts, and the new microbial cell constituents (ihiomass)), while the material has the appropriate properties to support strong pressures that occur at the time of firing.
  • the present invention relates to a biodegradable cartridge for shotguns comprising a bib, a sheath, at least one base block and at least one container block, wherein said sheath, said at least one base block and said at least one block Containers are made of a material that comprises (i) at least one biodegradable biodegradable plant or fermentation origin; and (i ⁇ ) an inert and non-toxic mineral load, where said mining load! It comprises a maximum of 70% by weight with respect to the total weight of said material.
  • all polymers of the material are biodegradable, and at least at least 90% by weight with respect to the total weight of the material.
  • the proposed invention completely resolves the aforementioned problems. After the cartridges have been fired, including the pods and tacos they will biodegrade in a matter of months without leaving a trace of contamination, by bacterial action, without the need for catalysts and without dissolving in water, resulting in carbon dioxide, water, mineral salts , and the new microbial cell constituents (biomass).
  • a bioplastic is a plastic of natural origin produced by a living organism and with a biodegradable character, synthesized from renewable energy sources and does not require catalysts for its biodegradation.
  • bioplastics means polymers that comply with EN 13.432: 2000, that is, those that biodegrade to 90% by weight within six months according to ISO 14855, that is, those in which In 180 days 90% of its mass by weight is transformed into carbon dioxide, water and biomass.
  • at least 90% by weight disintegrates before 12 weeks, with a size less than 2 millimeters, in accordance with ISO 16,929.
  • the final products of the aerobic biodegradation of the test material are: carbon dioxide, water, mineral salts, and new microbial cell constituents (biomass).
  • biodegradability standards written by different standards bodies (ISO, CEN, ASTM, DIN, etc.).
  • the classification criteria are varied: medium in which biodegradation occurs, variable of measure chosen, presence or absence of oxygen in the medium, etc.
  • the most commonly used international standards in the determination of the biodegradability and / or compostability of plastic materials are the following: - UNE-EN-ISO 14852: 2005: Determination of the final aerobic biodegradability of plastic materials in aqueous media. Method according to the analysis of the generated carbon dioxide (ISO 14852: 1999). Therefore, in one embodiment of the invention said material is biodegradable according to the UNE-EN-ISO 14852: 2005 standard according to the analysis method SO 14852: 1999.
  • - UNE-EN-ISO 14855: 2005 Determination of the final aerobic biodegradability and disintegration of plastic materials under controlled composting conditions. Method according to the analysis of the generated carbon dioxide (ISO 14855: 1999). Therefore, in one embodiment of the invention said material is biodegradable according to UNE-EN-ISO 14855: 2005 according to the ISO 14855: 1999 analysis method.
  • - UNE-EN-ISO 17556: 2005 Determination of the ultimate aerobic biodegradability in the soil by measuring the oxygen demand in a respirometer or by the amount of carbon dioxide generated (ISO 17556: 2003). Therefore, in one embodiment of the invention said material is biodegradable according to UNE-EN-ISO 17556: 2005 according to the method of analysis ISO 17556: 2003.
  • test standards are based on the fact that during the biodegradation of the test material in the presence of oxygen, carbon dioxide, water, mineral salts and new biomass are generated as products.
  • the percentage of biodegradation is calculated by the ratio between the carbon dioxide generated from the test material and the maximum theoretical amount of carbon dioxide that can be produced from the test material.
  • Biodegradability the standard marks as a criterion that the package must biodegrade at least 90% in six months. To check biodegradability, it is recommended that ISO 14855 is preferably followed.
  • OECD Test 208 it is done by comparing a compost in which plastic samples and a blank (compost without samples) have been placed. Different parameters (metals, calcium, phosphorus, potassium, etc.) are analyzed to verify that the compost is suitable for agriculture. Ecotoxicity tests are also carried out on plants, analyzing their growth in substrate to which compost has been added with plastic waste and in a substrate without these residues. OECD Test 208
  • the material complies with the OECD Test 208.
  • the material is compostable according to EN 13.432.
  • the advantages offered by the present invention are based on a subject! Biodegradable compound of biodegradable biodegradable as the polylactic acid PLA.
  • biodegradable bioplastic of vegetable origin! or fermentative, e! matter! of the present invention may comprise eiastomeric polymers of plant origin or mixtures of the same conventional biodegradability polymers such as poücaprolactone.
  • the material of the invention comprises at least one biodegradable thermoplastic bioplastic.
  • the material of which a cartridge of the invention is composed is biodegradable and from renewable energies that minimize environmental pollution! both in obtaining the raw material and its manufacture and subsequent disappearance of the environment. It is a clean and odorless biodegradation produced by microorganisms, fungi and algae.
  • the biodegradable cartridges of this invention do not attract insects and small rodents for consumption.
  • this invention provides shotgun cartridges for hunting and sports shooting with the same physical-mechanical characteristics as conventional petrochemical plastics, but adding their status as biodegradable.
  • Bio-plastics have physicochemical and thermoplastic properties equal to those of polymers made from petroleum, but once deposited under favorable conditions, they biodegrade.
  • the biodegradable bioplastic is a mixture of a first biodegradable bioplastic with an eiastoric bioplastic.
  • Eiastomeric biopelastics are characterized by their great elasticity and ability to stretch and rebound, recovering their original shape! once the force that deformed them is removed. They understand the natural rubbers obtained from! natural latex! and synthetic. The inclusion of eiastomeric biopelastics allows to obtain cartridges with the appropriate mechanical properties. In general, the higher the powder load, it is convenient to put a greater load of bioplastic elastomer.
