WO2016173100A1 - 一种光固化3d打印机以及3d打印方法 - Google Patents

一种光固化3d打印机以及3d打印方法 Download PDF

Info

Publication number
WO2016173100A1
WO2016173100A1 PCT/CN2015/081785 CN2015081785W WO2016173100A1 WO 2016173100 A1 WO2016173100 A1 WO 2016173100A1 CN 2015081785 W CN2015081785 W CN 2015081785W WO 2016173100 A1 WO2016173100 A1 WO 2016173100A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lcd display
display unit
light source
photosensitive resin
Prior art date
Application number
PCT/CN2015/081785
Other languages
English (en)
French (fr)
Inventor
许蓓蓓
王翊坤
刘振亮
朱凯强
范轶旸
李厚民
Original Assignee
北京金达雷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金达雷科技有限公司 filed Critical 北京金达雷科技有限公司
Priority to CN201580074221.6A priority Critical patent/CN107428076B/zh
Priority to EP15890479.7A priority patent/EP3290186A4/en
Priority to US15/118,728 priority patent/US10399270B2/en
Publication of WO2016173100A1 publication Critical patent/WO2016173100A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images

Definitions

  • the invention relates to the field of 3D printers, in particular to a light curing 3D printer using an LCD display unit and a 420-460 nm light source. In addition, it also involves a 3D printing method.
  • the photocuring rapid prototyping technology is more common, which uses a liquid state photosensitive resin (UV) to polymerize under illumination, and the light source is irradiated according to the cross-sectional shape of the solid to be solidified, so that the liquid photosensitive resin is After the layers are solidified, they are cumulatively stacked to form a solidified body.
  • UV liquid state photosensitive resin
  • the photocuring rapid prototyping apparatus mainly includes a selective laser curing device (SLA, also known as a stereoscopic curing device) and a mask photocuring device (DLP).
  • SLA selective laser curing device
  • DLP mask photocuring device
  • the selective laser curing device focuses a laser of a specific intensity at a wavelength of 405 nm onto the surface of the liquid photosensitive resin, and cures it in a line-to-line, line-to-face order to complete a cross-sectional thin layer of an object to be printed. Subsequently, another cross-section thin layer is cured in this way, so that the successively cured cross-sectional thin layers are superimposed on each other to finally complete a three-dimensional object to be printed. Since the SLA-based 3D printing apparatus employs the above-described curing program, it is slow in speed and low in efficiency when printing large three-dimensional objects or printing a plurality of three-dimensional objects.
  • the mask photocuring device uses a DLP projector to project a two-dimensional pattern of a cross section of the object to be printed on the liquid photosensitive resin, so that the liquid photosensitive resin solidifies a thin layer of a corresponding shape according to the pattern. Thereafter, the cured thin layer is adhered layer by layer to form a cured printed object.
  • the mask photocuring device is capable of printing large three-dimensional objects quickly and has a high resolution. However, due to the need to use DLP equipment, it is expensive and can be purchased and used by non-average consumers.
  • both the selective laser curing device and the mask photocuring device have complicated optical paths, resulting in a longer delay in printing, thereby reducing curing efficiency.
  • Still another photo-curing printer uses an LCD liquid crystal display unit to display a cross-sectional pattern of an article to be printed.
  • the liquid crystal display unit is illuminated by a light source having a wavelength of 300 nm to 700 nm. After the light passes through the LCD display unit, the liquid photosensitive resin in the resin pool is solidified into a corresponding shape, but the service life is short.
  • the present invention provides a photocurable 3D printer comprising: a storage unit for containing a liquid photosensitive resin and a light source disposed under the storage unit, wherein the light emitted by the light source The wavelength is 420-460 nm, and the bottom of the storage unit is configured to display A pattern consisting of a light-shielding region that blocks the light and a light-transmitted region that transmits the light.
  • the storage unit includes a pool and an LCD display unit, wherein a bottom wall of the pool is at least transparent, and the LCD display unit is disposed above or below a bottom wall of the pool.
  • the mounting position of the LCD display unit is not limited, as long as the light emitted by the light source can pass through the LCD display unit and the bottom wall of the cell body to cure the liquid photosensitive resin.
  • it may be placed on the outer surface of the bottom wall of the cell body to enable the maintenance personnel to perform the repair operation conveniently.
  • it may be placed on the inner surface of the bottom wall of the pool body.
  • it is also possible to replace the bottom wall of the cell body with the LCD display unit.
  • the light source includes: a light emitting element for emitting light of 420 to 460 nm; a light collecting element for the light emitting element; and a light collecting element and the light emitting element
  • the lens, the concentrating element and the lens are configured to be uniform and parallel to the light emitted by the illuminating element.
  • the concentrating element can use a reflective bowl so that the light emitted from the light source to the periphery can be gathered together, and then the plurality of rays are illuminated in parallel by the lens to illuminate the LCD display unit.
  • This arrangement not only improves the utilization of light, but also simplifies the optical path structure, making the entire light-curing 3D printer light in weight and small in size.
  • the light source further includes: a heat dissipating component disposed at a lower portion of the light emitting element; and a blast disposed at a periphery of the heat dissipating component for blowing cold air to the heat dissipating component element.
  • the illuminating elements In order to illuminate the entire plane of the LCD display unit, the illuminating elements typically use an array of LED lamps to form a surface light source. After the LED lamp array is turned on for a period of time, it will generate a large amount of heat. If it is not cooled in time, it will be damaged due to heat accumulation. Therefore, a heat dissipating member such as a heat sink and a heat dissipating strip is disposed at a lower portion of the light emitting element, and the heat dissipating area can be effectively increased to conduct the accumulated heat to the outside.
  • a heat dissipating member such as a heat sink and a heat dissipating strip is disposed at a lower portion of the light emitting element, and the heat dissipating area can be effectively increased to conduct the accumulated heat to the outside.
  • a blower element is further disposed at a periphery or a lower portion of the heat dissipating member to blow cold air to the heat dissipating member, which can further accelerate the heat dissipation speed.
  • the blower element can be a fan.
  • the light source comprises: a light-emitting element for emitting light having a wavelength of 420 to 460 nm; a carrier plate having a bottom wall and a peripheral wall, wherein a bottom wall of the carrier plate is used to carry the A light-emitting element, the peripheral wall of the carrier plate is for fixed connection with the bottom wall of the pool.
  • the light-emitting element can be directly fixed to the bottom wall of the photosensitive resin bath by the carrier plate.
  • the distance between the light-emitting element and the bottom wall of the photosensitive resin pool can be less than or equal to 10 mm.
  • the lens, the reflective bowl, and the Fresnel lens can be omitted for collecting or uniformizing light. This arrangement not only improves the utilization efficiency of the light emitted by the light source, but also greatly reduces the space of the light-cured 3D printer, so that the entire light-cured 3D printer structure is more compact. It is lighter and makes the price of the light source cheaper, reducing the financial burden on consumers.
  • At least the peripheral wall of the carrier plate is a reflective material.
  • the light source further includes: a heat dissipating component disposed at a lower portion of the carrier plate; and a blower component disposed at a periphery of the heat dissipating component for blowing cold air to the heat dissipating component .
  • the light source provided by the embodiment includes a light-emitting element and a heat-dissipating element, and is fixed to the bottom of the photosensitive resin pool by a carrier plate, that is, the light source is integrated with the storage unit.
  • the light source not only can provide sufficient light to the LCD display unit, achieve better light curing effect, and makes the light source structure simpler and lower in cost, and also adds a heat dissipating component and a blowing element in consideration of heat dissipation.
  • the LCD display unit is disposed over the bottom wall of the pool, the storage unit further comprising: disposed between the bottom wall of the pool and the LCD display unit
  • the Fresnel lens is such that the light becomes parallel and more uniform before it illuminates the LCD display unit.
  • the storage unit further includes: a semi-permeable membrane located above the LCD display unit, the semi-transparent The membrane conforms to the area of the LCD display unit to form a cavity therebetween; an aeration unit in communication with the chamber through the conduit for charging the chamber with a gas containing oxygen molecules.
  • the cured photosensitive resin When the cured photosensitive resin is separated from the LCD display unit, there may be a great resistance. In order to protect the LCD display unit, prolong its service life, and avoid uneven surface of the printed object during separation, it may be covered on the LCD display unit.
  • Layer semipermeable membrane The area of the semipermeable membrane may be equal to or slightly larger than the area of the LCD display unit. Both ends of the semipermeable membrane may be adhered to the edge of the LCD display unit or the side wall of the cell body to form a cavity between the semipermeable membrane and the LCD display unit.
  • a gas containing oxygen molecules is charged into the cavity through the gas-filling unit, and the oxygen molecules pass through the semi-permeable membrane and form an oxygen molecular layer on the surface thereof.
  • the presence of the oxygen molecular layer prevents the cured photosensitive resin from adhering to the LCD display unit, enabling the cured photosensitive resin to be relatively easily separated from the LCD display unit.
  • the bottom of the separated printed object does not appear uneven, which not only protects the LDC display unit but also helps to improve the forming accuracy of the solidified object.
  • the LCD display unit includes a first polarizing layer, a TFT layer, a liquid crystal layer, and a second polarizing layer from bottom to top.
  • the existing LCD display unit provides a color filter between the liquid crystal layer and the second polarizing layer. Since the color filter has different transmittances for different light rays, a part of the light having a certain wavelength emitted by the light source is collected in the LCD display unit, and finally the liquid crystal layer absorbs energy and is damaged.
  • the color of the LCD display unit is There is no high requirement, so removing the color filter can effectively avoid the above defects.
  • the light source can also use a low-power light source, which is approximately 1/3 to 1/2 of the power of the general light source.
  • the thickness of the LCD display unit can be reduced by about 0.4 to 0.6 mm, which not only makes it more convenient to be fixed in the photosensitive resin bath, but also does not occupy the photosensitive resin pool excessively.
  • the LCD display unit has a certain area.
  • the operator can add more liquid photosensitive resin to the photosensitive resin pool every time, which indirectly improves the printing speed of the 3D printer and reduces the labor cost.
  • the color filter is expensive, accounting for about 30% of the entire LCD display unit, but it is optional for the 3D printing technology provided by the present invention, and the removal of the color filter undoubtedly reduces the economic burden on the consumer.
  • the application field of the 3D printer provided by the present invention will be more extensive and even available for general household use.
  • the LCD display unit used in the present invention does not need to display color, and only needs to display the cross-sectional pattern of the object to be printed in a light-transmitting area (white) and a light-shielding area (black). Thereafter, the light source emits light of 420 to 460 nm through the light transmitting region, and the liquid photosensitive resin can be cured into a thin layer corresponding to the pattern of the light transmitting region.
