WO2016173935A1 - Echangeur de chaleur a plaques empilees - Google Patents

Echangeur de chaleur a plaques empilees Download PDF

Info

Publication number
WO2016173935A1
WO2016173935A1 PCT/EP2016/058974 EP2016058974W WO2016173935A1 WO 2016173935 A1 WO2016173935 A1 WO 2016173935A1 EP 2016058974 W EP2016058974 W EP 2016058974W WO 2016173935 A1 WO2016173935 A1 WO 2016173935A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
plates
heat exchanger
bottle
zone
Prior art date
Application number
PCT/EP2016/058974
Other languages
English (en)
Inventor
Jérôme MOUGNIER
Gaël DURBECQ
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to US15/569,325 priority Critical patent/US20180120033A1/en
Priority to KR1020177034075A priority patent/KR102038213B1/ko
Priority to EP16717658.5A priority patent/EP3289302B1/fr
Priority to JP2017556199A priority patent/JP6554182B2/ja
Priority to CN201680031297.5A priority patent/CN107949761A/zh
Publication of WO2016173935A1 publication Critical patent/WO2016173935A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a stacked plate heat exchanger, in particular a condenser for exchanging heat between a refrigerant and a cooling fluid in the liquid phase.
  • heat exchangers comprising a heat exchange bundle having a series of plates stacked parallel to one another above.
  • the stack of plates forms heat exchange surfaces, between which a refrigerant and a cooling fluid circulate, in alternating layers, in fluid passage circuits.
  • the stack of plates is thus configured to define two different circuits: that of the refrigerant and that of the cooling fluid.
  • exchangers there are exchangers further provided with a bottle for the refrigerant and a subcooling portion, located downstream of the bottle.
  • the stacked plates are separated into two parts including a cooling part and a subcooling part and are provided with at least two refrigerant circulation ports in communication with the bottle. It is known to arrange these orifices along a direction parallel to a direction of longitudinal extension of said stacked plates.
  • This positioning of the circulation orifices nevertheless has the disadvantage of creating on the surface of said plates areas where the flow of the refrigerant, and therefore the heat exchange between the refrigerant and the cooling fluid, is low or even zero.
  • One of the objectives of the invention is to solve the problem explained above by proposing a heat exchanger comprising a plurality of stacked plates intended to allow a heat exchange between a first fluid and a second fluid flowing in contact with said plates.
  • said exchanger comprising a bottle for the first fluid, said plates being provided with intermediate orifices allowing a circulation of the first fluid between said plates and said bottle, said intermediate orifices being arranged along a direction substantially transverse to a main direction of longitudinal extension of the plates.
  • said plates are configured to define each two parts, a first part to allow heat exchange between the first fluid and the second fluid before passage of the first fluid in the bottle and a second part to allow a heat exchange between the first fluid and the second fluid after passage of the first fluid in the bottle, said intermediate ports being arranged between said first and second parts,
  • said first portions of the plates define a condensing zone and said second portions define a subcooling zone
  • a first one of said intermediate orifices makes it possible for the first fluid of the condensation zone to flow to the bottle, a second of said intermediate orifices, allowing circulation of the first fluid of the bottle to the sub-cooling zone,
  • the plates furthermore comprise an additional orifice, called a flow-through orifice, aligned with the first and second intermediate orifices,
  • the bottle extends along said main direction of the plates said heat exchanger being provided with inlet pipes and outlet pipes, said bottle and said pipes are located on the same side of the heat exchanger, said upper side,
  • said intermediate orifices have an oblong and / or elongated shape in a direction of flow of said second fluid
  • each of said intermediate orifices has a width, measured in a direction transverse to said main direction of longitudinal extension, which decreases over almost the entire length of the orifice in a direction of flow of said second fluid.
  • Figure 1 is a side view of a heat exchanger according to the invention.
  • FIG. 2 is a view, according to section A-A, of a heat exchanger according to the invention, in a first embodiment.
  • FIG. 3 is a view, according to section A-A, of a heat exchanger according to the invention, in a second embodiment.
  • Figure 4 is a perspective view of a portion of the front of a first type of plates according to the invention, in the first embodiment.
  • Figure 5 is a perspective view of a portion of the front of a second type of plates according to the invention, in the first embodiment.
  • FIG. 6 is a perspective view of a portion of the front of a third type of plates according to the invention, in the first embodiment.
  • Figure 7 is a perspective view of a portion of the front of a fourth type of plates according to the invention provided with a partition.
  • Figure 8 is a perspective view of the front of the second type of plates according to the invention, in the first embodiment.
  • Figure 9 is a perspective view of the front of the fourth type of plates, in the first embodiment.
  • FIG. 10 is a perspective view of a first type of plate according to the invention, in the second embodiment.
  • Figure 11 is a perspective view of a portion of the front of a second type of plates according to the invention, in the second embodiment.
  • the invention relates to a heat exchanger between a first and a second fluid, in particular a condenser of an air conditioning circuit, more particularly in a motor vehicle.
  • Said first fluid is for example a refrigerant, such as the fluid known as 134a or the one known under the name of R1234yf.
  • the heat exchanger is configured so that said first fluid enters the gas phase and comes out of the liquid phase.
  • the second fluid is for example a cooling liquid which may be water mixed with an antifreeze such as glycol. In other words, the coolant may be a mixture of water and glycol.
  • said exchanger comprises a bundle 1 of stacked plates 3 along a stacking direction 5 so as to define passages 7, 9 for said first fluid and said second fluid, said fluids exchanging heat with each other.
  • the same plate 3 defines with another plate 3 adjacent a passage 7 for the first fluid and defines with another adjacent plate 3 a passage 9 for the second fluid.
  • the passages 7 for the first fluid and the passages 9 for the second fluid alternate alternately.
  • Said beam 1 here has a parallelepiped shape.
  • said stacked plates 3 are designed so as to define between them a first circuit for the circulation of the first fluid and a second circuit for the circulation of the second fluid, said circuits being designed to allow circulation of the first fluid avoiding the second fluid. circuit and a circulation of the second fluid avoiding the first circuit.
  • Said first and second circuits respectively comprise the passages 7 for the first fluid and the passages 9 for the second fluid.
  • said exchanger further comprises a bottle 11 for said first fluid.
  • said bottle 11 is designed to separate the gaseous and liquid phases of said refrigerant so as to circulate downstream of the bottle 11 only the liquid phase.
  • Said bottle 11 may also comprise a filter and / or a desiccator so as to filter and / or dry said first fluid.
  • Said plates 3 each comprise two parts 130, 150 including a first portion 130 designed to allow a heat exchange between the first fluid and the second fluid before the first fluid passes into the bottle 11 and a second portion 150 designed to allow an exchange of heat. heat between the first fluid and the second fluid after passage of the first fluid in the bottle 11.
  • Said first 130 and second 150 parts of the plates 3 define in the beam respectively a first zone 13 and a second zone 15.
  • said first zone 13 is a zone of condensation and said first zone 15 is a zone subcooling.
  • the beam 1 is configured so that the first fluid can not flow directly between the passages for the first fluid 7 of the first zone 13 and those of the second zone 15.
  • said stacked plates 3 are for example of rectangular shape.
  • Said plates 3 each comprise a lower edge 31 and an upper edge 32 and advantageously extend in a principal direction of longitudinal extension between said edges 31, 32, said longitudinal extension direction being advantageously parallel to a direction of longitudinal extension of the bottle.
  • Said lower 31 and upper 32 edges are opposed to each other along said longitudinal extension main direction.
  • Said plates 3 also comprise two longitudinal edges 34 which extend longitudinally between said lower edge 31 and said upper edge 32.
  • Said plates 3 also comprise, at their periphery, a raised edge 30. The plates 3 are designed to be arranged in contact with each other. one of the other, for example soldered, at said raised edges 30.
  • Said plates 3 have two faces, one of which is a front and one back, said raised edge 30 being arranged on said front of each plate 3.
  • said edge Raised 30 protrudes from the front side of each of the plates 3.
  • the said plates 3 are for example obtained by stamping, perforation and / or molding a laminated metal plate, for example aluminum or and / or an alloy of 'aluminum.
  • said bottle 11 is connected upstream with said first zone 13 of the beam 1 and downstream with said second zone 15 of the beam 1.
