WO2018090297A1 - 一种面向多源大尺度面曝光3d打印的光照均匀化方法 - Google Patents

一种面向多源大尺度面曝光3d打印的光照均匀化方法 Download PDF

Info

Publication number
WO2018090297A1
WO2018090297A1 PCT/CN2016/106282 CN2016106282W WO2018090297A1 WO 2018090297 A1 WO2018090297 A1 WO 2018090297A1 CN 2016106282 W CN2016106282 W CN 2016106282W WO 2018090297 A1 WO2018090297 A1 WO 2018090297A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
gray
grayscale
slice
pictures
Prior art date
Application number
PCT/CN2016/106282
Other languages
English (en)
French (fr)
Inventor
毋立芳
赵立东
邱健康
郭小华
简萌
张子明
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US16/316,477 priority Critical patent/US10759110B2/en
Priority to EP16922002.7A priority patent/EP3543957B1/en
Priority to PCT/CN2016/106282 priority patent/WO2018090297A1/zh
Publication of WO2018090297A1 publication Critical patent/WO2018090297A1/zh
Priority to US17/002,772 priority patent/US11353845B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/291Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to an intelligent control and image processing technology, in particular to processing a picture thrown by a projector, and realizing multi-source large-scale surface exposure printing by using a plurality of projectors and optimizing the slice according to the number thereof. Optimization of illumination uniformity for multi-source large-scale surface exposure 3D printing.
  • 3D printer was born in the mid-1980s and was first invented by American scientists.
  • 3D printer refers to a device that uses 3D printing technology to produce real three-dimensional objects.
  • the basic principle is to use special consumables (glue, resin or powder, etc.) according to a three-dimensional model pre-designed by computer, through the deposition of adhesive. Each layer of powder is bonded and finally printed out of a 3D solid.
  • Rapid prototyping technology is widely used in model development during product development because of its fast processing speed and low cost.
  • 3D printing is a type of rapid prototyping technology that first converts items into 3D data and then prints them layer by layer using a bondable material such as powdered metal or plastic.
  • DLP technology is similar to projectors.
  • the most important component is DMD chip.
  • the biggest advantage of DLP is that it can be exposed layer by layer. In theory, the speed is very fast, but if a larger format is needed, and the high power density of curing light is required, It is necessary to greatly increase the light intensity, but the DMD cannot withstand too high a light intensity, and at the same time, after the light intensity increases, the system has a serious heat dissipation problem. Therefore, 3D printing based on DLP technology is currently developing slowly in the processing direction.
  • the embodiment of the invention provides an illuminance optimization method for multi-source large-scale surface exposure 3D printing, and mainly introduces a method for processing the projected slice when the dual light source is projected, so that the projected slice is in each region to ensure uniform illumination. Sex, complete large-scale printing.
  • an embodiment of the present invention provides a multi-source large-scale surface exposure 3D printing method, which includes the following steps:
  • Step 100 Using at least two projectors of the same model as the surface exposure light source, let the two projectors be adjacent to each other, respectively projecting a first color of the same attribute and a picture of a second color different from the first color, two The overlapping portion between the slices is the third color region, the image of the overlapping portion is captured by the camera, and the height information H 0 and the width information W 0 of the overlapping portion are calculated by a computer;
  • Step 200 Segment the preprocessed slice according to the height information H 0 and the width information W 0 of the overlapping portion, and record the width information W 1 , W 2 and the height information of the two slices P 1 and P 2 respectively .
  • H 1 , H 2 and generate two grayscale pictures P 3 , P 4 with the same properties;
  • Step 300 Calculate a power value of the grayscale picture in the same position in different gray values, and obtain a projection mapping function T[r(x, y)] according to the statistical information according to the statistical information, and generate the basis based on the projection mapping function.
  • Pictures P 3 and P 4 perform grayscale interpolation optimization;
  • Step 400 Fusion the processed pictures P 3 and P 4 with the original divided two slices P 1 and P 2 to obtain a face-exposure 3D printed slice with uniform final brightness.
  • step 100 comprises the following sub-steps:
  • the two solid color pictures projected by the camera are taken, and the overlapping portions of the two solid color pictures are judged according to the difference between the pixels of the taken image, and the width and height information of the overlapping portions are respectively saved into W 0 and H 0 .
  • step 200 comprises the following sub-steps:
  • the entire slice to be exposed is cropped using the following formula, wherein the width information of the two slices P 1 , P 2 after the division is recorded W 1 , W 2 , and height H 1 , H 2 ;
  • step 300 in step 300,
  • r(x, y) is the corresponding forming brightness at different positions of the grayscale picture
  • w is the angular frequency
  • both a 0 and a 1 represent constants.
  • the illumination power in the exposable region of the grayscale pictures P 3 , P 4 is determined based on the illumination power formula as follows, wherein The portion belonging to the grayscale picture P 3 and not intersecting the grayscale picture P 4 is the first portion S 1 , and the portion belonging to the grayscale picture P 4 and not intersecting the grayscale picture P 3 is the second portion S 2 , the grayscale picture The overlapping portion of P 3 and P 4 is the third portion S 3 , and S max represents the maximum exposeable region:
  • f is the average power for this location.
  • the illuminance unevenness of the exposable regions of S 1 , S 2 and S 3 is reduced for the illumination power formula:
  • step 400 in step 400,
