WO2016172861A1 - 一种多载波激光器以及产生多载波光的方法 - Google Patents

一种多载波激光器以及产生多载波光的方法 Download PDF

Info

Publication number
WO2016172861A1
WO2016172861A1 PCT/CN2015/077714 CN2015077714W WO2016172861A1 WO 2016172861 A1 WO2016172861 A1 WO 2016172861A1 CN 2015077714 W CN2015077714 W CN 2015077714W WO 2016172861 A1 WO2016172861 A1 WO 2016172861A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
output
light
loop
unit
Prior art date
Application number
PCT/CN2015/077714
Other languages
English (en)
French (fr)
Inventor
高光宇
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580078798.4A priority Critical patent/CN107534505B/zh
Priority to PCT/CN2015/077714 priority patent/WO2016172861A1/zh
Publication of WO2016172861A1 publication Critical patent/WO2016172861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a multi-carrier laser and a method for generating multi-carrier light.
  • Multi-carrier light sources are an indispensable component in optical communication systems.
  • Multi-carrier light generation technology in multi-carrier light source is the most critical core technology in applications such as multi-carrier coherent optical communication, high-precision optical atomic clock, low-noise microwave communication, and random pulse shaping.
  • multi-carrier light generally needs to meet corresponding conditions.
  • multi-carrier light needs to come from a single light source, the phase of each carrier in multi-carrier light is correlated, and the interval of each carrier in multi-carrier light is precisely controllable.
  • embodiments of the present invention provide a multi-carrier laser and a method of generating multi-carrier light.
  • a first aspect of the embodiments of the present invention provides a multi-carrier laser including a loop for generating multi-carrier light, the loop including a mode-locking unit, a demultiplexer, and a plurality of optical a phase shifter, a combiner, a gain unit, and an output unit;
  • the mode-locking unit is configured to lock a phase of the multi-carrier light in the loop;
  • the demultiplexer includes an input port and a plurality of output ports, The demultiplexer is configured to perform filtering processing on the multi-carrier light received from the input port, and output a plurality of single carrier lights obtained by the filtering process from the plurality of output ports, wherein the plurality of output ports are Each output port corresponds to a single carrier light;
  • the plurality of optical phase shifters and the demultiplexer Multiple output ports are connected in a one-to-one manner for adjusting the phase of each input single carrier light; a combiner for combining the light output by the plurality of optical phase shift
  • a second aspect of the embodiments of the present invention provides a method for generating multi-carrier light, which is applicable to a multi-carrier laser, where the multi-carrier laser includes a loop for generating multi-carrier light, and the loop includes a lock.
  • a modular unit a demultiplexer, a plurality of optical phase shifters, a combiner, a gain unit, and an output unit
  • the method comprising: locking a phase of the multi-carrier light in the loop with the mode-locking unit; Demultiplexer filtering the multi-carrier light in the loop, and outputting a plurality of single carrier lights obtained by filtering; adjusting a phase of the plurality of single carrier lights by using the plurality of optical phase shifters; utilizing The combiner performs a multiplexing process on the light output by the plurality of optical phase shifters; amplifying the multi-carrier light in the loop by using the gain unit; and outputting the loop in the output unit by using the output unit Shoot the resulting multi-carrier light.
  • a multi-carrier laser and a method for generating multi-carrier light include a demultiplexer and a plurality of optical phasers connected to the demultiplexer, each optical phaser being responsive to a phase of the corresponding carrier light Adjustment is made, by which the partial optical carrier can be turned off, thereby achieving flexible adjustment of the number of carriers and carrier spacing, and improving the flexibility of the multi-carrier light source.
  • FIG. 1 is a structural diagram of a multi-carrier laser according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of multi-carrier optical frequency spacing generated by different processes of an optical phase shifter according to an embodiment of the present invention.
  • a first aspect of the embodiments of the present invention provides a multi-carrier laser including a loop for generating multi-carrier light, the loop including a mode-locking unit, a demultiplexer, and a plurality of optical a phase shifter, a combiner, a gain unit, and an output unit;
  • the mode-locking unit is configured to lock a phase of the multi-carrier light in the loop;
  • the demultiplexer includes an input port and a plurality of output ports, The demultiplexer is configured to perform filtering processing on the multi-carrier light received from the input port, and output a plurality of single carrier lights obtained by the filtering process from the plurality of output ports, wherein the plurality of output ports are Each output port corresponds to a single carrier light;
  • the plurality of optical phase shifters are connected to the plurality of output ports of the demultiplexer in a one-to-one manner for adjusting the phase of each input single carrier light a combiner for multiplexing the light output by the plurality
  • the clamping unit includes an input port and an output port, and an input port of the clamping unit is configured to receive from the output unit Multi-carrier light of a first output port, an output port of the mode-locking unit for outputting multi-carrier light to the demultiplexer; an input port of the demultiplexer for receiving the mode-locking unit Outputting multi-carrier light outputted by the port;
  • the gain unit includes an input port and an output port, the input port of the gain unit is configured to receive multi-carrier light output by the combiner, and an output port of the gain unit is used to The input port of the output unit outputs multi-carrier light.
  • the multi-carrier laser further includes a detecting unit and a control unit; Detecting multi-carrier light in the loop; the control unit is configured to control, according to the detection result of the detecting unit, a phase of the light passing through the plurality of optical phase shifters by the plurality of optical phase shifters The adjustment is performed; wherein the control unit controls the at least one optical phase shifter to adjust the phase of the light passing through the optical phase shifter to cause destructive interference of light passing through the optical phase shifter.