  • said heat exchanger is configured so that said first fluid flows successively through said first zone 13 of the beam 1, said bottle 11 and said second zone 15 of the beam 1.
  • Said heat exchanger comprises an inlet inlet pipe for the first fluid 19i, an outlet pipe for the first fluid 19o, an inlet pipe 18i for the second fluid and an outlet pipe 18o for the second fluid.
  • said pipes and the bottle 11 are arranged on the same side of the heat exchanger.
  • said inlet and outlet manifolds are located on an upper side 17 for example near opposite corners of said upper side
  • the heat exchanger is configured such that said first fluid enters the beam 1 through said inlet manifold for the first fluid 19i.
  • Said first fluid then flows through the first zone 13, then flows through the bottle 11 and returns to the beam 1 where it flows through the second zone 15.
  • Said first fluid finally leaves said beam 1 to through the outlet tubing for the first fluid 19o.
  • said beam 1 is configured so that said second fluid flows in the beam 1 directly from one to the other of said first 130 and second 150 zones without passing through the bottle 11.
  • the direction of flow of the second fluid is substantially the same in the entirety of the beam 1.
  • the bottle 11 advantageously extends parallel to said upper side 17 of the beam 1. Said bottle 11 is located here between said tubing 19i , 19o. Accordingly, depending on the length available for the bottle 11, the cross-section of the bottle 11 is adapted to obtain the desired volume. With this ability to vary the volume of the bottle 11 by varying the cross section thereof, the tubings 19i, 19o are more easily accessible. This configuration allows a high level of integration and the use of a bottle 11 easy to manufacture.
  • Said heat exchanger may also, for example, comprise a reinforcing plate 49 on said upper side 17.
  • said bundle 1 advantageously defines several passes, here three passes 25a, 25b, 25c, for said first fluid in said first zone 13.
  • Said passes 25a, 25b, 25c are configured so that said first fluid flows successively from one pass to another in this order by changing direction between each pass.
  • Such circulation of the first fluid makes it possible to increase the heat exchange while limiting the pressure losses, in particular when the number of passes associated with each pass decreases by one pass. the other along the flow of the first fluid, in the case where said first zone 13 is for example a condensation zone for the first fluid.
  • the number of said passes 25a, 25b, 25c is odd to optimize the relative location of the bottle 11 and the inlet of the first fluid 19i.
  • Said heat exchanger here comprises collectors for the first fluid configured to allow said first fluid to flow from one of said passages 7 for the first fluid to the next passage 7 for the first fluid, this avoiding the circuit for the second fluid .
  • said exchanger 1 is provided with manifolds for the second fluid configured to allow said second fluid to flow from one of said passages 9 for the second fluid to the next passage 9 for the second fluid, this avoiding the circuit for the second fluid. first fluid.
  • Said collectors are defined by orifices provided with said plates 3.
  • Each collector is arranged through the plates 3.
  • each collector advantageously has a principal direction of longitudinal extension parallel to the stacking direction 5 of the plates 3.
  • said collectors are arranged parallel to the stacking direction 5 of the plates 3.
  • said beam 1 comprises a collector for the entry of the first fluid into the first zone 13, said inlet main collector 51a, said main inlet manifold 51a being connected to the inlet tubing 19i of the first fluid.
  • Said beam 1 also comprises a manifold for the outlet of the first fluid from the first zone 13, said first intermediate manifold 55, connected to the bottle 11.
  • Said beam 1 also comprises a manifold for the entry of the second fluid into the first zone 13 connected to the inlet pipe 18i of the second fluid.
  • Said beam 1 further comprises a manifold for the entry of the first fluid in the second zone 15 from the bottle 11, said second intermediate manifold 51b, connected to the bottle 11.
  • Said beam 1 also comprises a manifold 51c for the output of the first fluid of the second zone 15, said main outlet manifold 51c, connected to the outlet pipe 19o of the first fluid.
  • Said beam 1 further comprises an outlet manifold of the second fluid connected to the outlet pipe 18o of the second fluid.
  • the first 55 and second intermediate collectors 51b are arranged in the beam 1 between the first 13 and second 15 zones.
  • the main inlet manifold 51a, the main outlet manifold 51c, the inlet manifold of the second fluid in the first zone and the outlet manifold of the first fluid of the second zone are all arranged along side edges 18 of the bundle 1, parallel to the stacking direction 5 of the plates 3.
  • main inlet manifold 51a is connected to both the inlet manifold 19i for the first fluid and to each of the passages 7 for the first fluid inside the first zone 13 of the bundle 1.
  • the main outlet manifold 51c is connected both to the outlet manifold 19o for the first fluid and to each of the passages 7 for the first fluid within the second zone 15.
  • first intermediate manifold 55 allows the circulation of the first fluid from the first zone 13 of the bundle 1 to the bottle 11.
  • the second intermediate manifold 51b allows it to circulate the first fluid of the bottle 11 to each of the passages 7 for the first fluid in the second zone 15 of the beam 1.
  • said beam 1 further comprises a third intermediate manifold 53 for the circulation of the first fluid in several passes.
  • Said third intermediate manifold 53 is designed to allow a direct flow of the first fluid between said third intermediate manifold 53 and each of the passages 7 for the first fluid inside the first zone 13.
  • the first, second and third intermediate collectors 55, 51b, 53 are then arranged in the beam 1 between the first zone 13 and the second zone 15, parallel to each other.
  • the main inlet manifold 51a and the intermediate manifold 53 each comprise a partition 57.
  • Said partition walls 57 are for example planar walls arranged in said collectors transversely to the main direction of longitudinal extension of said collector.
  • Said partition walls 57 are arranged so as to separate an interior space of said collector in longitudinal portions opposite to each other along the main direction of longitudinal extension of said collector.
  • Said partition walls 57 are configured to limit or prevent the flow of the first fluid between said two parts of a collector, said parts being separated from each other by said partition wall 57.
  • Said partition walls 57 are arranged in each manifold 51a, 53 to generate said circulation in several passes 25a, 25b, 25c, thanks to an offset, in the stacking direction, between the location of one of the partition walls 57 in said main inlet manifold 51a and the location of another of partition walls 57 in the third intermediate manifold 53.
  • Each partition 57 is configured to change the flow direction of said first fluid in the first zone 13 of the beam 1.
  • the plates 3 each comprise a plurality of orifices, each of the orifices corresponding to one of the collectors of the beam 1. It should be noted that said orifices are arranged identically on each plate 3 so that, when the stacking of the plates 3 on each other, the superposition of said orifices of each plate 3 defines each of the collectors of the beam 1.
  • said plates 3 comprise a first intermediate orifice 75 and a second intermediate orifice 69b allowing both a circulation of the first fluid between said plates 3 and said bottle 11. Said first intermediate orifice 75 corresponds to the manifold 55 while said second intermediate orifice 69b corresponds to the collector 51b.
  • said first and second intermediate orifices 69b and 75 are aligned along a direction substantially transverse and / or orthogonal to the main direction of longitudinal extension of the plates 3.
  • said first and second orifices 69b and 75 are centered on a line substantially transverse and / or orthogonal to the general direction and / or average flow of the first fluid.
  • the plates 3 further comprise an additional orifice 73, said third intermediate orifice 73, said third intermediate orifice 73 allowing a circulation in passes and being aligned with said first 75 and second 69b intermediate ports.
  • Said third intermediate orifice 73 here corresponds to the third intermediate manifold 53.
  • Said intermediate orifices 69b, 73, 75 have a width, measured in a direction transverse to said main direction of longitudinal extension, which decreases on almost the entire length of the hole between the two longitudinal ends.
  • the portion of the orifice having the largest width is located upstream of the portion of the orifice having the smallest width in the direction of flow of the second fluid.
  • said intermediate orifices 69b, 75, 73 have a pear shape whose widest part is located upstream of the narrowest part in the direction of flow of said second fluid.
  • Said plates 3 comprise several types of plates 3 among which primary plates 3a, illustrated in FIGS. 4, 6 and 9, and secondary plates 3b, illustrated in FIGS. 5, 7 and 8.
  • Said primary plates 3a are designed so that the first fluid circulates on their front and the second fluid circulates on their back.