  • biodegradable shotgun cartridges can be made from biodegradable shotgun cartridges, since each cartridge and each tack require different physical-mechanical characteristics, and there is a wide variety of cartridges depending on the intended use. Therefore, they can be manufactured using a mixture of bio-plastics of vegetated origin! such as PLA, plus biodegradable eiastomer polymers, for example, those comprising at least 90% rubber or latex, of vegetable or petroleum origin, such as those comprising at least one 90% polycaprolactones, butylene polysuccinate, polyvinyl alcohol, pols (butyiene succinate-co-adipate).
  • bio-plastics of vegetated origin such as PLA
  • biodegradable eiastomer polymers for example, those comprising at least 90% rubber or latex, of vegetable or petroleum origin, such as those comprising at least one 90% polycaprolactones, butylene polysuccinate, polyvinyl alcohol, pols (butyiene succinate-co-adipate).
  • Said biodegradable elastomer preferably of plant origin, is preferably in proportions between 10% and 90% by weight with respect to the total weight! of matter.
  • said elastomeric biopestic is in proportions of between 20% and 80% by weight with respect to the total weight of the material.
  • the material may also contain small amounts (not more than 10% by weight with respect to the total weight of the material) of thermoplastic polymers accompanied by a catalyst that causes degradation.
  • a bio-plastic composed of biodegradable elastomeric polymers of plant origin is used, which are preferably in proportions of between 10% and 90% by weight with respect to the total weight of the material.
  • said biodegradable elastomeric polymers of plant origin are in proportions of between 20% and 80% by weight with respect to the total weight of the material.
  • the preferred materials for the manufacture of these shotgun cartridges are biodegradable thermoplastics of vegetable origin, to which biodegradable thermoplastic polymers derived from petroleum can be added.
  • biodegradable elastomeric thermoplastics from renewable sources are bioplastics formed by elastomeric polymers of plant origin such as rubber with a maximum of 90% by weight with respect to the total weight of the material.
  • Biodegradable elastomeric thermoplastics derived from petroleum are in maximum proportions of 60% by weight with respect to the total weight of the material.
  • the typical proportion of the material is between 10% and 90% elastomeric biopestic with respect to the total weight of the material.
  • elastomeric biopestic with respect to the total weight of the material, preferably between 40% and 80%. more preferably between 50% and 75% by weight with respect to the total weight of the material.
  • thermoplastics from renewable sources are those composed of bioplastics formed by polymers of plant origin with a maximum of 99% of the mixture, plus a load of inert and non-toxic minerals from the ios group carbonates and mineral sayes, such as cayic carbonate, sodium bicarbonate or barium sulfate.
  • This group includes bioplastics based on PLA (polylactic acid), co-polyether polyesters of the poiihydroxybutyraph (PHB) / polyhydroxyvalerate (PHV) type; the pululane (a polysaccharide) among others,
  • At least 30% by weight with respect to the total weight of the material is a biodegradable and biocompostable bioplastic, preferably more than 40%, preferably more than 50%, more preferably between 60 and 100%, or between 80% and 100% by weight with respect to the total weight of the material.
  • each of the elements of the cartridge can be made of different bio-plastics or different mixtures of bio-plastics depending on the mechanical needs of each of them.
  • biodegradation property of the variety of shotgun cartridges of this invention depends mainly on the action of microorganisms and fungi. These microorganisms produce enzymes that catalyze the breakdown of complex materials used as substrates (polymeters) into units more susceptible to being assimilated by microorganisms for biomass production.
  • biodegradation In addition to biodegradation, it is important to mention biodegradation. This occurs in composite materials that are constituted by a biodegradable component and a non-biodegradable component where at least 90% by weight with respect to the total weight of the material is biodegradable, such as a mixture of PLA or bio-plastic based on starch and PP (polypropylene) a conventional plastic such as PVC, in a ratio of biodegradable material of at least 90% of the mixture.
  • the rest of the material can be the mineral or a conventional thermoplastic and a catalyst to enhance its biodeintegration.
  • the material comprises between 1% and 10% by weight with respect to the total weight of said material of a thermoplastic polymer and between 0.5% and 3% of an oxidizing catalyst.
  • the cartridges of the invention must have a suitable specific weight, for example, in the range of 0.6 g / cm 3 to 5 gr / cm 3 .
  • the range is between Q, 6gr / cm 3 and 2.0 gr / cm 3 , more particularly between 0.7gr / crn 3 to 1.8 gr / cm 3 , more particularly between 0, 8gr / cm 3 and 1.7 gr / cm 3 .
  • Biodegradable polymers of plant origin including ios elastomers, form the main base of the mixture with a minimum of 5% and a maximum of 100%, being possible to mix them in multiple proportions, within this range, to achieve physical characteristics. mechanics appropriate to the specific use of each cartridge.
  • Biodegradable polymers of vegetable origin, or petroleum, or thermoplastics with catalysts and mineral load form the rest of the mixture, being possible to mix them in multiple proportions, to achieve the physical-mechanical characteristics appropriate to the specific use of each cartridge.
  • the biodegradable shotgun cartridges of the present invention are constituted by a biodegradable polymer sheath manufactured by extrusion or injection and molding process, and a base plug, a taco container constituted by biodegradable polymers manufactured by injection and molding processes.
  • the bib is made of biodegradable polymers manufactured by injection and molding processes, preferably with a material according to the present invention. Therefore, according to one embodiment, said bib is made of metal or of a material comprising (i) at least one biodegradable bioplastic of plant or fermentative origin; and (ii) an inert and non-toxic mineral load, wherein said mineral load comprises a maximum of 70% by weight with respect to the total weight of said material.
  • biodegradable shotgun cartridges proposed in this invention are composed of sheath, base block and container block, and are constituted from a material composed of the following proportions in relation to weight:
  • a bioplastic composed of biodegradable polymers of plant origin such as 60% PLA will be used, plus a biodegradable elastomer polymer ai 39% and a 1% caustic carbonate mineral filler.
  • a bioplastic composed of biodegradable elastomeric polymers of plant origin is used, plus a mineral filler such as caustic carbonate, sodium bicarbonate or barium sulfate, with a maximum of 5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