  • This molding method has low requirements for color development of the LCD display unit, and can further reduce the cost.
  • the liquid crystal layer is configured to have a use state and an idle state; when the liquid crystal layer is in a use state, the liquid crystal layer is capable of changing polarized light converted via the first polarizing layer The polarization direction; when the liquid crystal layer is in an idle state, the liquid crystal layer cannot change the polarization direction of the polarized light.
  • the first polarizing layer and the second polarizing layer have orthogonal polarization directions.
  • the liquid crystal layer can adjust the polarization direction of the light so that the polarized light converted through the first polarizing layer can be emitted from the second polarizing layer.
  • a voltage is applied to the liquid crystal layer, it is in use, and the liquid crystal layer can adjust the polarization direction of the polarized light.
  • a voltage is not applied to the liquid crystal layer, it is in an idle state, and the liquid crystal layer cannot adjust the polarization direction, so that the polarized light cannot be emitted from the second polarizing layer.
  • the LCD display unit when the LCD display unit is not in operation, even if the light source is turned on, the light emitted by the light cannot be solidified by irradiating the liquid photosensitive resin through the LCD display unit. During the printing process, the liquid photosensitive resin is not easily cured due to a program error, and the fault tolerance of the device can be improved.
  • the liquid crystal layer can adjust the angle of the polarized light according to the magnitude of the voltage applied thereto, thereby adjusting the amount of light that exits the second polarizer, that is, adjusting the intensity of the light that exits the second polarizer.
  • the intensity of the light directly affects the curing time of the liquid photosensitive resin, so the printing speed can be controlled in this way.
  • the photocurable 3D printer further includes: a carrier unit disposed above the storage unit for carrying the cured photosensitive resin; for controlling the light source to be turned on or off and Graphic display of the LCD display unit, and control of the carrying unit vertical Motion control unit.
  • the photocurable 3D printer further includes a 420-460 nm liquid photosensitive resin for placement in the storage unit.
  • the light source emits light having a wavelength of from 420 to 430 nm, preferably 425 nm.
  • the curing time of the liquid photosensitive resin reached 2 s.
  • the printing speed of the present invention is increased by 5 to 10 times.
  • the printing speed of the present invention is increased by 15 times with respect to 30 s of the curing time of each layer of the SLA type printer.
  • the light source emits light having a wavelength of 445 to 455 nm, preferably 450 nm.
  • a light source having a wavelength of 445 to 455 nm, particularly a light source having a wavelength of 450 nm, is selected, and the light curing accuracy is 10 to 15 times that of the prior art, and the molding speed is 2 to 3 times that of the prior art.
  • the present invention also provides a 3D printing method comprising: a. accommodating a liquid photosensitive resin in a storage unit; b. displaying a cross-sectional pattern of an object to be printed by an LCD display unit; c. capable of emitting light having a wavelength of 420 to 460 nm
  • the light source illuminates the LCD display unit, and the light passes through the storage unit and the LCD display unit to illuminate the liquid photosensitive resin contained in the storage unit to cure it into a shape corresponding to the cross-sectional pattern.
  • Another 3D printer method provided by the present invention comprises: a. accommodating a liquid photosensitive resin in a storage unit; b. displaying a cross-sectional pattern of an object to be printed by an LCD display unit; c. in conformity with an area of the LCD display unit a semipermeable membrane disposed above the LCD display unit to form a cavity therebetween; d. illuminating the LCD display unit with a light source capable of emitting light having a wavelength of 420-460 nm, the light passing through the The storage unit and the LCD display unit illuminate the liquid photosensitive resin contained in the storage unit to be solidified into a shape corresponding to a cross-sectional pattern of the object to be printed; e. while performing step d, The inflator unit charges the chamber with a gas containing oxygen molecules.
  • a further 3D printing method provided by the present invention comprises: a. accommodating a liquid photosensitive resin in a storage unit; b. displaying a cross-sectional pattern of an object to be printed by an LCD display unit; c. in conformity with an area of the LCD display unit a semipermeable membrane disposed above the LCD display unit to form a cavity therebetween; d. illuminating the LCD display unit with a light source capable of emitting light having a wavelength of 420-460 nm, the light passing through the Storing the storage unit and the LCD display unit in the storage unit a liquid photosensitive resin inside so as to be solidified on the carrying unit into a shape corresponding to the cross-sectional pattern of the object to be printed; e.
  • step d while performing step d, charging the chamber with oxygen containing the inflating unit a molecular gas; f. turning off the light source, and controlling the carrying unit to move up to a predetermined position by the control unit; g. repeating steps c to f until a complete printed object is formed.
  • the 3D printing method provided by the present invention uses a light source that emits light at a wavelength of 420 to 460 nm, and an LCD display unit.
  • the interaction between the control unit and the carrying unit can be achieved by moving the carrier unit upwards for a distance after each curing of the thin layer.
  • the cured layer adheres to the top of the carrier unit or the previous layer, and the uncured liquid photosensitive resin is replenished between the carrier unit (or the previous layer) and the LCD display unit.
  • the LCD display unit and the light source sequentially display each cross-sectional pattern of the object to be printed according to a preset program under the control of the control unit, and form a thin layer corresponding to the shape after being irradiated through the light source.
  • a plurality of thin layers are superimposed on each other to form a printed object.
  • the printing method provided by the present invention is completely different from the existing point-to-line, line-to-face curing method, but directly adopts a thin layer curing (face curing) method. This method not only has high molding precision, but also greatly improves the printing speed.
  • the wavelength of the light source since the light having a wavelength of 400 nm or less has extremely high energy, based on the structural characteristics of the LCD liquid crystal display unit, when the LCD display unit is illuminated by a light source of 400 nm or less, the energy is accumulated inside the display unit. And it is difficult to be released, which will cause the life of the LCD display unit to be greatly shortened, and even directly cause damage to the LCD display unit. For example, some people currently use a light source with a wavelength of 405 nm to continuously illuminate the LCD display unit, and the LCD display unit will be damaged due to energy accumulation within a few minutes.
  • the service life is up to 10,000 hours or more, and the damage is basically not occurred, but the image quality of the LCD display unit is slightly reduced with the use of the LCD display unit. decline. When it reaches 10,000 hours, the image quality of the LCD display unit will drop by half. Therefore, the 3D printer provided by the invention is more durable, the curing precision is more reliable, and the maintenance is not frequent, which can greatly reduce the cost.
  • a photopolymerization initiator added to the liquid photosensitive resin, which is capable of absorbing radiant energy and undergoing chemical changes upon excitation to produce an active intermediate having a polymerization-initiating ability.
  • the photopolymerization initiator plays a decisive role in the curing rate of the photosensitive resin, and the liquid photosensitive resin to which no photopolymerization initiator is added does not cure regardless of the wavelength of light to be irradiated.
  • the absorption peak of the photopolymerization initiator is in the ultraviolet light band, and as the wavelength of the light increases, the absorption value will have irregular fluctuations.
  • a light source that is biased toward the wavelength of the ultraviolet light is selected.
  • the photocured 3D printer provided by the present invention can not only ensure the service life of the LCD display unit, but also has a significantly higher curing efficiency than the existing equipment, and the printing precision can reach 20 um to 100 um. Compared with the existing light-curing 3D printing equipment, the printing accuracy is 200um to 400um, which can be increased by up to 20 times. Its technical effect is completely unexpected.
  • FIG. 1 is a schematic structural view of a photocuring 3D printer according to an embodiment of the present invention
  • Figure 2 is a partial enlarged view of a portion A of Figure 1;
  • FIG. 3 is a schematic structural diagram of an LCD display unit of a photocuring 3D printer according to an embodiment of the present invention
  • 4(a) to 4(c) are schematic diagrams showing the structure of a light source of a photocuring 3D printer according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a photocuring 3D printer according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a light source of a photocuring 3D printer according to another embodiment of the present invention.
  • FIG. 7 is a flow chart showing main steps of a 3D printing method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a 3D printing method according to another embodiment of the present invention.
  • the photocured 3D printer As shown in FIG. 1, the photocured 3D printer provided in this embodiment has a housing frame 1.
  • the middle deck 2 divides the inner space of the outer casing frame 1 into an upper space 1-1 and a lower space 1-2.
  • a photosensitive resin bath 3 as a storage unit of a liquid photosensitive resin is disposed on the intermediate layer 2.
  • a guide post 7 is provided on one side of the inside of the outer casing frame 1.
  • the guide column 7 enters the upper space 1-1 from the lower space 1-2 through the intermediate plate 2.
  • the carrier platform 9 for carrying the printed object 8 is located at the upper portion of the photosensitive resin bath 3, which is vertically movable in the upper space 1-1 along the guide column 7.
  • the guide rail 7 can be designed as a spindle which can be rotated by a stepper motor.
  • the carrier platform 9 can be designed as a matching screw nut holder for vertical movement under the rotational movement of the lead screw.
  • the light source 10 is disposed in the lower space 1-2 at the bottom of the outer casing frame 1, which corresponds to the position of the photosensitive resin pool 3, so that the light source 10 can emit light having a wavelength of 420 to 460 nm to the photosensitive resin pool 3.
  • the bottom wall of the photosensitive resin bath 3 is made of a transparent material capable of transmitting light of the above-mentioned light source 10.
  • the middle panel 2 has a hollow region through which light emitted by the light source 10 passes or a transparent material which is the same as the bottom of the photosensitive resin bath 3.
  • the photosensitive resin bath 3 has a bottom wall and side walls disposed above the bottom wall, and the bottom wall and the side walls constitute an accommodation space capable of accommodating the liquid photosensitive resin.
  • a Fresnel lens 4 On the inner surface of the bottom wall of the photosensitive resin bath 3, a Fresnel lens 4, an LCD display unit 5, and a polymer semipermeable membrane 6 are sequentially coated from bottom to top.
  • the area of the polymer semipermeable membrane 6 conforms to the area of the LCD display unit 5, and the edge thereof is fixedly adhered to the side wall of the photosensitive resin bath 3 or the edge of the LCD display unit, so that the polymer semipermeable membrane 6 and the LCD display unit 5 A cavity 14 is formed between them.
  • the air pump 12 is disposed at the bottom of the lower space 1-2 of the outer casing frame 1 and is located on the right side of the light source 10.
  • the air pump 12 communicates with the cavity 14 through the pipe 13 and is capable of pumping a mixed gas containing 20% to 100% of oxygen into the cavity 14.
  • the oxygen molecules in the mixed gas can pass through the polymer semipermeable membrane 6 and form an oxygen molecular layer (not shown) on the polymer semipermeable membrane 6.