  • Said secondary plates 3b are designed so that the second fluid can flow on their front and the first fluid can flow on their back. It is the alternation of one of the primary plates 3a with one of the secondary plates 3b which allows the stack of plates to create said circuits for the first fluid and for the second fluid.
  • each passage 7 for the first fluid is defined by a circulation space between the front of one of the primary plates 3a and the back of one of the secondary plates 3b, said two primary plates 3a and 3b secondary being adjacent to each other.
  • each passage 9 for the second fluid is defined by a circulation space between the front of one of the secondary plates 3b and the verso of one of the primary plates 3a, said two primary plates 3a and 3b secondary being adjacent to each other.
  • each of the first 73, second 69b and third 75 intermediate orifices, respectively, is located in a swelling forming a convex region 73 ', 69b' and 75 ', each of said convex regions 73', 69b and 75 'being arranged within a planar region 67 forming a bottom of the plate.
  • each secondary plate 3b is designed such that said second fluid can flow, on the front of said plate, at the level of the plane region 67 between said curved regions 73 ', 69b' and 75 'surrounding each orifice 73, 69b, 65 and directly from the first portion 130 to the second portion 150 of said secondary plate 3b.
  • said secondary plate 3b is designed so that said second fluid can flow, on the front thereof, from the first portion 130 to the second portion 150 of said plate bypassing each of the orifices 73, 69b, 75 and therefore without circulating inside the collectors 51b, 55 and 53.
  • Said three curved regions 69b ', 75' and 73 'of the secondary plate are intended respectively to correspond with plane regions 69b ", 75" and 73 "of an adjacent primary plate 3a, ie said curved regions 69b', 75 'and 73' and said planar regions 69b ", 75” and 73 "are intended, once the plates 3 stacked on top of each other, to be in contact.
  • said intermediate orifices 69b, 75 and 73 are each disposed respectively inside said planar regions 69b ", 75" and 73 ".
  • said planar regions 69b", 75 “and 73” present each a shape substantially identical to each intermediate orifice and dimensions slightly greater than these.
  • each of said planar regions 69b ", 75” and 73 "surround the corresponding intermediate orifice 69b, 75 and 73.
  • Said planar regions 69b “, 75” and 73 “of the primary plates 3a are substantially identical in shape and dimensions to the curved regions 69b ', 75' and 73 'of the secondary plates 3b so as to facilitate the junction between the planar regions 69b ", 75" and 73 “and curved regions 69b ', 75' and 73 '.
  • each secondary plate 3b is configured to be in contact with the back of the region of the planar regions 69b ", 75" and 73 "of a primary plate 3a adjacent.
  • primary plates 3a there are still primary plates of a first type 3a 'illustrated in FIG. 4 and primary plates of a second type 3a' illustrated in FIG. 6.
  • the combination of one of the secondary plates 3b with one of the primary plates of the first type 3a ' makes it possible to form a pair of the first type
  • the combination of one of the secondary plates 3b with one of the primary plates of the second type 3a "makes it possible to form a pair of second type.
  • the pairs of plates of the first type are configured to allow the circulation of the first fluid in the passes 25a and 25b, or even 25c.
  • the pairs of plates of the second type are, they, configured to allow the circulation of the first fluid between the first and third intermediate collectors 53, 55, at the pass 25c.
  • the passes 25a and 25b comprise pairs of plates 3 of the first type while the pass 25c comprises at least one pair of plates 3 of the second type and, possibly, pairs of plates of the first type.
  • the secondary plates 3b are advantageously identical in all the passes and therefore regardless of the type of pairs of plates 3, except to be provided with a partition 57, as developed later.
  • the primary plate 3a is provided on its front with a stamp formed of a convex region 65 intended to be in contact with the back of a secondary plate 3b, at said plane region 67 of it.
  • said curved region 65 of the primary plate 3a is arranged between the first 130 and second 150 part of said plate 3a, at the level of the intermediate ports 69b, 75, 73.
  • the plane region 67 of the secondary plates 3b is arranged between the portion 130 and the portion 150.
  • said convex region 65 extends substantially transversely from one of the lateral edges 34 to the other of the lateral edges 34 of the primary plate 3a, so that the direct passage of said first fluid is made impossible from the first zone 13 to the second zone 15.
  • said convex region 65 of the primary plate of the first type 3a 'and said flat region 67 of the secondary plate are designed, by their junction, to prevent the circulation of the first fluid between on the one hand the first part 13 and secondly the second intermediate orifice 69b and the first intermediate orifice 75, while allowing the circulation of the first fluid between the first zone 13 and the orifice 73 as well as between the second intermediate orifice 69b and the second zone 13.
  • said curved region 65 of the primary plate of the first type 3a 'and said plane region 67 of the secondary plate 3b are designed, by their junction, to prevent the circulation of the first fluid between on the one hand the first zone 13 of the beam 1 and secondly the first and second intermediate manifold 55, 51b.
  • said convex region 65 first bypasses the plane region 69b "and said second intermediate orifice 69b so as to isolate said second intermediate orifice 69b from the first portion 13.
  • the orifice 75 and the flat region 75 are then completely surrounded by the domed region 65 so that said orifice 75 is designed to be insulated from both the first portion 13 and the second first portion 15.
  • the domed region 65 bypasses the region 73 "and the third intermediate orifice 73 so as to separate said third intermediate orifice 73 of the second portion 15 of the primary plate of the first type 3a '.
  • the pairs of the second type differ from the pairs of the first type in that, here, said curved region 65 of the primary plate of the second type 3a "is this time designed for, by its junction with the plane region 67 of the secondary plate 3b, allow the direct flow of the first fluid between the first zone 13 and the first intermediate manifold 55.
  • the primary plates of the second type 3a are designed so to allow a passage between the first zone 13 and the bottle 11.
  • said convex region 65 of the primary plate beta 3a "first bypasses the plane region 69b" and said second intermediate orifice 69b so as to isolate said second intermediate orifice 69b from the first Part 13.
  • the plane region 75 "and the first intermediate orifice 75 are then separated from the second portion 15 of the primary plate of the second type 3a" by the curved region 65.
  • the plane region 73 "and the third intermediate orifice 73 are also separated from the second part 15 of the primary plate of the second type 3a "by said convex region 65.
  • the secondary plate 3b differs from that illustrated in FIG. 5 in that the orifice 73 is here provided with one of the said partition 57.
  • the beam 1 comprises at least such a plate 3.
  • the partition wall 57 are for example derived from material with the convex region 73 '.
  • the circulation of the second fluid does not depend on the type of pair of plates 3.
  • the same type of passage is defined guiding the second fluid from the inlet manifold of the second fluid to the outlet manifold of the second fluid.
  • each fluid within a pair of plates is constrained by the junction of the front of a domed region of one of the plates 3 with the back of a flat region of a plate 3 adjacent, said fluid being forced to bypass said junction.
  • the contact zone between one of the curved regions and the flat surface is inaccessible to said first and second fluid.
  • said curved region 65 is designed to prevent a direct flow of the first fluid from one manifold to another.
  • said curved zone 65 is furthermore designed so as to prevent the circulation of the first fluid, between two plates 3 of the same pair, from an intermediate orifice to another intermediate orifice, except at the level of the pairs of the second type. .
  • Said plates 3 may also be provided with corrugations 77 on the bottom of the plate arranged so as to create disturbances in the fluids and / or points of contact between the plates 3. Said corrugations thus make it possible to improve the exchange of heat between the first fluid and the second fluid.
  • the first zone 13 of the heat exchanger defines a single-pass configuration. This configuration is here obtained using only secondary plates 3b, all provided with partition walls 57, as illustrated in FIG. 7, and primary plates of the second type 3a "as illustrated in FIG. , as illustrated in FIGS. 10 and 11, it is possible to use plates 3 which have no third intermediate orifice.
  • the other characteristics of the one-pass heat exchanger are similar to those of the three-pass heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un échangeur de chaleur comprenant une pluralité de plaques (3) empilées destinées à permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulant au contact desdites plaques (3), ledit échangeur comprenant une bouteille (11) pour le premier fluide, lesdites plaques (3) étant munies d'orifices intermédiaires (69b, 75) permettant une circulation du premier fluide entre lesdites plaques (3) et ladite bouteille (11), lesdits orifices intermédiaires (69b, 75) étant agencés le long d'une direction sensiblement transversale à une direction principale d'extension longitudinale de chaque plaque (3).