La presente invención se refiere a un cartucho biodegradable para escopetas que comprende un culote, una vaina, al menos un taco base y al menos un taco contenedor, en donde dicha vaina, al menos un taco base y al menos un taco contenedor comprenden (i) al menos un bioplástico biodegradable de origen vegetal o fermentativo; y (ii) una carga mineral inerte y no tóxica, en donde dicha carga mineral comprende un máximo del 70% en peso con respecto al peso total de dicho material.

Description

CARTUCHO BIODEGRADABLE PARA ESCOPETAS
CA M P O D E LA I NVE N C I ÓN
La presente invención se refiere a una variedad de cartuchos para escopetas completamente biodegradables.
ANTECEDENTES DE LA I NVE N C I ÓN
Un cartucho está formado por el culote, la vaina, al menos un taco base y al menos un taco contenedor de perdigones. El culote incluye el pistón detonante siendo de latón o acero, la vaina, contiene en su interior la pólvora, el taco contenedor y los perdigones o proyectiles. El taco contenedor, es una pieza plástica en forma de copa, que separa la carga de pólvora y los perdigones. El taco base fija la vaina al culote, por presión, con el fin de que siempre permanezcan unidos antes y después del disparo. El cartucho tradicional comprendía una vaina fabricada de un tubo de papel provisto de una tapa de papel de base y un culote de latón o de acero, conjuntamente con la pólvora explosiva, un taco interior de fibras y los perdigones de plomo. Con la llegada de los plásticos las vainas y los tacos interiores fueron sustituidos por plásticos sintéticos derivados del petróleo, no biodegradables, como el polietileno de alta densidad.
La misión del taco es múltiple: por un lado, aprovecha al máximo los gases producidos en la combustión de la pólvora gracias un perfecto sellado interno del cartucho en el momento del disparo y, por otro, contiene y protege los perdigones en su trayecto por el interior del cañón evitando que se deformen por rozamiento con las paredes. Además, gracias a la flexión del pilar de unión de las dos cazoletas del taco, suaviza el retroceso del arma al amortiguar el impacto inicial que se produce en el momento del disparar.
El uso de cartuchos fabricados con plásticos no biodegradables presenta problemas ecológicos importantes, ai quedar el suelo natural plagado de vainas y tacos o trozos de ellos sin ningún tipo de tratamiento de residuos. Es en este acto de verter plásticos no biodegradables en la naturaleza sin darles siquiera tratamiento de reciclaje, donde se produce la contaminación del medioambiente, dado que tanto vainas como tacos permanecerán durante siglos antes de degradarse.
El problema de contaminación medioambiental se produce después del disparo cuando la vaina es expulsada del arma y queda en el suelo, y el taco contenedor también, pues se proyecta lejos después del disparo quedando también esparcido por el suelo. Actualmente los plásticos más utilizados son el poiietileno de alta densidad que puede tardar en desaparecer del medioambiente siglos. Es por todo ello, que en la actualidad se demande por parte de las asociaciones de caza y campos de tiro un cartucho biodegradable que a la vez cumpla con las funciones propias para el desarrollo de estos deportes y actividades. Dicho material ecológico debe cumplir las especificaciones técnicas para su uso en cartuchos, presentando por ejemplo una densidad y resistencia suficiente para el uso a que se destina al tiempo que los materiales que componen la mezcla no contienen metales pesados o elementos tóxicos.
La degradación de los productos plásticos comprende una primera etapa de desintegración del material en pequeñas partículas que puede producirse por la acción del sol, el agua, la oxidación, microorganismos o el calor. Únicamente en el caso de materiales auténticamente compostables se produce una segunda etapa en unos pocos meses (en lugar de décadas o incluso siglos en el caso de otros materiales) en la que los fragmentos del material se convierten en materiales volátiles por acción de microorganismos, fundamentalmente en CO2, agua, biomasa y energía para los microorganismos en el caso de la descomposición aeróbica, y en CH4, agua, biomasa y energía para los microorganismos en el caso de la anaeróbica. Por tanto, no se puede confundir los polímeros degradabies (sólo se produce una primera fase de degradación) con los bioplásticos que además sirven de alimento para los microorganismos, es decir, de los cuales los microorganismos obtienen energía.
Una primera respuesta a la demanda de cartucho biodegradabies han sido ios plásticos oxo-degradables que se degradarán con la presencia de oxígeno en una escala temporal que puede ser determinada aproximadamente por la formulación química que se agrega ai plástico convencional durante la etapa de extrusión. Son por lo tanto plásticos con vida útil controlada. Estos plásticos necesitan de un catalizador que fragmente las largas moléculas de carbono en unidades más pequeñas para facilitar su degradación, en vez de ser directamente por la acción bacteriana como los bioplásticos. La oxo-degradación es un proceso ideado para plásticos convencionales o derivados del petróleo no biodegradabies. Aunque supone una mejora con respecto al poiietileno de alta densidad, una mezcla de un polímero biodegradable y otro convencional más un catalizador, solo se biodegradaría en parte, no totalmente, por lo que los residuos finales no son los establecidos en las norma EN 13.432, y en un tiempo más alargado seguiría depositando plásticos no biodegradados en el medioambiente. Otra alternativa al poíietileno y sus derivados ha sido la familia de plásticos degradables hidrosolubles, como el PVA: Alcohol Polivinilo. Es soluble en agua y la absorbe en gran cantidad, por lo que es ciertamente problemático en situaciones de alta humedad ambiental y no apta para todos los productos, en especial para los cartuchos de caza, donde la deformación de las piezas de PVA incide directamente en ¡a calidad del cartucho pudiendo ser muy peligroso su uso, ya que la humedad es un factor ambiental fijo e inevitable a tener en cuenta. Una vez comienza la absorción de humedad el PVA pierde sus características plásticas. Otro problema añadido al PVA es, que su uso en zonas de humedales, donde se disolvería en pantanos, ríos y lagos, incorporaría un elemento sintético la cadena alimentaria. El PVA es, además, tóxico en proporciones superiores al 5%.
Así ES 2100342 T3 hace referencia a una vaina para cartuchos de escopeta fabricada por extrusión o conformación por presión equivalente de una composición a base de poliolefina de alta densidad, conteniendo esta composición almidón biodegradable y un compuesto estabilizador, siendo estable la composición conformada en la vaina hasta disparar la vaina en cuyo momento se destruye o se dispersa parcialmente el compuesto estabilizador de modo que tiene lugar una biodegradación en el medio ambiente en el cual se deje la vaina. Este documento versa de una composición que contiene un 43,15% de poíietileno de alta densidad y un 43% de almidón, y si bien el almidón es biodegradable, no lo es el poíietileno de alfa densidad o la poliolefina, incluye también en su composición estearato cúprico, oxido cálcico férrico, benzofenona y aceite de soja. No cumple por tanto los criter los de biodegradabilidad , siendo polietitelo de alta densidad no biodegradable, uno de sus principales componentes. Por otro lado, no hace mención alguna ai taco base o al taco contenedor que separa la pólvora de los perdigones y que genera tanta o más contaminación que la vaina.
GB 2496180 A describe proyectiles de mortero en los que se utiliza una carga vegetal, en lugar de la habitual carga mineral, para que sea quebradizo y así se fragmente en el momento del impacto. Este tipo de cargas y de composiciones no son sin embargo adecuados para cartuchos, ya que en éstos se persigue precisamente evitar la fragmentación. Además, este tipo de composiciones no soportaría las presiones a las que se ve sometido el cartucho, mucho mayores que las que sufre el proyectil de mortero.
WO 2015/033081 Al Describe cartuchos que comprenden una mezcla de polisuccinato alquíücos, poíihidroxiaicanoatos (PHA) y fibras vegetales, en los que dichos PHA se encuentra presente en proporciones de un máximo del 20% en peso. Las fibras dificultan el procesado, y sería conveniente encontrar composiciones biodegradables cuyas propiedades mecánicas fuesen más favorables ai procesado como, por ejemplo, la inyección o el moldeo. Adicionaimente, el polisuccinato no se biodegrada por sí mismo en un tiempo razonable, igual que ocurría en la composición descrita en GB 2496180 A, y requiere la acción de catalizadores y/o la acción de luz o agua para propiciar primero su desintegración; tal y como se indica en WO 2015/033081 Al, no se observa degradación en ausencia de luz o humedad.
