WO2016172880A1 - 一种介质滤波器 - Google Patents

一种介质滤波器 Download PDF

Info

Publication number
WO2016172880A1
WO2016172880A1 PCT/CN2015/077805 CN2015077805W WO2016172880A1 WO 2016172880 A1 WO2016172880 A1 WO 2016172880A1 CN 2015077805 W CN2015077805 W CN 2015077805W WO 2016172880 A1 WO2016172880 A1 WO 2016172880A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
rib
dielectric filter
disposed
wall
Prior art date
Application number
PCT/CN2015/077805
Other languages
English (en)
French (fr)
Inventor
龙泉
邓晓毅
古健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/077805 priority Critical patent/WO2016172880A1/zh
Priority to EP15890260.1A priority patent/EP3280000B1/en
Priority to CN201580054116.6A priority patent/CN107112616B/zh
Priority to KR1020177034053A priority patent/KR102013056B1/ko
Publication of WO2016172880A1 publication Critical patent/WO2016172880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20309Strip line filters with dielectric resonator

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a dielectric filter.
  • Dielectric filters are widely used in various communication systems due to their small size, low loss, and high selectivity.
  • the dielectric filter is made of dielectric materials (such as ceramics) with low loss, high dielectric constant, frequency coefficient of temperature and small thermal expansion coefficient, and can withstand high power. It can usually be connected in series by several long resonators in multiple stages.
  • Parallel trapezoidal line structure characterized by small insertion loss, large power capacity, narrow bandwidth, especially suitable for 900MHz, 1.8GHz, 2.4GHz, 5.8GHz filtering, can be applied to portable phones, car phones, wireless headphones, wireless microphones, Level-coupled filtering of radio stations, cordless phones, or integrated transceiver duplexers.
  • the dielectric filter includes a cavity, a dielectric resonator fixed in the cavity, a cover plate, and a debugging screw.
  • the TE 01 mode dielectric filter is a kind of dielectric filter, which has a good single cavity Q value characteristic. Therefore, the TE 01 mode dielectric filter is widely used in wireless communication systems to reduce system losses and improve efficiency.
  • the TE 01 mode dielectric filter also has the following disadvantages: since the higher harmonic frequency of the TE 01 mode dielectric filter is close to the TE 01 mode frequency, the suppression of higher harmonics by the TE 01 mode dielectric filter is difficult to achieve.
  • the technical problem to be solved by the embodiments of the present invention is to provide a dielectric resonator for pushing up the higher harmonics in the dielectric filter to achieve suppression of higher harmonics.
  • a dielectric filter comprising:
  • the cavity comprising a receiving cavity and a cavity wall surrounding the receiving cavity;
  • the resonator is disposed in the receiving cavity, the resonator comprises a supporting medium and a main medium, the supporting medium is disposed on a bottom wall in the receiving cavity; the main medium is disposed on On the support medium;
  • the cover plate is closed on the cavity to close the receiving cavity
  • a rib the rib being received in the receiving cavity, and disposed on a radiation surface formed between a radiation line radiated by the cavity wall and a central axis of the resonator in a central axial direction of the resonator , the continuous reinforcement
  • the shortest distance from the main medium is greater than a preset value.
  • the connecting rib is disposed on at least one of a bottom wall, a cover plate, and a cavity wall of the receiving cavity.
  • the dielectric filter further includes a tuning component, the tuning component is disposed on the cover, the tuning component
  • the central axis is the same as the central axis of the cover plate.
  • the radiating surface forms a first projection on the bottom wall, when the bottom of the receiving cavity
  • the rib forms a second projection on the bottom wall
  • the second projection is at a center line from the resonator to the cavity wall and the first Projection coincides
  • the rib forms a third projection on the bottom wall
  • the third projection is in a direction from the resonator to the cavity wall
  • the center line coincides with the first projection.
  • the rib forms a fourth projection on the cover, and the fourth projection is from the cover A centerline of the central axis to the wall of the cavity coincides with the first projection.
  • a fourth possible implementation when the connecting wall of the receiving cavity is provided with the connecting rib
  • the connecting rib is integrally formed with the bottom wall, and when the connecting rib is disposed on the cavity wall of the receiving cavity, the connecting rib is integrally formed with the cavity wall, and when the cover is disposed When the ribs are described, the ribs are integrally formed with the cover body.
  • the The supporting portion and the first extending portion extending from the first end of the supporting portion away from the supporting portion, wherein the shortest distance from the main medium in the supporting portion and the first extending portion is greater than Preset value.
  • the connecting rib further includes a second extending portion, wherein the second extending portion is configured by the supporting portion A second end opposite to one end is formed to extend away from the support portion, and a shortest distance from the main medium in the second extension portion is greater than the preset value.
  • the number of connected ribs For at least two are evenly arranged around the center line with the central axis of the resonator as a center line.
  • the eighth possible implementation when any one of the bottom wall, the cavity wall, and the cover is provided with a rib, when the ribs disposed on any two of the ribs are not in contact, or when the bottom wall, the cavity wall and the cover plate are provided with the ribs, the ribs respectively disposed on the bottom wall, the cavity wall and the cover plate No contact.
  • the preset The value is 2mm.
  • a second aspect provides a dielectric filter assembly comprising a low pass filter and a dielectric resonator provided in various implementations of the above first aspect, the low pass filter being cascaded with the dielectric filter.
  • a third aspect provides a base station comprising the dielectric filter assembly of the second aspect described above.
  • the dielectric filter includes a cavity, a resonant cavity, a cover plate, and a connecting rib.
  • the cavity includes a receiving cavity and a cavity wall surrounding the receiving cavity.
  • the resonator is disposed in the receiving cavity, the resonator includes a supporting medium and a main medium, and the supporting medium is disposed on a bottom wall in the receiving cavity; the main medium is disposed on the support On the media.
  • the cover plate covers the cavity to close the receiving cavity.
  • the rib is received in the receiving cavity, and is disposed on a radiation surface formed between a radiation line radiated by the cavity wall and a central axis of the resonator in a central axial direction of the resonator,
  • the shortest distance of the ribs from the main medium is greater than a preset value. Therefore, the connecting rib and the medium are disposed on a radiating surface formed between the radiation radiated by the cavity wall and the central axis I of the resonator in a central axial direction of the resonator
  • the magnetic field of the higher harmonics of the filter is orthogonal, so that the ribs affect the path of the magnetic field, resulting in a change in the frequency of the higher harmonics.
  • the dielectric filter of the present invention maintains the performance of the TE 01 mode while suppressing the higher harmonics.
  • FIG. 1 is a partially exploded perspective view of a dielectric filter according to a first embodiment of the present invention.
  • Fig. 2 is a longitudinal sectional view of Fig. 1;
  • Figure 3 is a diagram showing the electric field distribution of the TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • Figure 4 is a magnetic field distribution diagram of the TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • Fig. 5 is an electric field distribution diagram of higher harmonics of a TE 01 mode dielectric filter without a rib.
  • Fig. 6 is a magnetic field distribution diagram of a TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • Figure 7 is a top plan view of the cavity of Figure 1.
  • Fig. 8 is a longitudinal sectional view showing another dielectric filter according to the first embodiment of the present invention.
  • Fig. 9 is a longitudinal sectional view showing still another dielectric filter according to the first embodiment of the present invention.
  • Figure 10 is a block diagram of a dielectric filter assembly provided by a second embodiment of the present invention.
  • FIG. 11 is a block diagram of a base station according to a third embodiment of the present invention.
  • FIG. 1 illustrates a dielectric filter 100 according to a first embodiment of the present invention.
  • the mass filter includes a cavity 10, a resonator 20, a cover plate 30, and a connecting rib 50.
  • the cavity 10 includes a receiving cavity 11 and a cavity wall 12 surrounding the receiving cavity 11 .
  • the resonator 20 is disposed in the receiving cavity 11 .
  • the resonator 20 includes a support medium 22 and a main medium 23.
  • the support medium 22 is disposed on the bottom wall 112 of the receiving cavity 11 .
  • the main medium 23 is disposed on the support medium 22.
  • the cover plate 30 is capped on the cavity 10 to close the receiving cavity 11 .
  • the connecting rib 50 is received in the receiving cavity 11 and the radiation that is disposed on the central axis I of the resonator 20 to the cavity wall 12 and the central axis of the resonator 20 The radiating surface formed between I.
  • the shortest distance of the connecting rib 50 from the main medium 23 is greater than a preset value.
  • the dielectric filter 100 can be a single cavity dielectric filter.
  • the material of the cavity wall 12 and the cover plate 30 may be a metal material or a material whose surface is plated with metal.
  • the dielectric filter 100 may also be a multi-cavity dielectric filter, wherein the multi-cavity dielectric filter is composed of a plurality of the single-cavity dielectric filters.
  • the shortest distance of the connecting rib 50 from the main medium 23 is greater than a preset value, that is, the distance from any portion of the connecting rib 50 to any position of the main medium 23 is greater than the pre-measurement. Set the value.
  • the connecting ribs 50 may be disposed on the bottom wall 112.
  • the preset value may be 2 mm.
  • the dielectric filter 100 may be a TE 01 mode dielectric filter.
  • the TE 01 mode dielectric filter refers to a filter in which a single cavity is composed of a TE 01 mode resonator.
  • the TE mode in the field distribution of the waveguide is that the electric field is completely distributed in a cross section perpendicular to the direction of propagation of the electromagnetic wave, the magnetic field has a wave shape of the propagation direction component, and TE 01 is the first TE mode in the waveguide of this type.
  • the material of the connecting rib 50 may be a conductive material such as a metal material such as aluminum.
  • the preset value may be adjusted according to an suppression requirement of an actual filter.