  • the loop further includes a Fabry-Perot FP etalon
  • the transmission wavelength of the FP etalon is aligned with the transmission wavelength of the demultiplexer.
  • the loop further includes a polarization controller, the polarization A controller is used to control the polarization direction of the multi-carrier light in the loop.
  • the loop further includes an optical isolator.
  • the optical isolator is used to control the unidirectional transmission of multi-carrier light in the loop.
  • the device in the embodiment of the present invention may be a polarization maintaining device, and the corresponding connecting fiber may be a polarization maintaining fiber.
  • a multi-carrier laser provided by an embodiment of the present invention includes a mode-locking unit, a demultiplexer, a plurality of optical phase shifters, a combiner, a gain unit, and an output unit, where Polarization controllers, optical isolators, FP etalons, etc. are optional components.
  • the mode locking unit may comprise an electro-optic modulator or an acousto-optic modulator, or may comprise a saturated absorption medium, or may comprise a polarization rotating component.
  • the role of the mode-locking unit is to lock the phase of the multi-carrier light in the loop.
  • the mode-locking unit may further include an RF signal transmitter, and the corresponding electro-optic modulator may be controlled by the RF signal such that the multi-carrier light passing through the electro-optic modulator exits the electro-optic modulator with the same phase.
  • the clamping unit may further comprise control means for controlling parameters of the corresponding saturated absorption medium or polarization rotating part, thereby ensuring multi-carrier optical phase passing through the clamping unit be consistent.
  • the demultiplexer may be an Arrayed Waveguide Grating (AWG), which may be a MEMS, may be a parallel micro-ring set, or may be a device such as an MMI, and the input multi-carrier and the corresponding output port. Aligned carrier output to filter out unwanted noise.
  • AMG Arrayed Waveguide Grating
  • the wavelength interval between adjacent wavelengths of the series of wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ... ⁇ n of the demultiplexer output may be fixed, that is, a series of wavelengths at a fixed interval.
  • ⁇ n of the demultiplexer output may also be adjustable, for example, when the demultiplexer is an AWG
  • the adjustment electrode can be added at each of the waveguides included in the AWG, and the current through the electrode input can be transmitted through the wavelength of the AWG and the corresponding wavelength interval.
  • the optical phase shifter may be an electro-index change material, or may be an electro-length change material, or may be an electro-refractive index and a length change material, or may be a temperature-controlled refractive index change material, or a temperature Control length change material, or temperature control refractive index and length change material.
  • a voltage can be applied to the optical phase shifter through the respective electrodes to change its refractive index and/or length, ultimately resulting in a change in the optical path of the carrier in the optical phase shifter, thereby adjusting the The phase of the carrier.
  • the combiner is used to combine the outputs of the respective optical phase shifters.
  • the combiner may also have a filtering function, which can also filter the light output by each optical phase shifter while the carrier is being aggregated, wherein the transmission wavelength of the combiner and the demultiplexer The transmission wavelength is aligned.
  • the transmission wavelengths described herein are the wavelengths of the carrier waves that can be transmitted from the combiner with respect to those filtered wavelengths.
  • the transmission wavelength of the combiner and the transmission wavelength of the demultiplexer are aligned to mean that the wavelengths at which both can be transmitted are substantially the same. Because the filtering bandwidth of different devices must be slightly different, when the demultiplexer and the combiner have filtering functions, the filtering effect will be improved to some extent.
  • the gain unit may be an Erbium-Doped Fiber Amplifier (EDFA), may be a Semiconductor Optical Amplifier (SOA), or may be another device having an optical amplification function.
  • EDFA Erbium-Doped Fiber Amplifier
  • SOA Semiconductor Optical Amplifier
  • the output unit receives the multi-carrier on the loop, one part returns from the first output port to the loop, and the other part outputs the lasing multi-carrier light from the second output port to the outside of the multi-carrier laser.
  • the output unit may be a power splitter such as a coupler or the like.
  • a high reflective film such as a high reflective film having a reflectance greater than 50%, may be plated on the second output port of the output unit.
  • the FP etalon may also be included in the loop, and the transmission wavelength of the FP etalon is aligned with the transmission wavelength of the demultiplexer.
  • the FP etalon is used to fine-select the multiple oscillation modes in the optical loop to achieve super-mode noise suppression, and only allows the multi-carrier mode required by the design to oscillate and output.
  • the FP etalon has a narrower transmission bandwidth that can be matched with the demultiplexer and the combiner (if there is a filtering function) to produce a better mode selection effect.
  • one or more polarization controllers may be included in the loop for controlling the polarization direction of the multi-carrier light in the loop.
  • the loop may further include an optical isolator, which can be used to ensure that the multi-carrier light is transmitted in one direction in the loop.
  • an optical isolator which can be used to ensure that the multi-carrier light is transmitted in one direction in the loop.
  • the multi-carrier laser can include a control unit.
  • a control unit is coupled to the plurality of optical phase shifters.
  • the control unit can adjust the phase of the corresponding carrier in the loop by adjusting the optical path of the corresponding optical phase shifter.
  • the optical path of the corresponding optical phase shifter can be adjusted by controlling the magnitude of the loading voltage or by controlling the temperature, thereby finally adjusting the phase of the carrier passing through the optical phase shifter. Such adjustment may be performed according to parameters held inside the control unit. For example, when the multi-carrier laser needs to output multi-carrier light including ⁇ 3 , an optical phase shifter corresponding to ⁇ 3 may be selected for adjustment, and one output is output.