  • the function of the oxygen molecular layer is to prevent the printed object 8 from sticking on the LCD display unit 5, which contributes to the separation of the printed object 8 to improve the molding quality.
  • the polymer semipermeable membrane 6 may be a fluorinated ethylene propylene copolymer film (FEP) or a poly(4-methylpentene) film (TPX).
  • the control unit 11 is disposed at the bottom of the lower space 1-2 of the outer casing frame 1 and is located on the left side of the light source 10.
  • the control unit 11 can be an external computer, or can be composed of a chip and a control panel that the 3D printer has.
  • the control unit 11 is capable of controlling the forward or reverse rotation of the stepper motor associated with the rail upright 7 to move the carrier platform 9 up and down along the guide post 7.
  • the control unit 11 is also capable of controlling the opening or closing of the light source 10, the time during which the air pump 12 pumps the mixed gas into the cavity 14, and the pattern displayed by the LCD display unit 5.
  • the LCD display unit 5 can also be disposed on the outer surface of the bottom wall of the photosensitive resin pool 3, so that the light passes through the LCD display unit 5 first, and then passes through the bottom wall of the photosensitive resin pool 3, and finally is accommodated in The liquid photosensitive resin in the photosensitive resin bath 3 is cured on the carrier platform 9. Further, the bottom plate of the photosensitive resin bath 3 can also be replaced by the LCD display unit 5.
  • the LCD display unit 5 of the present embodiment has a lower polarizer 5-1, a TFT substrate 5-2, a liquid crystal layer 5-3, a color filter 5-4, and a top layer arranged from bottom to top.
  • Polarizer 5-5 The light is converted into polarized light by the lower polarizer 5-1, and the polarization direction of the upper polarizer 5-5 is orthogonal to the plane of polarization of the polarized light.
  • the light emitted from the light source 10 passes through the bottom wall of the photosensitive resin bath 3 and is converted into polarized light via the lower polarizer 5-1.
  • the polarization direction changes when the light passes through the liquid crystal layer 5-3, so a certain proportion of light can pass through the color filter 5-4 to reach the upper polarizer 5-5, and then The upper polarizer 5-5 is ejected, and finally the liquid photosensitive resin carried in the photosensitive resin bath 3 is irradiated to be solidified on the surface of the carrying platform 9.
  • the light ratio can be adjusted by adjusting the magnitude of the voltage applied to the liquid crystal layer 5-3.
  • the polarization direction of the polarized light does not change. Since the polarization direction of the upper polarizer 5-5 is orthogonal to the plane of polarization of the polarized light, the light cannot pass through the upper polarizer 5-5. . That is, when the LCD display unit 5 is not powered, even if the light source 10 is used to illuminate the LCD In the display unit 5, light is also not transmitted to cure the liquid photosensitive resin in the photosensitive resin bath 3.
  • the control unit 11 is pre-set with a pattern of all cross-sections of the object to be printed.
  • the control unit can transmit a certain cross-sectional pattern of the printed object 8 to the LCD display unit 5 so that the LCD display unit 5 can be presented with A pattern corresponding to the light transmissive area.
  • the light-transmitting region allows the light source to emit light having a wavelength of 420 to 460 nm.
  • the portions outside the light-transmitting region are shaded regions that block the light emitted by the light source from 420 to 460 nm. Therefore, after the light passes through the LCD display unit 5, the liquid photosensitive resin can be cured into a thin layer having the same shape as a cross-sectional pattern of the printed object 8.
  • the light source 10 is turned off after being turned on for a while, and at this time, the control unit 11 controls the LCD display unit 5 to switch to display the next cross-sectional pattern of the printed object 8.
  • the carrier platform 9 is moved up a short distance to allow a new liquid photosensitive flow between the polymeric semipermeable membrane 6 and the cured thin layer.
  • the light source 10 is turned on again, and the next cross section of the printed object 8 is solidified and accumulated in the lower portion of the thin layer formed previously. By repeating the above process, a complete printed object 8 can be finally formed.
  • the existing LCD display unit is provided with a color filter 5-4, which has different light transmittances for different wavelengths.
  • a color filter 5-4 which has different light transmittances for different wavelengths.
  • the color filter 5-4 has a low transmittance for light in the wavelength range, and the light in the wavelength range has a high energy, the energy of the light will be Concentrated into the LCD display unit 5, and the liquid crystal in the liquid crystal layer 5-3 belongs to a polymer, and the energy accumulated in the LCD display unit 5 will damage the liquid crystal in the liquid crystal layer 5-3, eventually leading to the LCD display unit. 5 completely lost imaging function.
  • the selection of a light source having a wavelength of 445 to 455 nm, particularly a light source having a wavelength of 450 nm, can significantly increase the service life of the liquid crystal layer 5-3, that is, the service life of the LCD display unit 5.
  • the color filter 5-4 in the existing LCD display unit 5 can be removed, which prevents energy from accumulating in the LCD unit, and the power of the light source can be reduced by two times.
  • a light source with a wavelength of 420 ⁇ 430nm can be selected, especially a light source with a wavelength of 425nm illuminates the liquid photosensitive resin, which also has a good curing effect, and at the same time, does not substantially lower the LCD. The life of the display unit 5 is displayed.
  • the light source 10 capable of providing light having a wavelength of 420 to 460 nm in the present embodiment is composed of a lens 10-1, a reflective bowl 10-2, an LED lamp array 10-3, and heat dissipation.
  • the device 10-4, the fan 10-5, and the lens platen 10-6 are composed. Since the power of the single LED lamp is small and the emitted light is insufficient to cure the liquid photosensitive resin, the core component of the light source 10 employs the LED lamp array 10-3. Reflective bowls 10-2 for collecting light and lenses 10-1 for parallel, uniform light are sequentially disposed above the LED lamp array 10-3.
  • the reflecting bowl 10-2 collects the light emitted from the LED lamp array 10-3, and then the lens 10-1 emits the light in parallel with each other so that the light can completely cover the LCD display unit 5.
  • the lens 10-1 is fixed by the lens platen 10-6, and its angle may be 45 to 180 degrees, wherein the effects of 60 degrees and 90 degrees are optimal. Heat is generated when the LED lamp array 10-3 is working, Therefore, the heat sink 10-4 is disposed below it, and the fan 10-5 is disposed under and around the heat sink 10-4 to deliver cold air to the radiator 10-4, thereby achieving better cooling effect. .
  • Embodiment 1 differs from Embodiment 1 in the structure of the light source and the mounting position.
  • the light source 10' is directly mounted on the lower portion of the bottom wall of the photosensitive resin bath 3.
  • the light source 10' mainly comprises an LED lamp array 10-1' and a carrier plate 10-2' for carrying the LED lamp array 10-1'.
  • the upper surface of the carrier plate 10-2' is disposed along the circumferential direction of the LED lamp array 10-1' so as to reflect the light generated by the LED lamp array 10-1'.
  • the carrier plate 10-2' is fixed to the lower portion of the bottom wall of the photosensitive resin bath 3 through the reflecting plate 10-3'.
  • the carrier plate 10-2', the reflecting plate 10-3' and the bottom wall of the photosensitive resin pool 3 are configured to accommodate the sealed space of the LED lamp array 10-1', except that the bottom wall of the transparent photosensitive resin cell 3 can pass through the LED lamp column. Outside the light of the array 10-1', the rest is not, and the reflector 10-3' reflects the light of the LED array 10-1', which can effectively avoid the light exposure and improve the LED light array 10-1' The utilization of the emitted light.
  • the distance of the LED lamp array 10-1' from the lower portion of the bottom wall of the photosensitive resin bath 3 is less than or equal to 10 mm to further improve the utilization of light.
  • a fan 10-5' is provided at a lower portion or around the heat radiating plate 10-4' to blow cold air to the heat radiating plate 10-4' to speed up the cooling rate.
  • the main steps of the photocured 3D printing method provided by the present invention include:
  • the LCD display unit illuminating the LCD display unit with a light source capable of emitting light having a wavelength of 420 to 460 nm, the light passing through the storage unit and the LCD display unit to illuminate the liquid photosensitive resin contained in the storage unit, It is cured into a shape corresponding to the cross-sectional pattern of the object to be printed.
  • the specific steps of continuously printing the finished printed object by using the photocured 3D printer provided in Embodiment 1 or Embodiment 2 are as follows:
  • the photosensitive resin pool 3 is cleaned, and after being dried, pour an appropriate amount of liquid photosensitive resin;
  • each layer has a thickness of 100 um
  • the light source 10 is turned on (exposure time) for 5 s
  • the air pump 12 has a gas supply time of 6 s. It should be noted that, when the exposure time of each layer of resin is set to 5 s, it is necessary to ensure that the air pump 12 is kept open during the exposure period, and may not be opened when the exposure is not performed. In order to obtain a better effect, the air pump 12 may be turned on longer than the exposure time. The time is 1 to 2 s;
  • the control unit 11 controls the movement of the carrier platform 9 such that the gap between the polymer and the semipermeable membrane 6 reaches a preset value of 100 um.
  • the stepper motor associated with the rail column 7 is controlled by the control unit 11 to rotate the stepper motor in the forward or reverse direction, thereby causing the rail column 7 (screw) to rotate in the forward or reverse direction.
  • the carrying platform 9 moves up and down with the rotation of the rail column 7;
  • the control unit 11 controls the LCD display unit 5 to be turned on, and sends a cross-sectional pattern of the first layer of the printed article 8 to the LCD display unit 5;
  • the control unit 11 controls the air pump 12 to be turned on, and the air pump 12 pumps a mixed gas of a certain oxygen ratio into the cavity 14 between the LCD display unit 5 and the polymer semipermeable membrane 6, and the oxygen molecules in the mixed gas pass through the polymer half.
  • the membrane 6 forms a layer of oxygen molecules on its surface, and the gas pump is turned off after 6 seconds.
  • the control unit 11 controls the light source 10 to be turned on, and after 5 seconds, the light source 10 is turned off;
  • the control unit 11 sends a pattern of the second cross section of the object 8 to be printed (the cross section adjacent to the first cross section described above) to the LCD display unit 5.
  • the control unit 11 controls the carrying platform 9 to lift up a certain height H+h (where h represents the thickness of the photosensitive resin cured per layer, that is, 100 um.
  • H is set according to the viscosity of the photosensitive resin, and the viscosity of the photosensitive resin is larger, the larger the H In this embodiment, H can take 5000um), after the liquid photosensitive resin is detached from the carrying platform 9, the carrying platform 9 is lowered by H distance, that is, lowered to a position higher than the last position of 100um;
  • the light of the light source 10 on the surface of the LCD display unit 5 can be obtained by calculation of the optical system.
  • the power is distributed and a mask data frame is generated therefrom.
  • the gray portion of the corresponding portion of the LCD display unit 5 has a higher gray level
  • the lower portion of the optical power has a lower gray level.
  • the gray scale information of the mask is superimposed on the original white light transmission and the black shadow pattern by performing dot-by-point multiplication of the white light transmission and black shadow patterns desired to be displayed with the mask data frame.
  • the white light transmitting portion of the original pattern is subjected to a gray scale change, which cancels the influence caused by the uneven distribution of the power of the light source, thereby improving the molding quality and the molding precision of the printed object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光固化3D打印机及3D打印方法,其中3D打印机包括:用于容纳液态光敏树脂的储存单元和布置于所述储存单元下方的光源(10),其中,所述光源(10)发射的光线波长为420~460nm,所述储存单元的底部配置成显示以遮挡所述光线的遮光区域和透过所述光线的透光区域组成的图案。