Description

ECHANGEUR DE CHALEUR A PLAQUES EMPILEES
La présente invention concerne un échangeur de chaleur à plaques empilées, notamment un condenseur permettant un échange de chaleur entre un fluide frigorigène et un fluide de refroidissement en phase liquide. Dans ce domaine, il est connu des échangeurs de chaleur comprenant un faisceau d'échange de chaleur comportant une série de plaques empilées parallèlement les unes au dessus des autres. L'empilement de plaques forme des surfaces d'échange de chaleur, entre lesquelles un fluide frigorigène et un fluide de refroidissement circulent, en couches alternées, dans des circuits de passage des fluides. L'empilement des plaques est ainsi configuré de façon à définir deux circuits différents : celui du fluide frigorigène et celui du fluide de refroidissement.
Parmi ces échangeurs, on connaît des échangeurs munis en outre d'une bouteille pour le fluide frigorigène et d'une partie de sous-refroidissement, située en aval de la bouteille.
Dans ce cas, les plaques empilées sont séparées en deux parties dont une partie de refroidissement et une partie de sous-refroidissement et sont munies d'au moins deux orifices de circulation du fluide frigorigène en communication avec la bouteille. Il est connu d'agencer ces orifices le long d'une direction parallèle à une direction d'extension longitudinale desdites plaques empilées.
Ce positionnement des orifices de circulation présente néanmoins l'inconvénient de créer à la surface desdites plaques des zones où l'écoulement du fluide frigorigène, et donc l'échange de chaleur entre le fluide frigorigène et le fluide de refroidissement, est faible voire nul.
L'un des objectifs de l'invention est de résoudre le problème expliqué ci-dessus en proposant un échangeur de chaleur comprenant une pluralité de plaques empilées destinées à permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulant au contact desdites plaques, ledit échangeur comprenant une bouteille pour le premier fluide, lesdites plaques étant munies d'orifices intermédiaires permettant une circulation du premier fluide entre lesdites plaques et ladite bouteille, lesdits orifices intermédiaires étant agencés le long d'une direction sensiblement transversale à une direction principale d'extension longitudinale des plaques.
De la sorte, la direction d'écoulement dudit fluide frigorigène étant transversale à la direction selon laquelle sont alignés les orifices intermédiaires, les zones de faible échange de chaleur sont limitées.
Selon différents modes de réalisation, qui pourront être pris ensemble ou séparément : lesdites plaques sont configurées pour définir chacune deux parties dont une première partie pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide avant passage du premier fluide dans la bouteille et une deuxième partie pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide après passage du premier fluide dans la bouteille, lesdits orifices intermédiaires étant agencés entre lesdites première et deuxième parties,
lesdites premières parties des plaques définissent une zone de condensation et lesdites deuxièmes parties définissent une zone de sous-refroidissement,
un premier desdits orifices intermédiaires permet une circulation du premier fluide de la zone de condensation vers la bouteille, un deuxième desdits orifices intermédiaires, permettant une circulation du premier fluide de la bouteille vers la zone de sous- refroidissement,
- les plaques comprennent en outre un orifice supplémentaire, dit de circulation en passes, aligné avec les premier et deuxième orifices intermédiaires,
l'orifice de circulation en passes de l'une au moins des plaques, dite plaque secondaire, est obstrué de manière à permettre la circulation dudit premier fluide en plusieurs passes dans la zone de condensation,
- la bouteille s'étend selon ladite direction principale des plaques ledit échangeur de chaleur étant muni de tubulures d'entrée et de tubulures de sortie, ladite bouteille et lesdites tubulures sont situées sur un même côté de l'échangeur de chaleur, dit côté supérieur,
lesdits orifices intermédiaires, présentent une forme oblongue et/ou allongée suivant une direction d'écoulement dudit deuxième fluide,
chacun desdits orifices intermédiaires présente une largeur, mesurée selon une direction transversale à ladite direction principale d'extension longitudinale, qui diminue sur quasiment toute la longueur de l'orifice suivant un sens d'écoulement dudit deuxième fluide.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle- ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'au moins un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés :
• La figure 1 est une vue de côté d'un échangeur de chaleur selon l'invention.
• La figure 2 est une vue, selon la coupe A-A, d'un échangeur de chaleur selon l'invention, dans un premier mode de réalisation.
• La figure 3 est une vue, selon la coupe A-A, d'un échangeur de chaleur selon l'invention, dans un deuxième mode de réalisation.
• La figure 4 est une vue en perspective d'une partie du recto d'un premier type de plaques selon l'invention, dans le premier mode de réalisation.
• La figure 5 est une vue en perspective d'une partie du recto d'un deuxième type de plaques selon l'invention, dans le premier mode de réalisation.
• La figure 6 est une vue en perspective d'une partie du recto d'un troisième type de plaques selon l'invention, dans le premier mode de réalisation.
• La figure 7 est une vue en perspective d'une partie du recto d'un quatrième type de plaques selon l'invention munie d'une cloison. • La figure 8 est une vue en perspective du recto du deuxième type de plaques selon l'invention, dans le premier mode de réalisation.
• La figure 9 est une vue en perspective du recto du quatrième type de plaques, dans le premier mode de réalisation.
« La figure 10 est une vue en perspective d'un premier type de plaques selon l'invention, dans le deuxième mode de réalisation.
• La figure 11 est une vue en perspective d'une partie du recto d'un second type de plaques selon l'invention, dans le deuxième mode de réalisation.
L'invention concerne un échangeur de chaleur entre un premier et un deuxième fluide, en particulier un condenseur d'un circuit de climatisation, plus particulièrement dans un véhicule automobile.
Ledit premier fluide est par exemple un fluide frigorigène, comme le fluide connu sous le nom de 134a ou celui connu sous le nom de R1234yf. L'échangeur de chaleur est configuré de manière à ce que ledit premier fluide y entre en phase gazeuse et en ressorte en phase liquide. Le deuxième fluide est par exemple un liquide de refroidissement qui peut être de l'eau mélangée à un produit antigel comme du glycol. Autrement dit, le liquide de refroidissement peut-être un mélange d'eau et de glycol.
Comme illustré aux figures 2 et 3, ledit échangeur comprend un faisceau 1 de plaques empilées 3 le long d'une direction d'empilement 5 de manière à définir des passages 7, 9 pour ledit premier fluide et ledit deuxième fluide, lesdits fluides échangeant de la chaleur l'un avec l'autre. Avantageusement, une même plaque 3 définit avec une autre plaque 3 adjacente un passage 7 pour le premier fluide et définit avec une autre plaque adjacente 3 un passage 9 pour le deuxième fluide. Autrement dit, les passages 7 pour le premier fluide et les passages 9 pour le deuxième fluide se succèdent de manière alternée. Ledit faisceau 1 présente ici une forme parallélépipédique. Autrement dit encore, lesdites plaques empilées 3 sont conçues de manière à définir entre elles un premier circuit pour la circulation du premier fluide et un deuxième circuit pour la circulation du deuxième fluide, lesdits circuits étant conçus pour permettre une circulation du premier fluide évitant le deuxième circuit et une circulation du deuxième fluide évitant le premier circuit. Lesdits premier et deuxième circuits comprennent respectivement les passages 7 pour le premier fluide et les passages 9 pour le deuxième fluide.
Comme illustré à la figure 1, ledit échangeur comprend en outre une bouteille 11 pour ledit premier fluide. Dans le cas d'un condenseur, ladite bouteille 11 est conçue pour séparer les phases gazeuse et liquide dudit fluide frigorigène de manière à ne laisser circuler en aval de la bouteille 11 que la phase liquide. Ladite bouteille 11 pourra également comprendre un filtre et/ou un dessiccateur de manière à filtrer et/ou à assécher ledit premier fluide.