  • the output control voltage of the predetermined value is such that the light intensity of ⁇ 3 output by the multi-carrier laser is maximized compared to the light intensity of ⁇ 3 generated by the control voltages of other predetermined values.
  • an optical phase shifter corresponding to ⁇ 3 can be selected for adjustment, and another predetermined value of the turn-off control voltage is output, so that the light intensity of ⁇ 3 output by the multi-carrier laser is compared with other
  • the light intensity of ⁇ 3 produced by the predetermined value of the control voltage is minimal or zero. Control methods for carriers of other wavelengths, and so on. In this case, a one-to-one correspondence between each wavelength, each optical phase shifter, the output control voltage, and the shutdown control voltage can be stored in the control unit.
  • the multi-carrier laser may further include a detecting unit.
  • the detecting unit may divide a small portion of the light from the loop for detection, or may divide a small portion of the multi-carrier light output from the second output port of the output unit for detection.
  • the object to be detected may be one or more of the following: the intensity of light of each wavelength in multi-carrier light, the phase of light of each wavelength in multi-carrier light, the interval between light of adjacent wavelengths in multi-carrier light, The number of wavelengths in multi-carrier light, and so on.
  • the detecting unit may be a photodiode PD, which can be used to detect respective intensities of light of each wavelength in the multi-carrier light.
  • the control unit adjusts the optical phase shifter according to the detection result of the detecting unit, so that the result of the detection meets the requirement.
  • the optical phase shifter corresponding to ⁇ 3 can be adjusted such that the intensity of ⁇ 3 detected by the detecting unit is maximized.
  • This adjustment can be a "scanned" adjustment, such as adjusting the optical path of the corresponding optical phase shifter from small to large or from large to small.
  • the optical path of the corresponding optical phase shifter can be adjusted by controlling the magnitude of the applied voltage or by controlling the temperature. In this case, a one-to-one correspondence between the respective wavelengths and the respective optical phase shifters can be stored in the control unit.
  • the demultiplexer, the plurality of optical phase shifters, and the combiner are sequentially connected, the mode locking unit, the output unit, the gain unit, and the optional polarization controller, the optical isolator, and the FP etalon.
  • the position and order in the loop are variable and are not limited to the connection in Figure 1.
  • the control unit is connected to each optical phase shifter and is not in the loop.
  • the detecting unit may separate part of the light from any position in the loop for detection, or may extract part of the light from the second output port of the output unit for detection.
  • the gain unit generates spontaneous emission light upon power up.
  • the gain unit in the loop continuously amplifies the spontaneous emission light in the loop, the demultiplexer, the optical phase shifter, the combiner (when there is a filtering function), the FP etalon, and the loop itself (ring The cavity) performs a mode selective filtering process on the spontaneous radiation in the loop.
  • the spontaneous radiation has undergone multiple cycles of oscillation, only the signal light of the wavelength that can penetrate the corresponding filter element without being filtered out is continuously amplified in the annular cavity, while other wavelengths that cannot pass through the corresponding filter element are continuously amplified. Noise light is suppressed.
  • the lasing multi-carrier light is output from the second output port of the output unit.
  • the required carrier can be phase-compensated by adjusting the corresponding optical phase shifter, and the light of the carrier is phase-locked by the mode-locking unit, so that the intensity of the required carrier is in the loop.
  • the maximum amplification is obtained, and at the same time, when the multi-carrier laser is output, the phase is fixed, and the phase of each carrier is fixed, and the quality of the multi-carrier light is high.
  • the optical path of the optical phase shifter corresponding to the carrier of the wavelength can be adjusted, so that the wavelength carrier generates destructive interference in the loop, thereby implementing the shutdown function. In this way, the number of carriers output by the multi-carrier laser and the interval between adjacent carriers can be flexibly set, which improves the flexibility of the multi-carrier laser.
  • this embodiment can realize a coherent multi-carrier of N ⁇ f interval which can be flexibly configured with f frequency as a basic interval.
  • Output its various configuration forms are shown in Figure 2.
  • the embodiment of the present invention further provides a method of generating a multi-carrier corresponding to the multi-carrier laser provided above.
  • the method includes: locking, by using the mode-locking unit, a phase of multi-carrier light in the loop; using the demultiplexer to filter multi-carrier light in a loop, and outputting a plurality of filtering processes Single carrier light; adjusting a phase of the plurality of single carrier lights by the plurality of optical phase shifters; multiplexing the light output by the plurality of optical phase shifters by using the combiner; a gain unit amplifies the multi-carrier light in the loop; outputting the loop by using the output unit Multi-carrier light produced by lasing.
  • Adjusting, by the plurality of optical phase shifters, a phase of the plurality of single carrier lights comprising: detecting multi-carrier light in the loop, or detecting multi-carrier light output by the second output port Controlling, by the detection result of the detecting unit, the plurality of optical phase shifters to adjust a phase of light passing through the plurality of optical phase shifters; wherein controlling the plurality of optical phase shifters to pass through Adjusting the phase of the light of the plurality of optical phase shifters includes: controlling at least one optical phase shifter to adjust a phase of light passing through the optical phase shifter to cause cancellation of light passing through the optical phase shifter or Constructive interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