Description

一种光固化3D打印机以及3D打印方法 技术领域
本发明涉及3D打印机领域,特别涉及采用LCD显示单元及420~460nm光源的光固化3D打印机。另外,还涉及3D打印方法。
背景技术
在3D打印技术中,较为常见的是光固化快速成型技术,其利用液体状态的光敏树脂(UV)在光照下发生聚合反应,以光源按照待固化实体的截面形状进行照射,使液态光敏树脂逐层固化成型后累积叠加,最终形成固化实体。
目前,基于上述原理的光固化快速成型装置主要包括选择性激光固化装置(SLA,又称立体光固化成型装置)和掩膜光固化装置(DLP)。
选择性激光固化装置采用405nm波长的特定强度的激光聚焦至液态光敏树脂表面,使其按照由点到线、由线到面的顺序固化,从而完成一个待打印物体的横截面薄层。随后,再按照这种方式固化另一横截面薄层,使先后固化的横截面薄层相互叠加,最终完成一个待打印的三维物体。这种基于SLA技术的3D打印装置由于采用上述固化程序,因此在打印大型三维物体或打印多个三维物体时,速度缓慢,效率低。
掩膜光固化装置采用DLP投影仪在液态光敏树脂上投射待打印物体某一横截面的二维图形,使液态光敏树脂按照该图形固化出相应形状的薄层。之后,固化的薄层一层层地粘附累加,从而形成固化的打印物体。掩膜光固化装置能够快速打印较大三维物体,并具有较高的分辨率。但是,由于需要采用DLP设备,因此其价格昂贵,非一般消费者能够购买使用。
另外,无论是选择性激光固化装置还是掩膜光固化装置,都具有复杂的光路,导致其在打印时具有较长的延时,从而降低了固化效率。
再一种光固化打印机采用LCD液晶显示单元显示待打印物品的横截面图案。采用波长300nm~700nm的光源照射LCD液晶显示单元,光线透过LCD显示单元后,使树脂池中的液态光敏树脂固化成相应的形状,但是其使用寿命很短。
发明内容
鉴于现有技术中存在的问题,本发明提供一种光固化3D打印机,包括:用于容纳液态光敏树脂的储存单元和布置于所述储存单元下方的光源,其中,所述光源的发射的光线波长为420~460nm,所述储存单元的底部配置成显示 以遮挡所述光线的遮光区域和透过所述光线的透光区域组成的图案。
在本发明的一些实施方式中,所述储存单元包括池和LCD显示单元,其中所述池的底壁是至少透明的,所述LCD显示单元覆设于所述池的底壁上方或下方。
LCD显示单元的安装位置不受条件限制,只要能够使光源所发出的光线透过LCD显示单元和池体底壁,以使液态光敏树脂固化即可。具体而言,为了便于对LCD显示单元进行检修,可以将其覆设在池体底壁的外表面,以使检修人员能够方便的进行修理操作。为了避免LCD显示单元受到外力碰撞发生损坏,也可以将其覆设在池体底壁的内表面。另外,还可以使LCD显示单元代替池体底壁。
在本发明的一些实施方式中,其中,所述光源包括:用于发射420~460nm光线的发光元件;用于所述发光元件的聚光元件;以及设置于所述聚光元件和发光元件上方的透镜,所述聚光元件和透镜配置成能够均匀和平行所述发光元件发出的光线。
聚光元件可以使用反光碗,以使光源向周边发出的光线能够聚集在一起,再通过透镜使多条光线平行的照射LCD显示单元。这种设置方式不但提高了对光线的利用率,而且简化了光路结构,从而使整个光固化3D打印机重量轻,体积小
在本发明的一些实施方式中,其中,所述光源还包括:设置于所述发光元件下部的散热元件;以及设置于所述散热元件周边的用于向所述散热元件吹送冷空气的鼓风元件。
为了向LCD显示单元的整个平面进行照射,发光元件通常会选用LED灯列阵以组成面光源。LED灯列阵开启一段时间后,会产生较大的热量,如果不进行及时散热,会使其因热量积累而损坏。因此,在发光元件的下部设置散热元件,例如散热片、散热条,能够有效的增大散热面积将聚集的热量传导至外部。在散热元件的周边或者下部还设置有鼓风元件,以向散热元件吹送冷空气,其能够进一步的加快散热速度。鼓风元件可以采用风扇。
在本发明的一些实施方式中,其中,所述光源包括:用于发射波长为420~460nm光线的发光元件;具有底壁以及周壁的承载板,所述承载板的底壁用于承载所述发光元件,所述承载板的周壁用于与所述池的底壁固定连接。
为了进一步简化光路,可以通过承载板将发光元件直接固定于光敏树脂池的底壁上。发光元件和光敏树脂池的底壁之间的距离能够小于或等于10mm。并且,可以省去透镜、反光碗、菲涅尔透镜用于聚光或者均匀光线的元件。这样设置,不但能够提高光源所发出的光线的利用效率,极大的缩小光固化3D打印机的下部空间,以使得整个光固化3D打印机结构更为紧凑, 更为轻巧,而且使得光源的价格更为低廉,减轻消费者的经济负担。
为了进一步提高光源发射的光线的利用率,并且避免光线逸散到光源的外部,所述承载板至少周壁为反光材质。
在在本发明的一些实施方式中,所述光源还包括:设置于所述承载板下部的散热元件;以及设置于所述散热元件周边的用于向所述散热元件吹送冷空气的鼓风元件。
本实施方式提供的光源包括发光元件和散热元件,并且通过承载板将其固定在光敏树脂池的底部,即光源与储存单元整合在一起。这种光源不但能够向LCD显示单元提供充足的光线,取得更好的光固化效果,而且使得光源结构变得更简单、成本更低,另外还考虑到散热问题而增设散热元件和鼓风元件。
在本发明的一些实施方式中,其中,所述LCD显示单元覆设于所述池的底壁上方,所述储存单元还包括:设置于所述池的底壁与所述LCD显示单元之间的菲涅尔透镜,以使光线在照射至LCD显示单元之前变得平行且更为均匀。
在本发明的一些实施方式中,其中,所述LCD显示单元覆设于所述池的底壁上方,所述储存单元还包括:位于所述LCD显示单元上方的半透膜,所述半透膜与LCD显示单元的面积相符以在二者之间形成腔体;与所述腔体通过管路连通的用于向所述腔体内充入含有氧分子的气体的充气单元。
固化后的光敏树脂与LCD显示单元分离时可能会存在很大阻力,为了保护LCD显示单元,延长其使用寿命,并且避免在分离时造成打印物体表面凹凸不平,可以在LCD显示单元之上覆盖一层半透膜。半透膜的面积可以等于或者略大于LCD显示单元的面积。半透膜的两端可以粘附于LCD显示单元的边缘或者池体的侧壁,以使半透膜与LCD显示单元之间形成腔体。通过充气单元向腔体内充入含有氧分子的气体,氧分子透过半透膜并在其表面形成氧分子层。氧分子层的存在能够避免固化的光敏树脂粘附在LCD显示单元之上,使固化的光敏树脂能够相对容易地从LCD显示单元上分离。分离后的打印物体的底部不会出现凹凸不平的情况,不但保护了LDC显示单元而且有助于提高固化物体的成型精度。
在本发明的一些实施方式中,其中,所述LCD显示单元自下而上包括第一偏光层、TFT层、液晶层和第二偏光层。目前,为了使人眼可以接收到饱和的某个颜色的光线,现有的LCD显示单元都会在液晶层和第二偏光层之间设置彩色滤光片。由于彩色滤光片对不同光线具有不同的透过率,因此会导致光源发射的具有一定波长的部分光线聚集在LCD显示单元内,最终导致液晶层吸收能量而损坏。而在3D打印技术中,对LCD显示单元呈现的色彩并 没有过高要求,因此去除彩色滤光片可以有效的避免上述缺陷。去除彩色滤光片后,光源也可以采用低功率的光源,其大致为一般光源功率的1/3~1/2。
另外,去除彩色滤光片之后,能够大约减小LCD显示单元的0.4~0.6mm的厚度,不仅能够使其更为方便的固定在光敏树脂池之中,而且不会过多的占用光敏树脂池中用于存储液态光敏树脂的空间。LCD显示单元具有一定面积,当减小了上述厚度时,操作者每一次就能够向光敏树脂池中添加更多的液态光敏树脂,间接的提高了3D打印机的打印速度,降低了人工成本。再者,彩色滤光片的价格昂贵,占整个LCD显示单元的30%左右,但对于本发明提供的3D打印技术而言可有可无,拆除彩色滤光片无疑减轻了消费者的经济负担,将会使本发明提供的3D打印机的应用领域变得更为广泛,甚至可以提供给一般家庭使用。
进一步地,本发明所采用的LCD显示单元无需显示色彩,只需以透光区域(白色)和遮光区域(黑色)显示出所待打印物体的横截面图案。之后,由光源发射420~460nm的光线通过透光区域,即可将液态光敏树脂固化成与透光区域图案相应的薄层。这种成型方式对LCD显示单元的显色要求不高,能够进一步降低成本。
在本发明的一些实施方式中,其中,所述液晶层配置成具有使用状态和空闲状态;所述液晶层处于使用状态时,所述液晶层能够改变经由所述第一偏光层转化的偏振光的偏振化方向;所述液晶层处于空闲状态时,所述液晶层不能改变所述偏振光的偏振化方向。
第一偏光层和第二偏光层具有正交的偏振化方向。液晶层能够调整光线的偏振化方向,以使经由第一偏光层转化的偏振光能够由第二偏光层射出。当向液晶层施加电压时,其处于使用状态,液晶层能够调整偏振光的偏振化方向。当未向液晶层施加电压时,其处于空闲状态,液晶层不能调整偏振光方向,因此偏振光不能由第二偏光层射出。这样设置,在LCD显示单元不工作时,即使光源开启,其所发射的光线也不能够透过LCD显示单元照射液态光敏树脂使之固化。在打印过程中,不易出现因程序错误而导致液态光敏树脂固化错误,能够提高设备的容错率。