Los cartuchos de plásticos y gomas derivados del petróleo, como los actuales, generan una gran contaminación tanto en su elaboración como en su degradación. En general presentan grandes inconvenientes que vienen a resolverse en nuestra invención. Esta invención trata de una biodegradación limpia y sin olores producida por microorganismos, hongos y algas. Ninguno de los documentos anteriores describe cartuchos biodegradables. BREVE DESCRfPOÓM DE LA ¡¡WEfcSCiÓhJ
La invención propuesta viene a resolver por completo este problema ecológico que se crea cuando después de disparar un cartucho, acto que se desarrolla en el campo, en plena naturaleza, quedan desperdigados, enterrados por el suelo los numerosos trozos de vainas y tacos. Si esto lo multiplicamos por todas las veces que se dispara tendremos como resultado un considerable daño a la naturaleza y a la fauna
La presente invención se basa en una materia prima terrnopiástica biodegradabie de polímeros y polímeros elastómeros de origen vegetal y fermentativo como base principal, mezclados con termopiásticos biodegradables, que confieren la elasticidad necesaria, a la vez que evitan roturas en su uso, manteniendo su condición de biodegradabilidad una vez que se utilice, siendo los productos finales de la biodegradación aeróbica del material el dióxido de carbono, el agua, las sales minerales, y los nuevos constituyentes celulares microbianos íhiomasa), al tiempo que el material tiene las propiedades apropiadas para soportar las fuertes presiones que se producen en el momento del disparo.
Por tanto, la presente invención se refiere a un cartucho biodegradabie para escopetas que comprende un culote una vaina, al menos un taco base y ai menos un taco contenedor, en donde dicha vaina, dicho al menos un taco base y dicho al menos un taco contenedor están hechos de un material que comprende (i) al menos un biopiástico biodegradabie de origen vegetal o fermentativo; y (i¡) una carga mineral inerte y no tóxica, en donde dicha carga minera! comprende un máximo dei 70% en peso con respecto al peso total de dicho material.
De acuerdo con una realización preferida, todos los polímeros del material son biodegradables, y como mínimo al menos el 90% en peso con respecto al peso total del material. La invención propuesta viene a resolver por completo los problemas anteriormente mencionados. Después de ser disparados los cartuchos, incluyendo ¡as vainas y tacos se biodegradaran en cuestión de meses sin dejar rastro de contaminación, por acción bacteriana, sin necesidad de catalizadores y sin disolverse en agua, dando como resultado dióxido de carbono, agua, sales minerales, y los nuevos constituyentes celulares microbianos (biomasa).
DESCRiPOÚM DETALLADA DE LA INVENCIÓN
Un biopiástico es un plástico de origen natural producido por un organismo vivo y con carácter biodegradable, sintetizado a partir de fuentes de energía renovables y no necesitan de catalizadores para su biodegradacion. En la presente invención se entiende por "bioplásticos" los polímeros que cumplen la norma EN 13.432:2000, es decir, aquellos que se biodegraden al 90% en peso antes de seis meses según la norma ISO 14855, es decir, aquellos en los que en 180 días el 90% de su masa en peso se transforma en dióxido de carbono, agua y biomasa. Preferiblemente, al menos el 90% en peso se desintegra antes de 12 semanas, con un tamaño inferior a 2 milímetros, de acuerdo con la ISO 16.929. Los productos finales de la biodegradacion aeróbica del material de ensayo son: el dióxido de carbono, el agua, las sales minerales, y los nuevos constituyentes celulares microbianos (biomasa).
Además otras normas de biodegradabiiidad, redactadas por distintos organismos de normalización (ISO, CEN, ASTM, DIN, etc.). Los criter los de clasificación son variados: medio en el que se produce la biodegradacion, variable de medida elegida, presencia o ausencia de oxígeno en el medio, etc. Las normas internacionales más empleadas en la determinación de la biodegradabiiidad y/o compostabiiidad de los materiales plásticos son las siguientes: - UNE-EN-ISO 14852:2005: Determinación de la biodegradabiiidad aeróbica final de materiales plásticos en medio acuoso. Método según el análisis del dióxido de carbono generado (ISO 14852:1999). Por tanto, en una realización de la invención dicho material es biodegradable de acuerdo con la norma UNE-EN-ISO 14852:2005 según el método de análisis ¡SO 14852:1999. - UNE-EN-ISO 14855:2005: Determinación de ¡a biodegradabilidad aeróbica final y desintegración de materiales plásticos en condiciones de compostaje controladas. Método según el análisis del dióxido de carbono generado (ISO 14855:1999). Por tanto, en una realización de la invención dicho material es biodegradabie de acuerdo con la norma UNE- EN-ISO 14855:2005 según el método de análisis ISO 14855:1999.
- UNE-EN-ISO 17556:2005 Determinación de la biodegradabilidad aeróbica última en el suelo mediante la medición de la demanda de oxígeno en un respirómetro o bien mediante la cantidad de dióxido de carbono generada (ISO 17556:2003). Por tanto, en una realización de la invención dicho material es biodegradabie de acuerdo con la norma UNE-EN-ISO 17556:2005 según el método de análisis ISO 17556:2003.
Estas normas de ensayo se basan en que durante la biodegradacion del material de ensayo en presencia de oxígeno, se generan como productos dióxido de carbono, agua, sales minerales y nueva biomasa. El porcentaje de biodegradacion se calcula mediante la relación entre el dióxido de carbono generado a partir del material de ensayo y la cantidad teórica máxima de dióxido de carbono que puede producirse a partir del material de ensayo.
Los requerimientos que ha de cumplir un producto plástico para ser compostable vienen dados por la norma europea EN 13.432, y son los siguientes:
- Análisis del material: consiste en analizar el material para ver su contenido en metales pesados, carbono orgánico total, nitrógeno total, etc.
- Biodegradabilidad: la norma marca como criterio que el envase ha de biodegradarse al menos un 90% en seis meses. Para comprobar la biodegradabilidad recomienda que se siga preferiblemente la norma ISO 14855.
- Desintegración: se comprueba sí el material es capaz de degradarse físicamente, hasta fragmentos de tamaño menor de 2 mm. Norma ISO 16.929
- Calidad del compost: se realiza mediante comparación de un compost en el que se han puesto muestras de plástico y un blanco (compost sin muestras). Se analizan distintos parámetros (metales, calcio, fósforo, potasio, etc) para comprobar que el compost sea apto para agricultura. También se realizan ensayos de ecotoxicidad sobre plantas, analizando su crecimiento en sustrato al que se ha añadido compost con residuos de plástico y en un sustrato sin estos residuos. Test OCDE 208
En una realización de la invención, el material cumple con el Test OCDE 208, En otra realización de la invención, el material es compostable de acuerdo con la norma EN 13.432. Las ventajas que ofrece ¡a presente invención se basan en un materia! biodegradable compuesto de biopiásticos biodegradabies como el ácido poliláctico PLA. Además de ¡os bioplástico biodegradable de origen vegeta! o fermentativo, e! materia! de la presente invención puede comprender polímeros eiastómeros de origen vegetal o mezclas de los mismos polímeros biodegradabies convencionales como la poücaprolactona . De acuerdo con otra realización de la invención, el material de la invención comprende al menos un bioplástico termoplástico biodegradable.
El material del que se compone un cartucho de la invención es biodegradable y procedente de energías renovables que minimizan la contaminación am bienta! tanto en la obtención de la materia prima como en su fabricación y posterior desaparición del medioambiente. Se trata de una biodegradación limpia y sin olores producida por microorganismos, hongos y algas. Los cartuchos biodegradabies de esta invención no atraen insectos y pequeños roedores para su consumo. Como resultado, esta invención proporciona cartuchos de escopeta para caza y tiro deportivo con las mismas características físico- mecánicas que los plásticos petroquímicos convencionales, pero añadiendo su condición de ser biodegradable.
Los biopiásticos presentan propiedades fisicoquímicas y termoplásticas iguales a las de los polímeros fabricados a partir del petróleo, pero una vez depositados en condiciones favorables, se biodegradan.