一种多载波激光器以及产生多载波光的方法,通过调节一个或多个光学相移器对需要的载波进行相位补偿,当不需要某一波长的载波时,可以通过调节该波长的载波对应的光学相移器的光程,使得该波长载波在环路中产生相消干涉,从而实现了关断功能。这样,多载波激光器输出的载波的数量,以及相邻载波之间的间隔可以灵活设定,提高了多载波激光器的灵活性。

Description

一种多载波激光器以及产生多载波光的方法 技术领域
本发明涉及光通信技术领域,具体涉及一种多载波激光器以及产生多载波光的方法。
背景技术
多载波光源是光学通信系统中不可或缺的重要部件。多载波光源中多载波光的产生技术在多载波相干光通信、高精度光学原子钟、低噪声微波通信、随机脉冲整形等应用领域,是最关键的核心技术。
在很多应用领域,多载波光一般需要满足相应的条件,比如,多载波光需来自单光源,多载波光中各个载波的相位相关联,多载波光中各个载波的间隔精确可控等等。
在高速光通信领域,随着近年来数据流量的快速增长,多载波技术正在向着大容量、高频谱效率的光学多载波技术演进,因而对多波长光源提出了迫切的需求。同时,未来灵活网络传输方案的规划也对多波长光源的灵活性提出要求。
然而,现有的多载波光产生技术,其载波数量,载波间隔相对来说比较固定,难以任意调节,灵活性较差。
发明内容
有鉴于此,本发明实施例提供了一种多载波激光器以及产生多载波光的方法。
本发明实施例的第一方面,提供一种多载波激光器,所述多载波激光器包括用于产生多载波光的环路,所述环路中包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元;所述锁模单元用于锁定所述环路中多载波光的相位;所述解复用器包括输入端口和多个输出端口,所述解复用器用于对从所述输入端口接收到的多载波光进行滤波处理,并将滤波处理得到的多个单载波光从所述多个输出端口输出,其中,所述多个输出端口中的每个输出端口对应一个单载波光;所述多个光学相移器与所述解复用器 的多个输出端口以一对一的方式相连,用于调节输入的各个单载波光的相位;合波器,用于对所述多个光学相移器输出的光进行合波处理;增益单元,用于放大输入所述增益单元的多载波光;输出单元,包括第一输出端口、第二输出端口和输入端口,所述输出单元的输入端口用于接收所述环路中的多载波光,所述第一输出端口用于向所述环路输出多载波光,所述第二输出端口用于向所述多载波激光器外部输出所述环路中激射产生的多载波光。
本发明实施例的第二方面,提供一种产生多载波光的方法,可应用于多载波激光器中,所述多载波激光器包括用于产生多载波光的环路,所述环路中包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元,所述方法包括:利用所述锁模单元锁定所述环路中多载波光的相位;利用所述解复用器对环路中的多载波光进行滤波处理,并输出滤波处理得到的多个单载波光;利用所述多个光学相移器调节所述多个单载波光的相位;利用所述合波器对所述多个光学相移器输出的光进行合波处理;利用所述增益单元放大所述环路中的多载波光;利用所述输出单元输出所述环路中激射产生的多载波光。
本发明实施例提供的多载波激光器以及产生多载波光的方法,其包括解复用器以及与解复用器相连的多个光学相位器,每个光学相位器可对相应的载波光的相位进行调节,通过这种调节可实现部分光载波的关断,从而实现了载波数量和载波间隔的灵活调节,提高了多载波光源的灵活性。
附图说明
为了更清楚地说明本发明及相关实施例,提供以下附图:
图1为本发明实施例提供的多载波激光器结构图;
图2为本发明实施例提供的光学相移器不同处理时产生的多载波光频率间隔示意图。
具体实施例
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
本发明实施例的第一方面,提供一种多载波激光器,所述多载波激光器包括用于产生多载波光的环路,所述环路中包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元;所述锁模单元用于锁定所述环路中多载波光的相位;所述解复用器包括输入端口和多个输出端口,所述解复用器用于对从所述输入端口接收到的多载波光进行滤波处理,并将滤波处理得到的多个单载波光从所述多个输出端口输出,其中,所述多个输出端口中的每个输出端口对应一个单载波光;所述多个光学相移器与所述解复用器的多个输出端口以一对一的方式相连,用于调节输入的各个单载波光的相位;合波器,用于对所述多个光学相移器输出的光进行合波处理;增益单元,用于放大输入所述增益单元的多载波光;输出单元,包括第一输出端口、第二输出端口和输入端口,所述输出单元的输入端口用于接收所述环路中的多载波光,所述第一输出端口用于向所述环路输出多载波光,所述第二输出端口用于向所述多载波激光器外部输出所述环路中激射产生的多载波光。
