WO2016171359A1 - 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 - Google Patents

태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 Download PDF

Info

Publication number
WO2016171359A1
WO2016171359A1 PCT/KR2015/012733 KR2015012733W WO2016171359A1 WO 2016171359 A1 WO2016171359 A1 WO 2016171359A1 KR 2015012733 W KR2015012733 W KR 2015012733W WO 2016171359 A1 WO2016171359 A1 WO 2016171359A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
solar cell
forming
cell electrode
shear stress
Prior art date
Application number
PCT/KR2015/012733
Other languages
English (en)
French (fr)
Inventor
박상희
박민수
김태준
정명성
하현진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/305,378 priority Critical patent/US10115845B2/en
Priority to JP2017527633A priority patent/JP6755247B2/ja
Priority to CN201580021050.0A priority patent/CN106304850B/zh
Publication of WO2016171359A1 publication Critical patent/WO2016171359A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition for forming a solar cell electrode and a solar cell electrode prepared therefrom.
  • Solar cells generate electrical energy using the photoelectric effect of pn junctions that convert photons of sunlight into electricity.
  • front and rear electrodes are formed on and under the semiconductor wafer or substrate on which the pn junction is formed.
  • the photovoltaic effect of the pn junction is induced by solar light incident on the semiconductor wafer, and electrons generated therefrom provide a current flowing through the electrode to the outside.
  • the electrode of such a solar cell may be formed on the wafer surface by coating, patterning, and firing the composition for forming an electrode.
  • Methods for printing the composition for forming a solar cell electrode on a substrate can be largely divided into gravure offset printing method and screen printing method.
  • gravure offset printing the viscosity, dryness, and tackiness requirements of the composition have a significant influence.
  • screen printing the rheological properties or thixotrophy of the composition have a significant influence. Therefore, it is important to use a composition for forming an electrode that can have a high aspect ratio while printing with a fine line width when forming a solar cell electrode.
  • Korean Patent Publication No. 2011-0040713 discloses a method of controlling the leveling and thixotropy of the composition for forming a solar cell electrode with a plasticizer in order to realize a narrow line width and a high aspect ratio.
  • Korean Patent Publication No. 2010-0069950 discloses a technique using a gravure offset printing method using a binder having a high glass transition temperature (Tg) as a two-layer electrode to realize a high aspect ratio.
  • Korean Patent Publication No. 2007-0055489 discloses a technique for improving line width and aspect ratio by controlling thixotropy (TI) by the particle size of silver (Ag) powder.
  • TI thixotropy
  • An object of the present invention to provide a composition for forming a solar cell electrode that can implement a fine line width when printing.
  • Another object of the present invention is to provide a composition for forming a solar cell electrode having excellent conversion efficiency.
  • Still another object of the present invention is to provide a solar cell electrode including the composition for forming a solar cell electrode.
  • One aspect of the present invention relates to a composition for forming a solar cell electrode, including a conductive powder, a glass frit, and an organic vehicle, wherein the tackiness represented by the following Equation 1 is about 60% to about 90%.
  • Tackiness (%) ⁇ (A-B) / A ⁇ ⁇ 100
  • Equation 1 A is a minimum value of shear stress measured while detaching the circular plate by applying an external force after laminating a pair of circular plates having a diameter of 25 mm in parallel through a composition for forming a solar cell electrode.
  • minimum shear stress B means the shear stress value at the instantaneous rate of change (d (shear stress) / d (separation distance)) of the shear stress with respect to the separation distance between the plates is 0.05.
  • the composition may comprise about 50% to about 90% by weight conductive powder, about 1% to about 15% by weight of the glass frit and about 5% to about 40% by weight of the organic vehicle.
  • the composition may further comprise a surface tension regulator having a surface tension of about 40 mN / m to about 65 mN / m.
  • the surface tension modifier s ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, propylene carbonate, formamide, glycerol And at least one compound selected from the group consisting of furfural.
  • the composition may include about 0.1 wt% to about 40 wt% of the surface tension modifier in the electrode forming composition.