  • a plurality of projectors of the same type distributed in an array are used as the surface exposure light source, adjacent to each other in the height direction adjacent to or/and in the width direction
  • the projector performs the steps 100 to 400 and the corresponding sub-steps.
  • step 300 it is feasible that, for every two projectors adjacent in the height direction adjacent to or/and in the width direction, in step 300,
  • r(x, y) is the corresponding forming brightness at different positions of the grayscale picture
  • w is the angular frequency
  • both a 0 and a 1 represent constants.
  • An illumination homogenization method for multi-source large-scale surface exposure 3D printing according to an embodiment of the present invention has the following advantages:
  • Figure 1 is a schematic diagram of printing using two projectors as an example.
  • FIG. 2 is a flow chart of a method of illumination uniformization for multi-source large-scale surface exposure 3D printing, in accordance with an embodiment of the present invention.
  • Figure 3(a) shows the original slice, and (b) shows the upper and lower parts after the segmentation.
  • Figure 5 is a graph showing the fit of a projection mapping function.
  • Fig. 6 shows the distribution of the projection irradiance of the projector when the image gradation is 255.
  • 7(a) and 7(b) respectively show the distribution of light irradiance of the upper and lower divided images after using the method.
  • Figure 8 shows the distribution of light irradiance of the whole slice after using the method.
  • the invention provides an illumination homogenization method for multi-source large-scale surface exposure 3D printing, which reduces the interference factor and realizes large-area exposure by processing each slice, wherein the large scale is based on a specific projection. Depending on the number, it is considered that at least the width and height are greater than 280 mm x 280 mm.
  • the face exposure 3D printer mainly uses a digital light processing (DLP) projector as the light source, and the most important one in the projector is the digital micromirror device (DMD) to complete the visual digital information display technology.
  • DLP projection technology uses DMD wafers as the primary critical processing component to implement digital optical processing.
  • the light intensity must be greatly increased, but the DMD cannot withstand too high a light intensity, and at the same time, the heat dissipation problem of the system is serious. Therefore, the current 3D printing based on DLP technology is slowing down in the processing direction. slow.
  • FIG. 1 is a schematic diagram of the principle of the present invention.
  • the schematic diagram is exemplified by two projectors 1, 2, wherein the upper projector throws an upper slice 1010, and the lower projector projects a lower slice 1020. Part is the overlapping portion 1030 and the camera is 1040.
  • the two projectors 1, 2 are stacked one on another, thereby producing an upper slice, a lower slice, and an overlapping portion therebetween.
  • the principles of the present invention are equally applicable to the case where two projectors are stacked left and right to produce a sliced left half, a sliced right half, and an overlap between the two.
  • the principles of the present invention are also applicable to the case of multiple projector combinations. For larger widths and heights, it may be necessary to arrange two or more projectors in both the width and height directions to better achieve the stitching effect of the multi-source exposure surface.
  • These projectors are preferably arranged in a matrix, each There is an overlap between the slices passing through the projector and the overlap between the slices adjacent to each other (i.e., in the width direction) and the slices adjacent to the upper and lower (i.e., in the height direction).
  • FIG. 2 is a flow chart of a method for illumination uniformization for multi-source large-scale surface exposure 3D printing for the embodiment shown in FIG. 1.
  • the embodiment of the invention provides a lighting uniformization method for multi-source large-scale surface exposure 3D printing, comprising:
  • Step 100 Ensure that two projectors of the same type are placed side by side in the case of just full contact, so that the two projectors respectively project red and green solid images of the same property, that is, the upper picture and the lower picture, thus, two
  • the overlapping portion between the pictures is a yellow area, that is, an overlapping portion, the intersecting image is captured by a camera, and the height information H 0 and the width information W 0 of the overlapping portion are calculated by a computer;
  • Step 200 Segment the preprocessed slice according to the height information H 0 and the width information W 0 of the overlapping portion, and respectively record the width information W 1 , W 2 and the height of the divided upper and lower slices P 1 and P 2 .
  • Information H 1 , H 2 see Fig. 4, and generate two grayscale pictures P 3 , P 4 with the same attributes;
  • Step 300 Calculate the power value of the projected grayscale image in the same position in different grayscale values, according to the statistical information, according to further calculation, the projection mapping function T[r(x, y)] may be obtained, and the projection mapping function is used as a basis.
  • the generated pictures P 3 and P 4 perform gray scale interpolation optimization;
  • Step 400 Fusion the processed pictures P 3 and P 4 with the originally segmented P 1 and P 2 images to obtain a face-exposure 3D printed slice with uniform final brightness.
  • the processing step 100 includes:
  • Sub-step 110 the projectors 1, 2 are placed by the level tester, and they are placed in the same horizontal plane when stacked, and aligned up and down, and the two projectors 1 and 2 are fixed so that their relative positions are no longer changed.
  • Sub-step 120 let the two projectors 1, 2 respectively project a solid color picture of red and green, because the two projectors are stacked, the projection area must have a part of the overlap, so that one projector projects a red image, one projection green Figure, this will ensure that the overlap area is yellow, easy for computer recognition.