De acuerdo con una realización preferida, el bioplástico biodegradable es una mezcla de un primer bioplástico biodegradable con un bioplástico eiastórnero. Los biopiásticos eiastómeros se caracterizan por su gran elasticidad y capacidad de estiramiento y rebote, recuperando su forma origina! una vez que se retira la fuerza que los deformaba. Comprenden los cauchos naturales obtenidos a partir de! látex natura! y sintéticos. La inclusión de los biopiásticos eiastómeros permite obtener los cartuchos con las propiedades mecánicas adecuadas. En general, cuanto mayor sea la carga de pólvora, es conveniente poner una mayor carga de bioplástico eslastómero. De forma no limitativa, se pueden realizar diferentes vainas y tacos de los cartuchos de escopeta biodegradabies, ya que cada cartucho y cada taco requieren características físico-mecánicas diferentes, y existe una gran variedad de cartuchos según al uso destinado. Por lo anterior, pueden fabricarse utilizando una mezcla de biopiásticos de origen vegeta! como el PLA, más polímeros eiastómeros biodegradabies, por ejemplo, aquellos que comprenden al menos un 90% de caucho o látex, de origen vegetal o del petróleo, como por ejemplo aquellos que comprenden al menos un 90% de policaprolactonas, polisuccinato de butileno, polivinií alcohol, pols(succinato-co- adipato de butiieno). Dicho elastórnero biodegradable, preferiblemente de origen vegetal, se encuentra preferiblemente en proporciones de entre el 10% y el 90% en peso con respecto al peso tota! del materiaí. De acuerdo con otra realización particular, dicho biopiástico elastórnero se encuentra en proporciones de entre e!20% y el 80% en peso con respecto al peso total del material.
De acuerdo con una realización alternativa, el material también puede contener pequeñas cantidades (no más de un 10% en peso con respecto ai peso total del material) de polímeros termoplásticos acompañados de un catalizador que provoque degradación.
En otra realización diferente se utiliza un biopiástico compuesto por polímeros elastomeros biodegradables de origen vegetal, que se encuentran preferiblemente en proporciones de entre el 10% y el 90% en peso con respecto al peso total del material. De acuerdo con otra realización particular, dichos polímeros elastomeros biodegradables de origen vegetal se encuentran en proporciones de entre e!20% y el 80% en peso con respecto al peso total del material.
Los materiales preferidos para la fabricación de estos cartuchos de escopeta son los termoplásticos biodegradables origen vegetal, a los que se pueden añadir polímeros termoplásticos biodegradables derivados del petróleo.
De acuerdo con una realización, los termoplásticos elastomeros biodegradables a partir de fuentes renovables son bioplásticos formados por polímeros elastomeros de origen vegetal tales como el caucho con un máximo del 90% en peso con respecto al peso total del material.
Termoplásticos elastomeros biodegradables derivados del petróleo se encuentran en proporciones máximas del 60% en peso con respecto al peso total del material.
La proporción típica del material es de entre un 10% y un 90% de biopiástico elastórnero con respecto al peso total del material. Por ejemplo entre un 20% y un 85% de biopiástico elastórnero con respecto ai peso total del material, preferiblemente, entre un 40% y 80%. más preferiblemente entre un 50% y 75% en peso con respecto ai peso total del material.
Como termoplásticos biodegradables a partir de fuentes renovables están los compuestos por bioplásticos formados por polímeros de origen vegetal con un máximo del 99% de la mezcla, más una carga de minerales inertes y no tóxicos del grupo de ios carbonates y saíes minerales, taíes como eí carbonato cáícico, bicarbonato sódico o sulfato de bario. En este grupo figuran los biopiásticos a base de PLA (ácido poliláctico), poliésteres copoiímeros del tipo poiihidroxibutirafo (PHB)/polihidroxivalerato (PHV); el pululano (un polisacárido) entre otros,
De acuerdo con una realización de la invención, al menos el 30% en peso con respecto ai peso total del material, es un bioplástico biodegradable y biocompostable, preferiblemente más de un 40%, preferiblemente más de un 50%, más preferiblemente entre un 60 y un 100%, o entre un 80% y 100% en peso con respecto al peso total del material.
De hecho, cada uno de ios elementos del cartucho (vaina, taco contenedor o taco base o incluso el propio culote) puede estar hecho de distintos biopiásticos o de disfintas mezclas de biopiásticos en función de las necesidades mecánicas de cada uno de ellos.
La propiedad de biodegradación de la variedad de cartuchos de escopeta de esta invención, con los diferentes tipos de materiales biodegradables mencionados, depende principalmente de la acción de microorganismos y hongos. Estos microorganismos producen enzimas que catalizan la ruptura de los materiales complejos usados como sustratos (polímetros) en unidades más susceptibles de ser asimilados por ios microorganismos para la producción de biomasa.
Todos estos procesos están regulados y estandarizados por la Norma europea EN 13432: 2000 "Envases y embalajes. Requisitos de los envases y embalajes valorizables mediante compostaje y biodegradación. En condiciones normales de compostaje, el 90% de la masa queda biodegradada en dióxido de carbono, agua, las sales minerales, y los nuevos constituyentes celulares microbianos (biomasa), consiguiendo así la biodegradabiiidad y cumpliendo con ello con las normativas vigentes,
Además de la biodegradación, es importante mencionar la biodesintegración. Ésta ocurre en materiales compuestos que están constituidos por un componente biodegradable y un componente no biodegradable en donde al menos el 90% en peso con respecto al peso total del material es biodegradable, como por ejemplo una mezcla de PLA o biopiásticos basado en almidón y el PP (polipropileno) un plástico convencional como el PVC, en una relación de material biodegradable de ai menos 90% de la mezcla. El resto del material puede ser el mineral o un termoplástico convencional y un catalizador para potenciar su biodesintegración. De acuerdo con una realización el material comprende entre 1% y un 10% en peso con respecto ai peso total de dicho material de un polímero termopiástico y entre eí 0,5% y el 3% de un catalizador oxidante.
Los cartuchos de la invención tienen que tener un peso específico adecuado, como por ejemplo, en el rango de 0,6gr/cm3 a 5 gr/cm3. De acuerdo con una realización particular, el rango está situado entre Q,6gr/cm3 y 2,0 gr/cm3, más particularmente entre 0,7gr/crn3 a 1,8 gr/cm3, más particularmente entre 0,8gr/cm3 y 1,7 gr/cm3.
Los polímeros biodegradables de origen vegetal, incluidos ios elastómeros, forman la base principal de la mezcla con un mínimo de un 5% y un máximo del 100%, siendo posible mezclarlos en múltiples proporciones, dentro de este rango, para conseguir las características físico-mecánicas adecuadas al uso específico de cada cartucho.
Los polímeros biodegradables de origen vegetal, o del petróleo, o los termoplásticos con catalizadores y la carga mineral, forman el resto de la mezcla, siendo posible mezclarlos en múltiples proporciones, para conseguir las características físico-mecánicas adecuadas ai uso específico de cada cartucho.
Los cartuchos de escopeta biodegradables de la presente invención están constituidos por una vaina de polímeros biodegradables fabricada por proceso de extrusión o inyección y moldeo, y un taco base, un taco contenedor constituidos por polímeros biodegradables fabricados por procesos de inyección y moldeo. De acuerdo con una realización preferida el culote está constituido por polímeros biodegradables fabricados por procesos de inyección y moldeo, preferiblemente con un material de acuerdo con la presente invención. Por tanto, de acuerdo con una realización, dicho culote está hecho de metal o de un material que comprende (i) al menos un bioplástico biodegradable de origen vegetal o fermentativo; y (ii) una carga mineral inerte y no tóxica, en donde dicha carga mineral comprende un máximo del 70% en peso con respecto ai peso total de dicho material.
La presente invención se ilustra con el siguiente ejemplo o modo de realización preferida, el cual no debe considerarse limitativo de su alcance. Así, los cartuchos de escopeta biodegradables propuestos en esta invención, además de un culote metálico (por ejemplo, latón o acero), se componen de vaina, taco base y taco contenedor, y se constituyen a partir de un material compuesto por las siguientes proporciones en relación al peso:
Para el taco base y el taco contenedor, fabricado por inyección, se utilizará un bioplástico compuesto por polímeros biodegradables de origen vegetal como el PLA al 60%, más un polímero elastomero biodegradable ai 39% y una carga mineral de carbonato cáicico ai 1%.
Para la vaina se utiliza un bioplástico compuesto por polímeros elastomeros biodegradabíes de origen vegetal, más una carga mineral tales como el carbonato cáicico, bicarbonato sódico o sulfato de bario, con un máximo del 5%.