  • the dielectric filter 100 may further include a tuning component 40 for fine tuning the operating frequency of the filter.
  • the tuning member 40 may be disposed on the cover plate 30, or may be disposed in other manners, such as being fixed on the main medium 23 or being fixed by the pressure between the main medium 23 and the cover 30, in a specific manner.
  • the embodiment of the invention may not be limited. Taking the tuning member 40 disposed on the cover plate 30 as an example, the main medium 23, the supporting medium 22, and the tuning member 40 are coaxially disposed.
  • the diameter of the main medium 23 is larger than the diameter of the support medium 22.
  • the main medium 23 is different from the material of the support medium 22 .
  • the material of the main medium 23 and the supporting medium 22 may be a material having a high dielectric constant, a low loss, and a stable temperature coefficient, such as ceramics, titanate. Wait. Specifically, the dielectric constant of the main medium 23 is large, and the dielectric constant of the supporting medium 22 is small, so that most of the electromagnetic beam can be trapped inside the main medium 23, so that the dielectric loss is small.
  • the tie bars 50 may also be disposed on the cover plate 30 or the cavity wall 12.
  • the bottom wall 112, the cover plate 30 and the cavity wall 12 may be respectively provided with a connecting rib 50, or the bottom wall 112, the cover plate 30 and the cavity wall 12 There may be a rib 50 on the top.
  • the cavity wall 12 and the cover plate 30 when any one of the bottom wall 112, the cavity wall 12 and the cover plate 30 is provided with a connecting rib 50, or the bottom wall 112, the cavity wall 12 and the When the connecting ribs 50 are respectively disposed on the cover plate 30, the connecting ribs 50 on the bottom wall 112, the cavity wall 12 and the cover plate 30 are not contacted, or are respectively disposed at the bottom The walls 112, the chamber walls 12, and the ribs 50 on the cover 30 are not in contact to prevent structural interference from affecting the performance of the filter.
  • the central axis I of the resonator 20 may be the same as the central axis I of the cover plate 30.
  • the central axis I of the tuning member 40 may be the same as the central axis I of the cover plate 30.
  • the connecting rib 50 is disposed on a radiating surface formed between a radiation line radiated by the central axis I of the resonator 20 toward the cavity wall 12 and a central axis I of the resonator 20, such that The ribs 50 may be perpendicular to the magnetic field of the higher harmonics, thereby affecting the path of the magnetic field of the higher harmonics, thereby changing the frequency of the higher harmonics.
  • Figure 3 shows the electric field distribution of the TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • Figure 4 is a magnetic field distribution diagram of the TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • Fig. 5 is a diagram showing the electric field distribution of the higher harmonics of the TE 01 mode dielectric filter without the ribs.
  • Fig. 6 is a magnetic field distribution diagram of a TE 01 mode of a TE 01 mode dielectric filter without a rib.
  • the electric field of the TE 01 mode is mainly concentrated at the main medium.
  • the connecting rib 50 is received in the receiving cavity 11 , and the shortest distance of the connecting rib 50 from the main medium 23 is greater than the preset value. The effect of the tie bars 50 on the electric field is small and can be ignored.
  • the magnetic field of the TE 01 mode is in a turbine shape, and the connecting rib 50 is received in the receiving cavity 11 and is disposed on the central axis I of the resonator 20 to radiate to the cavity wall 12.
  • the radiating surface formed between the radiation and the central axis I of the resonator 20, that is, the continuous rib 50 is in the tangential direction of the magnetic field, so that the rib 50 has little effect on the magnetic field.
  • the continuous rib 50 has almost no influence on the TE 01 mode, so the frequency and Q value of the TE 01 mode of the dielectric filter 100 are almost unchanged, thereby maintaining the performance of the TE 01 mode. .
  • the so-called TE 01 mode performance is reflected by the frequency and Q value of the TE 01 mode.
  • the Q value of the TE 01 mode is the ratio of stored and lost energy in one resonant period.
  • a part of the electric field of the higher harmonic is perpendicular to the peripheral wall of the main medium 23, and other portions of the electric field of the harmonic are substantially perpendicular to the top and bottom surfaces of the main medium 23.
  • the direction of the electric field of the higher harmonics perpendicular to the portion of the main medium 23 is parallel to the arrangement of the continuous ribs 50; the portion of the electric field perpendicular to the top and bottom surfaces of the main medium 23 and the ribs 50 The sides are parallel. Therefore, the influence of the connecting rib 50 on the electric field of the higher harmonics is small and can be ignored.
  • the magnetic field of the higher harmonics is distributed around the main medium, the supporting medium, the mounting table, and the tuning member.
  • the connecting rib 50 is disposed on a radiating surface formed between a radiation line radiated from the central axis I of the resonator 20 toward the cavity wall 12 and a central axis I of the resonator 20, that is, the continuous rib 50 Aligned with the magnetic field, the ribs 50 affect the path of the magnetic field, resulting in a change in the frequency of the higher harmonics. Further, since the connecting ribs 50 are disposed in the receiving cavity 11, the volume of the air in the receiving cavity 11 is reduced, so that the frequency of the higher harmonics becomes higher, and the harmonics are realized. The wave performs the function of pushing far.
  • the dielectric filter 100 includes the continuous ribs 50.
  • the connecting rib 50 is received in the receiving cavity 11 and is formed between a radiation line radiated from the central axis I of the resonator 20 toward the cavity wall 12 and a central axis I of the resonator 20 Radiation surface.
  • the minimum distance of the connecting ribs 50 from the main medium 23 is greater than a preset value.
  • the connecting rib 50 is disposed on a radiating surface formed between a radiation line radiated from the central axis I of the resonator 20 toward the cavity wall 12 and a central axis I of the resonator 20, the connecting rib 50
  • the magnetic field of the higher harmonics of the dielectric filter 100 is orthogonal to the magnetic field of the dielectric filter 100, so that the link 50 affects the path of the magnetic field, resulting in a change in the frequency of the higher harmonic.
  • the connecting ribs 50 are disposed in the receiving cavity 11, the volume of the air in the receiving cavity 11 is reduced, so that the frequency of the higher harmonics becomes higher, and the harmonics are realized.
  • the wave performs the function of pushing far.
  • the dielectric filter 100 of the present invention maintains the performance of the TE 01 mode while suppressing the higher harmonics.
  • the effect of the transition of the connecting rib 50 on the harmonics depends on the connecting rib 50 occupying the receiving cavity 11 .
  • the size of the volume The larger the volume of the rib 50 occupying the accommodating cavity 11 is, the smaller the volume of air in the accommodating cavity 11 is, so that the frequency of the higher harmonic is higher, and thus the higher order The far-reaching effect of harmonics is better.
  • the resonant cavity 20 may also include a mounting table 21.
  • the mounting table 21 is disposed on the bottom wall 112 of the receiving cavity 11 .
  • the support medium 22 is disposed on the bottom wall 112 of the receiving cavity 11 through the mounting platform 21 .
  • the material of the mounting table 21 may be a metal material such as aluminum. It has been experimentally found that the effect provided by the embodiment of the present invention is better when the resonator 20 is fixed by the mounting table 21. However, it can be understood that the specific resonant cavity can be fixed in some ways, or some new ways in the future, which do not affect the application of the present invention, and are not described herein.
  • the connecting ribs 50 may not only be limited to the radiation radiated to the cavity wall 12 by the central axis I of the resonator 20 and the central axis I of the resonator 20.
  • the path of the magnetic field that affects the higher harmonics causes the frequency variation of the higher harmonics to achieve the same effect of pushing the higher harmonics.
  • connection of the connecting rib 50 is not parallel to the magnetic field of the higher harmonics, and the connecting rib 50 affects the path of the magnetic field of the higher harmonics, and the frequency of the higher harmonics can be changed, but compared with The magnetic field of the continuous rib 50 and the higher harmonics has a small influence on the path of the magnetic field of the higher harmonic and the frequency of changing the harmonic. Therefore, when the connecting rib 50 is disposed on a radiating surface formed between a radiation line radiated from the central axis I of the resonator 20 toward the cavity wall 12 and a central axis I of the resonator 20, the connection The rib 50 has the best degree of pushing the higher harmonics.
  • the connecting ribs 50 may connect the support medium 22 and the cavity wall 12.
  • the connecting rib 50 may be connected to the The mounting table 21 and the chamber wall 12 are mounted.
  • the connecting rib 50 can connect the tuning member 40 and the cavity wall 12 when the connecting rib 50 is disposed on the cover plate 30.
  • the ribs 50 may connect the support medium 22 and the cavity wall 12.
  • the connecting rib 50 when the connecting rib 50 is connected to the mounting table 21 (or the supporting medium 22) and the cavity wall 12, or in other embodiments, the connecting rib 50 connects the resonant member 40 and the Cavity At the time of wall 12, the length of the tie 50 is the longest. In the case where the height of the continuous rib 50 is constant, the length of the continuous rib 50 is the longest, so that the area perpendicular to the high-order harmonic magnetic field is the largest, and the magnetic field of the higher harmonics is most affected, and thus the higher harmonics are The frequency pushes the best.
  • the connecting rib 50 when the connecting rib 50 is disposed on the bottom wall 112, the connecting rib 50 may be integrally formed with the bottom wall 112.
  • the connecting rib 50 When the connecting rib 50 is disposed on the cavity wall 12, the connecting rib 50 may be integrally formed with the cavity wall 12.
  • the connecting rib 50 When the connecting rib 50 is disposed on the cover 30, the connecting rib 50 may be integrally formed with the cover 30. Therefore, when at least one of the bottom wall 112 and the cavity wall 12 is provided with the connecting rib 50, the connecting rib 50 may be formed by die-casting the cavity 10 when the cover body When the continuous rib 50 is provided on the 30, the continuous rib 50 may be formed by die-casting the cover 30 without additional cost.
  • the number of the ribs 50 is at least two, and the at least two ribs 50 are uniformly arranged at the center with the central axis I of the resonator 20 as a center line.
  • the circumference of the line is optional.
  • the radiating surface forms a first projection on the bottom wall.