  • Sub-step 130 The projected image is captured by the camera, and the area where the two projected images overlap is determined according to the difference between the pixels of the captured image, and the width and height information thereof are respectively saved into W 0 and H 0 .
  • step 200 includes:
  • sub-step 210 in the case of ensuring that the slice is in the same proportion of the exposable portion, the slice is enlarged to the same size as the projection ratio of the two projectors, and the overall height of the slice is H and the width is W.
  • Sub-step 220 according to the height information H 0 and the width information W 0 of the overlapping portion, the slice is cut using the following formula, wherein the width information of the two slices P 1 and P 2 after the division is recorded W 1 and W 2 , and the height is recorded.
  • H 1 , H 2 the width information of the two slices P 1 and P 2 after the division is recorded W 1 and W 2 , and the height is recorded.
  • FIG. 3(a) is an original slice
  • (b) is a divided upper and lower partial slice
  • FIG. 4 is an explanatory illustration of the entire projection plane symbol representation.
  • Sub-step 230 Generate two pictures P 3 and P 4 having the same attribute according to the width and height information of the two slices P 1 and P 2 after the division.
  • step 300 includes:
  • Sub-step 310 counting the power values of the same position in different gray values, and finding that the power distribution of the projector is similar under different gray levels in the same position, and after further fitting experiments, it is found that the power nonlinearly changes and the law conforms to the Fourier series. Fit the distribution with a 95% confidence interval. You can get a complete projection mapping function by curve fitting:
  • r(x, y) is the corresponding forming brightness at different positions of the picture.
  • Figure 5 shows the fitting curve for this projection mapping function.
  • r represents the gray level
  • w represents the angular frequency
  • a 0 and a 1 are both Represents a constant.
  • Sub-step 320 according to the relationship between the intersection positions of the pictures P 3 and P 4 and the projection mapping function, the expression of the problem shown in the following formula can be obtained, that is, the exposable area (including the overlapping area) in the pictures P 3 , P 4 is to be solved.
  • a problem of uneven distribution of illumination power wherein a portion belonging to the picture P 3 and not intersecting the picture P 4 is the first portion S 1 , and a portion belonging to the picture P 4 and not intersecting the picture P 3 is the second portion S 2 , The portion overlapping with the pictures P 3 and P 4 is the overlapping portion S 3 , and S max represents the maximum exposeable area:
  • S n represents the portion of each projector that is not overlapped with other projectors
  • S m represents the overlap between the projectors.
  • the change in inner height is a linear equation of two slopes of the independent variable K 1 and K 2 , where K 1 and K 2 are expressed as:
  • K 1 a [W 1 ] / (H 1 - H 0 ) (6)
  • the superposition of the power values acting on the two linear equations at the same position is the power value of each position of the overlapping portion S 3 region.
  • the overlapping portion S 3 may be a superposition of projected images of three or even four projectors.
  • a linear equation having three or four slopes with the variation of the height and width in the region of the overlapping portion S 3 as an independent variable can be respectively established, and then the superposition of the power values based on three or four linear equations at the same position can be established. , the power value of each position of the overlapping portion S 3 region is obtained.
  • Sub-step 340 linearly interpolating the generated two grayscale pictures, respectively, to obtain two grayscale pictures with gentle grayscale changes.
  • Figure 6 shows the distribution of the projected irradiance of the projector when the image gradation is 255.
  • Figures 7(a) and (b) show the irradiance distribution of the upper and lower split images after using this method. .
  • the step 400 includes:
  • Sub-step 410 sequentially scanning the gray value of each pixel of the interpolated gray image, skipping scanning the next pixel point when the gray value is equal to 0, and acquiring the gray level of the pixel when the gray value is greater than 0
  • the value is assigned to the same pixel position of the original image slice, and finally the pixel gray distribution of the segmented slices P 1 and P 2 respectively satisfies the pixel gray distribution of P 3 and P 4 , respectively.
  • Figure 8 shows the distribution of light irradiance of the whole slice after using this method.
  • the two projectors respectively project red and green pictures, but it will be appreciated that the invention is applicable in a more general sense to adjacent projectors that have a first color (solid color) and a picture of a second color (solid color) of different colors, the first color and the second color have significant chromatic aberration (for example, two of the three primary colors), but the attributes are the same, and the color of the overlapping area between the two is different The third color of the first and second colors.
  • the picture attributes of the first color and the second color are the same, meaning that their size information and resolution information are the same.
  • the present invention is not limited to the specific examples and details described, but may be adapted to others after modification of the details described above.
  • An illumination homogenization method for multi-source large-scale surface exposure 3D printing according to an embodiment of the present invention has the following advantages:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种面向多源大尺度面曝光3D打印的光照均匀化方法,包括以下步骤:至少利用两个相同型号的投影仪分别投射出相同属性的第一和与第二颜色的纯色图片,重叠部分为第三颜色区域,捕获重叠部分的图像,计算重叠部分的高度和宽度信息;根据重叠部分的高度和宽度信息,对预处理过的切片进行分割,分别记录分割出的两个切片的宽度和高度信息,并生成与其相同属性的两张灰度图片;统计不同灰度值中切片在同一位置的功率值,根据此统计信息根据进一步计算得到投影映射函数,以此投影映射函数为基础对生成的图片进行灰度插值优化;对处理完的灰度图片与原始分割出的两个切片进行融合,得到最终成型亮度均匀的面曝光3D打印切片。