液晶层根据施加于其的电压的大小能够调整偏振光的角度,从而调整射出第二偏光片的光线的多少,即调整射出第二偏光片的光线的强弱。光线的强弱会直接影响液态光敏树脂的固化时间,因此,可以通过这一方式控制打印速度。
在本发明的一些实施方式中,所述光固化3D打印机还包括:设置于所述储存单元上方的用于承载固化后的光敏树脂的承载单元;用于控制所述光源开启或关闭和所述LCD显示单元的图案显示,以及控制所述承载单元竖直 运动的控制单元。
在本发明的一些实施方式中,所述光固化3D打印机还包括用于置于所述储存单元的420~460nm液态光敏树脂。
在本发明的一些实施方式中,所述光源发射的光线波长为420~430nm,优选为425nm。
经过进一步的研究,当使用425nm波长的光源时,液态光敏树脂的固化时间达到了2s。相比现有3D打印机的固化时间10s~20s,本发明的打印速度提高了5~10倍。相对于SLA型打印机的每层固化时间的30s,本发明的打印速度提高了15倍。在打印大型三维物体时,会将该物品分割为多个薄层,每次采用光源照射,使液态光敏树脂固化成为一个薄层,之后的薄层逐步累积。那么,当固化一个薄层的时间由10s~20s缩短到2s时,打印出整个三维物体时间就会显著缩短。在批量化的工业生产过程中,需要打印多个三维物体时,由于其打印效率的提高,所带来的经济效益是巨大的。
在本发明的一些实施方式中,所述光源发射的光线波长为445~455nm,优选为450nm。
选择选择445~455nm波长的光源,特别是450nm波长的光源,其光固化精度是现有技术的10倍~15倍,成型速度是现有技术的2~3倍。
本发明还提供了一种3D打印方法,包括:a.以储存单元容纳液态光敏树脂;b.以LCD显示单元显示待打印物体的横截面图案;c.以能够发射波长为420~460nm的光线的光源照射LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其固化成与所述横截面图案相应的形状。
本发明提供的另一种3D打印机方法,包括:a.以储存单元容纳液态光敏树脂;b.以LCD显示单元显示待打印物体的横截面图案;c.以与所述LCD显示单元面积相符的半透膜设置于所述LCD显示单元上方,以在二者之间形成腔体;d.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其固化成与所述待打印物体的横截面图案相应的形状;e.在执行步骤d的同时,以充气单元向所述腔体内充入含有氧分子的气体。
本发明提供的再一种3D打印方法,包括:a.以储存单元容纳液态光敏树脂;b.以LCD显示单元显示待打印物体的横截面图案;c.以与所述LCD显示单元面积相符的半透膜设置于所述LCD显示单元上方,以在二者之间形成腔体;d.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元 内的液态光敏树脂,以使其在承载单元上固化成与所述待打印物体的横截面图案相应的形状;e.在执行步骤d的同时,以充气单元向所述腔体内充入含有氧分子的气体;f.关闭光源,以控制单元控制所述承载单元向上移动到预定位置;g.重复步骤c~f直至形成完整的打印物体。
本发明提供的3D打印方法采用发射光线的波长为420~460nm的光源,以及LCD显示单元。为了能够连续的逐层固化打印物体的横截面薄层,可以通过控制单元和承载单元的相互配合,以使每完成一个薄层的固化后承载单元向上运动一段距离。此时,固化的薄层粘连于承载单元之上或者前一个薄层之上,未固化的液态光敏树脂又会补充到承载单元(或前一个薄层)与LCD显示单元之间。LCD显示单元以及光源在控制单元的控制下,按照预设的程序依次显示待打印物体的每一个横截面图案,并经由光源照射后形成形状相应的薄层。多个薄层相互叠加累积,最终形成了打印物体。本发明提供的打印方法完全不同于现有的由点到线、由线到面的固化方式,而是直接采用薄层固化(面固化)的方式。这种方式不仅具有较高的成型精度,而且极大的提高了打印速度。
当选择光源的波长时,由于波长为400nm以下的光线具有极高的能量,基于LCD液晶显示单元的结构特点,采用400nm以下的光源照射LCD显示单元时,会使能量在显示单元内的内部积累,并且很难被释放,这将会导致LCD显示单元的使用寿命极大地缩短,甚至直接造成LCD显示单元损坏。举例来说,目前有人采用波长为405nm的光源连续照射LCD显示单元,LCD显示单元会在几分钟之内因能量累积而损坏。以本发明提供的波长为420nm~460nm光源连续照射LCD显示单元时,使用寿命长达1万小时以上,基本不会出现损坏,只是随着LCD显示单元的使用,LCD显示单元的成像质量会略微下降。当达到一万小时后,LCD显示单元的成像质量会下降一半。因此,本发明所提供的3D打印机更为耐用,固化精度更为可靠,其不要频繁的维护,能够极大的降低成本。
另一个需要考虑的因素是液态光敏树脂中添加的光聚合引发剂,其能够吸收辐射能,经激发发生化学变化,产生具有引发聚合能力的活性中间体。光聚合引发剂对光敏树脂的固化速率起着决定性作用,未添加光聚合引发剂的液态光敏树脂无论采用何种波长的光去照射,都不会固化。光聚合引发剂的吸收峰值均处于紫外光波段,随着光线波长的增大,其吸收值会出现不规则的起伏变化。一般情况下,为了提高光固化效率和精度,都会选择偏向于紫外光线波长的光源。
综合上述因素,人们只能在有利于LCD显示单元的光源和有利于液态光敏树脂固化的光源之中选择其一,从而形成了采用偏向于选择紫外光波长的 400nm光源的技术偏见,尚未有人研究用波长为420~460nm的光源,特别是波长为450nm的光源,完成光固化3D打印。但是,申请人意外的发现本发明所提供的光固化3D打印机不但能够保证LCD显示单元的使用寿命,而且固化效率明显高于现有设备,打印精度能够达到20um~100um。相比于现有的光固化3D打印设备的打印精度200um~400um,最多能够提高20倍。其技术效果完全出乎意料。
附图说明
图1为本发明一实施方式的光固化3D打印机结构示意图;
图2为图1中A部分的局部放大示意图;
图3为本发明一实施方式的光固化3D打印机的LCD显示单元的结构示意图;
图4(a)~(c)为本发明一实施方式的光固化3D打印机的光源的结构示意图;
图5为本发明另一实施方式的光固化3D打印机的结构示意图;
图6为本发明另一实施方式的光固化3D打印机的光源的结构示意图。
图7为本发明一实施方式的3D打印方法主要步骤流程图;
图8为本发明另一实施方式的3D打印方法流程图。
具体实施方式
实施例1
如图1所示,本实施例中提供的光固化3D打印机具有外壳框架1。中层板2将外壳框架1的内部空间分隔为上部空间1-1和下部空间1-2。作为液态光敏树脂的储存单元的光敏树脂池3设置在中层板2上。
外壳框架1内部的一侧设置有导向立柱7。导向立柱7从下部空间1-2穿过中层板2进入上部空间1-1。用于承载打印物体8的承载平台9位于光敏树脂池3的上部,其能够沿导向立柱7在上部空间1-1内竖直运动。导轨立柱7可以设计为丝杠,其能够在步进电机的带动下旋转。承载平台9可以设计成与之匹配的丝杠螺母座,以使其在丝杠的旋转运动下竖直运动。
光源10设置于下部空间1-2位于外壳框架1的最底部,其与光敏树脂池3的位置相应,以便于光源10能够向光敏树脂池3发射波长为420~460nm的光线。为了使承载于光敏树脂池3中的液态光敏树脂能够固化,光敏树脂池3的底壁采用能够透过上述光源10的光线的透明材料。并且,中层板2具有供所述光源10发射的光线通过的空心区域或者采用与光敏树脂池3底部相同的透明材料。
如图2所示,光敏树脂池3具有底壁以及设置于底壁之上的侧壁,底壁与侧壁组成了能够容纳液态光敏树脂的容纳空间。在光敏树脂池3的底壁内表面上,由下至上依次覆设有菲涅尔透镜4、LCD显示单元5以及高分子半透膜6。高分子半透膜6的面积与LCD显示单元5的面积相符,其边缘固定粘附于光敏树脂池3的侧壁或者LCD显示单元的边沿,以使高分子半透膜6与LCD显示单元5之间形成腔体14。
气泵12设置在外壳框架1的下部空间1-2的最底部,且位于光源10的右侧。气泵12通过管路13与腔体14连通,并能够向腔体14内部泵入含有20%-100%氧气的混合气体。混合气体中的氧分子能够通过高分子半透膜6,并在高分子半透膜6之上形成氧分子层(图未示)。氧分子层的作用在于防止打印物体8粘连在LCD显示单元5之上,其有助于打印物体8的分离以提高成型质量。高分子半透膜6可以选用氟化乙烯丙烯共聚物膜(FEP),还可以选用聚(4-甲基戊烯)膜(TPX)。
控制单元11设置在外壳框架1的下部空间1-2的最底部,且位于光源10的左侧。控制单元11可以为外接的计算机,也可以由3D打印机自身具有的芯片以及控制面板组成。控制单元11能够控制与导轨立柱7关联的步进电机的正向或反向旋转,以使承载平台9沿着导向立柱7上下移动。控制单元11还能够控制光源10的开启或关闭、气泵12向腔体14内泵入混合气体的时间以及LCD显示单元5所显示的图案。