  • the conductive powder is silver (Ag), gold (Au), palladium (Pd), platinum (Pt), copper (Cu), chromium (Cr), cobalt (Co), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), iron (Fe), iridium (Ir), osmium (Os), rhodium (Rh), tungsten (W), molybdenum (Mo), nickel (Nickel) and ITO (indium tin oxide) It may include one or more metal powder selected from the group consisting of.
  • the glass frit may comprise leaded glass frit, lead-free glass frit or mixtures thereof.
  • the glass frit may have an average particle diameter (D50) of about 0.1 ⁇ m to about 5 ⁇ m.
  • composition may further comprise at least one additive selected from the group consisting of dispersants, plasticizers, viscosity stabilizers, antifoams, pigments, ultraviolet stabilizers, antioxidants and coupling agents.
  • additives selected from the group consisting of dispersants, plasticizers, viscosity stabilizers, antifoams, pigments, ultraviolet stabilizers, antioxidants and coupling agents.
  • the composition may have a tackiness of about 65% to about 90% represented by Equation 1.
  • Another aspect of the invention relates to a solar cell electrode prepared from the composition for forming a solar cell electrode.
  • composition for forming a solar cell electrode of the present invention can implement a printed pattern of fine line width, it is excellent in conversion efficiency.
  • 1 is a graph showing a shear stress value according to a separation distance of a plate measured while detaching the circular plate by applying an external force after laminating a pair of circular plates having a diameter of 25 mm through a composition for forming a solar cell electrode. .
  • FIG. 2 is a conceptual diagram schematically showing the structure of a solar cell according to an embodiment of the present invention.
  • composition for forming a solar cell electrode of the present invention may have a tackiness of about 60% to about 90%, specifically about 65% to about 90%, represented by Equation 1 below:
  • Tackiness (%) ⁇ (A-B) / A ⁇ ⁇ 100
  • a of [Equation 1] is a minimum value of shear stress measured while detaching the circular plate by applying an external force after laminating a pair of circular plates having a diameter of 25 mm in parallel through a composition for forming a solar cell electrode.
  • B means the shear stress value at the instantaneous rate of change (d (shear stress) / d (separation distance)) of the shear stress with respect to the separation distance between the plates is 0.05.
  • the x-axis denotes a gap Gap between the plates when the circular plate is detached by an external force.
  • the separation distance before applying the external force is the thickness of the electrode forming composition applied between the plates.
  • the y-axis represents the shear stress value according to the gap.
  • the plate used for measuring the adhesiveness is stainless steel having a diameter of 25 mm, thickness 2 mm, the content of the composition for forming a solar cell electrode supplied between the plates is 20g.
  • the soak time was 10 seconds
  • the duration time was 20 seconds
  • the constant linear rate was 1.0 mm / s
  • the maximum gap change was 100 mm .
  • the shear stress was measured at 25 ° C. and 20% humidity .
  • the point a is the point at which the desorption of the circular plates starts, and the point b is the point at which the instantaneous change rate of the shear stress with respect to the separation distance is 0.05. After the point b, little tail elongated from the composition layer occurs between the plates, and the shear stress value hardly changes.
  • a in [Formula 1] is a shear stress value at point a on the graph of FIG. 1, that is, desorption of a pair of circular plates laminated using the composition for forming a solar cell electrode of the present invention
  • B is the shear stress value at point b on the graph of Figure 1, that is, the instantaneous rate of change of the shear stress with respect to the separation distance between the plates (d ( The shear stress value at the point where shear stress) / d (separation distance) is 0.05.
  • the adhesiveness is less than about 60%, it may reduce the spreading (flooding) on the printing mask during printing, and if the adhesiveness exceeds about 90%, line breakage may occur due to the deterioration of the printability.
  • the line width of the printed pattern is about 65 to about 90 ⁇ m
  • the line thickness is About 15 ⁇ m to about 25 ⁇ m.
  • the aspect ratio (line thickness / line width), which is the ratio of line thickness to line width of the printed pattern, may be about 0.15 or more, preferably about 0.15 to about 0.50, more preferably about 0.20 to about 0.40. It may have excellent printability in the range of the aspect ratio.
  • the composition for forming a solar cell electrode of the present invention comprises a conductive powder (A), a glass frit (B) and an organic vehicle (C). In addition, it may optionally further comprise a surface tension regulator (D).