Description

一种面向多源大尺度面曝光3D打印的光照均匀化方法 技术领域
本发明涉及智能化控制和图像处理技术,具体涉及对投影仪投出的图片进行处理,通过使用多个投影仪且根据其个数对切片进行优化处理,从而实现多源大尺度面曝光打印和对多源大尺度面曝光3D打印的光照均匀度优化。
背景技术
3D打印机诞生于20世纪80年代中期,是由美国科学家最早发明的。3D打印机是指利用3D打印技术生产出真实三维物体的一种设备,其基本原理是利用特殊的耗材(胶水、树脂或粉末等)按照由电脑预先设计好的三维立体模型,通过黏结剂的沉积将每层粉末黏结成型,最终打印出3D实体。快速成形技术以其加工速度快、成本低,广泛应用于产品开发阶段的模型制作。3D打印是快速成形技术的一种,它首先将物品转化为3D数据,然后运用粉末状金属或塑料等可粘合材料,逐层分切打印。模具制造、工业设计用于建造模型,现正发展成产品制造,形成“直接数字化制造”。目前已形成多种不同的快速成形工艺,如立体光固化(SLA)、层合实体制造(LOM)、熔融沉积造型(FDM)、选域激光烧结(SLS)、三维打印(3DP)、面曝光打印(DLP)等。但是就目前而言,FDM精度较差,需要不断地熔化材料丝并且等待材料固化,总体成型速度较慢。SLA技术受限于振镜光学特点,一般振镜式的成型幅面小于300mm×300mm。超过这个幅面需要借助动态聚焦系统,这时成本会获得大幅提高。振镜系统的原理决定:幅面越大,焦距越长,光斑越大,激光能量损耗也越多。DLP技术类似于投影仪,其中最核心的元器件是DMD芯片,DLP最大的优势是可以逐层曝光,理论上速度很快,但若需要较大幅面,同时要满足固化光的高功率密度,就不得不大幅度提高光强,但DMD无法承受太高的光强,同时光强增大之后,系统散热问题严重。所以,目前基于DLP技术的3D打印,在加工幅面方向上发展缓慢。
同时在使用了多个投影时,因为每个DLP投影仪辐射出来的光线是非均匀的光线,这必然在造成每个投影面光照度分布不均的同时也会影响每个投影面的相交区域,加大光的不均匀化。
发明内容
本发明实施例将提供一种多源大尺度面曝光3D打印的光照度优化方法,主要介绍双光源投影时对投影出的切片进行处理的方法,从而使投影的切片在各个区域,保证光照度的均匀性,完成大尺度打印。
为解决上述技术问题,本发明实施例提供了一种多源大尺度面曝光3D打印方法,包括以下步骤:
步骤100、至少利用两个相同型号的投影仪作为面曝光光源,让两个投影仪彼此相邻,分别投射出相同属性的第一颜色和与第一颜色不同的第二颜色的图片,两个切片间的重叠部分就为第三颜色区域,用相机捕获此重叠部分的图像,用计算机计算重叠部分的高度信息H0和宽度信息W0
步骤200、根据重叠部分的高度信息H0和宽度信息W0,对预处理过的切片进行分割,分别记录分割出的两个切片P1、P2的宽度信息W1、W2和高度信息H1、H2,并生成与其相同属性的两张灰度图片P3、P4
步骤300、统计不同灰度值中灰度图片在同一位置的功率值,根据此统计信息根据进一步计算得到投影映射函数T[r(x,y)],以此投影映射函数为基础对生成的图片P3、P4进行灰度插值优化;
步骤400、对处理完的图片P3、P4与原始分割出的两个切片P1、P2图像进行融合,得到最终成型亮度均匀的面曝光3D打印切片。
根据一种可行实施方式,步骤100包括下述子步骤:
通过水平仪测试投影机放置,让其具有相同的定向,固定好两个投影机,使其相对位置不再发生变化;
让两个投影仪分别投射出第一和第二颜色的纯色图片,两个图片 之间产生的重叠部分的颜色便于计算机识别的第三颜色;
用相机拍摄投射的两个纯色图片,根据所摄图像像素之间的差异,去判断两个纯色图片的重叠部分,分别把重叠部分的宽度和高度信息保存到W0和H0中。
根据一种可行实施方式,步骤200包括下述子步骤:
保证两个切片在可曝光部分比例不变的情况下,放大到与两个投影机投射比例相加尺寸相同的大小,记整个待曝光切片的整体高为H,宽为W;
根据重叠部分的高度信息H0和宽度信息W0,对整个待曝光切片使用如下公式进行裁剪,其中对分割之后两个切片P1、P2的宽度信息记W1、W2,高度记H1、H2
根据分割后两个切片P1、P2的宽度跟高度信息,生成与其相同属性的两张灰度图片P3、P4
根据一种可行实施方式,在步骤300中,
对于不同灰度值中同一位置的功率值,通过傅里叶级数曲线拟合,得到完整的投影映射函数:
T[r(x,y)]=a0+a1*cos(r*w)+b1*sin(r*w)
其中r(x,y)为灰度图片不同位置下所对应的成型亮度,w表示角频率,a0和a1均表示常数。
根据一种可行实施方式,根据灰度图片P3、P4相交位置的关系和投影映射函数,基于如下光照功率公式确定在灰度图片P3、P4的可曝光区域的光照功率,其中定义属于灰度图片P3且不与灰度图片P4相交的部分为第一部分S1,属于灰度图片P4且不与灰度图片P3相交的部分为第二部分S2,灰度图片P3和P4的重叠部分为第三部分S3,Smax表示最大可曝光区域:
Figure PCTCN2016106282-appb-000001
其中f为此位置的平均功率。
根据一种可行实施方式,针对所述光照功率公式减小S1、S2和S3的可曝光区域光照度不均:
1)把各部分S1、S2、S3区域分别划分为M×N个图像子块,对第一和第二部分S1和S2区域,通过查找切片图像中已填充的区域作为可曝光区域,从得到的可曝光区域候选图像子块中查找对应功率,以其中查找到的最小功率作为该区域待调整的最适目标功率;
2)获取第一部分S1的落在第二部分S2中的那个边界每一个像素点的灰度值所对应的光照度功率存入a数组中,获取第二部分S2的落在第一部分S1中的那个边界每一个像素点的灰度值所对应的光照度功率存入b数组中,分别建立以S3区域内高度或宽度的变化为自变量的两个斜率的线性方程,根据在相同位置两个线性方程作用的功率值的叠加,即为第三部分S3区域每个位置的功率值。
根据一种可行实施方式,在确定了第三部分S3区域每个位置的功率值后,对第一和第二部分S1和S2分别进行线性插值,即得到灰度变化平缓的两张灰度图片。