需要说明的是,LCD显示单元5也能够覆设在光敏树脂池3底壁的外表面上,以使光线先通过LCD显示单元5,之后透过光敏树脂池3的底壁,最终使容纳于光敏树脂池3中的液态光敏树脂固化于承载平台9之上。再者,光敏树脂池3的底板还可以由LCD显示单元5替代。
参照附图3,本实施例中的LCD显示单元5具有由下至上逐层设置的下偏光片5-1、TFT基板5-2、液晶层5-3、彩色滤光片5-4以及上偏光片5-5。光线经过下偏光片5-1被转化为偏振光,上偏光片5-5的偏振化方向与偏振光的偏振面正交。
光源10发射的的光线透过光敏树脂池3的底壁并经由下偏光片5-1后转化为偏振光。当液晶层5-3通电时,光线透过液晶层5-3时偏振化方向发生转变,因此有一定比例的光线可以透过彩色滤光片5-4达到上偏光片5-5,之后由上偏光片5-5射出,最终照射承载于光敏树脂池3内的液态光敏树脂,使其固化于承载平台9表面。通过调整施加于液晶层5-3上的电压大小,可以调整出光比例。当液晶层5-3未通电时,偏振光的偏振化方向不改变,由于上偏光片5-5的偏振化方向与偏振光的偏振面正交,因此光线无法透过上偏光片5-5。即,在LCD显示单元5未通电时,即使采用光源10照射LCD 显示单元5,光线也不会透过以使光敏树脂池3中的液态光敏树脂固化。
控制单元11内预设有待打印物体的所有横截面的图案,打印开始时,控制单元可以将打印物体8的某一横截面图案传送至LCD显示单元5,使LCD显示单元5上能够呈现与这一图案相应的透光区域。透光区域可以使光源发射的波长为420~460nm光线透过。透光区域之外的部分均为阻止光源发射的波长为420~460nm光线透过的阴影区域。因此,光线透过LCD显示单元5后,即可使液态光敏树脂固化为与打印物体8的某一横截面图案形状相同的薄层。光源10在开启一段时间后关闭,此时,控制会单元11控制LCD显示单元5切换显示打印物体8的下一横截面图案。同时,承载平台9向上移动一小段距离以使新的液态光敏流入高分子半透膜6和已固化的薄层之间。光源10再次开启,打印物体8的下一横截面固化完成并且累积在之前所形成的薄层下部。反复上述过程,最终能够形成一个完整的打印物体8。
为了使人眼可以接收到饱和的某个颜色的光线,现有的LCD显示单元都会设置彩色滤光片5-4,其对不同波长的光透过率不相同。当采用波长为400nm以下的光线照射时,由于彩色滤光片5-4对该波长范围内的光线的透过率低,并且该波长范围内的光线具有较高的能量,因此光线的能量将集中至LCD显示单元5内,而液晶层5-3中的液晶体属于高分子,这些积累在LCD显示单元5内的能量将会损坏液晶层5-3中的液晶体,最终导致LCD显示单元5完全失去成像功能。因此,选用波长为445~455nm的光源,特别是波长为450nm的光源,,能够显著地提高液晶层5-3的使用寿命,即LCD显示单元5的使用寿命。
为了取得更好的效果,可以将现有的LCD显示单元5中的彩色滤光片5-4去除,这样可以防止能量在LCD单元内累积,并且光源的功率可以降低两倍。在这种情况下,除了选用45~455nm的光源,还可以选用波长为420~430nm的光源,特别是波长为425nm的光源照射液态光敏树脂也具有良好的固化效果,同时,基本不会降低LCD显示单元5的使用寿命。
参照图4(a)~图4(c),本实施例中的能够提供波长为420~460nm光线的光源10由透镜10-1、反光碗10-2、LED灯列阵10-3、散热器10-4、风扇10-5以及透镜压板10-6组成。由于单个LED灯的功率小,发出的光不足以使液态光敏树脂固化,因此光源10的核心部件采用LED灯列阵10-3。在LED灯列阵10-3的上方依次设置有用于聚集光线的反光碗10-2以及用于平行、均匀光线的透镜10-1。反光碗10-2将LED灯列阵10-3发出的光聚集,之后透镜10-1再将光线以相互平行的方式射出,使光线能够完全覆盖LCD显示单元5。透镜10-1被透镜压板10-6固定,其角度可以为45~180度,其中采用60度和90度的效果最优。因LED灯列阵10-3工作时会产生热量, 因此在其下方与其贴合的设置散热器10-4,并在散热器10-4的下方以及周边设置风扇10-5,以向散热器10-4输送冷空气,从而达到更好的降温效果。
实施例2
参照图5以及图6,本实施例与实施例1的不同之处在于光源的结构以及安装位置。
本实施例中,光源10’直接安装在光敏树脂池3的底壁下部。光源10’主要包括LED灯列阵10-1’以及用于承载LED灯列阵10-1’的承载板10-2’。承载板10-2’的上表面沿着LED灯列阵10-1’周向的设置能够将LED灯列阵10-1’发生的光线进行反射的反光板10-3’。承载板10-2’通过反光板10-3’固定于光敏树脂池3的底壁下部。承载板10-2’、反光板10-3’以及光敏树脂池3的底壁组成容纳LED灯列阵10-1’密闭空间,除了透明的光敏树脂池3的底壁能够透过LED灯列阵10-1’的光线外,其余部分皆不可,并且反光板10-3’反射LED灯列阵10-1’的光线,能够有效的避免光线外露,提高了LED灯列阵10-1’所发出的光线的利用率。优选地,LED灯列阵10-1’距离光敏树脂池3的底壁下部的距离小于或等于10mm能够进一步的提高光线的利用率。
另外,随着LED灯列阵10-1’的LED灯数量的增加,其产生的热量也会升高。因此,在承载板10-2’的下部设置散热板10-4’十分必要。散热板10-4’的下部或者周围设置风扇10-5’以向散热板10-4’吹送冷空气,加快降温速度。
采用实施例1或实施例2的光固化3D打印机的打印方法
参照图7,本发明提供的光固化3D打印方法的主要步骤包括:
a.以储存单元容纳液态光敏树脂;
b.以LCD显示单元显示待打印物体的横截面图案;
c.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其固化成与所述待打印物体的横截面图案相应的形状。
进一步的,参照图8,利用实施例1或实施例2所提供的光固化3D打印机连续打印最终形成完成打印物体的具体步骤如下:
a.将光敏树脂池3清洗干净,待其干燥后倒入适量的液态光敏树脂;
b.设定相关打印参数,包括:将待打印物品8的形状虚拟化,并保存至控制单元11,控制单元11将虚拟化的待打印物品8分割为多个层,每个层 具有一横截面图案,每个层的厚度为100um,光源10开启时间(曝光时间)5s,气泵12每次供气时间6s。需要说明的是,设置每层树脂的曝光时间为5s,那么就必须保证气泵12在曝光期间保持开启状态,未曝光时可以不开启,为了能获得更好的效果,气泵12开启时间可以比曝光时间长1~2s;
c.控制单元11控制承载平台9运动,使其与高分子半透膜6之间的间隙达到预设值100um。通过控制单元11控制与导轨立柱7关联的步进电机工作,以步进电机正向或反向旋转,从而带动导轨立柱7(丝杠)正向或反向旋转。承载平台9则随着导轨立柱7的旋转上下运动;
d.控制单元11控制LCD显示单元5开启,并向LCD显示单元5发送打印物品8第一个层的横截面图案;
e.控制单元11控制气泵12开启,气泵12向LCD显示单元5和高分子半透膜6之间的腔体14泵入一定氧气比例的混合气体,混合气体中的氧分子透过高分子半透膜6在其表面形成一层氧分子层,6s后气泵关闭。与此同时,控制单元11控制光源10开启,5s后光源10关闭;
f.控制单元11向LCD显示单元5发送待打印物体8第二个横截面(临近上述第一个横截面的横截面)的图案。同时,控制单元11控制承载平台9向上提起一定高度H+h(其中h代表每层固化的光敏树脂厚度,即100um。H根据光敏树脂的粘度设定,光敏树脂的粘度越大,H越大。本实施方式中H可以取5000um),待液态光敏树脂从承载平台9上脱离后,承载平台9下降H距离,即下降到高于上次位置100um的位置;
g.如需打印第三、第四以及更多的具有横截面图案的层,则重复上述步骤;如打印物体8完全成型,则打印完毕,控制单元11控制LCD显示屏5、气泵12以及光源10关闭。
另外,除了采用菲涅尔透镜4对光源10发射的可见光进行均匀、平行、聚光处理外,还可以通过对光学系统的计算,得到波长为420~460nm光源10在LCD显示单元5表面的光功率分布情况,并由此生成一张掩膜数据帧。在此帧数据中对应LCD显示单元5表面上光功率较高部分灰度较高,光功率较低部分灰度较低。在实际打印过程中,通过将希望显示的白色透光和黑色阴影图案与掩膜数据帧进行逐点乘法运算,将掩膜的灰度信息叠加到原始白色透光和黑色阴影图案上。使原始图案白色透光部分产生灰度变化,抵消由于光源功率分布不均匀造成的影响,进而提高提高打印对象的成型质量和成型精度。
以上对本发明的各种实施例进行了详细说明。本领域技术人员将理解,可在不偏离本发明范围(由所附的权利要求书限定)的情况下,对实施方案 进行各种修改、改变和变化。对权利要求范围的解释应从整体解释且符合与说明一致的最宽范围,并不限于示例或详细说明中的实施范例。