Lesdites plaques 3 comprennent chacune deux parties 130, 150 dont une première partie 130 conçue pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide avant passage du premier fluide dans la bouteille 11 et une deuxième partie 150 conçue pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide après passage du premier fluide dans la bouteille 11.
Lesdites premières 130 et deuxièmes 150 parties des plaques 3 définissent dans le faisceau respectivement une première zone 13 et une deuxième zone 15. Dans le cas d'un condenseur, ladite première zone 13 est une zone de condensation et ladite première zone 15 est une zone de sous- refroidissement. On note que le faisceau 1 est configuré de sorte que le premier fluide ne puisse pas circuler directement entre les passages pour le premier fluide 7 de la première zone 13 et ceux de la deuxième zone 15.
Comme illustré aux figures 8 et 9, lesdites plaques empilées 3 sont par exemple de forme rectangulaire. Lesdites plaques 3 comprennent chacune un bord inférieur 31 et un bord supérieur 32 et s'étendent avantageusement selon une direction principale d'extension longitudinale entre lesdits bords 31, 32, ladite direction d'extension longitudinale étant avantageusement parallèle à une direction d'extension longitudinale de la bouteille. Lesdits bords inférieur 31 et supérieur 32 sont opposés l'un à l'autre le long de ladite direction principale d'extension longitudinale. Lesdites plaques 3 comprennent également deux bords longitudinaux 34 qui s'étendent longitudinalement entre ledit bord inférieur 31 et ledit bord supérieur 32. Lesdites plaques 3 comprennent également, à leur périphérie, un bord relevé 30. Les plaques 3 sont conçues pour être agencées en contact l'une de l'autre, par exemple brasées, au niveau desdits bords relevés 30. Lesdites plaques 3 présentent deux faces dont un recto et un verso, ledit bord relevé 30 étant agencé audit recto de chaque plaque 3. Autrement dit, ledit bord relevé 30 fait saillie du côté du recto de chacune des plaques 3. Lesdites plaques 3 sont par exemple obtenues par emboutissage, perforation et/ou moulage d'une plaque de métal laminée, par exemple de l'aluminium ou et/ou un alliage d'aluminium.
En ce qui concerne ledit premier fluide, ladite bouteille 11 est connectée en amont avec ladite première zone 13 du faisceau 1 et en aval avec ladite deuxième zone 15 du faisceau 1. Autrement dit, ledit échangeur de chaleur est configuré de manière à ce que ledit premier fluide circule successivement à travers ladite première zone 13 du faisceau 1, ladite bouteille 11 et ladite deuxième zone 15 du faisceau 1.
Ledit échangeur de chaleur comprend une tubulure d'entrée entrée pour le premier fluide 19i, une tubulure de sortie pour le premier fluide 19o, une tubulure d'entrée 18i pour le deuxième fluide et une tubulure de sortie 18o pour le deuxième fluide. Comme illustré à la figure 1, avantageusement, lesdites tubulures et la bouteille 11 sont agencées sur un même côté de l'échangeur de chaleur. Ici, lesdites tubulures d'entrées et de sorties sont situées sur un côté supérieur 17 par exemple à proximité de coins opposés dudit côté supérieur Avantageusement, l'échangeur de chaleur est configuré de sorte que ledit premier fluide entre dans le faisceau 1 à travers ladite tubulure d'entrée pour le premier fluide 19i. Ledit premier fluide s'écoule ensuite à travers la première zone 13, puis s'écoule à travers la bouteille 11 et revient dans le faisceau 1 où il s'écoule à travers la deuxième zone 15. Ledit premier fluide sort finalement dudit faisceau 1 à travers la tubulure de sortie pour le premier fluide 19o.
Avantageusement, à la différence du premier fluide, ledit faisceau 1 est configuré de sorte que ledit deuxième fluide s'écoule dans le faisceau 1 directement de l'une à l'autre desdites première 130 et deuxième 150 zones sans passer par la bouteille 11. Ici, le sens d'écoulement du deuxième fluide est sensiblement le même dans l'intégralité du faisceau 1. La bouteille 11 s'étend avantageusement de manière parallèle audit côté supérieur 17 du faisceau 1. Ladite bouteille 11 est située ici entre lesdites tubulures 19i, 19o. En conséquence, selon la longueur disponible pour la bouteille 11, la section transversale de la bouteille 11 est adaptée pour obtenir le volume désiré. Grâce à cette possibilité de faire varier le volume de la bouteille 11 en faisant varier la section transversale de celle-ci, les tubulures 19i, 19o sont plus facilement accessibles. Cette configuration permet un haut niveau d'intégration et l'utilisation d'une bouteille 11 facile à fabriquer.
Ledit échangeur de chaleur peut également, par exemple, comprendre une plaque de renforcement 49 sur ledit côté supérieur 17.
Comme illustré à la figure 2, ledit faisceau 1 définit avantageusement plusieurs passes, ici trois passes 25a, 25b, 25c, pour ledit premier fluide dans ladite première zone 13. Lesdites passes 25a, 25b, 25c, sont configurées de manière à ce que ledit premier fluide circule successivement d'une passe à l'autre dans cet ordre en changeant de direction entre chaque passe. Une telle circulation du premier fluide permet d'augmenter l'échange de chaleur tout en limitant les pertes de charges, en particulier quand le nombre de passages associés à chaque passe diminue d'une passe à l'autre le long de l'écoulement du premier fluide, dans le cas où ladite première zone 13 est par exemple une zone de condensation pour le premier fluide.
Avantageusement, le nombre desdites passes 25a, 25b, 25c, est impair pour optimiser l'emplacement relatif de la bouteille 11 et de l'entrée du premier fluide 19i. Ledit échangeur de chaleur comprend ici des collecteurs pour le premier fluide configurés pour permettre audit premier fluide de circuler de l'un desdits passages 7 pour le premier fluide vers le passage 7 suivant pour le premier fluide, ceci en évitant le circuit pour le deuxième fluide. De même, ledit échangeur 1 est muni de collecteurs pour le deuxième fluide configurés pour permettre audit deuxième fluide de circuler de l'un desdits passages 9 pour le deuxième fluide vers le passage 9 suivant pour le deuxième fluide, ceci en évitant le circuit pour le premier fluide.
Lesdits collecteurs sont définis par des orifices dont sont munies lesdites plaques 3. Chaque collecteur est agencé à travers les plaques 3. En particulier, chaque collecteur présente avantageusement une direction principale d'extension longitudinale parallèle à la direction d'empilement 5 des plaques 3. Autrement dit, lesdits collecteurs sont agencés parallèlement à la direction d'empilement 5 des plaques 3. Plus précisément, ledit faisceau 1 comprend un collecteur pour l'entrée du premier fluide dans la première zone 13, dit collecteur principal d'entrée 51a, ledit collecteur principal d'entrée 51a étant connecté à la tubulure 19i d'entrée du premier fluide. Ledit faisceau 1 comprend également un collecteur pour la sortie du premier fluide depuis la première zone 13, dit premier collecteur intermédiaire 55, connecté à la bouteille 11. Ledit faisceau 1 comprend encore un collecteur pour l'entrée du deuxième fluide dans la première zone 13 connecté à la tubulure d'entrée 18i du deuxième fluide.
Ledit faisceau 1 comprend en outre un collecteur pour l'entrée du premier fluide dans la deuxième zone 15 depuis la bouteille 11, dit deuxième collecteur intermédiaire 51b, connecté à la bouteille 11. Ledit faisceau 1 comprend encore un collecteur 51c pour la sortie du premier fluide de la deuxième zone 15, dit collecteur principal de sortie 51c, connecté à la tubulure 19o de sortie du premier fluide. Ledit faisceau 1 comprend de plus un collecteur de sortie du deuxième fluide connecté à la tubulure de sortie 18o du deuxième fluide.
Les premier 55 et deuxième 51b collecteurs intermédiaires sont agencés dans le faisceau 1 entre les première 13 et deuxième 15 zones.
Le collecteur principal d'entrée 51a, le collecteur principal de sortie 51c, le collecteur d'entrée du deuxième fluide dans la première zone et le collecteur de sortie du premier fluide de la deuxième zone sont tous agencés le long de bords latéraux 18 du faisceau 1, parallèlement à la direction d'empilement 5 des plaques 3.
On notera que le collecteur principal d'entrée 51a est connecté à la fois à la tubulure d'entrée 19i pour le premier fluide et à chacun des passages 7 pour le premier fluide à l'intérieur de la première zone 13 du faisceau 1. Le collecteur principal de sortie 51c, lui, est connecté à la fois à la tubulure de sortie 19o pour le premier fluide et à chacun des passages 7 pour le premier fluide à l'intérieur de la deuxième zone 15.