根据一种可行实施方式,在步骤400中,
依次扫描插值后的灰度图像每个像素的灰度值,当灰度值等于0时跳过扫描下一个像素点,当灰度值大于0时,获取该像素点的灰度值,把这个灰度值赋值给原图像切片的相同像素位置,最终使得分割出来的切片P1和P2的像素灰度分布,分别满足灰度图片P3和P4的像素灰度分布。
根据一种可行实施方式,利用多个呈阵列分布的相同型号的投影仪作为面曝光光源,对于每两个在高度方向相邻或/和宽度方向相邻 的投影仪,执行所述步骤100至400以及相应的子步骤。
在利用多个呈阵列分布的投影仪作为面曝光光源的实施方式中,可行地,对于每两个在高度方向相邻或/和宽度方向相邻的投影仪,在步骤300中,
对于不同灰度值中投影灰度图片在同一位置的功率值,通过傅里叶级数曲线拟合,得到完整的投影映射函数:
T[r(x,y)]=a0+a1*cos(r*w)+b1*sin(r*w)
其中r(x,y)为灰度图片不同位置下所对应的成型亮度,w表示角频率,a0和a1均表示常数。
在利用多个呈阵列分布的投影仪作为面曝光光源的实施方式中,可行地,根据各切片相交位置的关系和投影映射函数,基于如下光照功率公式确定在各切片的可曝光区域的光照功率:
Figure PCTCN2016106282-appb-000002
其中f为此位置的平均功率,Sn表示每个投影仪投出的未与其它投影仪重叠的部分,Sm表示投影仪间的重叠部分。
利用多个呈阵列分布的投影仪作为面曝光光源的实施方式中的其他方面的特征与利用两个呈阵列分布的投影仪作为面曝光光源的实施方式中的类似。
本发明实施例的一种面向多源大尺度面曝光3D打印的光照均匀化方法具有如下优点:
1)提高曝光的尺度;
2)可移植性,当获取到不同光源的投影映射函数之后,可以直接嵌套本方法移植;
3)可打印性,此多源大尺度面曝光3D打印的光照均匀化方法, 能够适用于绝大部分未经过优化处理的模型,适用性强,一次打印成功率高。因此,本发明具有一定的应用价值和意义。
附图说明
图1是以两个投影仪为例的打印原理图。
图2是根据本发明实施例的一种面向多源大尺度面曝光3D打印的光照均匀化方法的流程图。
图3(a)展现了原切片,(b)展现了分割后的上下两部分。
图4是投影图像标号信息的说明。
图5是展现投影映射函数拟合的曲线图。
图6图像灰度为255时投影仪的投射光辐照度分布情况。
图7(a)、(b)分别展现使用本方法之后上、下部分割图像的光辐照度分布情况。
图8展现使用本方法之后整体切片的光辐照度分布情况。
具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明提供一种面向多源大尺度面曝光3D打印的光照均匀化方法,通过对每一张切片进行处理,从而降低干扰因素,实现大面积曝光,其中提到的大尺度是根据具体的投影的数量而定的,即认为至少宽度和高度大于280mm×280mm。
面曝光3D打印机,主要使用数字光处理(DLP)投影仪作为光源,而在投影仪中最重要的是数字微镜元件(DMD)来完成可视数字信息显示的技术。具体地说,就是DLP投影技术应用了DMD晶片来作为主要关键处理元件以实现数字光学处理过程。但若需要较大幅面,同时要满足固化光的高功率密度,就不得不大幅度提高光强,但DMD无法承受太高的光强,同时光强增大之后,系统散热问题严重。所以,目前基于DLP技术的3D打印,在加工幅面方向上发展缓 慢。因此,我们设计出一种算法应用于大面积面曝光打印,其中采用作为面曝光光源的多个投影仪进行曝光,这就解决各投影仪透出的切片之间的拼接问题。图1所示是本发明原理的示意图,此示意图以两个投影仪1、2为例,其中,上面投影仪投出的为上部切片1010,下面投影仪投出的为下部切片1020,中间交叉部分为重叠部分1030,相机为1040。
在此,需要指出,为了方便描述,在图中显示的例子中,两个投影仪1、2上下叠置,从而产生上部切片、下部切片和位于二者之间的重叠部分。可以理解,本发明的原理同样适用于两个投影仪左右叠置的情形,以产生切片左半部、切片右半部和位于二者之间的重叠部分。还可以理解,本发明的原理还适用于多个投影仪组合的情形。对于宽度和高度均较大的情形,可能需要宽度和高度方向上均排列两个或更多个投影仪,才能更好地完成多源曝光面的拼接效果,这些投影仪优选呈矩阵排列,各投影仪透出的切片之间存在左右(即沿宽度方向)相邻的切片之间的重叠部分和上下(即沿高度方向)相邻的切片之间的重叠部分。
下面为解释本发明的基本原理,仅对图中所示的上下并排放置的两个投影仪的例子进行描述,可以理解,所描述的特征也适用于以其他方式排列的投影仪或其他数量的投影仪。
图2为针对图1所示实施例的一种面向多源大尺度面曝光3D打印的光照均匀化方法的流程图。
本发明实施例提出一种面向多源大尺度面曝光3D打印的光照均匀化方法,包括:
步骤100、保证刚好完全接触的情况下上下并排放置两个相同型号的投影仪,让两个投影仪分别投射出相同属性的红色和绿色的纯色图片,即上部图片和下部图片,这样,两个图片之间的重叠部分就为黄色区域,即重叠部分,用相机捕获此相交图像,用计算机计算重叠部分的高度信息H0和宽度信息W0
步骤200、根据重叠部分的高度信息H0和宽度信息W0,对预处理过的切片进行分割,分别记录分割出的上下两个切片P1和P2的宽 度信息W1、W2和高度信息H1、H2,参看图4,并生成与其相同属性的两张灰度图片P3、P4
步骤300、统计不同灰度值中投影灰度图片在同一位置的功率值,根据此统计信息根据进一步计算可以得到投影映射函数T[r(x,y)],以此投影映射函数为基础对生成的图片P3、P4进行灰度插值优化;
步骤400、对处理完的图片P3、P4与原始分割出的P1和P2图像进行融合,得到最终成型亮度均匀的面曝光3D打印切片。
其中,处理步骤100包括:
子步骤110、通过水平仪测试投影仪1、2放置,让其堆叠放置时保证在同一个水平面,并且上下对正,固定好两个投影仪1、2,使其相对位置不再发生变化。