Claims (20)

  1. 一种光固化3D打印机,包括:用于容纳液态光敏树脂的储存单元和布置于所述储存单元下方的光源,其中,所述光源的发射的光线波长为420~460nm,所述储存单元的底部配置成显示以遮挡所述光线的遮光区域和透过所述光线的透光区域组成的图案。
  2. 根据权利要求1所述的光固化3D打印机,所述储存单元包括池和LCD显示单元,其中所述池的底壁是至少透明的,所述LCD显示单元覆设于所述池的底壁上方或下方。
  3. 根据权利要求1或2所述的光固化3D打印机,其中,所述光源包括:
    用于发射波长为420~460nm光线的发光元件;
    用于所述发光元件的聚光元件;以及
    设置于所述聚光元件和发光元件上方的透镜,
    所述聚光元件和透镜配置成能够均匀和平行所述发光元件发出的光线。
  4. 根据权利要求3所述的光固化3D打印机,其中,所述光源还包括:
    设置于所述发光元件下部的散热元件;以及
    设置于所述散热元件周边的用于向所述散热元件吹送冷空气的鼓风元件。
  5. 根据权利要求2所述的光固化3D打印机,其中,所述光源包括:
    用于发射波长为420~460nm光线的发光元件;
    具有底壁以及周壁的承载板,所述承载板的底壁用于承载所述发光元件,所述承载板的周壁用于与所述池的底壁固定连接。
  6. 根据权利要求5所述的光固化3D打印机,其中,所述承载板至少周壁为反光材质。
  7. 根据权利要求5或6所述的光固化3D打印机,所述光源还包括:
    设置于所述承载板下部的散热元件;以及
    设置于所述散热元件周边的用于向所述散热元件吹送冷空气的鼓风元件。
  8. 根据权利要求2所述的光固化3D打印机,其中,所述LCD显示单元覆设于所述池的底壁上方,所述储存单元还包括:
    设置于所述池的底壁与所述LCD显示单元之间的菲涅尔透镜。
  9. 根据权利要求2所述的光固化3D打印机,其中,所述LCD显示单元覆设于所述池的底壁上方,所述储存单元还包括:
    位于所述LCD显示单元上方的半透膜,所述半透膜与LCD显示单元的面积相符以在二者之间形成腔体;
    与所述腔体通过管路连通的用于向所述腔体内充入含有氧分子的气体的充气单元。
  10. 根据权力要求2所述的光固化3D打印机,其中,所述LCD显示单元自下而上包括第一偏光层、TFT层、液晶层和第二偏光层。
  11. 根据权利要求10所述的光固化3D打印机,其中,所述液晶层配置成具有使用状态和空闲状态;
    所述液晶层处于使用状态时,所述液晶层能够改变经由所述第一偏光层转化的偏振光的偏振化方向;
    所述液晶层处于空闲状态时,所述液晶层不能改变所述偏振光的偏振化方向。
  12. 根据权利要求2或9所述的光固化3D打印机,还包括:
    设置于所述储存单元上方的用于承载固化后的光敏树脂的承载单元;
    用于控制所述光源开启或关闭和所述LCD显示单元的图案显示,以及控制所述承载单元竖直运动的控制单元。
  13. 根据权利要求1或2所述的光固化3D打印机,其中,还包括用于置于所述储存单元的420~460nm液态光敏树脂。
  14. 根据权利要求1所述的光固化3D打印机,其中,所述光源发射的光线波长为420~430nm。
  15. 根据权利要求14所述的光固化3D打印机,其中,所述光源发射的光线波长为425nm。
  16. 根据权利要求1所述的光固化3D打印机,其中,所述光源发射的光线波长为445~455nm。
  17. 根据权利要求16所述的光固化3D打印机,其中,所述光源发射的光线波长为450nm。
  18. 一种3D打印方法,包括:
    a.以储存单元容纳液态光敏树脂;
    b.以LCD显示单元显示待打印物体的横截面图案;
    c.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其固化成与所述待打印物体的横截面图案相应的形状。
  19. 一种3D打印方法,包括:
    a.以储存单元容纳液态光敏树脂;
    b.以LCD显示单元显示待打印物体的横截面图案;
    c.以与所述LCD显示单元面积相符的半透膜设置于所述LCD显示单元上方,以在二者之间形成腔体;
    d.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其固化成与所述待打印物体的横截面图案相应的形状;
    e.在执行步骤d的同时,以充气单元向所述腔体内充入含有氧分子的气体。
  20. 一种3D打印方法,包括:
    a.以储存单元容纳液态光敏树脂;
    b.以LCD显示单元显示待打印物体的横截面图案;
    c.以与所述LCD显示单元面积相符的半透膜设置于所述LCD显示单元上方,以在二者之间形成腔体;
    d.以能够发射波长为420~460nm的光线的光源照射所述LCD显示单元,所述光线透过所述储存单元和所述LCD显示单元照射容纳于所述储存单元内的液态光敏树脂,以使其在承载单元上固化成与所述待打印物体的横截面图案相应的形状;
    e.在执行步骤d的同时,以充气单元向所述腔体内充入含有氧分子的气体;
    f.关闭光源,以控制单元控制所述承载单元向上移动到预定位置;
    g.重复步骤b~f直至形成完整的打印物体。
PCT/CN2015/081785 2015-04-28 2015-06-18 一种光固化3d打印机以及3d打印方法 WO2016173100A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580074221.6A CN107428076B (zh) 2015-04-28 2015-06-18 一种光固化3d打印机以及3d打印方法
EP15890479.7A EP3290186A4 (en) 2015-04-28 2015-06-18 Photo-curing 3d printer and 3d printing method
US15/118,728 US10399270B2 (en) 2015-04-28 2015-06-18 Photo-curing 3D printer and 3D printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510208474.X 2015-04-28
CN201510208474 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016173100A1 true WO2016173100A1 (zh) 2016-11-03

Family

ID=57198048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081785 WO2016173100A1 (zh) 2015-04-28 2015-06-18 一种光固化3d打印机以及3d打印方法

Country Status (4)