  • the composition can be implemented in the fine line width when printing on the wafer substrate by the screen printing method, the solar cell electrode made of the composition is excellent in conversion efficiency.
  • both organic or inorganic materials having conductivity may be used.
  • Such conductive powder can be used 1 type or in mixture of 2 or more types.
  • the conductive powder includes silver (Ag) particles, and nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) or copper (Cu) particles may be further added in addition to the silver particles. .
  • the conductive powder may be used having an average particle diameter (D50) having an average particle diameter of about 0.1 to about 10 ⁇ m. It is preferably about 0.2 to about 7 mu m, more preferably about 0.5 to about 5 mu m.
  • D50 average particle diameter
  • the conductive powder may be included in an amount of about 50 to about 90% by weight based on the total weight of the composition, preferably about 70 to about 90% by weight. In this range, it is possible to prevent the conversion efficiency from being lowered due to the increase of the resistance, to prevent the difficulty of pasting due to the relative decrease in the amount of the organic vehicle, and to have appropriate dispersibility, flowability, and printability.
  • the glass frit etches the anti-reflection film during the firing process of the electrode paste, generates silver crystal grains in the emitter region to melt the silver particles and lowers the resistance, and the adhesion between the conductive powder and the wafer. And soften during sintering to induce an effect of lowering the firing temperature.
  • Increasing the area of the solar cell in order to increase the efficiency of the solar cell can increase the contact resistance of the solar cell to minimize damage to the pn junction (pn junction) and at the same time minimize the series resistance.
  • pn junction pn junction
  • the fluctuation range of the firing temperature increases with the increase of wafers with various sheet resistances, it is preferable to use a glass frit that can sufficiently secure thermal stability even at a wide firing temperature.
  • the glass frit may be any one or more of a flexible glass frit or a lead-free glass frit typically used in a composition for forming a solar cell electrode.
  • the glass frit may include solely or a mixture of metal oxides selected from lead oxide, silicon oxide, tellurium oxide, bismuth oxide, zinc oxide, boron oxide, aluminum oxide, tungsten oxide, and the like.
  • metal oxides selected from lead oxide, silicon oxide, tellurium oxide, bismuth oxide, zinc oxide, boron oxide, aluminum oxide, tungsten oxide, and the like.
  • zinc oxide-silicon oxide-based (ZnO-SiO 2 ) zinc oxide-boron oxide-silicon oxide-based (ZnO-B 2 O 3 -SiO 2 ), zinc oxide-boron oxide-silicon oxide-aluminum oxide-based (ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 ), bismuth oxide-silicon oxide (Bi 2 O 3 -SiO 2 ), bismuth oxide-boron oxide-silicon oxide (Bi 2 O 3 -B 2 O 3 -SiO 2 ), bismuth oxide-boron oxide-silicon
  • Glass frits can be prepared from the metal oxides described above using conventional methods. For example, it mixes with the composition of the metal oxide described above. Mixing can be performed using a ball mill or planetary mill. The mixed composition is melted at conditions of about 900 ° C. to about 1300 ° C. and quenched at about 25 ° C. The obtained result can be pulverized by a disk mill, planetary mill or the like to obtain a glass frit.
  • the shape of the glass frit is not particularly limited, and may be, for example, spherical or indefinite.
  • the glass frit may have an average particle diameter (D50) of about 0.1 ⁇ m to about 5 ⁇ m.
  • the glass frit is used to purchase a commercial product or to obtain a desired composition, for example, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), bismuth oxide (Bi 2 O 3 ), sodium oxide (Na 2 O), zinc oxide (ZnO) and the like may be selectively melted.
  • silicon dioxide SiO 2
  • Al 2 O 3 aluminum oxide
  • B 2 O 3 boron oxide
  • Bi 2 O 3 bismuth oxide
  • Na 2 O sodium oxide
  • ZnO zinc oxide
  • the glass frit may be included in about 1 to about 15% by weight based on the total weight of the composition, preferably from about 2 to about 10% by weight. It may have a suitable dispersibility, flowability and printability in the above range.
  • the organic vehicle imparts suitable viscosity and rheological properties to the composition through mechanical mixing with the inorganic component of the composition for forming a solar cell electrode.
  • the organic vehicle may be an organic vehicle that is typically used in a composition for forming a solar cell electrode, and may include a conventional binder resin, a solvent, and the like.