子步骤120、让两个投影仪1、2分别投射出红色和绿色的纯色图片,因为两台投影仪是堆叠放置,其投影区域必然有一部分重合,让一个投影仪投射红图,一个投射绿图,这就可保证重叠区域为黄色,便于计算机识别。
子步骤130、用相机拍摄投射的图像,根据所摄图像像素之间的差异,去判断两个投影图像重叠的区域,分别把其宽度和高度信息保存到W0和H0中。
进一步的,步骤200包括:
子步骤210、在保证切片在可曝光部分比例不变的情况下,放大到与两个投影仪投射比例相加尺寸相同的切片,记切片的整体高为H,宽为W。
子步骤220、根据重叠部分的高度信息H0和宽度信息W0,对切片使用如下公式进行裁剪,其中对分割之后两张切片P1和P2的宽度信息记W1和W2,高度记H1、H2
H1=H2=H/2+H0  (1)
W=W0=W1=W2  (2)
其中,图3(a)所示是一张原始的切片,(b)是经过分割后的上下两部分切片,图4是对整个投影平面符号表示的解释图例。
子步骤230、根据分割后两张切片P1和P2的宽度跟高度信息, 生成与其相同属性的两张图片P3和P4
进一步地,步骤300包括:
子步骤310、统计不同灰度值中同一位置的功率值,发现投影仪在同一位置不同灰度阶下功率分布相近,经过进一步拟合实验,发现功率非线性变化且规律符合傅里叶级数拟合分布,置信区间为95%,可以通过曲线拟合,得到完整的投影映射函数:
T[r(x,y)]=a0+a1*cos(r*w)+b1*sin(r*w)   (3)
其中r(x,y)为图片不同位置下所对应的成型亮度,图5为此投影映射函数所示拟合曲线,上式中r表示灰度,w表示角频率,a0和a1均表示常数。
子步骤320、根据图片P3、P4相交位置的关系和投影映射函数,可以得到如下公式所示的问题的表述,即要解决在图片P3、P4的可曝光区域(包括重叠区域)的光照功率分布不均的问题,其中定义属于图片P3且不与图片P4相交的部分为第一部分S1,属于图片P4且不与图片P3相交的部分为第二部分S2,与图片P3和P4重叠的部分为重叠部分S3,Smax表示最大可曝光区域:
Figure PCTCN2016106282-appb-000003
其中f为此位置的平均功率,同时针对涉及的光源的数目大于两台为n的情况,对问题的表述还可以写为如下公式所示:
Figure PCTCN2016106282-appb-000004
其中Sn表示每个投影仪投出的未与其它投影仪重叠的部分,Sm表示投影仪间的重叠部分,随着投影仪个数的倍增,投影仪的曝光重叠的区域的数量也在增加,并且每个重叠部分可能是宽度方向和/或高度方向上相邻投影仪的投影相重叠产生的。
子步骤330、针对公式4欲解决各部分S1、S2和S3的可曝光区 域光照度不均的问题,我们用下面的方法,很好的达到了上述公式欲解决问题的要求:
1)把各部分S1、S2、S3区域分别划分为M×N个图像子块,对第一和第二部分S1和S2区域,通过查找切片图像中已填充的区域作为可曝光区域,从得到的可曝光区域候选图像子块中查找对应功率,以其中查找到的最小功率作为该区域待调整的最适目标功率;
2)获取第一部分S1的下边界(即落在第二部分S2中的那个边界)每一个像素点的灰度值所对应的光照度功率存入a数组中,获取第二部分S2的上边界(即落在第一部分S1中的那个边界)每一个像素点的灰度值所对应的光照度功率存入b数组中,当W1=W2时,分别建立以重叠部分S3区域内高度的变化为自变量的两个斜率为K1和K2的线性方程,其中K1和K2分别表示为:
K1=a[W1]/(H1-H0)  (6)
K2=-b[W2]/(H0-H2)  (7)
根据在相同位置此两个线性方程作用的功率值的叠加,即为重叠部分S3区域每个位置的功率值。
可以理解,对于沿宽度方向并排放置两台投影仪的情况,可以分别建立以重叠部分S3区域内宽度的变化为自变量的具有两个斜率的线性方程,然后基于相同位置两个线性方程作用的功率值的叠加,得到重叠部分S3区域每个位置的功率值。
对于光源的数目大于两台投影仪的情况,重叠部分S3可能是三台甚至四台投影仪投射图像的叠加。对此,可以分别建立以重叠部分S3区域内高度和宽度的变化为自变量的具有三个或四个斜率的线性方程,然后基于相同位置三个或四个线性方程作用的功率值的叠加,得到重叠部分S3区域每个位置的功率值。
子步骤340、对生成的两张灰度图片分别进行线性插值,即可得到灰度变化平缓的两张灰度图片。如图6所示是图像灰度为255时投影仪的投射光辐照度分布情况,图7(a)、(b)分别是使用本方法之后上、下部分割图像的光辐照度分布情况。
所述步骤400包括:
子步骤410、依次扫描插值后的灰度图像每个像素的灰度值,当灰度值等于0时跳过扫描下一个像素点,当灰度值大于0时,获取该像素点的灰度值,把这个灰度值赋值给原图像切片的相同像素位置,最终使得分割出来的切片P1和P2的像素灰度分布,分别满足P3和P4的像素灰度分布。如图8所示为使用本方法之后整体切片的光辐照度分布情况。
在上面描述的例子中,两个投影仪分别投射出红色和绿色的图片,但可以理解,本发明在更一般的意义上适用于相邻投影仪投射出具有第一颜色(纯色)和与第一颜色不同的第二颜色(纯色)的图片,第一颜色和第二颜色具有明显的色差(例如采用三原色中的两种)、但属性相同,二者之间的重叠区域的颜色为不同于第一和第二颜色的第三颜色。
这里所谓第一颜色和第二颜色的图片属性相同,是指它们的尺寸信息和分辨率信息相同。
此外,上面对上下并排放置的两个投影仪的例子进行描述,本发明并不局限于所描述的特定例子和细节,而是在对前面描述的细节做出改造后,可适用于以其他方式排列的投影仪或其他数量的投影仪的情形。
本发明实施例的一种面向多源大尺度面曝光3D打印的光照均匀化方法具有如下优点:
1)提高曝光的尺度;
2)可移植性,当获取到不同光源的投影映射函数之后,可以直接嵌套本方法移植;
3)可打印性,此多源大尺度面曝光3D打印的光照均匀化方法,能够适用于绝大部分未经过优化处理的模型,适用性强,一次打印成功率高。因此,本发明具有一定的应用价值和意义。