可选的,结合本发明实施例的第一方面,在第一种实施方式中,所述锁模单元包括输入端口和输出端口,所述锁模单元的输入端口用于接收来自所述输出单元的第一输出端口的多载波光,所述锁模单元的输出端口用于向所述解复用器输出多载波光;所述解复用器的输入端口用于接收所述锁模单元的输出端口输出的多载波光;所述增益单元包括输入端口和输出端口,所述增益单元的输入端口用于接收所述合波器输出的多载波光,所述增益单元的输出端口用于向所述输出单元的输入端口输出多载波光。
可选的,结合本发明实施例的第一方面以及第一方面的第一种实施方式,在第二种实施方式中,所述多载波激光器还包括检测单元和控制单元;所述检测单元用于检测所述环路中的多载波光;所述控制单元用于根据所述检测单元的检测结果,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节;其中,所述控制单元控制至少一个光学相移器对经过该光学相移器的光的相位进行调节,使经过该光学相移器的光产生相消干涉。
可选的,结合本发明实施例的第一方面以及第一方面的第一、二种实施方式,在第三种实施方式中,所述环路中还包括法布里一珀罗FP标准具,所述FP标准具的透射波长与所述解复用器的透射波长对准。
可选的,结合本发明实施例的第一方面以及第一方面的第一、二、三种实施方式,在第四种实施方式中,所述环路中还包括偏振控制器,所述偏振控制器用于控制所述环路中多载波光的偏振方向。
可选的,结合本发明实施例的第一方面以及第一方面的第一、二、三、四种实施方式,在第五种实施方式中,所述环路中还包括光学隔离器,所述光学隔离器用于控制所述环路中多载波光的单向传输。
可选的,本发明实施例中的器件可以为保偏器件,相应的连接光纤可以是保偏光纤。
具体的,如图1所示,本发明实施例提供的多载波激光器包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元,其中,图中的偏振控制器、光隔离器、FP标准具等为可选部件。
其中,可选的,锁模单元可以包括电光调制器或声光调制器,或者可以包括饱和吸收介质,或者可以包括偏振旋转部件。锁模单元的作用是锁定环路中多载波光的相位。比如,锁模单元还可以包括RF信号发射器,可以通过RF信号来控制相应的电光调制器,使得经过该电光调制器的多载波光出射该电光调制器时相位一致。当锁模单元包括饱和吸收介质或偏振旋转部件时,该锁模单元还可以包括控制部件,用于控制相应的饱和吸收介质或偏振旋转部件的参数,从而保证经过锁模单元的多载波光相位保持一致。
解复用器可以是阵列式波导光栅(Arrayed Waveguide Grating,AWG),可以是MEMS,可以是并联的微环组,还可以是MMI等器件,用于将输入的多载波中与相应的输出端口对准的载波输出,滤除不需要的噪声光。可选的,解复用器输出的一系列波长λ1、λ2、λ3……λn相邻波长之间的波长间隔可以是固定不变的,即固定间隔的一系列波长。可选的,解复用器输出的一系列波长λ1、λ2、λ3……λn相邻波长之间的波长间隔也可以是可调的,比如,当解复用器为AWG时,可以在AWG中包含的各个波导处增加调节电极,通过电极输入的电流调节能透射该AWG的波长以及相应的波长 间隔。
可选的,光学相移器可以为电致折射率变化材料,或者可以为电致长度变化材料,或者可以为电致折射率及长度变化材料,或者可以为温控折射率变化材料,或者温控长度变化材料,或者是温控折射率及长度变化材料。在一种实施方式中,可以通过相应的电极向光学相移器施加电压,从而改变其折射率和/或长度,最终使得载波在该光学相移器中的光程发生改变,从而调节了该载波的相位。
合波器用于把各个光学相移器输出的光合并输出。可选的,合波器也可以具有滤波功能,其在汇聚载波的同时,也可对各个光学相移器输出的光进行滤波处理,其中,该合波器的透射波长与解复用器的透射波长对准。这里所述的透射波长是相对于那些被滤除的波长而言的,能从合波器透传的载波的波长。合波器的透射波长和解复用器的透射波长对准,是指能透射两者的波长大致相同。因为不同的器件其滤波带宽必然存在些微差异,当解复用器和合波器均具有滤波功能时,滤波效果会有一定程度的提升。
增益单元,可以为掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA),可以为半导体光放大器(Semiconductor Optical Amplifier,SOA),也可以为其它具有光放大功能的器件。
输出单元接收环路上的多载波,一部分从第一输出端口回到环路中,另一部分从第二输出端口向多载波激光器外部输出激射的多载波光。可选的,输出单元可以是一个功率分光器,如耦合器等。可选的,还可以在输出单元的第二输出端口镀一层高反膜,如反射率大于50%的高反膜。
可选的,环路中还可以包括FP标准具,FP标准具的透射波长与所述解复用器的透射波长对准。FP标准具用于对光学环路中的多种震荡模式进行细选模,实现超模噪声的抑制,只允许设计要求的多载波模式可以循环振荡并输出。具体来说,FP标准具具有更狭窄的透射带宽,其可与解复用器以及合波器(如有滤波功能)相互配合,从而产生更好的选模的效果。
可选的,环路中可以包括一个或多个偏振控制器,用于控制环路中多载波光的偏振方向。
可选的,环路中还可以包括光隔离器,可用于保证多载波光在环路中单向传输。