  • an acrylate-based or cellulose-based resin may be used, and ethyl cellulose is generally used.
  • the solvent for example, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl centrosolve, butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol dibutyl ether) Butyl carbitol acetate (diethylene glycol monobutyl ether acetate), propylene glycol monomethyl ether, hexylene glycol, terpineol, methyl ethyl ketone, benzyl alcohol, gamma butyrolactone or ethyl lactate alone or the like It can mix and use 2 or more types.
  • the organic vehicle may be included in about 5 to about 40% by weight relative to the total weight of the composition for forming a solar cell electrode. It is possible to secure sufficient adhesive strength and excellent printability in the above range.
  • composition of the present invention may further comprise a surface tension modifier.
  • the surface tension modifier means a co-solvent having a surface tension of about 40 mN / m or more, for example, about 40 to about 65 mN / m at 20 ° C.
  • Surface tension in the present invention means the surface tension value measured by the temperature 20, measurement standard ASTM D 1331.
  • the surface tension modifier may be ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, propylene carbonate, Formamide, glycerol, furfural, and the like. These may be used alone or in combination of two or more thereof.
  • the surface tension modifier may be included in about 0.1 to about 40% by weight, preferably about 0.1 to about 25% by weight relative to the total weight of the composition for forming a solar cell electrode. It can have a suitable fluidity and printability in the above range.
  • the composition for forming a solar cell electrode of the present invention may further include a conventional additive as needed to improve the flow characteristics, process characteristics and stability in addition to the components described above.
  • the additive may be used alone or in combination of two or more of a dispersant, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, a coupling agent and the like. They may be included in about 0.1 to about 5% by weight relative to the total weight of the composition for forming a solar cell electrode, but may be changed in content as necessary.
  • FIG. 1 shows the structure of a solar cell according to an embodiment of the present invention.
  • a composition for forming an electrode is printed and baked on a wafer 100 or a substrate including a p layer (or n layer) 101 and an n layer (or p layer) 102 as an emitter.
  • the rear electrode 210 and the front electrode 230 may be formed.
  • the electrode forming composition may be printed on the back side of the wafer and then dried at a temperature of about 200 ° C. to about 400 ° C. for about 10 seconds to about 60 seconds to perform a preliminary preparation step for the back electrode.
  • the composition for forming an electrode on the front surface of the wafer may be printed and dried to perform a preliminary preparation step for the front electrode. Thereafter, a firing process may be performed at about 400 ° C. to about 950 ° C., preferably about 750 ° C. to about 950 ° C., for about 30 seconds to about 50 seconds to form a front electrode and a rear electrode.
  • ethyl cellulose (Dow chemical company, STD4, SDT200) as an organic binder was sufficiently dissolved in 6.2 wt% of butyl carbitol (Dow Chem.) At 60 to prepare an organic vehicle, and the average particle diameter of the organic vehicle was 85 wt% of spherical silver powder (Dowa Hightech CO.
  • a composition for forming a solar cell electrode was manufactured in the same manner as in Example 1, except that each component was included in the composition of Table 1 below.
  • a pair of round plates (stainless steel having a diameter of 25 mm and a thickness of 2 mm) at a temperature of 25 ° C. and a humidity of 20% was laminated through 20 g of the composition for forming a solar cell electrode manufactured by Examples 1 to 6 and Comparative Example 1. After measuring the shear stress while desorption by applying an external force and then substituted in Equation 1 to measure the adhesion, the results are shown in Table 1.
  • Tackiness (%) ⁇ (A-B) / A ⁇ ⁇ 100
  • a in Equation 1 denotes a minimum shear stress of the measured shear stress
  • B represents an instantaneous rate of change of shear stress with respect to the separation distance between the plates (d (shear stress) / d ( Shear stress at the point where
  • the solar cell electrode forming compositions prepared in Examples 1 to 6 and Comparative Example 1 were printed by screen printing in a predetermined pattern on the entire surface of a crystalline mono wafer (Wafer), and dried using an infrared drying furnace.
  • the cell formed by the above process was fired for 60 seconds to 210 seconds between 600 ° C. and 900 ° C. using a belt-type firing furnace to produce cells.