Claims (11)

  1. 一种面向多源大尺度面曝光3D打印的光照均匀化方法,包括以下步骤:
    步骤100、至少利用两个相同型号的投影仪作为面曝光光源,让两个投影仪彼此相邻,分别投射出相同属性的第一颜色和与第一颜色不同的第二颜色的纯色图片,两个纯色图片间的重叠部分为第三颜色区域,用相机捕获此重叠部分的图像,用计算机计算重叠部分的高度信息H0和宽度信息W0
    步骤200、根据重叠部分的高度信息H0和宽度信息W0,对预处理过的切片进行分割,分别记录分割出的两个切片P1、P2的宽度信息W1、W2和高度信息H1、H2,并生成与其相同属性的两张灰度图片P3、P4
    步骤300、统计不同灰度值中切片在同一位置的功率值,根据此统计信息根据进一步计算得到投影映射函数T[r(x,y)],以此投影映射函数为基础对生成的图片P3、P4进行灰度插值优化;
    步骤400、对处理完的灰度图片P3、P4与原始分割出的两个切片P1、P2进行融合,得到最终成型亮度均匀的面曝光3D打印切片。
  2. 如权利要求1所述的方法,其中,步骤100包括下述子步骤:
    通过水平仪测试投影机放置,让其具有相同的定向,固定好两个投影机,使其相对位置不再发生变化;
    让两个投影仪分别投射出第一和第二颜色的图片,两个图片之间产生的重叠部分的颜色便于计算机识别的第三颜色;
    用相机拍摄投射的两个图片,根据所摄图像像素之间的差异,去判断两个图片的重叠部分,分别把重叠部分的宽度和高度信息保存到W0和H0中。
  3. 如权利要求1或2所述的方法,其中,步骤200包括下述子步骤:
    保证两个切片在可曝光部分比例不变的情况下,放大到与两个投影机投射比例相加尺寸相同的大小,记整个待曝光切片的整体高为H,宽为W;
    根据重叠部分的高度信息H0和宽度信息W0,对整个待曝光切片使用如下公式进行裁剪,其中对分割之后两个切片P1、P2的宽度信息记W1和W2,高度记H1、H2
    根据分割后两个切片P1、P2的宽度跟高度信息,生成与其相同属性的两张灰度图片P3、P4
  4. 如权利要求1-3中任一项所述的方法,其中,在步骤300中,
    对于不同灰度值中同一位置的功率值,通过傅里叶级数曲线拟合,得到完整的投影映射函数:
    T[r(x,y)]=a0+a1*cos(r*w)+b1*sin(r*w)
    其中r(x,y)为灰度图像不同位置下所对应的成型亮度,w表示角频率,a0和a1均表示常数。
  5. 如权利要求4所述的方法,其中,根据灰度图片P3、P4相交位置的关系和投影映射函数,基于如下光照功率公式确定在灰度图片P3、P4的可曝光区域的光照功率,其中定义属于灰度图片P3且不与灰度图片P4相交的部分为第一部分S1,属于灰度图片P4且不与灰度图片P3相交的部分为第二部分S2,灰度图片P3和P4的重叠部分为第三部分S3,Smax表示最大可曝光区域:
    Figure PCTCN2016106282-appb-100001
    其中f为此位置的平均功率。
  6. 如权利要求5所述的方法,其中,针对所述光照功率公式减 小S1、S2和S3的可曝光区域光照度不均:
    1)把各部分S1、S2、S3区域分别划分为M×N个图像子块,对第一和第二部分S1和S2区域,通过查找切片图像中已填充的区域作为可曝光区域,从得到的可曝光区域候选图像子块中查找对应功率,以其中查找到的最小功率作为该区域待调整的最适目标功率;
    2)获取第一部分S1的落在第二部分S2中的那个边界每一个像素点的灰度值所对应的光照度功率存入a数组中,获取第二部分S2的落在第一部分S1中的那个边界每一个像素点的灰度值所对应的光照度功率存入b数组中,分别建立以S3区域内高度或宽度的变化为自变量的两个斜率的线性方程,根据在相同位置两个线性方程作用的功率值的叠加,即为第三部分S3区域每个位置的功率值。
  7. 如权利要求6所述的方法,其中,在确定了第三部分S3区域每个位置的功率值后,对第一和第二部分S1和S2分别进行线性插值,即得到灰度变化平缓的两张灰度图片。
  8. 如权利要求7所述的方法,其中,在步骤400中,
    依次扫描插值后的灰度图像每个像素的灰度值,当灰度值等于0时跳过扫描下一个像素点,当灰度值大于0时,获取该像素点的灰度值,把这个灰度值赋值给原图像切片的相同像素位置,最终使得分割出来的切片P1和P2的像素灰度分布,分别满足灰度图片P3和P4的像素灰度分布。
  9. 如权利要求1至8中任一项所述的方法,其中,利用多个呈阵列分布的相同型号的投影仪作为面曝光光源,对于每两个在高度方向相邻或/和宽度方向相邻的投影仪,执行所述步骤100至400以及相应的子步骤。
  10. 如权利要求9所述的方法,其中,在步骤300中,
    对于不同灰度值中投影灰度图像在同一位置的功率值,通过傅里叶级数曲线拟合,得到完整的投影映射函数:
    T[r(x,y)]= a0+a1*cos(r*w)+b1*sin(r*w)
    其中r(x,y)为灰度图像不同位置下所对应的成型亮度,w表示角频率,a0和a1均表示常数。
  11. 如权利要求10所述的方法,其中,根据各切片相交位置的关系和投影映射函数,基于如下光照功率公式确定在各切片的可曝光区域的光照功率:
    Figure PCTCN2016106282-appb-100002
    其中f为此位置的平均功率,Sn表示每个投影仪投出的未与其它投影仪重叠的部分,Sm表示投影仪间的重叠部分。
PCT/CN2016/106282 2016-11-17 2016-11-17 一种面向多源大尺度面曝光3d打印的光照均匀化方法 WO2018090297A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/316,477 US10759110B2 (en) 2016-11-17 2016-11-17 Light homogenization method for multi-source large-scale surface exposure 3D printing
EP16922002.7A EP3543957B1 (en) 2016-11-17 2016-11-17 Light homogenization method for multi-source large-scale surface exposure 3d printing
PCT/CN2016/106282 WO2018090297A1 (zh) 2016-11-17 2016-11-17 一种面向多源大尺度面曝光3d打印的光照均匀化方法
US17/002,772 US11353845B2 (en) 2016-11-17 2020-08-25 Model-adaptive multi-source large-scale mask projection 3D printing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/106282 WO2018090297A1 (zh) 2016-11-17 2016-11-17 一种面向多源大尺度面曝光3d打印的光照均匀化方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,477 A-371-Of-International US10759110B2 (en) 2016-11-17 2016-11-17 Light homogenization method for multi-source large-scale surface exposure 3D printing
US17/002,772 Continuation-In-Part US11353845B2 (en) 2016-11-17 2020-08-25 Model-adaptive multi-source large-scale mask projection 3D printing system

Publications (1)

Publication Number Publication Date
WO2018090297A1 true WO2018090297A1 (zh) 2018-05-24

Family

ID=62145940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106282 WO2018090297A1 (zh) 2016-11-17 2016-11-17 一种面向多源大尺度面曝光3d打印的光照均匀化方法

Country Status (3)