On notera également que le premier collecteur intermédiaire 55 permet la circulation du premier fluide de la première zone 13 du faisceau 1 vers la bouteille 11. Le deuxième collecteur intermédiaire 51b permet, lui, la circulation du premier fluide de la bouteille 11 vers chacun des passages 7 pour le premier fluide dans la deuxième zone 15 du faisceau 1.
Comme illustré à la figure 2, dans le cas d'un échangeur à plusieurs passes, ledit faisceau 1 comprend en outre un troisième collecteur intermédiaire 53 pour la circulation du premier fluide en plusieurs passes. Ledit troisième collecteur intermédiaire 53 est conçu pour permettre une circulation directe du premier fluide entre ledit troisième collecteur intermédiaire 53 et chacun des passages 7 pour le premier fluide à l'intérieur de la première zone 13. Les premier, deuxième et troisième collecteurs intermédiaires 55, 51b, 53 sont alors agencés dans le faisceau 1 entre la première zone 13 et la deuxième zone 15, parallèlement les uns aux autres.
Avantageusement, afin de permettre la circulation du premier fluide en plusieurs passes dans la première zone 13, plus précisément ici en trois passes, le collecteur principal d'entrée 51a et le collecteur intermédiaire 53 comprennent chacun une cloison de séparation 57. Lesdites cloisons de séparation 57 sont par exemple des parois planes agencées dans lesdits collecteurs de manière transversale à la direction principale d'extension longitudinale dudit collecteur. Lesdites cloisons de séparation 57 sont agencées de manière à séparer un espace intérieur dudit collecteur en parties longitudinales opposées l'une de l'autre le long de la direction principale d'extension longitudinale dudit collecteur. Lesdites cloisons de séparation 57 sont configurées pour limiter voire empêcher la circulation du premier fluide entre lesdites deux parties d'un collecteur, lesdites parties étant séparées l'une de l'autre par ladite cloison de séparation 57.
Lesdites cloisons de séparation 57 sont agencées dans chaque collecteur 51a, 53 pour générer ladite circulation en plusieurs passes 25a, 25b, 25c, grâce à un décalage, selon la direction d'empilement, entre l'emplacement d'une des cloisons de séparation 57 dans ledit collecteur principal d'entrée 51a et l'emplacement d'une autre de cloisons de séparation 57 dans le troisième collecteur intermédiaire 53. Chaque cloison de séparation 57 est configurée pour modifier le sens de circulation dudit premier fluide dans la première zone 13 du faisceau 1.
Comme illustrées aux figures 4 à 9, les plaques 3 comprennent chacune plusieurs orifices, chacun des orifices correspondant à l'un des collecteurs du faisceau 1. On note que lesdits orifices sont agencés de manière identique sur chaque plaque 3 de sorte que, lors de l'empilement des plaques 3 les unes sur les autres, la superposition desdits orifices de chaque plaque 3 définit chacun des collecteurs du faisceau 1. En particulier, lesdites plaques 3 comprennent un premier orifice intermédiaire 75 et un deuxième orifice intermédiaire 69b permettant tout deux une circulation du premier fluide entre lesdites plaques 3 et ladite bouteille 11. Ledit premier orifice intermédiaire 75 correspond au collecteur 55 tandis que ledit deuxième orifice intermédiaire 69b correspond au collecteur 51b. Selon l'invention, lesdits premier et deuxième orifices intermédiaires 69b et 75 sont alignés le long d'une direction sensiblement transversale et/ou orthogonale à la direction principale d'extension longitudinale des plaques 3. Autrement dit, lesdits premier et deuxième orifices 69b et 75 sont centrés sur une droite sensiblement transversale et/ou orthogonale à la direction générale et/ou moyenne d'écoulement du premier fluide. Dans le cas d'un échangeur de chaleur à plusieurs passes, les plaques 3 comprennent en outre un orifice supplémentaire 73, dit troisième orifice intermédiaire 73, ledit troisième orifice intermédiaire 73 permettant une circulation en passes et étant aligné avec lesdits premier 75 et deuxième 69b orifices intermédiaires. Ledit troisième orifice intermédiaire 73 correspond ici au troisième collecteur intermédiaire 53. L'alignement desdits orifices intermédiaires 69b, 75, 73 le long d'une même droite sensiblement transversale ou orthogonale à une direction générale d'écoulement du premier fluide permet d'éviter la création d'une voire de plusieurs zones au niveau de laquelle l'écoulement, et donc l'échange de chaleur, est faible voire nul. Cet agencement desdits orifices intermédiaires 69b, 75, 73 permet une meilleure utilisation de l'espace en maximisant les zones d'échange de chaleur. Lesdits orifices intermédiaires 69b, 73, 75 présentent avantageusement une forme oblongue et allongée suivant la direction d'extension longitudinale de la plaque 3. Chacun desdits orifices intermédiaires 69b, 73, 75 s'étend avantageusement entre deux extrémités longitudinales dudit orifice opposées l'une de l'autre le long de ladite direction principale d'extension longitudinale de la plaque. Lesdits orifices intermédiaires 69b, 73, 75 présentent une largeur, mesurée selon une direction transversale à ladite direction principale d'extension longitudinale, qui diminue sur quasiment toute la longueur de l'orifice entre les deux extrémités longitudinales. La partie de l'orifice présentant la largeur la plus importante est située en amont de la partie de l'orifice présentant la largeur la plus faible selon le sens d'écoulement du deuxième fluide.
Autrement dit, lesdits orifices intermédiaires 69b, 75, 73, présentent une forme de poire dont la partie la plus large est située en amont de la partie la plus étroite selon le sens d'écoulement dudit deuxième fluide.
Cette forme desdits orifices intermédiaires 69b, 75, 73 permet de diminuer les pertes de charges générées par la circulation du deuxième fluide sur les plaques 3 au niveau desdits orifices intermédiaires 69b, 75, 73. Lesdites plaques 3 comprennent plusieurs types de plaques 3 parmi lesquelles des plaques primaires 3a, illustré aux figures 4, 6 et 9, et des plaques secondaires 3b, illustré aux figures 5, 7 et 8. Lesdites plaques primaires 3a sont conçues de sorte que le premier fluide circule sur leur recto et que le deuxième fluide circule sur leur verso. Lesdites plaques secondaires 3b sont, elles, conçues de sorte que le deuxième fluide puisse circuler sur leur recto et que le premier fluide puisse circuler sur leur verso. C'est l'alternance d'une des plaques primaires 3a avec l'une des plaques secondaires 3b qui permet à l'empilement des plaques de créer lesdits circuits pour le premier fluide et pour le deuxième fluide.
Lesdites plaques 3 sont utilisées par paire, chaque paire de plaques 3 comprenant l'une des plaques primaires 3a et l'une des plaques secondaires 3b. En particulier, en ce qui concerne le circuit pour le premier fluide, chaque passage 7 pour le premier fluide est défini par un espace de circulation entre le recto d'une des plaques primaires 3a et le verso d'une des plaques secondaires 3b, lesdites deux plaques primaire 3a et secondaire 3b étant adjacentes l'une à l'autre. En ce qui concerne le deuxième fluide, chaque passage 9 pour le deuxième fluide est défini par un espace de circulation entre le recto d'une des plaques secondaires 3b et le verso d'une des plaques primaires 3a, lesdites deux plaques primaire 3a et secondaire 3b étant adjacentes l'une à l'autre.
Dans le cas d'une plaque secondaire 3b, chacun des premier 73, deuxième 69b et troisième 75 orifices intermédiaires, est situé respectivement dans un embouti formant une région bombée 73', 69b' et 75', chacune desdites régions bombées 73', 69b' et 75' étant agencée à l'intérieur d'une région plane 67 formant un fond de la plaque. On notera par ailleurs que chaque plaque secondaire 3b est conçue de sorte que ledit deuxième fluide puisse circuler, au recto de ladite plaque, au niveau de la région plane 67 entre lesdites régions bombées 73', 69b' et 75' entourant chaque orifice 73, 69b, 65 et directement de la première partie 130 à la deuxième partie 150 de ladite plaque secondaire 3b. Autrement dit, ladite plaque secondaire 3b est conçue de sorte que ledit deuxième fluide puisse s'écouler, au recto de celle-ci, de la première partie 130 à la deuxième partie 150 de ladite plaque en contournant chacun des orifices 73, 69b, 75 et donc sans circuler à l'intérieur des collecteurs 51b, 55 et 53.