  • the manufactured cell measured the short circuit current (Isc) and conversion efficiency (%) of the solar cell using a solar cell efficiency measuring equipment (Pasan, CT-801), the results are shown in Table 1.
  • the solar cell electrode forming compositions of Examples 1 to 6 and Comparative Example 1 were printed by screen printing in a predetermined pattern on the entire surface of a wafer using a screen mask designed with a line width of about 30 ⁇ m to about 50 ⁇ m. After the printed wafer was dried and fired, the line width and thickness of the manufactured electrode (finger bar) were measured using a VK device (KEYENCE VK9710), and the results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 일 실시예는 전도성 분말, 유리 프릿 및 유기 비히클을 포함하고, 하기 [식 1]로 표시되는 점착성 (tackiness)이 약 60% 내지 약 90%인 태양전지 전극 형성용 조성물을 게시한다. [식 1] 점착성 (tackiness)(%) = {(A-B)/A}×100 여기서, A는 지름이 25mm인 원형 플레이트 한 쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후 외력을 가하여 원형 플레이트를 탈착시키면서 측정한 전단응력 (shear stress)의 최소값 (minimum shear stress)을 의미하며, B는 플레이트 간의 이격거리에 대한 전단응력의 순간 변화율 (d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값을 의미한다.

Description

태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
본 발명은 태양전지 전극 형성용 조성물 및 이로부터 제조된 태양전지 전극에 관한 것이다.
태양전지는 태양광의 포톤(photon)을 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. 태양전지는 pn 접합이 구성되는 반도체 웨이퍼 또는 기판 상,하면에 각각 전면 전극과 후면 전극이 형성되어 있다. 태양전지는 반도체 웨이퍼에 입사되는 태양광에 의해 pn 접합의 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다. 이러한 태양전지의 전극은 전극 형성용 조성물의 도포, 패터닝 및 소성에 의해, 웨이퍼 표면에 형성될 수 있다.
태양전지 전극 형성용 조성물을 기판상에 인쇄하는 방법은 크게 그라비아 옵셋 인쇄법과 스크린 인쇄법으로 나눌 수 있다. 그라비아 옵셋 인쇄법의 경우에는 조성물이 갖는 점성, 건조성, 점착성 요건이 중요한 영향을 미치며, 스크린 인쇄법의 경우에는 조성물의 레올로지 특성 또는 요변성(thixotrophy)이 중요한 영향을 미친다. 따라서, 태양전지 전극 형성 시에 미세선폭으로 인쇄가 가능하면서 높은 종횡비를 가질 수 있는 전극 형성용 조성물을 사용하는 것이 중요하다.
한국특허공개 제2011-0040713호에는 좁은 선폭 및 높은 종횡비(aspect ratio)를 구현하기 위하여 가소제로 태양 전지 전극 형성용 조성물의 레벨링성 및 틱소성을 조절하는 방법이 개시되어 있다. 한국특허공개 제2010-0069950호에는, 높은 종횡비를 구현하기 위해 이층 전극으로 유리전이온도(Tg)가 높은 바인더를 사용한 그라비아 오프셋 인쇄 방법을 사용하는 기술이 개시되어 있다. 한국특허공개 제 2007-0055489 호는 은(Ag)분말의 입경으로 틱소성(TI)을 제어하여 선폭 및 종횡비를 개선하는 기술이 개시되어 있다. 그러나, 이러한 종래 기술들은 미세선폭과 고 종횡비를 갖는 인쇄 패턴을 구현하기에는 여전히 한계가 있다.
본 발명의 목적은 인쇄시 미세 선폭을 구현할 수 있는 태양전지 전극 형성용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 변환효율이 우수한 태양전지 전극 형성용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 태양전지 전극 형성용 조성물을 포함하는 태양전지 전극을 제공하는 것이다.
본 발명의 상기 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 일 관점은 전도성 분말, 유리 프릿 및 유기 비히클을 포함하며, 하기 식 1로 표시되는 점착성(tackiness)이 약 60% 내지 약 90%인 태양전지 전극 형성용 조성물에 관한 것이다.