Country Link
US (1) US10759110B2 (zh)
EP (1) EP3543957B1 (zh)
WO (1) WO2018090297A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110674819A (zh) * 2019-12-03 2020-01-10 捷德(中国)信息科技有限公司 卡面图片检测方法、装置、设备及存储介质
CN110884127A (zh) * 2019-12-28 2020-03-17 上海唯视锐光电技术有限公司 一种拼接式3d打印装置及打印方法
CN111416968A (zh) * 2019-01-08 2020-07-14 精工爱普生株式会社 投影仪、显示系统、图像校正方法以及测色方法
CN112848301A (zh) * 2021-01-26 2021-05-28 深圳市创必得科技有限公司 Lcd光固化3d打印均光优化补偿方法与装置
CN113385690A (zh) * 2021-06-16 2021-09-14 中国工程物理研究院机械制造工艺研究所 基于金属面曝光选区激光熔化技术的扫描路径设计方法
CN114379095A (zh) * 2021-12-07 2022-04-22 宁波智造数字科技有限公司 光固化3d打印中修正丁达尔现象的方法
CN116342440A (zh) * 2023-05-26 2023-06-27 山东广汇安通物联科技有限公司 一种基于人工智能的车载视频监控管理系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090297A1 (zh) * 2016-11-17 2018-05-24 北京工业大学 一种面向多源大尺度面曝光3d打印的光照均匀化方法
US11353845B2 (en) 2016-11-17 2022-06-07 Beijing University Of Technology Model-adaptive multi-source large-scale mask projection 3D printing system
CN116442523B (zh) * 2023-06-09 2023-09-26 先临三维科技股份有限公司 一种光均匀性调节方法、装置、设备和存储介质
CN117333503B (zh) * 2023-11-30 2024-02-09 青岛合丰新材料有限公司 基于图像特征分析的塑料母粒检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856568A (zh) * 2016-04-26 2016-08-17 杭州研智科技有限公司 3d打印机光固化机构
WO2016173100A1 (zh) * 2015-04-28 2016-11-03 北京金达雷科技有限公司 一种光固化3d打印机以及3d打印方法
CN106127842A (zh) * 2016-06-15 2016-11-16 北京工业大学 一种结合光源分布与反射特性的面曝光3d打印的方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250272A (ja) * 1998-01-08 1999-09-17 Xerox Corp 自動イメ―ジレイアウト方法及びシステム
US6383719B1 (en) * 1998-05-19 2002-05-07 International Business Machines Corporation Process for enhanced lithographic imaging
US6416908B1 (en) * 2000-06-29 2002-07-09 Anvik Corporation Projection lithography on curved substrates
JP4029168B2 (ja) * 2003-02-18 2008-01-09 株式会社村田製作所 電子部品の製造方法
US7158849B2 (en) * 2004-10-28 2007-01-02 National Cheng Kung University Method for rapid prototyping by using linear light as sources
DE102006019963B4 (de) * 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
US7636610B2 (en) * 2006-07-19 2009-12-22 Envisiontec Gmbh Method and device for producing a three-dimensional object, and computer and data carrier useful therefor
JP5257958B2 (ja) * 2011-06-01 2013-08-07 株式会社日立メディコ 画像表示装置、画像表示システムおよび画像表示方法
US11919229B2 (en) * 2015-04-16 2024-03-05 Lawrence Livermore National Security, Llc Large area projection micro stereolithography
CN106042390B (zh) * 2016-07-28 2018-02-23 北京工业大学 一种多源大尺度面曝光3d打印方法
WO2018090297A1 (zh) * 2016-11-17 2018-05-24 北京工业大学 一种面向多源大尺度面曝光3d打印的光照均匀化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173100A1 (zh) * 2015-04-28 2016-11-03 北京金达雷科技有限公司 一种光固化3d打印机以及3d打印方法
CN105856568A (zh) * 2016-04-26 2016-08-17 杭州研智科技有限公司 3d打印机光固化机构
CN106127842A (zh) * 2016-06-15 2016-11-16 北京工业大学 一种结合光源分布与反射特性的面曝光3d打印的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543957A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416968A (zh) * 2019-01-08 2020-07-14 精工爱普生株式会社 投影仪、显示系统、图像校正方法以及测色方法
CN110674819A (zh) * 2019-12-03 2020-01-10 捷德(中国)信息科技有限公司 卡面图片检测方法、装置、设备及存储介质
CN110884127A (zh) * 2019-12-28 2020-03-17 上海唯视锐光电技术有限公司 一种拼接式3d打印装置及打印方法
CN110884127B (zh) * 2019-12-28 2024-05-07 上海唯视锐光电技术有限公司 一种拼接式3d打印装置及打印方法
CN112848301A (zh) * 2021-01-26 2021-05-28 深圳市创必得科技有限公司 Lcd光固化3d打印均光优化补偿方法与装置
CN112848301B (zh) * 2021-01-26 2024-02-23 深圳市创必得科技有限公司 Lcd光固化3d打印均光优化补偿方法与装置
CN113385690A (zh) * 2021-06-16 2021-09-14 中国工程物理研究院机械制造工艺研究所 基于金属面曝光选区激光熔化技术的扫描路径设计方法
CN114379095A (zh) * 2021-12-07 2022-04-22 宁波智造数字科技有限公司 光固化3d打印中修正丁达尔现象的方法
CN114379095B (zh) * 2021-12-07 2024-03-05 宁波智造数字科技有限公司 光固化3d打印中修正丁达尔现象的方法
CN116342440A (zh) * 2023-05-26 2023-06-27 山东广汇安通物联科技有限公司 一种基于人工智能的车载视频监控管理系统

Also Published As

Publication number Publication date
US20190291341A1 (en) 2019-09-26
EP3543957A4 (en) 2020-01-22
US10759110B2 (en) 2020-09-01
EP3543957A1 (en) 2019-09-25
EP3543957B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2018090297A1 (zh) 一种面向多源大尺度面曝光3d打印的光照均匀化方法
US11353845B2 (en) Model-adaptive multi-source large-scale mask projection 3D printing system
CN106228598B (zh) 一种面向面曝光3d打印的模型自适应光照均匀化方法
CN106042390B (zh) 一种多源大尺度面曝光3d打印方法
JP4937044B2 (ja) 1層ずつ三次元物体を成形する方法
JP6800679B2 (ja) 光造形装置、光造形方法および光造形プログラム
JP5234315B2 (ja) 光造形装置および光造形方法
US8348655B2 (en) Optical molding apparatus, optical molding method, and optically molded product
JP6284961B2 (ja) 光造形加工方法及び感光性樹脂を光硬化させる方法
CN108859126B (zh) 三维模型的数据处理方法、3d打印方法及系统
CN106127842B (zh) 一种结合光源分布与反射特性的面曝光3d打印的方法及系统
CN108927993B (zh) 多光源模块的光固化3d打印方法
TWI448732B (zh) 立體打印裝置
CN104093547B (zh) 3d打印系统
JP2009132127A (ja) 光造形装置および光造形方法
TW201636193A (zh) 用於將光聚合材料曝光以逐層固化材料來建構3d物體的方法
CN113510928B (zh) 3d打印设备及打印方法、三维数据处理系统及方法
CN114474732A (zh) 数据处理方法、系统、3d打印方法、设备及存储介质
WO2022110255A1 (zh) 浮雕模型的切片数据处理方法、系统及3d打印方法
US11370165B2 (en) Method for improving resolution in LCD screen based 3D printers
KR102033399B1 (ko) 증강현실을 이용한 3d 프린터 인쇄 물체 정보 표시 시스템 및 방법
US20230205171A1 (en) System and method for printing a three-dimensional object
JP2009160859A (ja) 光造形装置および光造形方法、並びに光造形物
WO2017221286A1 (ja) 画像処理装置、複製システム、及び複製方法
KR20190001850A (ko) 3d프린팅 시스템, 3d프린팅 시스템을 제어하는 제어방법 및 3d프린팅 시스템을 제어하기 위한 3d프린팅용 컴퓨터 프로그램을 기록한 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922002

Country of ref document: EP

Effective date: 20190617