可选的,多载波激光器可以包括控制单元。控制单元与所述多个光学相移器相连。可选的,控制单元可通过调节相应的光学相移器的光程的方式,调节相应的载波在环路中的相位。可选的,可以通过控制加载电压大小的方式或者通过控制温度高低的方式调节相应光学相移器的光程,从而最终调节经过该光学相移器的载波的相位。这种调节可以根据控制单元内部所保存的参数进行,如当所述多载波激光器需要输出包含λ3的多载波光时,可选择与λ3相对应的光学相移器进行调节,并输出一个预定数值的输出控制电压,从而使得多载波激光器输出的λ3的光强,与其他预定数值的控制电压所产生的λ3的光强相比最大。当需要关断波长λ3时,可选择与λ3相对应的光学相移器进行调节,并输出另一预定数值的关断控制电压,使得多载波激光器输出的λ3的光强,与其他预定数值的控制电压所产生的λ3的光强相比最小,或者为零。其他波长的载波的控制方法,以此类推。在这种情况下,控制单元中可以保存各个波长、各个光学相移器、输出控制电压、关断控制电压之间的一一对应关系。
可选的,所述多载波激光器还可以包括检测单元。检测单元可以从环路中分出一小部分光用于检测,或者可以从输出单元第二输出端口输出的多载波光中分出一小部分用于检测。检测的对象可以是以下几项中的一项或多项:多载波光中各个波长光的强度、多载波光中各个波长光的相位、多载波光中各相邻波长光之间的间隔、多载波光中的波长数量等等。可选的,检测单元可以是光电二极管PD,可用于检测多载波光中各个波长光的各自的强度。控制单元根据检测单元的检测结果对光学相移器进行调节,使得检测的结果符合需求。在一种实施例中,如需要出射的多载波光中包含波长为λ3的载波,则可调节与λ3相对应的光学相移器,使得检测单元检测到的λ3的强度最大。这种调节可以是“扫描式”的调节,如可以从小到大地或者从大到小地调节对应光学相移器的光程。可选的,可以通过控制加载电压大小的方式或者通过控制温度高低的方式调节对应光学相移器的光程。在这种情况下,控制单元中可以保存各个波长、各个光学相移器之间的一一对应关系。
本发明实施例中,解复用器、多个光学相移器、合波器依次相连,锁模单元、输出单元、增益单元,以及可选的偏振控制器、光隔离器、FP标准具 在环路中的位置和顺序是可变的,不限于图1中的连接方式。控制单元与各个光学相移器相连,不在环路中。检测单元可从环路中任意位置分出部分光进行检测,也可从输出单元的第二输出端口分出部分光进行检测。
本发明实施例中,增益单元在加电时会产生自发辐射光。环路中的增益单元对在环路中的自发辐射光进行不断放大,解复用器、光学相移器、合波器(当有滤波功能时)、FP标准具、以及环路自身(环形腔)对环路中的自发辐射光进行选模滤波处理。自发辐射光经过多次循环振荡之后,在环形腔中,仅有那些能穿透相应的滤波器件而不被滤除的波长的信号光得以不断放大,而其它不能透过相应滤波器件的波长的噪声光则被抑制。最终,激射的多载波光从输出单元的第二输出端口输出。
本发明实施例中,可以通过调节相应的光学相移器对需要的载波进行相位补偿,同时利用锁模单元对该载波的光进行相位锁定,从而使得该需要的载波的光强在环路中得到最大程度的放大,同时保证了其在输出多载波激光器时,其相位是固定不变的,同时各个载波各自的相位固定,多载波光的质量较高。此外,当不需要某一波长的载波时,可以通过调节该波长的载波对应的光学相移器的光程,使得该波长载波在环路中产生相消干涉,从而实现了关断功能。这样,多载波激光器输出的载波的数量,以及相邻载波之间的间隔可以灵活设定,提高了多载波激光器的灵活性。
在一种实施方式中,对于给定了锁模单元调制参数、解复用器、合波器和FP标准具选模滤波参数的情况(锁模单元频率参数f,解复用器、合波器和FP标准具的FSR=f),通过灵活配置光学相移器的相位补偿和关断,本实施例可以实现以f频率为基本间隔的,可灵活配置的N×f间隔的相干多载波输出,其各种配置形态如图2。
同时,本发明实施例还提供与以上提供的多载波激光器相对应的多载波的产生方法。所述方法包括:利用所述锁模单元锁定所述环路中多载波光的相位;利用所述解复用器对环路中的多载波光进行滤波处理,并输出滤波处理得到的多个单载波光;利用所述多个光学相移器调节所述多个单载波光的相位;利用所述合波器对所述多个光学相移器输出的光进行合波处理;利用所述增益单元放大所述环路中的多载波光;利用所述输出单元输出所述环路 中激射产生的多载波光。所述利用所述多个光学相移器调节所述多个单载波光的相位,包括:检测所述环路中的多载波光,或者用于检测所述第二输出端口输出的多载波光;根据所述检测单元的检测结果,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节;其中,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节,包括:控制至少一个光学相移器对经过该光学相移器的光的相位进行调节,使经过该光学相移器的光产生相消或相长干涉。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种多载波激光器,其特征在于,所述多载波激光器包括用于产生多载波光的环路,所述环路中包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元;