  • the number of the links 50 is four.
  • the ribs 50 are arranged symmetrically on the bottom wall 112 in a cross.
  • the continuous rib 50 has a rectangular parallelepiped shape.
  • the cross section of the connecting rib 50 is rectangular.
  • the longitudinal section of the continuous rib 50 is rectangular.
  • the tie 50 forms a second projection on the bottom wall 112.
  • the second projection coincides with the first projection at a centerline from the resonator 20 to the cavity wall 12. Therefore, the ribs 50 are orthogonal to the magnetic field of the higher harmonics, thereby more effectively changing the path of the magnetic field, thereby better increasing the frequency of the higher harmonics.
  • the connecting rib 50 may have other shapes, such as an L shape, and the cross section and the longitudinal cross section of the connecting rib 50 may be other shapes.
  • the shape of the continuous rib 50 and the shape of the cross section and the longitudinal section thereof, and whether the continuous rib 50 is a symmetrical structure does not affect the far-reaching effect of the present invention on the higher harmonics, and may not be limited herein.
  • the ribs 50 when the ribs 50 are disposed on the cavity wall 12, the ribs 50 form a third projection on the bottom wall 112. The third projection coincides with the first projection at a centerline from the resonator 20 to the cavity wall 12.
  • the connecting rib 50 is disposed on the cover 30, the rib 50 forms a fourth projection on the cover 30, and the fourth projection is from the central axis of the cover 30 to the A centerline in the direction of the cavity wall 12 coincides with the first projection.
  • each of the ribs 50 is independent, and the shapes of the plurality of ribs 50 may not be identical.
  • the connecting ribs 50 have the same shape.
  • the connecting ribs 50 are square, the height is set to 8 mm, and when the number of the connecting ribs 50 is 1, 2, and 4, respectively, it is obtained through experiments, wherein the 1, 2, and 4 connecting ribs 50 are respectively high.
  • the frequency of the subharmonics is pushed up by 70MHz, 170MHz, and 310MHz.
  • the dielectric filter 200 provided by the second embodiment is similar to the dielectric filter 100 provided by the first embodiment, and the difference is that in the second embodiment, the continuous rib 210 is approximately "L" shaped.
  • the connecting rib 210 includes a supporting portion 211 and a first extending portion 212 extending from a first end of the supporting portion 211 away from the supporting portion. The shortest distance from the main medium 23 in the support portion 211 and the first extension portion 212 is greater than the preset value.
  • the first end of the support portion 211 is one end away from the resonator 20 .
  • the number of the connecting bars 210 is at least two, and the connecting bars 210 are all "L" shaped. In other embodiments, the first end of the support portion 211 may also be adjacent to one end of the resonator 20 .
  • the height of the first extending portion 212 can be adjusted according to actual needs, and the height of the first extending portion 212 can reach the cavity 10 when the connecting rib 210 is disposed on the bottom wall 112.
  • the top portion is as long as the cover 30 is not touched, and the shortest distance of the first extending portion 212 from the main medium 23 is greater than the preset value.
  • the connecting rib 210 is disposed on the cover body, the height of the first extending portion 210 may be adjusted according to actual needs as long as the bottom wall 112 is not touched, and the first extending portion 212 is away from the main body.
  • the shortest distance of the medium 23 is greater than the preset value.
  • the shortest distance of the support portion 211 from the main medium 23 may be greater than a first preset value, and the shortest distance of the first extension portion 212 from the main medium 23 may be greater than the first distance.
  • Two preset values The first preset value is different from the second preset value. Since the first extension portion 212 has a relatively large influence on the magnetic field of the main medium 23 compared to the support portion 211, the second preset value may be selected to be greater than the first preset value.
  • a dielectric filter 300 according to a third embodiment of the present invention.
  • the dielectric filter 300 provided by the third embodiment is similar to the dielectric filter 200 provided by the second embodiment, and the difference is that in the third embodiment, the continuous rib 310 further includes a second extension. 312.
  • the second extending portion 312 is formed to extend from a second end of the supporting portion 211 opposite to the first end in a direction away from the supporting portion 211 .
  • the shortest distance from the main medium 23 in the second extension portion 312 is greater than the preset value.
  • the number of the connecting ribs 210 is at least two, and the connecting ribs 210 are all "concave" shapes.
  • the height of the second extending portion 312 can be adjusted according to actual needs, as long as the cover 30 is not touched, and the second The shortest distance of the extension portion 312 from the main medium 23 may be greater than a preset value.
  • the connecting rib 310 is disposed on the cover 30, the height of the second extending portion 310 may be adjusted according to actual needs as long as the bottom wall 112 is not touched, and the second extending portion 312 is away from the The shortest distance of the main medium 23 may be greater than the preset value.
  • the influence of the shape of the continuous rib 310 on the far-reaching effect of the higher harmonics will now be exemplified.
  • the height of the support portion 211 is 8 mm
  • the first extension portion 212 is the same height as the top of the cavity wall 12
  • the second extension portion 312 is a square of 5*5.
  • the frequency of the wave is pushed up to 370 MHz from 310 MHz when the second extension 312 is never present.
  • the effect of the height of the continuous rib 310 on the far-reaching effect of the higher harmonics will now be exemplified.
  • the four ribs 310 are rectangular, and the ribs 310 are rectangular and arranged symmetrically on the bottom wall 112.
  • the heights of the ribs 310 are set to 2 mm, 4 mm, and 8 mm, respectively. It has been experimentally found that the ribs 310 having a height of 2 mm, 4 mm, and 8 mm respectively push the frequency of the higher harmonics to 50 MHz, 130 MHz, and 310 MHz.
  • the shortest distance of the support portion 211 from the main medium 23 may be greater than a first preset value, and the first extension portion 212 is larger than the shortest distance of the main medium.
  • the shortest distance of the second extension portion 312 from the main medium 23 is greater than a third preset value.
  • the first preset value may be different from the second and third preset values.
  • the second preset value may also be different from the third preset value. Since the first extension portion 212 has a relatively large influence on the magnetic field of the main medium 23 compared to the support portion 211, the second extension portion 312 is opposite to the main medium compared to the support portion 211. The influence of the magnetic field in 23 is relatively large, so that the second and third preset values may be selected to be greater than the first preset value.
  • a dielectric filter may also be comprised of one or more than one of the above embodiments.
  • the walls of the chamber may be connected and the cover plates may be connected.
  • This combination method can refer to the existing method or the way developed in the future, and will not be described here.
  • a second embodiment of the present invention provides a dielectric filter assembly 1000.
  • the dielectric filter assembly 1000 includes a low pass filter 1100 and a dielectric filter.
  • the low pass filter 1100 is cascaded with the dielectric filter to achieve a better filter performance.
  • the frequency of the higher harmonics of the TE 01 is increased due to the extension of the higher harmonics of the TE 01 by the ribs 50.
  • the low pass filter 1100 cascades the dielectric filter to provide suppression of higher harmonics of the TE 01 mode, so that the filtering effect of the dielectric filter and the low pass filter 1100 is better.
  • the cutoff frequency of the low-pass filter in the practical application needs to be kept at a certain interval from the passband frequency of the dielectric filter.
  • the dielectric filter passband frequency is 2620MHz-2690MHz
  • the cutoff frequency of the low pass filter 1100 is generally required to be higher than 3200MHz, so the low pass filter 1100 can only suppress the higher harmonics generated above the 3200MHz generated in the dielectric filter. . If the rib 50 pushes the higher harmonic frequency below 3200 MHz farther than 3200 MHz, so that the low pass filter can suppress the harmonic and obtain good overall filter performance.
  • the dielectric filter is the dielectric filter 100 provided in the first embodiment described above.
  • the structure and function of the dielectric filter 100 have been specifically described in the first embodiment, and thus will not be described herein.
  • a third embodiment of the present invention provides a base station 2000.
  • the base station 2000 includes the dielectric filter 100 provided by the first embodiment described above, or the dielectric filter assembly 1000 provided by the second embodiment.
  • the dielectric filter component 1000 includes a low pass filter 1100 and a dielectric filter.
  • the low pass filter 1100 is cascaded with the dielectric filter to achieve a better filter performance.
  • the dielectric filter is the dielectric filter 100 provided in the first embodiment described above. The structure and function of the dielectric filter 100 have been specifically described in the first embodiment, and thus will not be described herein.
  • the dielectric filter may also be other dielectric filters provided by the first embodiment.
  • the dielectric filter 100 is further applied to a radio frequency module.
  • the radio frequency module may be a radio frequency module in the base station 2000, or may be a radio frequency module in other communication equipment, such as in a radar system.
  • the dielectric filter 100 can also be used for a transceiver or the like.
  • the transceiver can also be a module in the base station 2000.
  • the base station 2000 includes the dielectric filter component 1000.
  • the dielectric filter assembly 1000 includes a low pass filter 1100 and the dielectric filter 100.
  • the dielectric filter 100 includes the tie bars 50.
  • the connecting rib 50 receiving cavity is received in the receiving cavity 11 .
  • the minimum distance of the connecting ribs 50 from the main medium 23 is greater than a preset value. Since the rib 50 is orthogonal to the magnetic field of the higher harmonics of the dielectric filter 100, the rib 50 affects the path of the magnetic field, resulting in a frequency change of the higher harmonic. Further, since the connecting ribs 50 are disposed in the receiving cavity 11, the volume of the air in the receiving cavity 11 is reduced, so that the frequency of the higher harmonics becomes higher, and the harmonics are realized. The wave performs the function of pushing far.
  • the base station 2000 of the present invention maintains the performance of the TE 01 mode while suppressing the higher harmonics.

Abstract

本发明提供了一种介质滤波器,包括腔体、谐振腔、盖板及连筋。腔体包括收容空腔及包围收容空腔的腔壁。谐振器设置于收容空腔内,谐振器包括支撑介质及主介质,支撑介质设置于收容空腔内的底壁上;主介质设置于支撑介质上。盖板盖合于腔体上,以封闭收容空腔。连筋收容于收容空腔内,且设置于谐振器的中心轴向腔壁辐射的辐射线与谐振器的中心轴之间形成的辐射面上,连筋距离所述主介质的最短距离大于预设值。本发明实现了对高次谐波进行推远的目的。本发明还提供了一种介质滤波器组件及基站。

Description

一种介质滤波器 技术领域
本发明涉及通信技术领域,尤其涉及一种介质滤波器。
背景技术
由于无线电通信技术的发展,低成本、高性能的无线通信收发系统需要高性能的滤波器。介质滤波器由于其体积小、损耗小、选择性高而逐渐广泛应用到各类通信系统中。介质滤波器利用介质材料(如陶瓷)的低损耗、高介电常数、频率温度系数和热膨胀系数小、可承受高功率等特点设计制成,通常可由数个长型谐振器纵向多级串联或并联的梯形线路构成,其特点是插入损耗小、功率容量大、带宽窄,特别适合900MHz,1.8GHz,2.4GHz,5.8GHz的滤波,可以应用于便携电话、汽车电话、无线耳机、无线麦克风、无线电台、无绳电话或一体化收发双工器等的级向耦合滤波。所述介质滤波器包括腔体、固定在腔体内的介质谐振器、盖板及调试螺钉。其中,TE01模介质滤波器是介质滤波器的一种,其具有良好的单腔Q值特性。因此,TE01模介质滤波器给广泛应用于无线通信系统中,用于降低系统损耗提高效率。但是,TE01模介质滤波器也存在以下缺点:由于TE01模介质滤波器的高次谐波频率靠近TE01模频率,使得TE01模介质滤波器对高次谐波的抑制难以实现。
发明内容
本发明实施例所要解决的技术问题在于,提供一种介质谐振器,以对介质滤波器内的高次谐波进行推远,从而实现对高次谐波的抑制。
第一方面,提供了一种介质滤波器,包括:
腔体,所述腔体包括收容空腔及包围所述收容空腔的腔壁;
谐振器,所述谐振器设置于所述收容空腔内,所述谐振器包括支撑介质及主介质,所述支撑介质设置于所述收容空腔内的底壁上;所述主介质设置于所述支撑介质上;
盖板,所述盖板盖合于所述腔体上,以封闭所述收容空腔;及
连筋,所述连筋收容于所述收容空腔内,且设置于所述谐振器的中心轴向所述腔壁辐射的辐射线与所述谐振器的中心轴之间形成的辐射面上,所述连筋 距离所述主介质的最短距离大于预设值。
在第一方面的第一种可能的实现方式中,所述连筋设置于所述收容空腔的底壁、盖板和腔壁中的至少一个上。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述介质滤波器还包括调谐件,所述调谐件设置于所述盖板上,所述调谐件的中心轴与所述盖板的中心轴相同,当所述收容空腔的底壁和腔壁中的至少一个上设置有所述连筋时,所述连筋连接所述支撑介质及所述收容空腔的腔壁;当所述盖板上设置有所述连筋时,所述连筋连接所述调谐件及所述收容空腔的腔壁。
结合第一方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述辐射面在所述底壁上形成第一投影,当所述收容空腔的底壁上设置有所述连筋时,所述连筋在所述底壁上形成第二投影,所述第二投影在从所述谐振器到所述腔壁方向的中心线与所述第一投影重合,当所述腔壁上设置有所述连筋时,所述连筋在所述底壁上形成第三投影,所述第三投影在从所述谐振器到所述腔壁方向的中心线与所述第一投影重合,当所述盖板上设置有所述连筋时,所述连筋在所述盖板上形成第四投影,所述第四投影在从所述盖板的中心轴到所述腔壁方向的中心线与所述第一投影重合。
结合第一方面的第一至第三种中任一种可能的实现方式中,在第四种可能的实现方式中,当所述收容空腔的底壁上设置有所述连筋时,所述连筋与所述底壁一体成型,当所述收容空腔的腔壁上设置有所述连筋时,所述连筋与所述腔壁一体成型,当所述盖板上设置有所述连筋时,所述连筋与所述盖体一体成型。
在第一方面的第五种可能的实现方式中,或结合第一方面的第一至第四种中任一种可能的实现方式,在在第五种可能的实现方式中,所述连筋包括支撑部及由所述支撑部的第一端向远离所述支撑部的方向延伸的第一延伸部,所述支撑部及所述第一延伸部中距离所述主介质的最短距离大于所述预设值。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述连筋还包括第二延伸部,所述第二延伸部由所述支撑部的与所述第一端相对的第二端向远离所述支撑部的方向延伸形成,所述第二延伸部中距离所述主介质的最短距离大于所述预设值。
在第一方面的第七种可能的实现方式中,或结合第一方面的第一至第六种中任一种可能的实现方式,在在第七种可能的实现方式中,连筋的数量为至少两个,所述至少两个连筋以所述谐振器的中心轴为中心线均匀地排布在所述中心线的周围。
结合第一方面的第一至第七种中任一种可能的实现方式,在第八种可能的实现方式中,当所述底壁、腔壁及盖板中任两个均设置有连筋时,设置于任两个上的连筋不接触,或当所述底壁、腔壁及盖板均设置有连筋时,分别设置于所述底壁、腔壁及盖板上的连筋均未接触。
在第一方面的第九种可能的实现方式中,或结合第一方面的第一至第八种中任一种可能的实现方式,在在第九种可能的实现方式中,所述预设值为2mm。
第二方面提供一种介质滤波器组件,包括低通滤波器及上述第一方面的各个实现方式中提供的介质谐振器,所述低通滤波器与所述介质滤波器级联。
第三方面提供一种基站,包括上述第二方面提供的介质滤波器组件。
本发明中,所述介质滤波器包括腔体、谐振腔、盖板及连筋。所述腔体包括收容空腔及包围所述收容空腔的腔壁。所述谐振器设置于所述收容空腔内,所述谐振器包括支撑介质及主介质,所述支撑介质设置于所述收容空腔内的底壁上;所述主介质设置于所述支撑介质上。所述盖板盖合于所述腔体上,以封闭所述收容空腔。所述连筋收容于所述收容空腔内,且设置于所述谐振器的中心轴向所述腔壁辐射的辐射线与所述谐振器的中心轴之间形成的辐射面上,所述连筋距离所述主介质的最短距离大于预设值。因此,由于所述连筋设置于所述谐振器的中心轴向所述腔壁辐射的辐射线与所述谐振器的中心轴I之间形成的辐射面上,所述连筋与所述介质滤波器的高次谐波的磁场正交,故所述连筋会影响所述磁场的路径,导致所述高次谐波的频率变化。进一步地,由于所述连筋设置在所述收容空腔内,使得所述收容空腔内空气的体积变小,从而使得高次谐波的频率变高,实现了对高次谐波进行推远的功能。本发明介质滤波器在对高次谐波的进行推远抑制的同时还保持了TE01模的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施方式提供的介质滤波器的部分分解示意图。
图2是图1的纵截面图。
图3是未设有连筋的TE01模介质滤波器的TE01模的电场分布图。
图4是未设有连筋的TE01模介质滤波器的TE01模的磁场分布图。
图5是未设有连筋的TE01模介质滤波器的高次谐波的电场分布图。
图6是未设有连筋的TE01模介质滤波器的TE01模的磁场分布图。
图7是图1中的腔体的俯视图。
图8是本发明第一实施方式提供的另一种介质滤波器的纵截面图。
图9是本发明第一实施方式提供的再一种介质滤波器的纵截面图。
图10是本发明第二实施方式提供的介质滤波器组件的框图。
图11是本发明第三实施方式提供的基站的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面通过具体实施例,分别进行详细的说明。
请参阅图1,为本发明第一实施方式提供的一种介质滤波器100。所述介 质滤波器包括腔体10、谐振器20、盖板30及连筋50。所述腔体10包括收容空腔11及包围所述收容空腔11的腔壁12。所述谐振器20设置于所述收容空腔11内。所述谐振器20包括支撑介质22及主介质23。所述支撑介质22设置于所述收容空腔11的底壁112上。所述主介质23设置于所述支撑介质22上。所述盖板30盖合于所述腔体10上,以封闭所述收容空腔11。所述连筋50收容于收容空腔于所述收容空腔11内,且设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上。所述连筋50距离所述主介质23的最短距离大于预设值。
其中,所述介质滤波器100可以为单腔介质滤波器。通常,所述腔壁12和盖板30的材料可以是金属材料,或是表面镀有金属的材料。在其他实施方式中,所述介质滤波器100也可以为多腔介质滤波器,其中,多腔介质滤波器由多个所述单腔介质滤波器组成。
需要说明的是,所述连筋50距离所述主介质23的最短距离大于预设值即为所示连筋50上的任何部位到所述主介质23的任何位置的距离均大于所述预设值。
在本实施方式中,所述连筋50可以设置于所述底壁112上。所述预设值可以为2mm。所述介质滤波器100可以为TE01模介质滤波器。所谓TE01模介质滤波器是指单腔由TE01模谐振器组成的滤波器。波导的场分布中TE模是电场完全分布在与电磁波传播方向垂直的横截面内,磁场具有传播方向分量的波型,TE01是该类型波导中的第一个TE波型。所述连筋50的材质可以为导电材料,如金属材质,比如铝。在其他的实施方式中,所述预设值可以根据实际滤波器的抑制度要求进行调整。
可选地,所述介质滤波器100还可以包括调谐件40,用于对该滤波器的工作频率进行细调。所述调谐件40可以设置于所述盖板30上,也可以有其他设置方式,比如固定于主介质23上,或是通过主介质23和盖板30之间的压力进行固定,具体方式在本发明实施例中可以不予限定。以调谐件40设置于盖板30上为例,所述主介质23、所述支撑介质22及所述调谐件40为同轴设置。所述主介质23的直径大于所述支撑介质22的直径。所述主介质23与所述支撑介质22的材质不同。所述主介质23及所述支撑介质22的材料可以是具有高介电常数,低损耗及稳定的温度系数等性质的材料,比如陶瓷,钛酸盐 等。具体地,所述主介质23的介电常数大,所述支撑介质22的介电常数小,这样可以将大部分的电磁波束缚在所述主介质23里面,从而使得介质损耗小。
在其他实施方式中,所述连筋50也可以设置于盖板30或腔壁12上。当然,所述底壁112、所述盖板30及所述腔壁12中任两个上可以分别设置有连筋50,或所述底壁112、所述盖板30及所述腔壁12上可以分别设置有连筋50。
需要说明的是,当所述底壁112、所述腔壁12及所述盖板30中任两个上分别设置有连筋50,或所述底壁112、所述腔壁12及所述盖板30上均分别设置有连筋50时,设置所述底壁112、所述腔壁12及所述盖板30中任两个上的连筋50未接触,或分别设置于所述底壁112、所述腔壁12及所述盖板30上的连筋50均未接触,以防止出现结构干涉影响滤波器的性能。
可选地,所述谐振器20的中心轴I可以与所述盖板30的中心轴I相同。
可选地,所述调谐件40的中心轴I可以与所述盖板30的中心轴I相同。
需要说明的是,所述连筋50设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,使得所述连筋50可以与高次谐波的磁场垂直,从而影响高次谐波的磁场的路径,进而改变高次谐波的频率。
对于TE01模介质滤波器,其具有高次谐波频率靠近TE01模频率的特性。请继续参阅图3-6,图3为未设有连筋的TE01模介质滤波器的TE01模的电场分布图。图4为未设有连筋的TE01模介质滤波器的TE01模的磁场分布图。图5为未设有连筋的TE01模介质滤波器的高次谐波的电场分布图。图6为未设有连筋的TE01模介质滤波器的TE01模的磁场分布图。
对于TE01模:
图3中,TE01模的电场主要集中在主介质处。在本发明实施例中,所述连筋50收容于所述收容空腔11内,且所述连筋50距离所述主介质23的最短距离大于所述预设值。所述连筋50对所述电场的影响很小,可以忽略不计。
图4中,所述TE01模的磁场呈涡轮状,所述连筋50收容于所述收容空腔11内,且设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,即所述连筋50在所述磁场的切线方向上,故所述连筋50对所述磁场几乎没有影响。
因此,根据分析可知:所述连筋50对所述TE01模几乎未产生影响,因此所述介质滤波器100的TE01模的频率及Q值几乎不变,从而保持了TE01模的性能。所谓TE01模性能由TE01模的频率及Q值体现。所谓TE01模的Q值为在一个谐振周期内存储与损耗能量的比值。
对于高次谐波:
图5中,高次谐波的电场的一部分上垂直于主介质23的周壁,高次谐波电场的其他部分基本上垂直于所述主介质23的顶面及底面。高次谐波的垂直于主介质23的这部分电场的方向与所述连筋50的排布方式平行;垂直于所述主介质23的顶面及底面的这部分电场与所述连筋50的侧面是平行的。故所述连筋50对高次谐波的电场的影响很小,可以忽略。
图6中,高次谐波的磁场环绕主介质、支撑介质、安装台及调谐件分布。所述连筋50设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,即所述连筋50与所述磁场正交,故所述连筋50会影响所述磁场的路径,导致所述高次谐波的频率变化。进一步地,由于所述连筋50设置在所述收容空腔11内,使得所述收容空腔11内空气的体积变小,从而使得高次谐波的频率变高,实现了对高次谐波进行推远的功能。
因此,根据上述分析可知:在本实施方式中,所述介质滤波器100包括所述连筋50。所述连筋50收容于所述收容空腔11内,设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上。所述连筋50距离所述主介质23的最小距离大于预设值。由于所述连筋50设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,所述连筋50与所述介质滤波器100的高次谐波的磁场正交,故所述连筋50会影响所述磁场的路径,导致所述高次谐波的频率变化。进一步地,由于所述连筋50设置在所述收容空腔11内,使得所述收容空腔11内空气的体积变小,从而使得高次谐波的频率变高,实现了对高次谐波进行推远的功能。本发明介质滤波器100在对高次谐波的进行推远抑制的同时还保持了TE01模的性能。
需要说明的是,无论所述连筋50设置于所述收容空腔11的哪个位置,所述连筋50对高次谐波的推移效果取决于所述连筋50占有所述收容空腔11的 体积的大小。所述连筋50占有所述收容空腔11的体积越大,所述收容空腔11内的空气体积越小,从而导致所述高次谐波的频率越高,进而使得对所述高次谐波的推远效果更好。
可选地,谐振腔20还可以包括安装台21。所述安装台21设置于所述收容空腔11的底壁112上。所述支撑介质22通过所述安装台21设置于所述收容空腔11的底壁112。其中,所述安装台21的材质可以为金属材质,如铝。经实验发现,当谐振器20通过所述安装台21固定时,本发明实施例中提供的方案的效果较好。但是,可以理解的是,具体的谐振腔的固定方式可以参考现有的一些方式,或是未来新出现的一些方式,其并不影响本发明的应用,在此不予赘述。
在其他实施方式中,所述连筋50也可以不仅仅只限定于设置在所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,只要所述连筋50设置于TE01模的磁场的切线方向上,所述连筋50就会与所述介质滤波器100的高次谐波的磁场正交,从而影响高次谐波的磁场的路径,导致所述高次谐波的频率变化,达到相同对高次谐波进行推远的效果。
另外,所述连筋50的设置只要与高次谐波的磁场不平行,所述连筋50就会影响高次谐波的磁场的路径,可以改变高次谐波的频率,只是相较于所述连筋50与高次谐波的磁场正交对高次谐波的磁场的路径及改变高次谐波的频率的影响小。因此,当所述连筋50设置于所述谐振器20的中心轴I向所述腔壁12辐射的辐射线与所述谐振器20的中心轴I之间形成的辐射面上,所述连筋50对高次谐波进行推远的程度最好。可选地,所述连筋50可以连接所述支撑介质22及所述腔壁12。当所述谐振腔20还包括所述安装台21,且所述支撑介质22通过所述安装台21设置于所述收容空腔11的底壁112上时,所述连筋50可以连接所述安装台21及所述腔壁12。
在其他实施例中,当所述盖板30上设置有所述连筋50时,所述连筋50可以连接所述调谐件40及所述腔壁12。当所述腔壁12上设置有所述连筋50时,所述连筋50可以连接支撑介质22及所述腔壁12。
需要说明的是,当所述连筋50连接所述安装台21(或支撑介质22)及所述腔壁12,或在其他实施方式中,所述连筋50连接所述谐振件40及所述腔 壁12时,所述连筋50的长度最长。在所述连筋50高度不变的情况下,所述连筋50长度最长,从而与高次谐波磁场垂直的面积最大,对高次谐波的磁场影响最大,进而对高次谐波的频率推远效果最好。
可选的,当所述底壁112上设置有所述连筋50时,所述连筋50可以与所述底壁112一体成型。当所述腔壁12上设置有所述连筋50时,所述连筋50可以与所述腔壁12一体成型。当所述盖体30上设置有所述连筋50时,所述连筋50可以与所述盖体30一体成型。因此,当所述底壁112和所述腔壁12中的至少一个设置有所述连筋50时,所述连筋50可以是通过对所述腔体10进行压铸形成,当所述盖体30上设置有所述连筋50时,所述连筋50可以是通过对所述盖板30进行压铸形成,不增加额外成本。
请参阅图7,可选地,所述连筋50的数量为至少两个,所述至少两个连筋50以所述谐振器20的中心轴I为中心线均匀地排布在所述中心线的周围可选地。所述辐射面在所述底壁上形成第一投影。具体地,在本实施方式中,所述连筋50的数量为4个。所述连筋50呈十字对称地排布于所述底壁112上。所述连筋50呈长方体状。所述连筋50的横截面呈长方形。所述连筋50的纵截面呈长方形。所述连筋50在所述底壁112上形成第二投影。所述第二投影在从所述谐振器20到所述腔壁12方向的中心线与所述第一投影重合。因此,所述连筋50与所述高次谐波的磁场正交,从而更有效地改变磁场的路径,从而更好地提高高次谐波的频率。
需要说明的是,所述连筋50也可以为其他形状,如L形等;所述连筋50的横截面及纵截面也可以为其他形状。所述连筋50的形状及其横截面、纵截面的形状,所述连筋50是否是对称结构均不影响本发明的对高次谐波的推远效果,在此可以不予限定。
在其他实施方式中,当所述腔壁12上设置有所述连筋50时,所述连筋50在所述底壁112上形成第三投影。所述第三投影在从所述谐振器20到所述腔壁12方向的中心线与所述第一投影重合。当所述盖板30上设置有所述连筋50时,所述连筋50在所述盖板30上形成第四投影,所述第四投影在从所述盖板30的中心轴到所述腔壁12方向的中心线与所述第一投影重合。
需要说明的是,每一连筋50均为独立的,多个连筋50的形状也可以不完全相同。在本实施方式中,所述连筋50的形状相同。
对于所述连筋的数量:所述连筋50的数量越多,所述收容空腔11内的空气体积越小,高次谐波的频率就越高,从而使得连筋50对高次谐波的推远效果越高。
现举例说明所述连筋50的数量对高次谐波的推远效果的影响。其中,所述连筋50为方形,高度设定为8mm,所述连筋50的数量分别为1、2、4条时,经过实验得到,其中1、2、4根连筋50分别将高次谐波的频率被推高了70MHz、170MHz、310MHz。
请参阅图8,本发明第一实施方式提供的另一种介质滤波器200。所述第二实施方式提供的介质滤波器200与所述第一实施方式提供的介质滤波器100相似,两者不同在于:在第二实施方式中,所述连筋210大概呈“L”形。所述连筋210包括支撑部211及由所述支撑部211的第一端向远离所述支撑部的方向延伸的第一延伸部212。所述支撑部211及所述第一延伸部212中距离所述主介质23的最短距离大于所述预设值。
在本实施方式中,所述支撑部211的第一端为远离所述谐振器20的一端。所述连筋210的数量为至少两个,所述连筋210均为“L”形。在其他实施方式中,所述支撑部211的第一端也可以为靠近所述谐振器20的一端。
其中,当所述连筋210设置于所述底壁112上时,所述第一延伸部212的高度可以根据实际需要调整,所述第一延伸部212的高度可以达到所述腔体10的顶部,只要未接触到所述盖体30,且所述第一延伸部212距离所述主介质23的最短距离大于所述预设值即可。当所述连筋210设置于盖体上时,所述第一延伸部210的高度可以根据实际需要调整,只要不接触到所述底壁112,且所述第一延伸部212距离所述主介质23的最短距离大于所述预设值即可。
当然,所述第一延伸部212的高度越高,所述连筋210的体积越大,占有所述收容空腔的体积越大,导致所述收容空腔内的空气体积越小,所述高次谐波的频率越高,对高次谐波的推远效果更好。
另外,在其他的实施方式中,所述支撑部211距离所述主介质23的最短距离可以大于第一预设值,所述第一延伸部212距离所述主介质23的最短距离可以大于第二预设值。所述第一预设值与所述第二预设值不同。由于所述第一延伸部212相较于所述支撑部211对所述主介质23处于的磁场影响相对较大,故可以选择所述第二预设值大于所述第一预设值。
需要说明的是,所述第一延伸部212及所述支撑部211距离所述主介质23越远,对所述主介质23处的磁场影响越小。
请参阅图9,本发明第三实施方式提供的介质滤波器300。所述第三实施方式提供的介质滤波器300与所述第二实施方式提供的介质滤波器200相似,两者不同在于:在第三实施方式中,所述连筋310还包括第二延伸部312。所述第二延伸部312由所述支撑部211的与所述第一端相对的第二端向远离所述支撑部211的方向延伸形成。所述第二延伸部312中距离所述主介质23的最短距离大于所述预设值。
在本实施方式中,所述连筋210的数量为至少两个,所述连筋210均为“凹”形。
其中,当所述连筋310设置于底壁112或腔壁12上时,所述第二延伸部312的高度可以根据实际需要调整,只要未接触到所述盖体30,且所述第二延伸部312距离所述主介质23的最短距离大于预设值即可。当所述连筋310设置于盖体30上时,所述第二延伸部310的高度可以根据实际需要调整,只要不接触到所述底壁112,且所述第二延伸部312距离所述主介质23的最短距离大于所述预设值即可。
当然,所述第二延伸部312的高度越高,所述连筋310的体积越大,占有所述收容空腔12的体积越大,导致所述收容空腔12内的空气体积越小,所述高次谐波的频率越高,对高次谐波的推远效果更好。
现举例说明所述连筋310的形状对高次谐波的推远效果的影响。其中,所述支撑部211的高度为8mm,所述第一延伸部212与所述腔壁12的顶部同高,所述第二延伸部312为5*5的方形,经过实验得到高次谐波的频率从未有所述第二延伸部312时的310MHz被推高到370MHz。
现举例说明所述连筋310的高度对高次谐波的推远效果的影响。其中,所述连筋310为4根,且4根连筋310为长方形,且呈十字对称地排布于底壁112上,设定所述连筋310的高度分别为2mm、4mm、8mm,经过实验得到,其中高度为2mm、4mm、8mm的连筋310分别将高次谐波的频率被推高为50MHz、130MHz、310MHz。
另外,在其他的实施方式中,所述支撑部211距离所述主介质23的最短距离可以大于第一预设值,所述第一延伸部212距离所述主介质的最短距离大 于第二预设值。所述第二延伸部312距离所述主介质23的最短距离大于第三预设值。所述第一预设值可以与所述第二及第三预设值不同。所述第二预设值也可以与所述第三预设值不同。由于所述第一延伸部212相较于所述支撑部211对所述主介质23处于的磁场影响相对较大,所述第二延伸部312相较于所述支撑部211对所述主介质23处于的磁场影响相对较大,故可以选择所述第二及第三预设值均大于所述第一预设值。
需要说明的是,所述第一延伸部212、所述第二延伸部312及所述支撑部211距离所述主介质23越远,对所述主介质23处的磁场影响越小。
可以理解的是,一个介质滤波器还可以由一个或多于一个以上实施例中的任意一种介质滤波器组成。示例的,多于一个介质滤波器组合时,其腔壁可以是相连的,盖板也可以是相连的。此组合方式可以参考现有的方式或未来发展出的方式,在此不予赘述。
请参阅图10,本发明第二实施方式提供一种介质滤波器组件1000。所述介质滤波器组件1000包括低通滤波器1100及介质滤波器。所述低通滤波器1100与所述介质滤波器级联,以实现一个更好的滤波器性能。
其中,由于所述连筋50对TE01的高次谐波的推远,使得TE01的高次谐波的频率被提高。所述低通滤波器1100级联所述介质滤波器,可以对TE01模的高次谐波提供抑制,使得介质滤波器与低通滤波器1100级联后的滤波效果更好。
可选地,为减小低通滤波器1100对级联后整体滤波器的插损影响,实际应用中低通滤波器的截止频率需要与介质滤波器的通带频率保持一定的间隔。例如介质滤波器通带频率2620MHz-2690MHz,低通滤波器1100的截止频率一般要求高于3200MHz,因此低通滤波器1100只能对介质滤波器中产生的高于3200MHz的高次谐波提供抑制。如果所述连筋50把低于3200MHz的高次谐波频率推远到高于3200MHz,从而使得低通滤波器能够抑制该谐波而得到好的整体滤波器性能。
在本实施方式中,所述介质滤波器为上述第一实施方式提供的介质滤波器100。所述介质滤波器100的结构及功能已在第一实施方式中进行了具体的说明,故在此不再赘述。
在其他实施方式中,所述介质滤波器也可以为第一实施方式提供的其他介 质滤波器。请参阅图11,本发明第三实施方式提供一种基站2000。所述基站2000包括上述第一实施方式提供的介质滤波器100,或第二实施方式提供的介质滤波器组件1000。
其中,所述介质滤波器组件1000包括低通滤波器1100及介质滤波器。所述低通滤波器1100与所述介质滤波器级联,以实现一个更好的滤波器性能。所述介质滤波器为上述第一实施方式提供的介质滤波器100。所述介质滤波器100的结构及功能已在第一实施方式中进行了具体的说明,故在此不再赘述。
所述介质滤波器也可以为第一实施方式提供的其他介质滤波器。
可选的,所述介质滤波器100还应用于射频模块。可选的,该射频模块可以为基站2000中的射频模块,也可以为其他通讯设备中的射频模块,如雷达系统中的。
可选的,所述介质滤波器100也可以用于收发信机等。该收发信机也可以为所述基站2000中的模块。
在本实施方式中,所述基站2000包括所述介质滤波器组件1000。所述介质滤波器组件1000包括低通滤波器1100及所述介质滤波器100。所述介质滤波器100包括所述连筋50。所述连筋50收容空腔收容于所述收容空腔11内。所述连筋50距离所述主介质23的最小距离大于预设值。由于所述连筋50与所述介质滤波器100的高次谐波的磁场正交,故所述连筋50会影响所述磁场的路径,导致所述高次谐波的频率变化。进一步地,由于所述连筋50设置在所述收容空腔11内,使得所述收容空腔11内空气的体积变小,从而使得高次谐波的频率变高,实现了对高次谐波进行推远的功能。本发明基站2000在对高次谐波的进行推远抑制的同时还保持了TE01模的性能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种介质滤波器,包括:
    腔体,所述腔体包括收容空腔及包围所述收容空腔的腔壁;
    谐振器,所述谐振器设置于所述收容空腔内,所述谐振器包括支撑介质及主介质,所述支撑介质设置于所述收容空腔内的底壁上;所述主介质设置于所述支撑介质上;
    盖板,所述盖板盖合于所述腔体上,以封闭所述收容空腔;及
    连筋,所述连筋收容于所述收容空腔内,且设置于所述谐振器的中心轴向所述腔壁辐射的辐射线与所述谐振器的中心轴之间形成的辐射面上,所述连筋距离所述主介质的最短距离大于预设值。
  2. 如权利要求1所述的介质滤波器,其特征在于,所述连筋设置于所述收容空腔的底壁、盖板和腔壁中的至少一个上。
  3. 如权利要求2所述的介质滤波器,其特征在于,所述介质滤波器还包括调谐件,所述调谐件设置于所述盖板上,所述调谐件的中心轴与所述盖板的中心轴相同,当所述收容空腔的底壁和腔壁中的至少一个上设置有所述连筋时,所述连筋连接所述支撑介质及所述收容空腔的腔壁;当所述盖板上设置有所述连筋时,所述连筋连接所述调谐件及所述收容空腔的腔壁。
  4. 如权利要求2-3任一项所述的介质滤波器,其特征在于,所述辐射面在所述底壁上形成第一投影,当所述收容空腔的底壁上设置有所述连筋时,所述连筋在所述底壁上形成第二投影,所述第二投影在从所述谐振器到所述腔壁方向的中心线与所述第一投影重合,当所述腔壁上设置有所述连筋时,所述连筋在所述底壁上形成第三投影,所述第三投影在从所述谐振器到所述腔壁方向的中心线与所述第一投影重合,当所述盖板上设置有所述连筋时,所述连筋在所述盖板上形成第四投影,所述第四投影在从所述盖板的中心轴到所述腔壁方向的中心线与所述第一投影重合。
  5. 如权利要求2-4任一项所述的介质滤波器,其特征在于,当所述收容空腔的底壁上设置有所述连筋时,所述连筋与所述底壁一体成型,当所述收容空腔的腔壁上设置有所述连筋时,所述连筋与所述腔壁一体成型,当所述盖板上设置有所述连筋时,所述连筋与所述盖体一体成型。
  6. 如权利要求1-5任一项所述的介质滤波器,其特征在于,所述连筋包括支撑部及由所述支撑部的第一端向远离所述支撑部的方向延伸的第一延伸部,所述支撑部及所述第一延伸部中距离所述主介质的最短距离大于所述预设值。
  7. 如权利要求6所述的介质滤波器,其特征在于,所述连筋还包括第二延伸部,所述第二延伸部由所述支撑部的与所述第一端相对的第二端向远离所述支撑部的方向延伸形成,所述第二延伸部中距离所述主介质的最短距离大于所述预设值。
  8. 如权利要求1-7任一项所述的介质滤波器,其特征在于,连筋的数量为至少两个,所述至少两个连筋以所述谐振器的中心轴为中心线均匀地排布在所述中心线的周围。
  9. 如权利要求2-8所述的介质滤波器,其特征在于,当所述底壁、腔壁及盖板中任两个均设置有连筋时,设置于任两个上的连筋不接触,或当所述底壁、腔壁及盖板均设置有连筋时,分别设置于所述底壁、腔壁及盖板上的连筋均未接触。
  10. 如权利要求1-9任一项所述的介质滤波器,其特征在于,所述预设值为2mm。
  11. 一种介质滤波器组件,包括低通滤波器及如权利要求1-10任一项所述的介质谐振器,所述低通滤波器与所述介质滤波器级联。
  12. 一种基站,包括如权利要求11所述的介质滤波器组件。
PCT/CN2015/077805 2015-04-29 2015-04-29 一种介质滤波器 WO2016172880A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/077805 WO2016172880A1 (zh) 2015-04-29 2015-04-29 一种介质滤波器
EP15890260.1A EP3280000B1 (en) 2015-04-29 2015-04-29 Dielectric filter
CN201580054116.6A CN107112616B (zh) 2015-04-29 2015-04-29 一种介质滤波器
KR1020177034053A KR102013056B1 (ko) 2015-04-29 2015-04-29 유전체 필터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077805 WO2016172880A1 (zh) 2015-04-29 2015-04-29 一种介质滤波器