Claims

RE!V!!SSD!CAC!ONES
1. - Un cartucho biodegradabie para escopetas que comprende un culote, una vaina, al menos un taco base y al menos un taco contenedor, en donde dicha vaina, dicho al menos un taco base y dicho ai menos un taco contenedor están cada uno hecho de un materia! que comprende (i) al menos un biopiástico biodegradabie de origen vegeta! o fermentativo; y (ii) una carga mineral inerte y no tóxica, en donde dicha carga mineral comprende un máximo del 70% en peso con respecto al peso tota! de dicho material.
2. - E! cartucho biodegradabie para escopetas según reivindicación 1, en donde la proporción de dicho biopiástico está comprendida entre el 30% y 100% en peso con respecto al peso total de dicho material.
3. - E! cartucho biodegradabie para escopetas según reivindicación 2, en donde la proporción de dicho biopiástico está comprendida entre el 60% y 100% en peso con respecto a! peso tota! de dicho materia!.
4. · El cartucho biodegradabie para escopetas según reivindicación 3, en donde la proporción de dicho biopiástico está es de ai menos el 90% en peso con respecto al peso tota! de dicho material,
5. - E! cartucho biodegradabie para escopetas según cualquiera de las reivindicaciones anteriores, en donde dicha vaina, al menos un taco base y al menos un taco contenedor comprenden como único material polimérico un biopiástico biodegradabie de origen vegeta! o fermentativo o una mezcla de los mismos.
6. - El cartucho biodegradabie para escopetas según cualquiera de las reivindicaciones anteriores, en donde dicho biopiástico biodegradabie de origen vegetal o fermentativo es inso!uble en agua.
7. - El cartucho biodegradabie para escopetas según reivindicación 6, en donde dicha vaina, a! menos un taco base y a! menos un taco contenedor son insolubies en agua.
8. - El cartucho biodegradabie para escopetas según cualquiera de las reivindicaciones anteriores, caracterizado porque la carga de minerales inertes y no tóxicos de! grupo de los carbonates y sales minerales se selecciona de! grupo que consiste en carbonato cáicico, bicarbonato sódico, sulfato de bario y mezclas de los mismos.
9.- El cartucho biodegradabie para escopetas según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho biopiástico comprende un polímero elastómero biodegradabie de origen vegetal que se selecciona del grupo que consiste en caucho o látex.
10. - E! cartucho biodegradab!e para escopetas según ía reivindicación 9, caracterizado porque dicho bioplástico comprende PLA.
11. - Eí cartucho biodegradable para según la reivindicación 10, caracterizado porque dicho PLA ha sido extraído del almidón, féculas o celulosas.
12.- El cartucho biodegradable para escopetas según cualquiera de las reivindicaciones 1 a 11, caracterizado porque el peso específico de dicho material está comprendido entre 0,6 gr/cm3 y 5 gr/crn3.
13. - El cartucho biodegradable para escopetas según cualquiera de las reivindicaciones anteriores, que comprende entre 1% y un 10% en peso con respecto a! peso total de dicho material de un polímero termoplastico y entre el 0,5% y el 3% de un catalizador oxidante.
14. - El cartucho biodegradable para escopetas según cualquiera de las reivindicaciones anteriores, en donde dicho culote está hecho de metal o de un material tai y como se define en cualquiera de las reivindicaciones anteriores.
PCT/ES2015/070356 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas WO2016174276A1 (es)

Priority Applications (25)