Lesdites trois régions bombées 69b', 75' et 73' de la plaque secondaire sont destinées à correspondre respectivement avec des régions planes 69b", 75" et 73" d'une plaque primaire 3a adjacente. Autrement dit, lesdites régions bombées 69b', 75' et 73' et lesdites régions planes 69b", 75" et 73" sont destinées, une fois les plaques 3 empilées les unes sur les autres, à être en contact.
Dans chacune des plaques primaires 3a, lesdits orifices intermédiaires 69b, 75 et 73 sont chacun disposé à l'intérieur respectivement desdites régions planes 69b", 75" et 73". Avantageusement, lesdites régions planes 69b", 75" et 73" présentent chacune une forme sensiblement identique à chaque orifice intermédiaire et des dimensions légèrement supérieures à ceux-ci. Autrement dit, sur les plaques primaires 3a, chacune desdites régions planes 69b", 75" et 73" entourent l'orifice intermédiaire 69b, 75 et 73 correspondant.
Lesdites régions planes 69b", 75" et 73" des plaques primaires 3a sont sensiblement identiques en forme et en dimensions aux régions bombées 69b', 75' et 73' des plaques secondaires 3b de manière à faciliter la jonction entre les régions planes 69b", 75" et 73" et des régions bombées 69b', 75' et 73'.
En particulier, le recto desdites régions bombées 69b', 75' et 73' de chaque plaque secondaire 3b est configuré pour être en contact avec le verso de la région des régions planes 69b", 75" et 73" d'une plaque primaire 3a adjacente.
Parmi les plaques primaires 3a on distingue encore des plaques primaires d'un premier type 3a' illustrée à la figure 4 et des plaques primaires d'un second type 3a" illustrée à la figure 6. L'association d'une des plaques secondaires 3b avec une des plaques primaires du premier type 3a' permet de former une paire de premier type. L'association d'une des plaques secondaires 3b avec une des plaques primaires du second type 3a" permet de former une paire de second type.
Les paires de plaques du premier type sont configurées pour permettre la circulation du premier fluide dans les passes 25a et 25b, voire 25c. Les paires de plaques du deuxième type sont, elles, configurées pour permettre la circulation du premier fluide entre le premier et troisième collecteurs intermédiaires 53, 55, au niveau de la passe 25c. Autrement dit, les passes 25a et 25b comprennent des paires de plaques 3 du premier type tandis que la passe 25c comprend au moins une paire de plaques 3 du deuxième type et, éventuellement, des paires de plaques du premier type.
On note que les plaques secondaires 3b, elles, sont avantageusement identiques dans toutes les passes et donc peu importe le type de paires de plaques 3, sauf à être munies d'une cloison 57, comme développé plus loin. Dans les deux types de paires, la plaque primaire 3a est munie sur son recto d'un embouti formé d'une région bombée 65 destinée à être en contact avec le verso d'une plaque secondaire 3b, au niveau de ladite région plane 67 de celle-ci. On notera que ladite région bombée 65 de la plaque primaire 3a est agencée entre les première 130 et deuxième 150 partie de ladite plaque 3a, au niveau des orifices intermédiaires 69b, 75, 73. De même, la région plane 67 des plaques secondaires 3b est agencée entre la partie 130 et la partie 150.
En particulier, ladite région bombée 65 s'étend sensiblement transversalement de l'un des bords latéraux 34 à l'autre des bords latéraux 34 de la plaque primaire 3a, de sorte que le passage direct dudit premier fluide est rendu impossible de la première zone 13 à la deuxième zone 15.
Dans les paires du premier type, ladite région bombée 65 de la plaque primaire du premier type 3a' et ladite région plane 67 de la plaque secondaire sont conçues pour, par leur jonction, empêcher la circulation du premier fluide entre d'une part la première partie 13 et d'autre part le deuxième orifice intermédiaire 69b et le premier orifice intermédiaire 75, tout en permettant la circulation du premier fluide entre la première zone 13 et l'orifice 73 ainsi qu'entre le deuxième orifice intermédiaire 69b et la deuxième zone 13.
Autrement dit, ladite région bombée 65 de la plaque primaire du premier type 3a' et ladite région plane 67 de la plaque secondaire 3b sont conçues pour, par leur jonction, empêcher la circulation du premier fluide entre d'une part la première zone 13 du faisceau 1 et d'autre part les premier et deuxième collecteur intermédiaire 55, 51b.
Plus précisément, dans les plaques 3 des paires du premier type, ladite région bombée 65 contourne d'abord la région plane 69b" et ledit deuxième orifice intermédiaire 69b de manière à isoler ledit deuxième orifice intermédiaire 69b de la première partie 13. L'orifice 75 et la région plane 75" sont ensuite complètement entourés par la région bombée 65 de sorte que ledit orifice 75 est conçu pour être isolé tant de la première partie 13 que de la deuxième première partie 15. Enfin, la région bombée 65 contourne la région plane 73" et le troisième orifice intermédiaire 73 de manière à séparer ledit troisième orifice intermédiaire 73 de la deuxième partie 15 de la plaque primaire du premier type 3a'. Les paires du deuxième type, c'est-à-dire celles agencées dans la dernière passe 25c, diffèrent des paires du premier type en ce que, ici, ladite région bombée 65 de la plaque primaire du second type 3a" est cette fois conçue pour, par sa jonction avec la région plane 67 de la plaque secondaire 3b, permettre la circulation directe du premier fluide entre la première zone 13 et le premier collecteur intermédiaire 55. Autrement dit, les plaques primaires du second type 3a" sont conçues de sorte à permettre un passage entre la première zone 13 et la bouteille 11.
Plus précisément, dans les plaques des paires du deuxième type, ladite région bombée 65 de la plaque primaire beta 3a" contourne d'abord la région plane 69b" et ledit deuxième orifice intermédiaire 69b de manière à isoler ledit deuxième orifice intermédiaire 69b de la première partie 13. La région plane 75" et le premier orifice intermédiaire 75 sont ensuite séparés de la deuxième partie 15 de la plaque primaire du second type 3a" par la région bombée 65. Enfin, la région plane 73" et le troisième orifice intermédiaire 73 sont également séparés de la deuxième partie 15 de la plaque primaire du second type 3a" par ladite région bombée 65.
A la figure 7, la plaque secondaire 3b diffère de celle illustré à la figure 5 en ce que l'orifice 73 est ici muni d'une desdites cloison de séparation 57. Avantageusement, dans un échangeur à passes, le faisceau 1 comprend au moins une telle plaque 3. On note que la cloison de séparation 57 sont par exemple issues de matière avec la région bombées 73'.
La circulation du deuxième fluide ne dépend pas du type de paire de plaques 3. Un même type de passage est défini guidant le deuxième fluide à partir du collecteur d'entrée du deuxième fluide jusqu'au collecteur de sortie du deuxième fluide.
De manière générale, on remarquera que la circulation de chaque fluide au sein d'une paire de plaques est contrainte par la jonction du recto d'une région bombée d'une des plaques 3 avec le verso d'une région plane d'une plaque 3 adjacente, ledit fluide étant forcé de contourner ladite jonction. Autrement dit, la zone de contact entre l'une des régions bombées et la surface plane est inaccessible auxdits premier et deuxième fluide. On notera également que ladite région bombée 65 est conçue pour empêcher une circulation directe du premier fluide d'un collecteur à un autre. Autrement dit, ladite zone bombée 65 est en outre conçue de manière à empêcher la circulation du premier fluide, entre deux plaques 3 d'une même paire, d'un orifice intermédiaire à un autre orifice intermédiaire, sauf au niveau des paires du second type.
Lesdites plaques 3 pourront par ailleurs être munies d'ondulations 77 sur le fond de la plaque agencées de manière à créer des perturbations dans les fluides et/ou des points de contacts entre les plaques 3. Lesdites ondulations permettent ainsi d'améliorer l'échange de chaleur entre le premier fluide et le deuxième fluide. Alternativement, comme illustré à la figure 2, la première zone 13 de l'échangeur de chaleur définit une configuration à une seule passe. Cette configuration est ici obtenue en utilisant uniquement des plaques secondaires 3b, toutes munies de cloisons de séparation 57, telles qu'illustrées à la figure 7, et des plaques primaires du second type 3a" telles qu'illustrées à la figure 6. En variante, comme illustré aux figures 10 et 11, on pourra utiliser des plaques 3 dépourvues de troisième orifice intermédiaire.
Avantageusement, les autres caractéristiques de l'échangeur de chaleur à une passe sont similaires à celles de l'échangeur de chaleur à trois passes.