Country Link
US (1) US10399270B2 (zh)
EP (1) EP3290186A4 (zh)
CN (1) CN107428076B (zh)
WO (1) WO2016173100A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322927A (zh) * 2017-08-22 2017-11-07 瑞安市麦田网络科技有限公司 一种光固化3d打印机
CN107877853A (zh) * 2017-12-26 2018-04-06 广州市小盒信息科技有限公司 一种光固化3d打印机
WO2018090297A1 (zh) * 2016-11-17 2018-05-24 北京工业大学 一种面向多源大尺度面曝光3d打印的光照均匀化方法
CN108267174A (zh) * 2018-01-30 2018-07-10 上海悦瑞三维科技股份有限公司 一种3d打印随形水路工件的验证装置及其方法
US20190299525A1 (en) * 2016-12-23 2019-10-03 Ray Co., Ltd. Lcd type 3d printer
US20210023783A1 (en) * 2016-07-01 2021-01-28 Carbon, Inc. Three-dimensional printing methods for reducing bubbles by de-gassing through build plate
CN112757630A (zh) * 2019-11-05 2021-05-07 中山华煜远行电子科技有限公司 一种下沉式3d打印机成型系统
US11353845B2 (en) 2016-11-17 2022-06-07 Beijing University Of Technology Model-adaptive multi-source large-scale mask projection 3D printing system
US11780166B2 (en) 2018-04-10 2023-10-10 Hewlett-Packard Development Company, L.P. Preheat build materials with preheating sources
WO2024120008A1 (zh) * 2022-12-07 2024-06-13 先临三维科技股份有限公司 用于光固化3d打印的清洗液检测设备以及检测方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081756A1 (zh) * 2013-12-03 2015-06-11 上海普利生机电科技有限公司 光固化型3d打印设备及其成像系统
JP6112089B2 (ja) * 2014-09-17 2017-04-12 カシオ計算機株式会社 加熱装置、加熱方法、及び、立体形成システム
CN104802414A (zh) * 2015-05-20 2015-07-29 京东方科技集团股份有限公司 一种三维打印设备及三维打印方法
WO2017053783A1 (en) * 2015-09-25 2017-03-30 Carbon3D, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
ITUB20154169A1 (it) 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
US11993015B2 (en) 2015-12-03 2024-05-28 Carbon, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
CH711890A1 (de) * 2015-12-04 2017-06-15 Coobx Ag Additive Fertigungsvorrichtung.
US20180161866A1 (en) * 2016-12-13 2018-06-14 General Electric Company Multi-piece integrated core-shell structure for making cast component
US20180161852A1 (en) * 2016-12-13 2018-06-14 General Electric Company Integrated casting core-shell structure with printed tubes for making cast component
US11813669B2 (en) 2016-12-13 2023-11-14 General Electric Company Method for making an integrated core-shell structure
KR101835539B1 (ko) * 2018-01-17 2018-04-19 에이온 주식회사 인공 치아 성형 장치 및 그 방법
WO2019222410A1 (en) * 2018-05-18 2019-11-21 Board Of Trustees Of Michigan State University Manufactured interconnect packaging structure
CN110625930A (zh) * 2018-06-21 2019-12-31 中南大学 一种快速光固化的lcd 3d打印机
FI129107B (en) * 2018-06-28 2021-07-15 Planmeca Oy Stereolithography equipment equipped with a cooling channel for shutters
KR102179827B1 (ko) * 2018-08-06 2020-11-17 곽주현 경화 장치
US11203156B2 (en) * 2018-08-20 2021-12-21 NEXA3D Inc. Methods and systems for photo-curing photo-sensitive material for printing and other applications
IL282910B2 (en) 2018-11-09 2024-08-01 Nexa3D Inc 3D printing system
KR102171814B1 (ko) * 2018-12-28 2020-10-29 한국광기술원 분할 성형 지원형 광경화 3d 프린터
WO2020190360A1 (en) 2019-03-18 2020-09-24 NEXA3D Inc. Method and system for additive manufacture
CN109760317A (zh) * 2019-03-20 2019-05-17 南京光铸智能科技有限公司 一种光固化3d打印机的lcd屏快捷更换装置
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
CN111890676B (zh) * 2019-05-05 2024-05-10 扬明光学股份有限公司 三维打印装置
CN112339265A (zh) * 2019-08-08 2021-02-09 安世亚太科技股份有限公司 一种用于光敏树脂的3d打印机系统及利用其的3d打印方法
US20230147886A1 (en) * 2020-03-20 2023-05-11 Agency For Science, Technology And Research Additive Manufacturing System for Three-Dimensional Printing
US11413819B2 (en) 2020-09-03 2022-08-16 NEXA3D Inc. Multi-material membrane for vat polymerization printer
CN112519208B (zh) * 2020-11-16 2022-05-10 杭州德迪智能科技有限公司 光固化3d打印方法
CN112721161A (zh) * 2020-12-29 2021-04-30 深圳市纵维立方科技有限公司 光固化组件、光固化3d打印机及其控制方法
CN113601840B (zh) * 2021-07-28 2022-06-07 华中科技大学 一种磁性软体机器人的可控磁化光固化打印装置及方法
US20240262041A1 (en) * 2021-08-20 2024-08-08 Opt Industries, Inc. Control of photo-polymerization for additive manufacturing
US11498275B1 (en) * 2021-11-02 2022-11-15 NEXA3D Inc. 3D printing system
US11813794B2 (en) 2021-11-02 2023-11-14 NEXA3D Inc. 3D printing system
CN114379080B (zh) * 2021-11-30 2023-08-15 浙江正向增材制造有限公司 3d打印系统及3d打印方法
CN217862825U (zh) * 2022-05-24 2022-11-22 深圳市纵维立方科技有限公司 一种3d打印机的光源及3d打印机
US20240027996A1 (en) * 2022-07-25 2024-01-25 Gantri, Inc. Systems and methods for administering a 3d-printing-based manufacturing process
US12023865B2 (en) 2022-08-11 2024-07-02 NEXA3D Inc. Light engines for vat polymerization 3D printers
US20240218828A1 (en) 2022-11-01 2024-07-04 General Electric Company Gas Turbine Engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130038101A (ko) * 2011-10-08 2013-04-17 이영종 멀티 프로젝션을 이용한 고해상도 치아 모델 제작용 3차원 프린터
CN103522546A (zh) * 2013-09-26 2014-01-22 瑞安市麦田网络科技有限公司 一种高精度激光光固3d打印机
CN103707510A (zh) * 2013-12-29 2014-04-09 北京工业大学 一种大幅面led点阵屏面曝光快速成型方法
CN103722745A (zh) * 2013-12-29 2014-04-16 北京工业大学 一种lcd选择性区域透光原理的树脂快速成型方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653297B (zh) * 2002-05-08 2010-09-29 佛森技术公司 高效固态光源及其使用和制造方法
US9075409B2 (en) * 2011-06-28 2015-07-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
KR20150117274A (ko) * 2013-02-12 2015-10-19 카본3디, 인크. 3차원 제작을 위한 방법 및 장치
CN103302860A (zh) * 2013-06-08 2013-09-18 王健犀 一种基于dlp投影光固化三维打印机
CN203697483U (zh) * 2013-12-03 2014-07-09 上海普利生机电科技有限公司 光固化型3d打印设备及其成像系统
US9975295B2 (en) * 2014-08-12 2018-05-22 Carbon, Inc. Acceleration of stereolithography
CN104325642A (zh) * 2014-10-14 2015-02-04 优克多维(大连)科技有限公司 一种高精度光固化树脂成型的3d打印机
KR20160086009A (ko) * 2015-01-08 2016-07-19 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130038101A (ko) * 2011-10-08 2013-04-17 이영종 멀티 프로젝션을 이용한 고해상도 치아 모델 제작용 3차원 프린터
CN103522546A (zh) * 2013-09-26 2014-01-22 瑞安市麦田网络科技有限公司 一种高精度激光光固3d打印机
CN103707510A (zh) * 2013-12-29 2014-04-09 北京工业大学 一种大幅面led点阵屏面曝光快速成型方法
CN103722745A (zh) * 2013-12-29 2014-04-16 北京工业大学 一种lcd选择性区域透光原理的树脂快速成型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290186A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685117B2 (en) * 2016-07-01 2023-06-27 Carbon, Inc. Three-dimensional printing methods for reducing bubbles by de-gassing through build plate
US20210023783A1 (en) * 2016-07-01 2021-01-28 Carbon, Inc. Three-dimensional printing methods for reducing bubbles by de-gassing through build plate
US10759110B2 (en) 2016-11-17 2020-09-01 Beijing University Of Technology Light homogenization method for multi-source large-scale surface exposure 3D printing
WO2018090297A1 (zh) * 2016-11-17 2018-05-24 北京工业大学 一种面向多源大尺度面曝光3d打印的光照均匀化方法
US11353845B2 (en) 2016-11-17 2022-06-07 Beijing University Of Technology Model-adaptive multi-source large-scale mask projection 3D printing system
EP3543957A4 (en) * 2016-11-17 2020-01-22 Beijing University of Technology LIGHT HOMOGENIZATION METHOD FOR MULTI-SOURCE LARGE-SCALE SURFACE EXPOSURE 3D PRINTING
EP3427929B1 (en) * 2016-12-23 2021-11-24 Ray Co., Ltd Lcd type 3d printer
US20190299525A1 (en) * 2016-12-23 2019-10-03 Ray Co., Ltd. Lcd type 3d printer
CN107322927A (zh) * 2017-08-22 2017-11-07 瑞安市麦田网络科技有限公司 一种光固化3d打印机
CN107877853A (zh) * 2017-12-26 2018-04-06 广州市小盒信息科技有限公司 一种光固化3d打印机
CN108267174A (zh) * 2018-01-30 2018-07-10 上海悦瑞三维科技股份有限公司 一种3d打印随形水路工件的验证装置及其方法
US11780166B2 (en) 2018-04-10 2023-10-10 Hewlett-Packard Development Company, L.P. Preheat build materials with preheating sources
CN112757630A (zh) * 2019-11-05 2021-05-07 中山华煜远行电子科技有限公司 一种下沉式3d打印机成型系统
WO2024120008A1 (zh) * 2022-12-07 2024-06-13 先临三维科技股份有限公司 用于光固化3d打印的清洗液检测设备以及检测方法

Also Published As

Publication number Publication date
CN107428076A (zh) 2017-12-01
EP3290186A1 (en) 2018-03-07
CN107428076B (zh) 2020-02-11
EP3290186A4 (en) 2019-01-02
US20180036941A1 (en) 2018-02-08
US10399270B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2016173100A1 (zh) 一种光固化3d打印机以及3d打印方法
US10328634B2 (en) Light engines for photo-curing of liquid polymers to form three-dimensional objects
JP7055424B2 (ja) 立体物を形成するために液体ポリマーの光硬化のための光エンジンを用いる方法および装置
JP6042939B2 (ja) ステレオリソグラフィ装置用の照射システム
US10421217B2 (en) 3D printing device and imaging system thereof
CN101835598B (zh) 制备眼科镜片坯件和镜片的方法
KR101006414B1 (ko) 고속 적층식 광조형 장치
US20150290876A1 (en) Stereolithographic apparatus and method
WO2018032531A1 (zh) 光固化3d打印机及3d打印方法
WO2016169170A1 (zh) 一种3d打印装置和方法
CN203766034U (zh) 一种用于3d打印机的光源装置及3d打印机
WO2017219618A1 (zh) 一种成型方法
CN102378923A (zh) 具有折射率变化的自由成形透镜
CN101498859A (zh) 多功能光学薄板及其制造方法
KR20100080298A (ko) 고속 적층식 광조형 장치
KR100930788B1 (ko) 대, 소형 광조형 장치.
CN110303681A (zh) 一种真空紫外光固化3d打印系统
CN111619108A (zh) 一种新型光固化3d打印设备
TWI782786B (zh) 大面積成型式積層製造設備
CN107498855B (zh) 一种光固化3d打印机以及3d打印方法
JP5521400B2 (ja) 立体画像形成装置及び立体画像形成方法
JP7066459B2 (ja) 三次元造形装置および三次元造形方法
US12023865B2 (en) Light engines for vat polymerization 3D printers
EP4173805A1 (en) An imaging module for a uv lcd 3d printer
US20230382053A1 (en) Additive Fabrication Techniques with Temperature Compensation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15118728

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890479

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015890479

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE