WO2017185237A1 - 介质谐振器及应用其的介质滤波器、收发信机及基站 - Google Patents

介质谐振器及应用其的介质滤波器、收发信机及基站 Download PDF

Info

Publication number
WO2017185237A1
WO2017185237A1 PCT/CN2016/080245 CN2016080245W WO2017185237A1 WO 2017185237 A1 WO2017185237 A1 WO 2017185237A1 CN 2016080245 W CN2016080245 W CN 2016080245W WO 2017185237 A1 WO2017185237 A1 WO 2017185237A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
resonator
filter
dielectric resonator
block
Prior art date
Application number
PCT/CN2016/080245
Other languages
English (en)
French (fr)
Inventor
蒲国胜
石晶
市川胜
沈振
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16899751.8A priority Critical patent/EP3435478B1/en
Priority to CN201680084905.9A priority patent/CN109075422B/zh
Priority to PCT/CN2016/080245 priority patent/WO2017185237A1/zh
Publication of WO2017185237A1 publication Critical patent/WO2017185237A1/zh
Priority to US16/170,828 priority patent/US10978776B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • H01P7/105Multimode resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • H01P1/2086Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators multimode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to communication device components, and more particularly to a dielectric resonator, a dielectric filter using the same, a transceiver, and a base station.
  • the traditional forms of dielectric filters are dielectric single mode, dielectric dual mode, and dielectric three mode.
  • the traditional single-mode dielectric filter usually needs to adopt multiple cascades to meet the performance requirements (insertion loss, out-of-band rejection, return loss, etc.) and occupy a large volume;
  • the multi-mode dielectric filter is composed of multi-mode medium.
  • the resonator is constructed by using a multi-model property of the dielectric resonator to realize two or more resonant modes of one dielectric resonator, so that a multi-mode resonant cavity can replace two or more conventional single-mode resonant cavities.
  • the filter volume can be reduced, and the cost can be reduced.
  • FIG. 1 shows a conventional multimode dielectric resonator in which a plurality of dielectric blocks of a cubic structure ( ⁇ R is a dielectric constant of a dielectric block) are formed in three orthogonal directions of a three-dimensional coordinate system.
  • Resonant mode compressing the size of one direction, will inevitably cause one of the mode frequencies to deviate from the other mode frequencies, and cannot resonate in the same passband, which makes it difficult to implement a multimode dielectric filter.
  • Embodiments of the present application provide a dielectric resonator, a dielectric filter, a transceiver, and a base station using the same, in order to meet the flat miniaturization requirements of current dielectric filters and wireless base stations.
  • an embodiment of the present application provides a dielectric resonator including a metal cavity and a dielectric block made of a solid dielectric material disposed in the metal cavity, wherein the size of the dielectric block satisfies c ⁇ b ⁇ a, wherein a, b, c are respectively dimensions of the dielectric block in three dimensions in a three-dimensional coordinate system; and the dielectric block is provided with a hole; and the surface of the dielectric block is free of metallization and metal The cavity has no contact. The size of the dielectric block satisfies c ⁇ b ⁇ a.
  • the height of the dielectric block is less than its length and width and its width is less than the length, which realizes flattening of the dielectric resonator; and multiple working resonant modes are constructed by punching holes in the dielectric block.
  • the working resonant mode electric field rotates around the small hole, and the electric field of all working resonant modes forms one or more closed loops in the XY plane of the three-dimensional coordinate system, realizing a flattened multimode dielectric resonator in the same medium
  • a plurality of working resonant modes with similar frequencies are generated on the block, thereby forming a filter passband by using these resonant frequencies, which reduces the number of resonators and the occupied volume compared with the conventional single-mode dielectric resonator, and is compared with the conventional multimode dielectric resonance.
  • the device compresses the thickness of the resonator.
  • the surface of the medium is not metallized and has no contact with the metal cavity, so that the resonance mode maintains a good quality factor (Q value), which is beneficial to realize a high performance filter.
  • Q value quality factor
  • the magnetic modes of the different modes of the dielectric resonator are in the same direction, it also provides greater convenience for single-sided debugging.
  • the direction of the X, Y, and Z axes and the corresponding XY plane in the three-dimensional coordinate system described in the present application may be changed according to specific equipment or system requirements, which is not limited in this application. For example, when the X and Y axes are parallel to the horizontal plane, the XY plane is parallel to the horizontal plane.
  • the XY plane is perpendicular to the X axis and the Y axis perpendicular to The plane of the water level.
  • the number of the holes is greater than or equal to one.
  • the aperture is a through hole or a blind hole.
  • the dielectric block is further provided with chamfering and/or slotting.
  • chamfering and/or slotting By chamfering and/or grooving at a local location of the dielectric block, the coupling bandwidth between the various operational resonant modes can be flexibly controlled in a small space, wherein the coupling bandwidth characterizes the strength of the coupling between the resonant modes.
  • an embodiment of the present application provides a dielectric resonator including a metal cavity and a dielectric block made of a solid dielectric material disposed in the metal cavity, wherein: all working resonances of the dielectric resonator
  • the electric field of the mode forms one or more closed loops in the XY plane of the three-dimensional coordinate system, and the magnetic fields of all of the working resonant modes are perpendicular to the XY plane, thereby forming a flattened dielectric resonator.
  • a resonant frequency of the working resonant mode of the dielectric resonator forming two or more electric field closed loops on the XY plane is The resonant frequency of the working resonant mode corresponding to an electric field closed loop formed in the plane is in the same passband range.
  • the dielectric resonator may be provided with a hole in the dielectric block to construct the resonant frequency within the same passband range. Multiple working resonant modes.
  • the number of the holes is greater than or equal to one.
  • the hole is a through hole or a blind hole.
  • the media block may be chamfered and/or slotted for adjustment Said media The coupling bandwidth between the various operating resonant modes of the resonator.
  • an embodiment of the present application provides a dielectric filter comprising the above two aspects or the dielectric resonator described in any one of the above two possible implementation manners.
  • the dielectric filter may include one of the dielectric resonators, which has a miniaturization benefit with respect to a filter constructed by cascading a single mode dielectric resonator, and has a flattening benefit with respect to a filter composed of a conventional multimode dielectric resonator. More suitable for filter or base station flattening scenes; the dielectric filter may also include two or more of the dielectric resonators, and the filter formed by the conventional multimode resonator has a flattening benefit, and Suitable for scenes where the filter or base station is flattened.
  • an embodiment of the present application provides a transceiver, including the media filter of the third aspect.
  • an embodiment of the present application provides a base station, including the transceiver according to the fourth aspect.
  • dielectric resonator and the dielectric filter provided by the embodiments of the present application can also be applied to other devices or scenarios that require the use of a dielectric resonator and/or a dielectric filter.
  • the dielectric resonator provided by the embodiment of the present application can compress the size in one dimension while maintaining multi-model property, realizing a flat multi-mode dielectric resonator, and applying the dielectric filter thereof, Both the transceiver and the base station can be flattened and miniaturized to meet the needs of flat and miniaturized wireless base stations.
  • FIG. 1 is a perspective view of a prior art multimode dielectric resonator according to the present application.
  • FIG. 2 is a perspective perspective view of a dielectric resonator according to an embodiment of the present application.
  • FIGS. 2a (1) - (2) are schematic diagrams of electric field lines of two working resonant modes of a dielectric resonator according to an embodiment of the present application;
  • FIGS. 2b (1) to (2) are schematic diagrams of magnetic field lines of two working resonance modes of a dielectric resonator according to an embodiment of the present application
  • FIG. 3 is a perspective view of another dielectric resonator according to an embodiment of the present application.
  • 4(1) is a perspective view of a dielectric resonator including a slotted according to an embodiment of the present application
  • 4(2) is a perspective view of a dielectric resonator including a chamfer according to an embodiment of the present application
  • 6(1) to (2) are perspective views of two possible dielectric resonators provided by the embodiments of the present application.
  • FIG. 7 is a schematic diagram of a possible dielectric filter according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a possible base station according to an embodiment of the present application.
  • the structure of the dielectric resonator and the dielectric filter and the electromagnetic field distribution and the like related to the present application are described by means of a three-dimensional coordinate system.
  • X is used.
  • the three-dimensional coordinate system in which the Y axis is parallel to the horizontal plane and the Z axis is perpendicular to the horizontal plane is taken as an example for description.
  • the direction of the X, Y, and Z axes in the three-dimensional coordinate system in the actual application and the corresponding XY plane can be changed according to specific equipment or system requirements, which is not limited in this application, for example, when the X and Y axes are parallel to the horizontal plane, the XY plane is parallel to the horizontal plane.
  • the XY plane is perpendicular to the X-axis and the Y-axis perpendicular to the horizontal plane. flat.
  • FIG. 2 is a perspective perspective view of a dielectric resonator according to an embodiment of the present application.
  • a dielectric resonator provided by an embodiment of the present application includes a metal cavity 202 and a dielectric block 201 made of a solid dielectric material disposed in the metal cavity 202, wherein the size of the dielectric block 201 in the three-dimensional coordinate system Satisfying c ⁇ b ⁇ a, as shown in FIG. 2, where c is the Z-axis of the dielectric block 201 in the three-dimensional coordinate system
  • the upward dimension (i.e., height), a, b are the dimensions (i.e., length and width) of the dielectric block 201 in the X-axis and Y-axis directions in the three-dimensional coordinate system, respectively; the dielectric block 201 is provided with a hole 203.
  • a plurality of working resonant modes with similar frequencies are constructed by dielectric punching.
  • the electric field of the working resonant mode is rotated around the small holes, and the electric field of all working resonant modes forms one or more closed loops in the XY plane of the three-dimensional coordinate system, thereby realizing A flattened multimode dielectric resonator that generates a plurality of operating resonant modes of similar frequency on the same dielectric block, thereby forming a filter passband using these resonant frequencies, reducing the resonator relative to a conventional single mode dielectric resonator The number and area occupied, compared to the conventional multimode dielectric resonator, compresses the thickness of the resonator and achieves flattening.
  • the surface of the dielectric block 201 is metal-free and has no contact with the metal cavity 202, so that the resonance mode maintains a good quality factor (Q value), which is advantageous for realizing a high-performance filter.
  • Q value quality factor
  • the magnetic modes of the different modes of the dielectric resonator are in the same direction, it also provides greater convenience for single-sided debugging.
  • FIGS. 2a(1) and 2a(2) respectively show electric field lines of the two working resonant modes of the dielectric resonator shown in FIG. 2 from the perspective of a top view.
  • the electric field of the first working resonant mode corresponding to FIG. 2a (1) forms a closed loop in one plane
  • the electric field of the second working resonant mode corresponding to FIG. 2a (2) forms two in one plane.
  • the loop is closed, and the electric fields of the two working resonant modes are in the same plane.
  • the electric fields of the two working resonant modes are distributed in the XY plane of the three-dimensional coordinate system.
  • a resonant frequency of a working resonant mode corresponding to two or more electric field closed loops formed on the plane and an electric field formed on the plane may be formed by providing holes in the dielectric block.
  • the resonant frequency of the working resonant mode corresponding to the closed loop is in the same passband range, thereby forming a filter passband using the resonant frequencies of the plurality of working resonant modes, wherein the electric fields of the plurality of working resonant modes are rotated around the small hole .
  • the electric field of all working resonant modes forms one or more closed loops in the XY plane of the three-dimensional coordinate system, realizing a flattened multimode dielectric resonator, and generating a plurality of modes with similar frequencies on the same dielectric block, thereby utilizing these
  • the resonant frequency forms a filter passband, which reduces the number of resonators and the occupied area compared to a conventional single-mode dielectric resonator, and compresses the thickness of the resonator relative to a conventional multimode dielectric resonator.
  • 2b(1) and 2b(2) respectively show the magnetic field lines of the first working resonant mode and the second working resonant mode of the dielectric resonator shown in FIG. 2 from the side view angles,
  • the magnetic field of the different working resonant modes of the dielectric resonator is in the same direction, which also provides greater convenience for single-sided debugging.
  • the size of the dielectric block 201 including two holes in the three-dimensional coordinate system also satisfies b ⁇ a ⁇ 2b.
  • the number of holes in the dielectric block 201 is greater than or equal to one.
  • there are two holes in the dielectric block 201 and the center of the hole is on a line of symmetry of the dielectric block 201 parallel to the X-axis in the XY plane in the three-dimensional coordinate system, and the hole is along the X-axis direction. Arrange in order.
  • the two holes are respectively located on both sides of the symmetry line of the dielectric block 201 parallel to the Y axis in the XY plane in the three-dimensional coordinate system.
  • the working resonant mode of the dielectric resonator can be operated as needed.
  • the non-working resonant mode is moved away from the working frequency band, thereby realizing a plurality of working resonant modes with similar frequencies on the same plane, and then using these resonant frequencies to form a filter passband.
  • the dielectric block 201 can be suspended in the metal cavity 202 by the support of the support table 204, which typically employs a material having a lower dielectric constant, which can be considered to be non-resonant. It can be understood that the dielectric block 201 can also be suspended in the metal cavity 202 by other mounting methods, which is not limited in this application.
  • the metal cavity 202 can be constructed by a metal box cap. It can be understood that the metal cavity 202 can also be implemented by other means or structures, which is not limited in this application.
  • the dielectric block 201 made of a solid dielectric material may be ceramic.
  • the ceramic has a high quality factor and a high dielectric constant, and the hardness and high temperature resistance are also good.
  • the dielectric block 201 made of a solid dielectric material may also be selected from other materials known to those skilled in the art, such as glass, electrically insulating high molecular polymers, and the like.
  • the dielectric resonance can also be adjusted by adjusting the shape or size of the dielectric block 201, the shape or size of the holes 203, the number of holes 203, and one or more of the distances between the plurality of holes.
  • the resonant frequency of the device is such that the operating mode of the dielectric resonator includes the resonant frequency corresponding to the fundamental mode, thereby avoiding the low-end spurious problem of the dielectric resonator.
  • the shape of the hole 203 in the dielectric resonator provided by the above embodiment is not limited to the circular shape shown in FIG. 2, and may be a square shape or other shapes. Meanwhile, the hole 203 may be according to specific needs, for example.
  • the resonant frequency of the dielectric resonator is adjusted to be a through hole or a blind hole.
  • the see-through structure of the hole is not shown in FIG. 2; the shape of the dielectric block 201 is not limited to the flat rectangular parallelepiped shown in FIG. 2, and may be flat. Other shapes.
  • the shape of the dielectric block 201 and the holes 203, the number of the holes 203, the size of the holes 203, the position of the holes 203, and the distance between the plurality of holes can be selected or adjusted according to the application of the dielectric resonator and the performance parameter requirements.
  • the resonant frequency of the dielectric resonator is adjusted, for example, by adjusting one or more of the above parameters, which is not limited in this application.
  • FIG. 3 is a perspective view of another dielectric resonator according to an embodiment of the present application.
  • the specific shape of the dielectric block of the dielectric resonator shown in FIG. 3 is different from that of the dielectric resonator shown in FIG. 2.
  • the dielectric block shape of the dielectric resonator shown in FIG. 3 is inverted by two overlapping circles. The corner treatment obtained.
  • Other structures and features are the same as those of the embodiment described in FIG. 2, and are not described herein again.
  • 4(1) and 4(2) are perspective views of two other dielectric resonators provided by embodiments of the present application.
  • the dielectric resonator shown in Fig. 4 (1) is grooved in a portion of the dielectric block; the dielectric resonator shown in Fig. 4 (2) is chamfered in a portion of the dielectric block.
  • the other structures and features of the dielectric resonator shown in FIG. 4 (1) and FIG. 4 (2) are the same as those of the embodiment described in FIG. 2 and FIG. 3, respectively, and are not described herein again.
  • the external debugging screw to adjust the coupling bandwidth (characterizing the coupling strength between resonant modes)
  • it can be grooved and/or chamfered at the local position of the dielectric block, and can be flexible in a small space.
  • Controlling the coupling bandwidth between different working resonant modes of the dielectric resonator causes the electric field and the magnetic field of the working mode in the resonator to rotate, thereby bringing about a change in the coupling amount between different modes, thereby realizing the required working bandwidth.
  • the slotting and/or chamfering is not limited to FIG. 4(1).
  • the position shown in FIG. 4(2), the slotting and/or chamfering may also be located at other positions of the dielectric block to adjust the coupling bandwidth between different modes, and the same medium block may also be provided with slotting and pouring at the same time. Corner, this application does not limit this.
  • 5(1) to (4) are perspective views of still another four possible dielectric resonators provided by the embodiments of the present application.
  • Another dielectric resonator provided by the embodiment of the present application includes a metal cavity and a dielectric block made of a solid dielectric material disposed in the metal cavity, wherein the dimension of the dielectric block in one dimension in the three-dimensional coordinate system They are smaller than their dimensions in the other two dimensions, respectively, c is the size (ie height) of the dielectric block in the Z-axis direction of the three-dimensional coordinate system, and a and b are the X-axis and the Y-axis of the dielectric block in the three-dimensional coordinate system, respectively.
  • the dielectric block of the dielectric resonator shown in FIG. 5 (1) and FIG. 5 (2) includes three holes; wherein the dielectric block of the dielectric resonator shown in FIG. 5 (1) and FIG. 5 (2) contains 4 a hole; the surface of the dielectric block is not metallized and has no contact with the metal cavity.
  • the size thereof also satisfies b ⁇ a ⁇ 3b; for FIG. 5(3) and
  • the dielectric block of the dielectric resonator including four holes shown in Fig. 5 (4) is also sized to satisfy b ⁇ a ⁇ 4b.
  • the centers of the plurality of holes are on a line of symmetry in which the dielectric block is parallel to the X-axis in the XY plane in the three-dimensional coordinate system, and the holes are sequentially arranged in the X-axis direction.
  • the dielectric block of the dielectric resonator shown in FIGS. 5(1) and 5(3) further includes a trench; the dielectric resonators shown in FIGS. 5(2) and 5(4) The chamfer is also included on the dielectric block.
  • the dielectric block can be suspended in the metal cavity by the support of the support table, which typically employs a material having a lower dielectric constant, which can be approximated as not participating in resonance. It can be understood that the dielectric block can also be suspended in the metal cavity by other mounting methods, which is not limited in this application.
  • the dielectric block made of solid dielectric material may be ceramic, ceramic has high quality factor and high hardness, high temperature resistance and high temperature performance, so it becomes radio frequency filter. Solid dielectric materials commonly used in the field of devices.
  • the dielectric block made of a solid dielectric material may also be selected from other materials known to those skilled in the art, such as glass, electrically insulating high molecular polymers, and the like.
  • the resonance of the dielectric resonator can also be adjusted by adjusting the shape or size of the dielectric block, the shape or size of the holes, the number of holes, and one or more of the distances between the plurality of holes.
  • the frequency is such that the working resonant mode of the dielectric resonator includes a resonant frequency corresponding to the fundamental mode, thereby avoiding low-end spurious problems of the dielectric resonator.
  • the shape of the hole in the dielectric resonator provided by the above embodiment is not limited to the circular shape shown in FIGS. 5(1) to (4), and may be a square shape or other shapes.
  • the hole may be The through hole or the blind hole;
  • the shape of the dielectric block is not limited to the shape shown in Figs. 5 (1) to (4), and may be other shapes which are flat.
  • the shape of the dielectric block and the hole, the number of holes, the size of the hole, the position of the hole, and the distance between the holes can be selected or adjusted according to the application of the dielectric resonator and the performance parameter requirements. Make a limit.
  • 6(1) to (2) are perspective views of still two possible dielectric resonators provided by the embodiments of the present application.
  • the dielectric filter shown in Figs. 6 (1) to (2) is formed, which is mainly different from the embodiment of Fig. 5 (1).
  • the shape of the dielectric block becomes a flat irregular shape.
  • the cross coupling can also be adjusted by a deformed structure.
  • the dielectric resonator shown in FIG. 5(1) is generally used to realize between the working resonant mode 1 and the working resonant mode 2.
  • Coupling and coupling between the working resonant mode 2 and the operating resonant mode 3, and the dielectric resonator shown in FIGS. 6(1) to (2) can realize and adjust between the working resonant mode 1 and the working resonant mode 3 by deformation. Coupling to achieve the performance required by the dielectric filter. Compared with the conventional multimode dielectric resonator, the coupling bandwidth range is limited, and the cross coupling is difficult to implement.
  • the dielectric resonator embodiment shown in FIGS. 6(1) to (2) is more advantageous for the implementation of multimode cross coupling.
  • FIG. 7 is a schematic diagram of a possible dielectric filter according to an embodiment of the present application.
  • the dielectric filter provided by the embodiment of the present application includes any one of the above dielectric resonators.
  • the dielectric filter provided by the embodiment of the present application includes two or more of the above dielectric resonators, and the filter formed by the conventional multimode resonator is more suitable for the filter or the base station.
  • FIG. 7 is a schematic diagram of a dielectric resonator constructed by cascading a dielectric filter according to an embodiment of the present application. In FIG. 7, the electric fields of all the working resonant modes of the two dielectric resonators are evenly distributed.
  • the dielectric filter is formed by spatial coupling cascade in the XY plane of the three-dimensional coordinate system.
  • the dielectric resonators After the dielectric resonators are cascaded, the characteristics of the electric field distribution of the operating resonant mode are maintained in the same plane (for example, the XY plane), so that the entire filter is thinned in the Z-axis direction.
  • two or more of the above dielectric resonators for cascading may be the same or different; the dielectric resonators described in the present application may also be combined with other dielectric resonators according to specific needs and/or Or the metal cavity resonator is used in cascade, which is not limited in this application.
  • the embodiment of the invention further provides a transceiver comprising any one or more of the dielectric filters described in the above embodiments.
  • the transceiver is more suitable for a miniaturized and flat application scenario due to the application of the dielectric filter provided by the embodiment of the present invention.
  • the embodiment of the invention further provides a base station, which comprises the dielectric filter or the transceiver described in the above embodiments.
  • the base station is more suitable for a miniaturized and flat application scenario due to the application of the dielectric filter provided by the embodiment of the present invention.
  • the base station (BS) mentioned in the present application refers to a device that directly communicates with a user equipment through a wireless channel
  • the base station may include various forms of macro base stations, micro base stations, relay stations, and interfaces. Incoming point or Remote Radio Unit (RRU), etc.
  • RRU Remote Radio Unit
  • the name of a device having a base station function may be different, for example, in an LTE network, called an evolved Node B (eNB or eNodeB), at 3G (the In the 3rd Generation (3rd Generation) network, it is called a Node B (Node B).
  • eNB evolved Node B
  • 3G the In the 3rd Generation (3rd Generation) network
  • Node B Node B
  • the above-mentioned devices that directly communicate with user equipment through a wireless channel are collectively referred to as a base station.
  • FIG. 8 is a schematic structural diagram of a possible base station according to an embodiment of the present application.
  • the filter shown therein is any one or more of the dielectric filters provided by the embodiments of the present application, and includes any one or more dielectric resonators provided by the embodiments of the present application.
  • the signal is received via the antenna, converted to the baseband by the processing of the filter, the noise amplifier, and the mixer, and sent to the baseband processor for processing; in the downlink direction, the baseband signal processed by the baseband processor passes through the mixer, The processing of the power amplifier and filter is converted to a radio frequency and transmitted through an antenna.
  • the base station structure shown in FIG. 8 is only used as an example to describe the basic configuration of the base station.
  • the actual base station may also include any number of the foregoing structures or devices, and may also include other structures or devices according to its functions. This is not limited.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请涉及通信设备组件,尤其涉及介质谐振器、应用其的介质滤波器、收发信机及基站。本申请的实施例提供一种介质谐振器、应用其的介质滤波器、收发信机及基站,以期满足当前介质滤波器以及无线基站的扁平小型化需求。介质谐振器包括金属腔体和置于金属腔体内的由固态介电材料制成的介质块,其特征在于:所述介质块的尺寸满足c<b<a,其中a,b,c分别为所述介质块在三维坐标系中三个维度上的尺寸;和所述介质块上设有孔;和所述介质块表面无金属化且与金属腔体无接触。介质滤波器,包含上述介质谐振器。收发信机,包含上述介质滤波器。基站,包含上述收发信机。

Description

介质谐振器及应用其的介质滤波器、收发信机及基站 技术领域
本申请涉及通信设备组件,尤其涉及介质谐振器、应用其的介质滤波器、收发信机及基站。
背景技术
随着无线通讯技术的发展及减少环境污染的绿色基站概念的提出,射频模块的小型化需求与日俱增,滤波器作为射频模块的重要组成部分,在高性能、小型化领域的作用举足轻重,在满足设备指标的情况下,体积小型化,是对无线基站滤波器的典型需求。滤波器的种类和形式非常多,其中介质多模滤波器因其小型化、高性能的特点,受到越来越多的关注。
介质滤波器传统的形式有介质单模,介质双模,介质三模。其中传统单模介质滤波器,通常需要采用多个级联的方式满足设备的性能(插入损耗、带外抑制、回波损耗等)要求,占用体积较大;多模介质滤波器由多模介质谐振器构成,利用介质谐振器的多模特性,实现一个介质谐振器产生两个或两个以上的谐振模式,从而一个多模谐振腔可以代替传统的两个或两个以上的单模谐振腔,相较于传统的单模介质滤波器可以实现减小滤波器体积,降低成本等目的。但传统的多模介质谐振器在厚度上难以压缩,这大大限制了介质滤波器在扁平小型化场景下的应用。例如,图1示出了现有的多模介质谐振器,其通过立方体结构的介质块(图中εR为介质块的介电常数)在三维坐标系的三个正交方向上形成多个谐振模式,压缩一个方向的尺寸,必然会引起其中一个模式频率与其他模式频率的偏离,无法谐振在相同的通带内,给实现多模介质滤波器造成困难。
故此,需要一种多模谐振器,可以在扁平小型化的场景下得以应用,以满 足无线基站扁平小型化的需求。
发明内容
本申请的实施例提供一种介质谐振器、应用其的介质滤波器、收发信机及基站,以期满足当前介质滤波器以及无线基站的扁平小型化需求。
第一方面,本申请实施例提供一种介质谐振器,包括金属腔体和置于金属腔体内的由固态介电材料制成的介质块,其特征在于:所述介质块的尺寸满足c<b<a,其中a,b,c分别为所述介质块在三维坐标系中三个维度上的尺寸;且所述介质块上设有孔;且所述介质块表面无金属化且与金属腔体无接触。介质块的尺寸满足c<b<a,例如介质块的高分别小于其长和宽且其宽小于长,实现了介质谐振器的扁平化;通过在介质块上打孔构建多个工作谐振模式,工作谐振模式电场以小孔为中心进行旋转,所有工作谐振模式的电场在三维坐标系的XY平面内形成一个或多个闭合回路,实现了扁平化的多模介质谐振器,在同一个介质块上生成多个频率相近的工作谐振模式,从而利用这些谐振频率形成滤波器通带,相对于传统单模介质谐振器,减少了谐振器的数量及占用的体积,相对于传统多模介质谐振器压缩了谐振器的厚度。介质表面无金属化且与金属腔体无接触,使谐振模式保持良好的品质因素(Q值),有利于实现高性能滤波器。另外,由于所述介质谐振器的不同模式的磁场在同一个方向上,也为其单面调试提供了更大的便利性。需要说明的是,本申请中所述的三维坐标系中的X、Y、Z轴的方向以及所对应的XY平面,可以根据具体的设备或者系统需求进行变化,本申请对此不做限定,例如当X、Y轴均平行于水平面时,所述XY平面平行于水平面,当X轴平行于水平面,Y轴垂直于水平面时,所述XY平面为同时平行于X轴和Y轴的垂直于水平面的平面。
结合第一方面,在第一种可能的实现方式中,所述孔的个数大于等于一个。通过在介质块上打一个或者多个孔,以及调整孔之间的距离、孔的大小以及孔 的形状等,可以构建频率相近的电场分布在同一个平面上(例如,XY平面)的多个工作谐振模式,从而利用这些谐振频率形成滤波器通带。
结合第一方面或第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述孔为通孔或盲孔。
结合第一方面或第一方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述介质块上还设有倒角和/或开槽。在介质块局部位置进行倒角和/或开槽,可以在狭小的空间下灵活的控制各个工作谐振模式之间的耦合带宽,其中所述耦合带宽表征谐振模式之间耦合的强弱。
第二方面,本申请实施例提供一种介质谐振器,包括金属腔体和置于金属腔体内的由固态介电材料制成的介质块,其特征在于:所述介质谐振器的所有工作谐振模式的电场在三维坐标系的XY平面内形成一个或多个闭合回路,所有工作谐振模式的磁场垂直于所述XY平面,从而形成扁平化的介质谐振器。
结合第二方面,在第一种可能的实现方式中,所述介质谐振器的在所述XY平面上形成两个或者两个以上电场闭合回路所对应的工作谐振模式的谐振频率与在所述平面上形成一个电场闭合回路所对应的工作谐振模式的谐振频率处于相同通带范围内。
结合第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述介质谐振器可以在介质块上设置孔,以便构造谐振频率处于相同通带范围内的多个工作谐振模式。
结合第二方面或第二方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述孔的个数大于等于一个。
结合第二方面或第二方面第一种至第三种任一种可能的实现方式,在第四种可能的实现方式中,所述孔为通孔或盲孔。
结合第二方面或第二方面第一种至第四种任一种可能的实现方式,在第五种可能的实现方式中,所述介质块上可以设置倒角和/或开槽,以便调节所述介 质谐振器的各个工作谐振模式之间的耦合带宽。
第三方面,本申请实施例提供一种介质滤波器,包含上述两个方面或上述两个方面任一种可能的实现方式中所述的介质谐振器。所述介质滤波器可以包含一个所述介质谐振器,相对于采用单模介质谐振器级联构成的滤波器具有小型化收益,相对于由传统多模介质谐振器构成的滤波器具有扁平化收益,更适用于滤波器或者基站扁平化场景;所述介质滤波器也可以包含两个或两个以上的所述介质谐振器,相对于传统多模谐振器构成的滤波器具有扁平化收益,更适用于滤波器或者基站扁平化的场景。
第四方面,本申请实施例提供一种收发信机,包含第三方面所述的介质滤波器。
第四方面,本申请实施例提供一种基站,包含第四方面所述的收发信机。
需要说明的是,本申请实施例所提供的介质谐振器和介质滤波器还可以应用在其他需要使用介质谐振器和/或介质滤波器的装置或者场景中。
相较于现有技术,本申请实施例提供的介质谐振器,可以压缩一个维度上的尺寸,同时保持多模特性,实现了扁平化的多模介质谐振器,使得应用其的介质滤波器、收发信机及基站均可以实现扁平化和小型化,以满足无线基站扁平小型化的需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请所涉及的现有技术中多模介质谐振器的立体示意图;
图2为本申请实施例提供的一种介质谐振器的立体透视图;
图2a(1)~(2)为本申请实施例提供的一种介质谐振器的两个工作谐振模式的电场线示意图;
图2b(1)~(2)为本申请实施例提供的一种介质谐振器的两个工作谐振模式的磁场线示意图;
图3为本申请实施例提供的另一种介质谐振器的立体图;
图4(1)为本申请实施例提供的一种包括开槽的介质谐振器的立体图;
图4(2)为本申请实施例提供的一种包括倒角的介质谐振器的立体图;
图5(1)~(4)为本申请实施例提供的又四种可能的介质谐振器的立体图;
图6(1)~(2)为本申请实施例提供的再两种可能的介质谐振器的立体图;
图7为本申请实施例提供的一种可能的介质滤波器的示意图;
图8为本申请实施例提供的一种可能的基站结构示意图。
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本申请实施例中借助三维坐标系来描述本申请相关的介质谐振器和介质滤波器的结构以及电磁场分布等特征,为了描述和理解的便利,本申请实施例中均以X、Y轴平行于水平面,Z轴垂直于水平面的三维坐标系为例进行说明。可以理解的是,实际应用中的三维坐标系中的X、Y、Z轴的方向以及所对应的XY平面,可以根据具体的设备或者系统需求进行变化,本申请对此不做限定,例如当X、Y轴均平行于水平面时,所述XY平面平行于水平面,当X轴平行于水平面,Y轴垂直于水平面时,所述XY平面为同时平行于X轴和Y轴的垂直于水平面的平面。
图2为本申请实施例提供的一种介质谐振器的立体透视图。
本申请实施例提供的一种介质谐振器,包括金属腔体202和置于金属腔体202内的由固态介电材料制成的介质块201,其中,介质块201在三维坐标系中的尺寸满足c<b<a,如图2中所示,其中c为介质块201在三维坐标系中Z轴方 向上的尺寸(即高度),a、b分别为介质块201在三维坐标系中X轴和Y轴方向上的尺寸(即长度和宽度);介质块201上设有孔203。通过介质打孔构建多个频率相近的工作谐振模式,工作谐振模式电场以小孔为中心进行旋转,所有工作谐振模式的电场在三维坐标系的XY平面内形成一个或多个闭合回路,实现了扁平化的多模介质谐振器,在同一个介质块上生成多个频率相近的工作谐振模式,从而利用这些谐振频率形成滤波器通带,相对于传统单模介质谐振器,减少了谐振器的数量及占用的面积,相对于传统多模介质谐振器压缩了谐振器的厚度,实现了扁平化。介质块201表面无金属化且与金属腔体202无接触,使谐振模式保持良好的品质因素(Q值),有利于实现高性能滤波器。另外,由于所述介质谐振器的不同模式的磁场在同一个方向上,也为其单面调试提供了更大的便利性。
在一个示例中,图2a(1)和图2a(2)从俯视图的角度分别给出了图2所示的介质谐振器的两个工作谐振模式的电场线示意图。其中,图2a(1)所对应的第一个工作谐振模式的电场在一个平面内形成一个闭合回路,图2a(2)所对应的第二个工作谐振模式的电场在一个平面内形成两个闭合回路,且所述的两个工作谐振模式的电场处在同一个平面内,例如所述两个工作谐振模式的电场都分布在三维坐标系的XY平面上。在一个具体的示例中,可以通过在介质块上设置孔,使得在所述平面上形成两个或者两个以上电场闭合回路所对应的工作谐振模式的谐振频率与在所述平面上形成一个电场闭合回路所对应的工作谐振模式的谐振频率处于相同通带范围内,从而利用多个工作谐振模式的谐振频率形成滤波器通带,所述多个工作谐振模式的电场以小孔为中心进行旋转。所有工作谐振模式的电场在三维坐标系的XY平面内形成一个或多个闭合回路,实现了扁平化的多模介质谐振器,在同一个介质块上生成多个频率相近的模式,从而利用这些谐振频率形成滤波器通带,相对于传统单模介质谐振器,减少了谐振器的数量及占用的面积,相对于传统多模介质谐振器压缩了谐振器的厚度, 实现了扁平化。图2b(1)和图2b(2)从侧视图的角度分别给出了图2所示的介质谐振器的第一个工作谐振模式和第二个工作谐振模式的磁场线示意图,由于所述介质谐振器的不同工作谐振模式的磁场在同一个方向上,也为其单面调试提供了更大的便利性。
在一个具体的示例中,如图2所示,包括两个孔的介质块201在三维坐标系中的尺寸还满足b<a≤2b。
在一个示例中,介质块201上的孔的个数大于等于一个。在图2所示的示例中,介质块201上有两个孔,孔的中心处于介质块201在三维坐标系中XY平面上与X轴平行的对称线上,且孔沿着X轴方向上依次排布。两个孔分别位于介质块201在三维坐标系中XY平面上与Y轴平行的对称线的两侧。通过在介质块上打多个孔,以及调整孔的个数、孔之间的距离、孔的大小、孔的形状等一个或者多个因素,可以使得介质谐振器的工作谐振模式工作在需要的频段范围内,使非工作谐振模式远离工作的频段,从而实现在同一平面上构建多个频率相近的工作谐振模式,进而利用这些谐振频率形成滤波器通带。
在一个示例中,介质块201可以通过支撑台204的支撑悬置在金属腔体202中,所述支撑台204通常采用一种介电常数较低的材料,可以近似认为不参与谐振。可以理解的是,介质块201也可以通过其他安装方式实现悬置在金属腔体202中,本申请对此不做限定。
在一个示例中,金属腔体202可以由金属盒加盖的方式构成。可以理解的是,金属腔体202也可以通过其他方式或者结构实现,本申请对此不做限定。
在一个示例中,所述由固态介电材料制成的介质块201可以为陶瓷,陶瓷具有较高的品质因素和较高的介电常数,硬度及耐高温的性能也都较好,因此成为射频滤波器领域常用的固态介电材料。当然,所述由固态介电材料制成的介质块201也可以选用本领域技术人员所知的其它材料,如玻璃、电绝缘的高分子聚合物等。
在一个示例中,还可以通过调整介质块201的形状或尺寸、孔203的形状或尺寸、孔203的个数以及多个孔之间的距离中的一个或者多于一个参数,来调整介质谐振器的谐振频率,使得所述介质谐振器的工作模式包含基模所对应的谐振频率,从而避免介质谐振器的低端杂散问题。
需要说明的是:上述实施例提供的介质谐振器中的孔203的形状并不限于图2中所示的圆形,也可以是方形或是其它形状;同时,孔203可以根据具体需要,例如调整介质谐振器的谐振频率,设置成通孔或者盲孔,图2中没有示出孔的透视结构;介质块201的形状也不限于图2中所示的扁平的长方体,也可以是扁平的其他形状。介质块201和孔203的形状、孔203的个数、孔203的尺寸、孔203的位置以及多个孔之间的距离都可以根据介质谐振器的应用场合和性能参数需求进行选择或调整,例如通过调整上述参数中的一个或者多个来调整介质谐振器的谐振频率,本申请对此不做限定。
图3为本申请实施例提供的另一种介质谐振器的立体图。
图3所示的介质谐振器的介质块的具体形状与图2所示的介质谐振器的介质块不同,图3所示的介质谐振器的介质块形状为两个交叠的圆进行了倒角处理所获得的。其他结构与特征与图2所述的实施例相同,此处不再赘述。
图4(1)和图4(2)为本申请实施例提供的另外两种介质谐振器的立体图。
图4(1)所示的介质谐振器在介质块的局部进行了开槽;图4(2)所示的介质谐振器在介质块的局部进行了倒角。图4(1)和图4(2)所示的介质谐振器的其他结构与特征分别与图2和图3所述的实施例相同,此处不再赘述。相对于传统多模谐振器通过增加外部调试螺钉来调整耦合带宽(表征谐振模式之间耦合强弱)的方法,在介质块局部位置开槽和/或倒角,在狭小的空间下仍可以灵活的控制介质谐振器不同工作谐振模式间的耦合带宽,使得谐振器中的工作模式的电场和磁场发生旋转,从而带来不同模式之间的耦合量的变化,进而实现需求的工作带宽。可以理解的是,所述开槽和/或倒角,并不限于图4(1) 和图4(2)所示的位置,所述开槽和/或倒角还可以位于介质块的其他位置以调整不同模式间的耦合带宽,同一介质块上也可以同时设有开槽和倒角,本申请对此不做限制。
图5(1)~(4)为本申请实施例提供的又四种可能的介质谐振器的立体图。
本申请实施例提供的又一种介质谐振器中,包括金属腔体和置于金属腔体内的由固态介电材料制成的介质块,其中,介质块在三维坐标系中一个维度上的尺寸分别小于其在另外两个维度上的尺寸,记c为介质块在三维坐标系中Z轴方向上的尺寸(即高度),a、b分别为介质块在三维坐标系中X轴和Y轴方向上的尺寸(即长度和宽度),则图5(1)~(4)所示的介质谐振器的介质块的尺寸均满足c<b<a;介质块上设有孔,具体的,图5(1)和图5(2)所示的介质谐振器的介质块上包含3个孔;其中图5(1)和图5(2)所示的介质谐振器的介质块上包含4个孔;介质块表面无金属化且与金属腔体无接触。
在具体的示例中,对于图5(1)和图5(2)所示的包含3个孔的介质谐振器的介质块,其尺寸还满足b<a≤3b;对于图5(3)和图5(4)所示的包含4个孔的介质谐振器的介质块,其尺寸还满足b<a≤4b。
在具体的示例中,多个孔的中心处于介质块在三维坐标系中XY平面上与X轴平行的对称线上,且孔沿着X轴方向上依次排布。
在具体的示例中,图5(1)和图5(3)所示的介质谐振器的介质块上还包括开槽;图5(2)和图5(4)所示的介质谐振器的介质块上还包括倒角。
在一个示例中,介质块可以通过支撑台的支撑悬置在金属腔体中,所述支撑台通常采用一种介电常数较低的材料,可以近似认为不参与谐振。可以理解的是,介质块也可以通过其他安装方式实现悬置在金属腔体中,本申请对此不做限定。
在一个示例中,所述由固态介电材料制成的介质块可以为陶瓷,陶瓷具有较高的品质因素和较高的,硬度及耐高温的性能也都较好,因此成为射频滤波 器领域常用的固态介电材料。当然,所述由固态介电材料制成的介质块也可以选用本领域技术人员所知的其它材料,如玻璃、电绝缘的高分子聚合物等。
在一个示例中,还可以通过调整介质块的形状或尺寸、孔的形状或尺寸、孔的个数以及多个孔之间的距离中的一个或者多于一个参数,来调整介质谐振器的谐振频率,使得所述介质谐振器的工作谐振模式包含基模所对应的谐振频率,从而避免介质谐振器的低端杂散问题。
需要说明的是:上述实施例提供的介质谐振器中的孔的形状并不限于图5(1)~(4)中所示的圆形,也可以是方形或其他形状;同时,孔可以是通孔或者盲孔;介质块的形状也不限于图5(1)~(4)中所示的形状,也可以是扁平的其他形状。介质块和孔的形状、孔的个数、孔的尺寸、孔的位置以及多个孔之间的距离都可以根据介质谐振器的应用场合和性能参数需求进行选择或调整,本申请对此不做限定。
图6(1)~(2)为本申请实施例提供的再两种可能的介质谐振器的立体图。
在图5(1)所述的实施例的基础上,经过变形和加工,形成了图6(1)~(2)所示的介质滤波器,其与图5(1)实施例的主要差别在于介质块的形状变成了扁平的不规则形状。通过对介质块进行变形,能够实现更加紧凑的布局,结合不同使用场景可以灵活的选择形态。对于三模及大于三模的介质谐振器,通过变形结构还可以调整交叉耦合,例如,图5(1)所示的介质谐振器通常用于实现工作谐振模式1和工作谐振模式2之间的耦合以及工作谐振模式2和工作谐振模式3之间的耦合,而图6(1)~(2)所示的介质谐振器通过变形能够实现及调整工作谐振模式1和工作谐振模式3之间的耦合,从而实现介质滤波器所需求的性能。相对于传统多模介质谐振器实现的耦合带宽范围有限,交叉耦合实现困难,图6(1)~(2)所示的介质谐振器实施例更有利于多模交叉耦合的实现。
图7为本申请实施例提供的一种可能的介质滤波器的示意图。
在一个示例中,本申请实施例提供的介质滤波器,包含一个上述任一种介质谐振器。
在另一个示例中,本申请实施例提供的介质滤波器,包含两个或两个以上上述任一种介质谐振器,相对于传统多模谐振器构成的滤波器更适用于滤波器或者基站扁平化的场景。具体的,图7示出了本申请实施例所提供的一种介质谐振器通过级联构成介质滤波器的示意图,图7中两个所述介质谐振器的所有工作谐振模式的电场均分布在三维坐标系的XY平面内,通过空间耦合级联形成所述介质滤波器。所述介质谐振器级联之后,仍保持工作谐振模式的电场分布在同一平面内(例如XY平面)的特性,使得整个滤波器在Z轴方向上得以薄型化。可以理解的是,用于级联的两个或两个以上的上述介质谐振器可以是相同的或者不同的;本申请中所述的介质谐振器也可以根据具体需求与其他介质谐振器和/或金属腔谐振器级联使用,本申请对此不做限定。
本发明实施例又提供了一种收发信机,其中包含有上述实施例描述的任一种或多种介质滤波器。由于应用了本发明实施例所提供的介质滤波器,所述收发信机更适用于小型化、扁平化的应用场景。
本发明实施例还提供了一种基站,其中包含有上述实施例描述的介质滤波器或收发信机。由于应用了本发明实施例所提供的介质滤波器,所述基站更适用于小型化、扁平化的应用场景。
需要说明的是,本申请所提及的基站(Base Station,BS)是指通过无线信道与用户设备进行直接通信的装置,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G(the 3rd Generation,第三代)网络中,称为节点B(Node B)等,为方便描述,本申请中,上述通过无线信道与用户设备进行直接通信的装置统称为基站。
图8为本申请实施例提供的一种可能的基站结构示意图。其中所示的滤波器为本申请实施例所提供任一种或多种介质滤波器,其中包括本申请实施例所提供的任一种或多种介质谐振器。在上行方向上,信号经由天线接收,通过滤波器、噪声放大器、混频器的处理变换至基带,送入基带处理器处理;下行方向上,经过基带处理器处理的基带信号经过混频器、功率放大器、滤波器的处理变换至射频,通过天线发送。可以理解的,图8所示的基站结构仅作为示例说明基站的基本构成,实际中的基站还可以包括任意数量的上述结构或者装置,也可以根据其功能包括其他的结构或者装置,本申请对此不做限定。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (7)

  1. 一种介质谐振器,包括金属腔体和置于金属腔体内的由固态介电材料制成的介质块,其特征在于:
    所述介质块的尺寸满足c<b<a,其中a,b,c分别为所述介质块在三维坐标系中三个维度上的尺寸;和
    所述介质块上设有孔;和
    所述介质块表面无金属化且与金属腔体无接触。
  2. 如权利要求1所述的介质谐振器,其特征在于,所述孔的个数大于等于一个。
  3. 如权利要求1或2所述的介质谐振器,其特征在于所述孔为通孔或盲孔。
  4. 如权利要求1至3任一项所述的介质谐振器,其特征在于,所述介质块上还设有倒角和/或开槽。
  5. 一种介质滤波器,其特征在于,包括权利要求1-4任一项所述的介质谐振器。
  6. 一种收发信机,其特征在于,包含权利要求5所述的介质滤波器。
  7. 一种基站,其特征在于,包含权利要求6所述的收发信机。
PCT/CN2016/080245 2016-04-26 2016-04-26 介质谐振器及应用其的介质滤波器、收发信机及基站 WO2017185237A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16899751.8A EP3435478B1 (en) 2016-04-26 2016-04-26 Dielectric resonator, and dielectric filter, transceiver and base station applying same
CN201680084905.9A CN109075422B (zh) 2016-04-26 2016-04-26 介质谐振器及应用其的介质滤波器、收发信机及基站
PCT/CN2016/080245 WO2017185237A1 (zh) 2016-04-26 2016-04-26 介质谐振器及应用其的介质滤波器、收发信机及基站
US16/170,828 US10978776B2 (en) 2016-04-26 2018-10-25 Dielectric resonator and dielectric filter, transceiver, and base station to which dielectric resonator is applied

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080245 WO2017185237A1 (zh) 2016-04-26 2016-04-26 介质谐振器及应用其的介质滤波器、收发信机及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/170,828 Continuation US10978776B2 (en) 2016-04-26 2018-10-25 Dielectric resonator and dielectric filter, transceiver, and base station to which dielectric resonator is applied

Publications (1)

Publication Number Publication Date
WO2017185237A1 true WO2017185237A1 (zh) 2017-11-02

Family

ID=60161759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080245 WO2017185237A1 (zh) 2016-04-26 2016-04-26 介质谐振器及应用其的介质滤波器、收发信机及基站

Country Status (4)

Country Link
US (1) US10978776B2 (zh)
EP (1) EP3435478B1 (zh)
CN (1) CN109075422B (zh)
WO (1) WO2017185237A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112516A (zh) * 2019-06-06 2019-08-09 广东国华新材料科技股份有限公司 介质波导滤波器及其调谐方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002311A (en) * 1997-10-23 1999-12-14 Allgon Ab Dielectric TM mode resonator for RF filters
JP2003110303A (ja) * 2002-09-18 2003-04-11 Matsushita Electric Ind Co Ltd 誘電体フィルタならびにその製造方法
CN204088531U (zh) * 2014-09-17 2015-01-07 常熟市荣兴化纺有限责任公司 紧凑耦合的双模介质谐振滤波器
CN105390780A (zh) * 2015-12-14 2016-03-09 华南理工大学 一种新型介质双模带通滤波器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1194160A (en) 1984-05-28 1985-09-24 Wai-Cheung Tang Planar dielectric resonator dual-mode filter
JP3506013B2 (ja) * 1997-09-04 2004-03-15 株式会社村田製作所 多重モード誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタ、合成器、分配器および通信装置
JP2000077916A (ja) * 1998-08-31 2000-03-14 Toko Inc 誘電体フィルタ
JP3480381B2 (ja) * 1999-08-24 2003-12-15 株式会社村田製作所 誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタ装置、誘電体デュプレクサおよび通信装置
JP3506104B2 (ja) * 1999-10-04 2004-03-15 株式会社村田製作所 共振器装置、フィルタ、複合フィルタ装置、デュプレクサおよび通信装置
JP3633520B2 (ja) * 2001-04-04 2005-03-30 株式会社村田製作所 共振器装置、フィルタ、デュプレクサおよび通信装置
JP3596505B2 (ja) * 2001-09-27 2004-12-02 株式会社村田製作所 誘電体共振器、フィルタ、デュプレクサおよび通信装置
JP2005065040A (ja) * 2003-08-18 2005-03-10 Tamagawa Electronics Co Ltd 3重モードバンドパスフィルタ
WO2010086869A2 (en) * 2009-02-02 2010-08-05 Indian Space Research Organisation Filters utilizing combination of te and modified he mode dielectric resonators
KR101194971B1 (ko) * 2011-05-19 2012-10-25 주식회사 에이스테크놀로지 광대역을 실현하는 다중 모드 필터
KR101320896B1 (ko) * 2011-12-07 2013-10-23 테크마 인코퍼레이티드 유사 TM110 mode를 이용한 세라믹 판넬 공진기와 그 공진기를 이용한 RF 듀얼 모드 필터
CN103972621B (zh) * 2014-04-22 2016-10-05 深圳三星通信技术研究有限公司 一种混合介质波导滤波器
CN204668441U (zh) * 2015-06-23 2015-09-23 武汉凡谷陶瓷材料有限公司 频率间距可调的双模介质谐振装置
CN204885383U (zh) * 2015-08-19 2015-12-16 江苏吴通通讯股份有限公司 三模介质腔体滤波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002311A (en) * 1997-10-23 1999-12-14 Allgon Ab Dielectric TM mode resonator for RF filters
JP2003110303A (ja) * 2002-09-18 2003-04-11 Matsushita Electric Ind Co Ltd 誘電体フィルタならびにその製造方法
CN204088531U (zh) * 2014-09-17 2015-01-07 常熟市荣兴化纺有限责任公司 紧凑耦合的双模介质谐振滤波器
CN105390780A (zh) * 2015-12-14 2016-03-09 华南理工大学 一种新型介质双模带通滤波器

Also Published As

Publication number Publication date
EP3435478A1 (en) 2019-01-30
US20190067789A1 (en) 2019-02-28
CN109075422A (zh) 2018-12-21
EP3435478A4 (en) 2019-04-17
CN109075422B (zh) 2020-02-21
US10978776B2 (en) 2021-04-13
EP3435478B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US7042314B2 (en) Dielectric mono-block triple-mode microwave delay filter
CN107181027B (zh) 射频滤波器
KR101320896B1 (ko) 유사 TM110 mode를 이용한 세라믹 판넬 공진기와 그 공진기를 이용한 RF 듀얼 모드 필터
US10164309B2 (en) Dielectric resonator and dielectric filter
WO2015100597A1 (zh) 一种介质谐振器、介质滤波器及通信设备
CN110088977B (zh) 介质谐振器及应用其的介质滤波器、收发信机及基站
CN109411853A (zh) 一种空腔高q三模介质谐振空心结构及含有该谐振结构的滤波器
KR101919456B1 (ko) 일체형 유전체 세라믹 도파관 듀플렉서
WO2020048063A1 (zh) 一种空腔高q三模介质谐振结构及含有该谐振结构的滤波器
CN106711557A (zh) 一种四模介质带通滤波器
WO2022028068A1 (zh) 一种高q多模介质谐振结构和介质滤波器
CN106785253A (zh) 一种新型三模介质带通滤波器
WO2010033057A1 (en) Method and arrangement for filtering in a wireless radio communication network
CN206422195U (zh) 一种新型四模介质带通滤波器
WO2017185237A1 (zh) 介质谐振器及应用其的介质滤波器、收发信机及基站
KR101315878B1 (ko) 이중 모드 유전체 공진기 필터
Qian et al. A novel double-mode dielectric resonator filter using patch coupling method
CN109155450A (zh) 射频滤波器
WO2020135478A1 (zh) 一种介质双工器
CN114335968A (zh) 一种双模介质谐振器及滤波器
CN209709143U (zh) 一种空腔高q三模介质谐振空心结构及含有该谐振结构的滤波器
US11088430B2 (en) Radio frequency resonators with bridge coupling adjacent resonators
CN209730117U (zh) 一种空腔高q三模介质谐振结构及含有该谐振结构的滤波器
WO2022120664A1 (zh) 一种介质谐振器、介质滤波器和基站
WO2023060438A1 (zh) 介质谐振器、介质滤波器、射频器件及基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016899751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016899751

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899751

Country of ref document: EP

Kind code of ref document: A1