Claims

REVENDICATIONS
1. Echangeur de chaleur comprenant une pluralité de plaques (3) empilées destinées à permettre un échange de chaleur entre un premier fluide et un deuxième fluide circulant au contact desdites plaques (3), ledit échangeur comprenant une bouteille (11) pour le premier fluide, lesdites plaques (3) étant munies d'orifices intermédiaires (69b, 75) permettant une circulation du premier fluide entre lesdites plaques (3) et ladite bouteille (11), lesdits orifices intermédiaires (69b, 75) étant agencés le long d'une direction sensiblement transversale à une direction principale d'extension longitudinale de chaque plaque (3).
2. Echangeur de chaleur selon la revendication précédente, dans lequel lesdites plaques (3) sont configurées pour définir chacune deux parties (130, 150) dont une première partie (130) pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide avant passage du premier fluide dans la bouteille (11) et une deuxième partie (150) pour permettre un échange de chaleur entre le premier fluide et le deuxième fluide après passage du premier fluide dans la bouteille (11), lesdits orifices intermédiaires (69b, 75) étant agencés entre lesdites première (130) et deuxième (150) parties.
3. Echangeur de chaleur selon la revendication précédente, dans lequel lesdites premières parties (130) des plaques (3) définissent une zone de condensation (13) et lesdites deuxièmes parties (150) définissent une zone de sous-refroidissement (15).
4. Echangeur de chaleur selon la revendication précédente, dans lequel un premier desdits orifices intermédiaires (69b, 75) permet une circulation du premier fluide de la zone de condensation (13) vers la bouteille (11), un deuxième desdits orifices intermédiaires (69b, 75) permettant une circulation du premier fluide de la bouteille (11) vers la zone de sous- refroidissement (15).
5. Echangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel les plaques (3) comprennent en outre un orifice supplémentaire (73), dit orifice de circulation en passes, aligné avec lesdits premier et deuxième orifices intermédiaires (69b, 75).
6. Echangeur de chaleur selon la revendication précédente, dans lequel l'orifice (73) de circulation en passes de l'une au moins des plaques (3), dite plaque secondaire, est obstrué de manière à permettre la circulation dudit premier fluide en plusieurs passes dans la zone de condensation (13).
7. Echangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel la bouteille (11) s'étend selon ladite direction principale des plaques.
8. Echangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel, ledit échangeur de chaleur étant muni de tubulures d'entrée (19i) et de tubulures de sortie (19o), ladite bouteille (11) et lesdites tubulures (19i, 19o) sont situées sur un même côté (17) de l'échangeur de chaleur, dit côté supérieur.
9. Echangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel lesdits orifices intermédiaires (69b, 75), présentent une forme oblongue et/ou allongée suivant une direction d'écoulement dudit deuxième fluide (3).
10. Echangeur de chaleur selon la revendication précédente, dans chacun desdits orifices intermédiaires (69b, 75, 73) présente une largeur, mesurée selon une direction transversale à ladite direction principale d'extension longitudinale, qui diminue sur quasiment toute la longueur de l'orifice suivant un sens d'écoulement dudit deuxième fluide.
PCT/EP2016/058974 2015-04-27 2016-04-22 Echangeur de chaleur a plaques empilees WO2016173935A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/569,325 US20180120033A1 (en) 2015-04-27 2016-04-22 Heat exchanger with stacked plates
KR1020177034075A KR102038213B1 (ko) 2015-04-27 2016-04-22 적층 판을 갖는 열교환기
EP16717658.5A EP3289302B1 (fr) 2015-04-27 2016-04-22 Echangeur de chaleur a plaques empilees
JP2017556199A JP6554182B2 (ja) 2015-04-27 2016-04-22 重ねられた複数のプレートを有する熱交換器
CN201680031297.5A CN107949761A (zh) 2015-04-27 2016-04-22 具有堆叠板的热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553779 2015-04-27
FR1553779A FR3035488B1 (fr) 2015-04-27 2015-04-27 Echangeur de chaleur a plaques empilees

Publications (1)

Publication Number Publication Date
WO2016173935A1 true WO2016173935A1 (fr) 2016-11-03

Family

ID=53496808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/058974 WO2016173935A1 (fr) 2015-04-27 2016-04-22 Echangeur de chaleur a plaques empilees

Country Status (7)

Country Link
US (1) US20180120033A1 (fr)
EP (1) EP3289302B1 (fr)
JP (1) JP6554182B2 (fr)
KR (1) KR102038213B1 (fr)
CN (1) CN107949761A (fr)
FR (1) FR3035488B1 (fr)
WO (1) WO2016173935A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497262B2 (ja) * 2014-10-30 2019-04-10 株式会社デンソー 積層型熱交換器
US10591220B2 (en) * 2017-08-31 2020-03-17 Dana Canada Corporation Multi-fluid heat exchanger
FR3084739B1 (fr) * 2018-07-31 2020-07-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur a configuration de passages amelioree, procedes d'echange de chaleur associes
FR3086379B1 (fr) 2018-09-25 2021-01-29 Valeo Systemes Thermiques Plaque d'echangeur de chaleur a ouverture optimisee

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000183A1 (fr) * 2012-12-21 2014-06-27 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
FR3001796A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’un condenseur et d’un sous-refroidisseur de climatisation
DE102013214695A1 (de) * 2013-07-26 2015-01-29 Behr Gmbh & Co. Kg Kondensator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939686A (en) * 1955-02-04 1960-06-07 Cherry Burrell Corp Double port heat exchanger plate
US4182411A (en) * 1975-12-19 1980-01-08 Hisaka Works Ltd. Plate type condenser
JPH0875317A (ja) * 1994-09-07 1996-03-19 Calsonic Corp 受液器付コンデンサ
SE516416C2 (sv) * 2000-05-19 2002-01-15 Alfa Laval Ab Plattpaket, värmeöverföringsplatta, plattvärmeväxlaresamt anv ändning av värmeöverföringsplatta
DE10049890B4 (de) * 2000-10-10 2007-02-22 Behr Gmbh & Co. Kg Stapelscheiben-Wärmeübertrager
FR2870588B1 (fr) * 2004-05-18 2007-01-05 Valeo Thermique Moteur Sas Echangeur de chaleur pour l'huile du moteur d'un vehicule
JP5194010B2 (ja) * 2007-07-23 2013-05-08 東京濾器株式会社 プレート積層型熱交換器
FR2943774B1 (fr) * 2009-03-24 2013-12-20 Valeo Systemes Thermiques Condenseur a deux blocs d'echange de chaleur pour circuit de climatisation
JP5960955B2 (ja) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company 車両用コンデンサ
JP5085723B2 (ja) * 2010-12-13 2012-11-28 株式会社日阪製作所 プレート式熱交換器
KR101316859B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
FR2986315B1 (fr) * 2012-01-30 2014-01-10 Valeo Systemes Thermiques Echangeur de chaleur
PL2927631T3 (pl) * 2014-03-31 2019-04-30 Valeo Autosystemy Sp Z O O Wymiennik ciepła, w szczególności skraplacz
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000183A1 (fr) * 2012-12-21 2014-06-27 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
FR3001796A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’un condenseur et d’un sous-refroidisseur de climatisation
DE102013214695A1 (de) * 2013-07-26 2015-01-29 Behr Gmbh & Co. Kg Kondensator

Also Published As

Publication number Publication date
CN107949761A (zh) 2018-04-20
US20180120033A1 (en) 2018-05-03
FR3035488A1 (fr) 2016-10-28
KR20170140338A (ko) 2017-12-20
EP3289302A1 (fr) 2018-03-07
JP6554182B2 (ja) 2019-07-31
EP3289302B1 (fr) 2019-11-13
KR102038213B1 (ko) 2019-10-29
FR3035488B1 (fr) 2018-05-18
JP2018514741A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
EP1992891B1 (fr) Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
EP3289302B1 (fr) Echangeur de chaleur a plaques empilees
EP2936028B1 (fr) Ensemble de condenseur avec reserve de fluide frigorigene pour circuit de climatisation
WO2013050396A1 (fr) Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques
WO2013001011A1 (fr) Echangeur thermique notamment pour vehicule automobile
FR2912811A1 (fr) Echangeur de chaleur pour fluides a circulation en u
EP2638350B1 (fr) Echangeur de chaleur fluide/fluide.
EP1762808A1 (fr) Elément de circuit à tubes plats, et échangeur de chaleur muni de tels éléments de circuit
EP1770346B1 (fr) Echangeur de chaleur à tubes plats alternés
EP2105693A1 (fr) Echangeur de chaleur à puissance frigorifique élevée
WO2010119100A1 (fr) Tube de circulation de fluide réfrigérant, faisceau d'échange de chaleur et échangeur de chaleur comportant de tels tubes
FR3030710A1 (fr) Boite collectrice pour echangeur de chaleur et echangeur de chaleur equipe de ladite boite collectrice
FR2992713A1 (fr) Faisceau d'echange de chaleur et echangeur de chaleur comprenant ledit faisceau
EP3449197B1 (fr) Echangeur thermique en matière plastique et véhicule comprenant cet échangeur thermique
EP3394554B1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3060724A1 (fr) Echangeur thermique, notamment evaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur.
FR3066149B1 (fr) Echangeur de chaleur multi-passes constitutif d'un circuit de fluide refrigerant
WO2023274722A1 (fr) Echangeur thermique pour véhicule automobile
FR3066261A1 (fr) Echangeur de chaleur optimise a trois rangees de tubes
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2017109356A1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2019115885A1 (fr) Échangeur thermique, notamment évaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur
FR2842292A1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicules automobiles
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16717658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569325

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017556199

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016717658

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034075

Country of ref document: KR

Kind code of ref document: A