    所述锁模单元用于锁定所述环路中多载波光的相位;
    所述解复用器包括输入端口和多个输出端口,所述解复用器用于对从所述输入端口接收到的多载波光进行滤波处理,并将滤波处理得到的多个单载波光从所述多个输出端口输出,其中,所述多个输出端口中的每个输出端口对应一个单载波光;
    所述多个光学相移器与所述解复用器的多个输出端口以一对一的方式相连,用于调节输入的各个单载波光的相位;
    合波器,用于对所述多个光学相移器输出的光进行合波处理;
    增益单元,用于放大输入所述增益单元的多载波光;
    输出单元,包括第一输出端口、第二输出端口和输入端口,所述输出单元的输入端口用于接收所述环路中的多载波光,所述第一输出端口用于向所述环路输出多载波光,所述第二输出端口用于向所述多载波激光器外部输出所述环路中激射产生的多载波光。
  2. 根据权利要求1所述的多载波激光器,其特征在于:
    所述锁模单元包括输入端口和输出端口,所述锁模单元的输入端口用于接收来自所述输出单元的第一输出端口的多载波光,所述锁模单元的输出端口用于向所述解复用器输出多载波光;
    所述解复用器的输入端口用于接收所述锁模单元的输出端口输出的多载波光;
    所述增益单元包括输入端口和输出端口,所述增益单元的输入端口用于接收所述合波器输出的多载波光,所述增益单元的输出端口用于向所述输出单元的输入端口输出多载波光。
  3. 根据权利要求1或2所述的多载波激光器,其特征在于:
    所述多载波激光器还包括控制单元;所述控制单元用于控制所述多个光 学相移器对经过所述多个光学相移器的光的相位进行调节;其中,所述控制单元控制至少一个光学相移器对经过该光学相移器的光的相位进行调节,使经过该光学相移器的光产生相消干涉。
  4. 根据权利要求3所述的多载波激光器,其特征在于:
    所述多载波激光器还包括检测单元;
    所述检测单元用于检测所述环路中的多载波光,或者用于检测所述第二输出端口输出的多载波光;
    所述控制单元具体用于根据所述检测单元的检测结果,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节。
  5. 根据权利要求1至4任一所述的多载波激光器,其特征在于:
    所述环路中还包括偏振控制器,所述偏振控制器用于控制所述环路中多载波光的偏振方向。
  6. 根据权利要求1至5任一所述的多载波激光器,其特征在于:
    所述环路中还包括光隔离器,所述光隔离器包括输入端口和输出端口,其中,从所述光隔离器的输入端口输入到所述光隔离器的光通过所述光隔离器的输出端口输出,从所述光隔离器的输出端口输入到所述光隔离器的光被所述光隔离器所隔离。
  7. 一种产生多载波光的方法,其特征在于,应用于多载波激光器中,所述多载波激光器包括用于产生多载波光的环路,所述环路中包括锁模单元、解复用器、多个光学相移器、合波器、增益单元和输出单元,所述方法包括:
    利用所述锁模单元锁定所述环路中多载波光的相位;
    利用所述解复用器对环路中的多载波光进行滤波处理,并输出滤波处理得到的多个单载波光;
    利用所述多个光学相移器调节所述多个单载波光的相位;
    利用所述合波器对所述多个光学相移器输出的光进行合波处理;
    利用所述增益单元放大所述环路中的多载波光;
    利用所述输出单元输出所述环路中激射产生的多载波光。
  8. 根据权利要求7所述的方法,其特征在于:
    所述利用所述多个光学相移器调节所述多个单载波光的相位,包括:检测所述环路中的多载波光,或者用于检测所述第二输出端口输出的多载波光; 根据所述检测单元的检测结果,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节;其中,控制所述多个光学相移器对经过所述多个光学相移器的光的相位进行调节,包括:控制至少一个光学相移器对经过该光学相移器的光的相位进行调节,使经过该光学相移器的光产生相消干涉。
PCT/CN2015/077714 2015-04-28 2015-04-28 一种多载波激光器以及产生多载波光的方法 WO2016172861A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580078798.4A CN107534505B (zh) 2015-04-28 2015-04-28 一种多载波激光器以及产生多载波光的方法
PCT/CN2015/077714 WO2016172861A1 (zh) 2015-04-28 2015-04-28 一种多载波激光器以及产生多载波光的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077714 WO2016172861A1 (zh) 2015-04-28 2015-04-28 一种多载波激光器以及产生多载波光的方法