Application Number Priority Date Filing Date Title
ES15890664T ES2912975T3 (es) 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas
PT158906644T PT3290858T (pt) 2015-04-30 2015-04-30 Cartucho biodegradável para espingardas
PL15890664T PL3290858T3 (pl) 2015-04-30 2015-04-30 Biodegradowalny nabój do strzelby
UAA201711740A UA121136C2 (uk) 2015-04-30 2015-04-30 Біорозкладний дробовий набій
EP15890664.4A EP3290858B1 (en) 2015-04-30 2015-04-30 Biodegradable cartridge for shotguns
CA3021981A CA3021981C (en) 2015-04-30 2015-04-30 Biodegradable shotgun cartridge
MA41969A MA41969B1 (fr) 2015-04-30 2015-04-30 Cartouche biodégradable pour fusils de chasse
US15/570,275 US10684104B2 (en) 2015-04-30 2015-04-30 Biodegradable shotgun cartridge
CN201580081255.8A CN107923730B (zh) 2015-04-30 2015-04-30 可生物降解的猎枪子弹
RU2017141779A RU2679324C1 (ru) 2015-04-30 2015-04-30 Биоразлагаемый ружейный патрон
PCT/ES2015/070356 WO2016174276A1 (es) 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas
AU2015393155A AU2015393155B2 (en) 2015-04-30 2015-04-30 Biodegradable cartridge for shotguns
HUE15890664A HUE059132T2 (hu) 2015-04-30 2015-04-30 Biológiailag lebomló töltény sörétes puskákhoz
LTEPPCT/ES2015/070356T LT3290858T (lt) 2015-04-30 2015-04-30 Biologiškai skaidomas šovinys, skirtas šautuvams
JP2018507779A JP6596147B2 (ja) 2015-04-30 2015-04-30 生分解性散弾銃カートリッジ
DK15890664.4T DK3290858T3 (da) 2015-04-30 2015-04-30 Bionedbrydelig patron til haglgevær.
MX2017013927A MX2017013927A (es) 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas.
SI201531838T SI3290858T1 (sl) 2015-04-30 2015-04-30 Biorazgradljivi naboj za puške
BR112017023408A BR112017023408B1 (pt) 2015-04-30 2015-04-30 cartucho biodegradável para espingardas
UY0001036661A UY36661A (es) 2015-04-30 2016-04-29 Cartucho biodegradable para escopetas
ARP160101232A AR104458A1 (es) 2015-04-30 2016-04-29 Cartucho biodegradable para escopetas
CL2017002744A CL2017002744A1 (es) 2015-04-30 2017-10-30 Cartucho biodegradable para escopetas
CONC2017/0012278A CO2017012278A2 (es) 2015-04-30 2017-11-29 Cartucho biodegradable para escopetas
ZA201708165A ZA201708165B (en) 2015-04-30 2017-11-30 Biodegradable cartridge for shotguns
ECIEPI201779888A ECSP17079888A (es) 2015-04-30 2017-11-30 Cartucho biodegradable para escopetas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070356 WO2016174276A1 (es) 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas

Publications (1)

Publication Number Publication Date
WO2016174276A1 true WO2016174276A1 (es) 2016-11-03

Family

ID=57199010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070356 WO2016174276A1 (es) 2015-04-30 2015-04-30 Cartucho biodegradable para escopetas

Country Status (25)

Country Link
US (1) US10684104B2 (es)
EP (1) EP3290858B1 (es)
JP (1) JP6596147B2 (es)
CN (1) CN107923730B (es)
AR (1) AR104458A1 (es)
AU (1) AU2015393155B2 (es)
BR (1) BR112017023408B1 (es)
CA (1) CA3021981C (es)
CL (1) CL2017002744A1 (es)
CO (1) CO2017012278A2 (es)
DK (1) DK3290858T3 (es)
EC (1) ECSP17079888A (es)
ES (1) ES2912975T3 (es)
HU (1) HUE059132T2 (es)
LT (1) LT3290858T (es)
MA (1) MA41969B1 (es)
MX (1) MX2017013927A (es)
PL (1) PL3290858T3 (es)
PT (1) PT3290858T (es)
RU (1) RU2679324C1 (es)
SI (1) SI3290858T1 (es)
UA (1) UA121136C2 (es)
UY (1) UY36661A (es)
WO (1) WO2016174276A1 (es)
ZA (1) ZA201708165B (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175471A1 (en) * 2017-03-21 2018-09-27 College Of William & Mary Biodegradable shotgun gas sealing wad
CN110054874A (zh) * 2018-01-18 2019-07-26 邦泰复合材料股份有限公司 高比重塑料及其所制成的bb弹
WO2020008390A1 (fr) 2018-07-05 2020-01-09 Shoot Hunting Outdoor Bourre a godet biodegradable pour cartouche de fusil
EP3875887A1 (fr) 2020-03-05 2021-09-08 Shoot Hunting Outdoor Bourre grasse biodegradable avec obturateur pour cartouche de fusil