Publications (1)

Publication Number Publication Date
WO2016172880A1 true WO2016172880A1 (zh) 2016-11-03

Family

ID=57198938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077805 WO2016172880A1 (zh) 2015-04-29 2015-04-29 一种介质滤波器

Country Status (4)

Country Link
EP (1) EP3280000B1 (zh)
KR (1) KR102013056B1 (zh)
CN (1) CN107112616B (zh)
WO (1) WO2016172880A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816971A (zh) * 2020-08-07 2020-10-23 物广系统有限公司 一种控制谐波远近的谐振结构及介质滤波器
CN117578053B (zh) * 2024-01-17 2024-03-29 成都宇恒博电子科技有限公司 一种改善滤波器带外抑制性能的腔体滤波器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201868545U (zh) * 2010-11-05 2011-06-15 升达科技股份有限公司 空腔滤波器的高次谐波抑制装置
CN202217767U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 一种带传输零点的低通滤波器
CN202217759U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 抑制高次模的带阻滤波器
WO2013066922A1 (en) * 2011-10-31 2013-05-10 Powermag, LLC Power conditioning and saving device
KR20130050623A (ko) * 2011-11-08 2013-05-16 주식회사 에이스테크놀로지 유전체 공진기 필터
CN103633402A (zh) * 2013-12-16 2014-03-12 华为技术有限公司 双工器及具有该双工器的通信系统
CN103872419A (zh) * 2012-12-11 2014-06-18 中兴通讯股份有限公司 一种介质谐振器及其装配方法及介质滤波器
CN104037478A (zh) * 2014-05-27 2014-09-10 京信通信系统(中国)有限公司 介质滤波器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627329B1 (fr) * 1988-02-12 1990-03-23 Alcatel Espace Filtre a resonateur dielectrique
JPH04104501A (ja) * 1990-08-23 1992-04-07 Fujitsu Ltd 誘電体フィルタ
IT1264648B1 (it) * 1993-07-02 1996-10-04 Sits Soc It Telecom Siemens Risonatore sintonizzzabile per oscillatori e filtri alle microonde
KR20000026761A (ko) * 1998-10-23 2000-05-15 구관영 가변형 외장 노치 케이블을 갖는 유전체 공진기 대역 통과 필터
DE19921926A1 (de) * 1999-05-12 2000-11-16 Bosch Gmbh Robert Dielektrisches Mikrowellenfilter
JP3480381B2 (ja) * 1999-08-24 2003-12-15 株式会社村田製作所 誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタ装置、誘電体デュプレクサおよび通信装置
JP3506076B2 (ja) * 1999-11-24 2004-03-15 株式会社村田製作所 多重モード誘電体共振器装置、フィルタ、デュプレクサおよび通信装置
IT1320543B1 (it) * 2000-07-20 2003-12-10 Cselt Centro Studi Lab Telecom Cavita' caricata dielettricamente per filtri ad alta frequenza.
US6670867B2 (en) * 2000-10-26 2003-12-30 Sei-Joo Jang Dielectric filter for filtering out unwanted higher order frequency harmonics and improving skirt response
JP3506124B2 (ja) * 2001-02-28 2004-03-15 株式会社村田製作所 フィルタ装置、デュプレクサおよび基地局用通信装置
CN103296372A (zh) * 2012-03-01 2013-09-11 深圳光启创新技术有限公司 一种谐振腔

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201868545U (zh) * 2010-11-05 2011-06-15 升达科技股份有限公司 空腔滤波器的高次谐波抑制装置
CN202217767U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 一种带传输零点的低通滤波器
CN202217759U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 抑制高次模的带阻滤波器
WO2013066922A1 (en) * 2011-10-31 2013-05-10 Powermag, LLC Power conditioning and saving device
KR20130050623A (ko) * 2011-11-08 2013-05-16 주식회사 에이스테크놀로지 유전체 공진기 필터
CN103872419A (zh) * 2012-12-11 2014-06-18 中兴通讯股份有限公司 一种介质谐振器及其装配方法及介质滤波器
CN103633402A (zh) * 2013-12-16 2014-03-12 华为技术有限公司 双工器及具有该双工器的通信系统
CN104037478A (zh) * 2014-05-27 2014-09-10 京信通信系统(中国)有限公司 介质滤波器

Also Published As

Publication number Publication date
KR102013056B1 (ko) 2019-08-21
EP3280000A4 (en) 2018-04-11
KR20170139662A (ko) 2017-12-19
CN107112616A (zh) 2017-08-29
EP3280000B1 (en) 2021-06-02
EP3280000A1 (en) 2018-02-07
CN107112616B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
US8031036B2 (en) Dielectric resonator and filter with low permittivity material
JP6763430B2 (ja) 誘電体共振器およびフィルタ
US7755456B2 (en) Triple-mode cavity filter having a metallic resonator
WO2015100597A1 (zh) 一种介质谐振器、介质滤波器及通信设备
JP6617102B2 (ja) 誘電体共振器および誘電体フィルタ
CN109411852B (zh) 一种空腔高q三模介质谐振结构及含有该谐振结构的滤波器
AU2017375168B2 (en) High-performance band-stop filter and communications cavity device thereof
CN108550511B (zh) 一种双频双模回旋行波管输入耦合器
WO2016172880A1 (zh) 一种介质滤波器
US10056665B2 (en) Resonator assembly and filter
WO2009067056A1 (en) A filter for use in a wireless communications network
CN112563713A (zh) 介质谐振器和射频滤波器
CN109155450B (zh) 射频滤波器
EP2325940A1 (en) Multi-mode resonant device
WO2016013135A1 (ja) フィルタ、分波器、無線通信モジュール、基地局および制御方法
KR101468409B1 (ko) 홈이 파인 도체판을 포함하는 이중 모드 공진기 및 이를 이용한 필터
Hoft New concepts for dielectric multi-mode resonators with branches
US3428922A (en) Mode trap band-pass filters
WO2017185237A1 (zh) 介质谐振器及应用其的介质滤波器、收发信机及基站
CN114976561B (zh) 三模介质谐振器及其滤波器
EP3547440A1 (en) Resonator for radio frequency signals
JP2004336496A (ja) 多重モードフィルタ
CN114335968A (zh) 一种双模介质谐振器及滤波器
CN110380164A (zh) 陶瓷介质波导滤波器
Zhang et al. Evanescent mode compact waveguide filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034053

Country of ref document: KR

Kind code of ref document: A