Publications (1)

Publication Number Publication Date
WO2016172861A1 true WO2016172861A1 (zh) 2016-11-03

Family

ID=57198904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077714 WO2016172861A1 (zh) 2015-04-28 2015-04-28 一种多载波激光器以及产生多载波光的方法

Country Status (2)

Country Link
CN (1) CN107534505B (zh)
WO (1) WO2016172861A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290381A (zh) * 2019-07-23 2021-01-29 梁春 一种基于法布里波罗光腔的外腔激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212315B1 (en) * 1998-07-07 2001-04-03 Lucent Technologies Inc. Channel power equalizer for a wavelength division multiplexed system
JP4389545B2 (ja) * 2003-10-17 2009-12-24 ソニー株式会社 送信装置及び送信方法
CN102055527A (zh) * 2010-12-10 2011-05-11 武汉邮电科学研究院 一种产生多载波光的方法
CN102340093A (zh) * 2010-07-27 2012-02-01 清华大学 光纤锁模激光器
CN102882667A (zh) * 2012-10-11 2013-01-16 复旦大学 基于n波长注入与n倍频单边带频移环路的多载波产生装置
CN102932089A (zh) * 2012-11-16 2013-02-13 华南师范大学 基于超密集波分复用的多载波码分复用光传输系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194453C (zh) * 2001-09-13 2005-03-23 华为技术有限公司 一种多波长输出光纤激光器
GB0523522D0 (en) * 2005-11-18 2005-12-28 Sosabowski Jeremy Optical comb frequency source
US7733923B2 (en) * 2005-12-08 2010-06-08 Alcatel-Lucent Usa Inc. Wide-bandwidth mode-locked laser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212315B1 (en) * 1998-07-07 2001-04-03 Lucent Technologies Inc. Channel power equalizer for a wavelength division multiplexed system
JP4389545B2 (ja) * 2003-10-17 2009-12-24 ソニー株式会社 送信装置及び送信方法
CN102340093A (zh) * 2010-07-27 2012-02-01 清华大学 光纤锁模激光器
CN102055527A (zh) * 2010-12-10 2011-05-11 武汉邮电科学研究院 一种产生多载波光的方法
CN102882667A (zh) * 2012-10-11 2013-01-16 复旦大学 基于n波长注入与n倍频单边带频移环路的多载波产生装置
CN102932089A (zh) * 2012-11-16 2013-02-13 华南师范大学 基于超密集波分复用的多载波码分复用光传输系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290381A (zh) * 2019-07-23 2021-01-29 梁春 一种基于法布里波罗光腔的外腔激光器

Also Published As

Publication number Publication date
CN107534505B (zh) 2019-05-28
CN107534505A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
US7848370B2 (en) Electronically phase-locked laser systems
US6215566B1 (en) Multi-wavelength light source and discrete-wavelength-variable light source
US20110280581A1 (en) Systems and methods for producing high-power laser beams
WO2007037243A1 (ja) THz波発生装置
US9385506B2 (en) Wavelength tunable comb source
US10707648B2 (en) Stable linewidth narrowing of a coherent comb laser
CN117039611B (zh) 一种倍频太赫兹光电振荡器装置及其振荡方法
Ma et al. Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique
WO2016172861A1 (zh) 一种多载波激光器以及产生多载波光的方法
US6285477B1 (en) Multi-wavelength light source and discrete-wavelength-variable light source
US10488588B1 (en) Photonic integrated circuit using a quantum dot comb laser for heterodyne optical signals
US7230958B2 (en) Raman amplifier and raman pumping method
KR100354336B1 (ko) 초고속 광신호처리용 파장변환장치
JP3573334B2 (ja) 光発生方法及び光源
JP5230719B2 (ja) 光データ伝送に使用するミリ波光信号を生成する装置、及び方法
KR20020014173A (ko) 표본화된 광섬유 격자를 이용한 초고속 다파장 레이저 장치
Cai et al. Stabilize the coupled optoelectronic oscillator by an unpumped erbium-doped fiber
CN114336227A (zh) 一种基于低畸变耗散克尔孤子的微波信号产生装置
KR20050112138A (ko) 유리수차 조화 모드-잠김 반도체 광섬유 레이저 내에서의펄스 진폭 균등화 장치 및 방법
KR102013811B1 (ko) 주파수 가변 다파장 광 마이크로파 필터
JP2004294543A (ja) 周期的多波長光発生装置
WO2023174168A1 (zh) 一种光频梳生成设备、方法、光发射设备和光通信系统
JP6369946B2 (ja) 狭線幅波長可変半導体レーザ
Kumavor et al. All-optical lyot-filter-assisted flip-flop operation using a semiconductor optical amplifier
Tsuji et al. Optically generated phase shift keying microwave signal using optical phase modulator with single light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890241

Country of ref document: EP

Kind code of ref document: A1