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015402333B2 (en) * 2015-07-10 2021-04-08 Luis Enrique López-Pozas Lanuza Biodegradable ammunition for firearms
IT201900000825A1 (it) * 2019-01-18 2020-07-18 S I T A V Soc Incremento Tiro Al Volo Srl Eliche compostabili per il tiro al volo
GB2609411A (en) 2021-07-28 2023-02-08 Bondon Int Biodegradable components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775724A1 (fr) * 1995-11-27 1997-05-28 Societe Nationale Des Poudres Et Explosifs Compositions entièrement biodégradables utiles pour fabriquer des cartouches de chasse et de tir
US5859090A (en) * 1996-01-16 1999-01-12 Federal Cartridge Company Injection-modulable, polycaprolactone-based, biodegradable plastic articles such as shotshell components, and method of manufacturing same
GB2496180A (en) * 2011-11-04 2013-05-08 Christopher Charles Hampton Ammunition comprising biodegradable thermoplastic composite material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9108555D0 (en) * 1991-04-22 1991-06-05 Kent Cartridge Mfg Improvements in cartridge cases
US5714573A (en) * 1995-01-19 1998-02-03 Cargill, Incorporated Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof
JP2000258098A (ja) * 1999-03-08 2000-09-22 Toomikku:Kk 生分解性プラスチック樹脂を使用した散弾、小銃弾などの銃弾の薬莢および一体ワッズ
RU2171444C1 (ru) * 2000-07-06 2001-07-27 Федеральное государственное унитарное предприятие Краснозаводский химический завод Сигнальный ружейный патрон
JP2002257499A (ja) * 2001-03-01 2002-09-11 Asahi Skb Kk 弾丸及び装弾
JP2005055146A (ja) * 2003-08-07 2005-03-03 Nof Corp 安全なガス回転式ショットガン用空包
GB2422185B (en) * 2005-01-13 2008-06-18 Pvaxx Res & Dev Ltd A projectile cartridge, a wad for a projectile cartridge and a method of making thereof
RU2320950C2 (ru) * 2006-04-27 2008-03-27 Федеральное государственное унитарное предприятие "Краснозаводский химический завод" Сигнальный ружейный патрон
US8877338B2 (en) * 2006-11-22 2014-11-04 Polynew, Inc. Sustainable polymeric nanocomposites
BRPI0808331A2 (pt) * 2007-04-01 2014-07-08 Sdi Security Device Internat Inc "projétil não-letal"
ES2373161B1 (es) * 2009-10-19 2012-11-02 Luis Enrique López-Pozas Lanuza Perdigones 100% biodegradables y aparato para su elaboración.
RU105984U1 (ru) * 2011-04-04 2011-06-27 Александр Юрьевич Земсков Имитатор взрывчатого боеприпаса
RU2488768C1 (ru) * 2012-03-27 2013-07-27 Николай Михайлович Варёных Ружейный патрон
US9528800B2 (en) * 2013-06-14 2016-12-27 College Of William And Mary Degradable shotgun wad
FR3010410B1 (fr) * 2013-09-06 2016-12-23 Jerome Chiesa Composition thermoplastique biodegradable utilisable pour la fabrication de munitions de chasse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775724A1 (fr) * 1995-11-27 1997-05-28 Societe Nationale Des Poudres Et Explosifs Compositions entièrement biodégradables utiles pour fabriquer des cartouches de chasse et de tir
US5859090A (en) * 1996-01-16 1999-01-12 Federal Cartridge Company Injection-modulable, polycaprolactone-based, biodegradable plastic articles such as shotshell components, and method of manufacturing same
GB2496180A (en) * 2011-11-04 2013-05-08 Christopher Charles Hampton Ammunition comprising biodegradable thermoplastic composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290858A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175471A1 (en) * 2017-03-21 2018-09-27 College Of William & Mary Biodegradable shotgun gas sealing wad
WO2018175492A1 (en) * 2017-03-21 2018-09-27 College Of William & Mary Biodegradable shotgun wad system
US10139206B2 (en) 2017-03-21 2018-11-27 College Of William & Mary Biodegradable shotgun wad system
US10393486B2 (en) 2017-03-21 2019-08-27 College Of William & Mary Biodegradable shotgun gas sealing wad
US10480914B2 (en) 2017-03-21 2019-11-19 College Of William & Mary Biodegradable shotgun wad system
EP3601936A4 (en) * 2017-03-21 2020-12-16 College of William & Mary BIODEGRADABLE GAS SEAL PLUG FOR GUN
CN110054874A (zh) * 2018-01-18 2019-07-26 邦泰复合材料股份有限公司 高比重塑料及其所制成的bb弹
WO2020008390A1 (fr) 2018-07-05 2020-01-09 Shoot Hunting Outdoor Bourre a godet biodegradable pour cartouche de fusil
US11333471B2 (en) 2018-07-05 2022-05-17 Shoot Hunting Outdoor Biodegradable wadding cup for a shotgun cartridge
EP3875887A1 (fr) 2020-03-05 2021-09-08 Shoot Hunting Outdoor Bourre grasse biodegradable avec obturateur pour cartouche de fusil
FR3107952A1 (fr) 2020-03-05 2021-09-10 Shoot Hunting Outdoor Bourre grasse biodegradable avec obturateur pour cartouche de fusil

Also Published As

Publication number Publication date
UA121136C2 (uk) 2020-04-10
EP3290858B1 (en) 2022-02-09
MA41969B1 (fr) 2022-06-30
HUE059132T2 (hu) 2022-10-28
JP6596147B2 (ja) 2019-10-23
RU2679324C1 (ru) 2019-02-07
AU2015393155B2 (en) 2020-07-16
CN107923730B (zh) 2020-08-07
CA3021981C (en) 2021-10-26
ECSP17079888A (es) 2018-02-28
MA41969A (fr) 2021-03-31
AU2015393155A1 (en) 2017-12-21
PT3290858T (pt) 2022-05-13
EP3290858A1 (en) 2018-03-07
EP3290858A4 (en) 2018-12-26
ES2912975T3 (es) 2022-05-30
LT3290858T (lt) 2022-06-10
BR112017023408B1 (pt) 2021-03-16
PL3290858T3 (pl) 2022-06-06
US10684104B2 (en) 2020-06-16
US20180128583A1 (en) 2018-05-10
CL2017002744A1 (es) 2018-04-13
CO2017012278A2 (es) 2018-04-19
BR112017023408A2 (pt) 2018-07-24
JP2018517884A (ja) 2018-07-05
AR104458A1 (es) 2017-07-19
MX2017013927A (es) 2018-03-22
UY36661A (es) 2016-11-30
CA3021981A1 (en) 2016-11-03
CN107923730A (zh) 2018-04-17
ZA201708165B (en) 2020-11-25
SI3290858T1 (sl) 2022-09-30
DK3290858T3 (da) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2016174276A1 (es) Cartucho biodegradable para escopetas
US10480914B2 (en) Biodegradable shotgun wad system
BRPI0711446A2 (pt) nova composição de polìmero biodegradável útil para a preparação de um plástico biodegradável e processo para a preparação da referida composição
ES2373161B1 (es) Perdigones 100% biodegradables y aparato para su elaboración.
ES2804128T3 (es) Munición biodegradable para armas de fuego
WO2006133528A3 (en) Composition for producing starch foam resistant to moisture and freeze-thaw cycles
CN105385018A (zh) 一种环保塑料添加剂及其制备方法
CA3009930A1 (en) Bio-degradable polymeric sheet
AU2020403935A1 (en) Biodegradable and compostable composition
KR101612429B1 (ko) 바이오매스를 이용한 수지 조성물
ES2535344B1 (es) Cartucho biodegradable para escopetas
US9541360B2 (en) Wad for cartridge
TWI733195B (zh) 生物可分解材料
Vindizheva et al. Biologically destroyable polymer compositions with the use of natural filler
CN108102317A (zh) 一种可降解的塑料震源药柱外壳
WO2024013775A1 (en) Wad for cartridges with characteristics of biodegradability in soil
EP3828229A1 (en) A biopolymer compound and a refrigerator comprising an egg tray produced from biopolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570275

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018507779

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 002344-2017

Country of ref document: PE

Ref document number: MX/A/2017/013927

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: NC2017/0012278

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 14636

Country of ref document: GE

WWE Wipo information: entry into national phase

Ref document number: A201711740

Country of ref document: UA

Ref document number: 2017141779

Country of ref document: RU

Ref document number: 2015890664

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015393155

Country of ref document: AU

Date of ref document: 20150430

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017023408

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3021981

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 112017023408

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171030