[식 1]
점착성(tackiness)(%)={(A-B)/A}×100
상기 [식 1]에서, A는 지름이 25mm인 원형 플레이트 한쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후 외력을 가하여 상기 원형 플레이트를 탈착시키면서 측정한 전단응력(shear stress)의 최소값(minimum shear stress)을 의미하며, B는 상기 플레이트 간의 이격 거리에 대한 전단응력의 순간 변화율(d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값을 의미한다.
상기 조성물은 전도성 분말 약 50 중량% 내지 약 90 중량%, 상기 유리 프릿 약 1 중량% 내지 약 15 중량% 및 상기 유기 비히클 약 5 중량% 내지 약 40 중량%를 포함할 수 있다.
상기 조성물은 표면장력이 약 40 mN/m 내지 약 65 mN/m인 표면장력 조절제를 더 포함할 수 있다.
상기 표면장력 조절제는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 폴리에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 프로필렌카보네이트, 포름아미드, 글리세롤, 및 푸르푸랄로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 조성물은 상기 표면장력 조절제를 전극형성용 조성물 중 약 0.1 중량% 내지 약 40 중량%를 포함할 수 있다.
상기 전도성 분말은 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 구리(Cu), 크롬(Cr), 코발트(Co), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 철(Fe), 이리듐(Ir), 오스뮴(Os), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo), 니켈(Nickel) 및 ITO(인듐틴옥사이드)로 이루어지는 군에서 선택된 하나 이상의 금속분말을 포함할 수 있다.
상기 유리 프릿은 유연 유리 프릿, 무연 유리 프릿 또는 이들의 혼합물을 포함할 수 있다.
상기 유리 프릿은 평균입경(D50)이 약 0.1㎛ 내지 약 5㎛일 수 있다.
상기 조성물은 분산제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1종 이상 더 포함할 수 있다.
상기 조성물은 상기 식 1로 표시되는 점착성(tackiness)이 약 65% 내지 약 90%일 수 있다.
본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로 제조된 태양전지 전극에 관한 것이다.
본 발명의 태양전지 전극 형성용 조성물은 미세 선폭의 인쇄 패턴을 구현할 수 있으며, 변환효율이 우수하다.
도 1은 지름이 25mm인 원형 플레이트 한 쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후 외력을 가하여 상기 원형 플레이트를 탈착시키면서 측정한 플레이트의 이격거리에 따른 전단응력 값을 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 따른 태양전지의 구조를 개략적으로 나타낸 개념도이다.
태양전지 전극 형성용 조성물
본 발명의 태양전지 전극 형성용 조성물은 하기 식 1로 표시되는 점착성(tackiness)이 약 60% 내지 약 90%, 구체적으로는 약 65% 내지 약 90%일 수 있다:
[식 1]
점착성(tackiness)(%)={(A-B)/A}×100
상기 [식 1]의 A는 지름이 25mm인 원형 플레이트 한 쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후 외력을 가하여 상기 원형 플레이트를 탈착시키면서 측정한 전단응력(shear stress)의 최소값(minimum shear stress)을 의미하며, B는 상기 플레이트 간의 이격 거리에 대한 전단응력의 순간 변화율(d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값을 의미한다.
도 1에는 지름이 25mm인 원형 플레이트 한 쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후, 외력을 가하여 상기 원형 플레이트를 탈착시키면서 측정한 플레이트의 이격거리(Gap)에 따른 전단 응력(shear stress)을 나타내는 그래프가 도시되어 있다.
도 1의 그래프에서 x축은 외력을 가하여 상기 원형 플레이트를 탈착시킬 때 상기 플레이트 사이의 이격거리(Gap)을 의미한다. 외력을 가하기 전 이격거리는 상기 플레이트들 사이에 도포된 전극 형성용 조성물의 두께이다. y축은 이격거리(Gap)에 따른 전단응력(shear stress)값을 의미한다. 상기 점착성 측정시 사용되는 플레이트는 지름이 25 mm, 두께 2 mm인 스테인레스 스틸이며, 상기 플레이트 사이에 공급되는 태양전지 전극 형성용 조성물의 함량은 20g이다. 또한, 전단응력 측정 시의 압력 유지 시간(Soak time)은 10초, 지속시간(Duration time)은 20초, Constant linear rate는 1.0 mm/s, 최대 이격 거리(Maximum gap change)는 100 mm이었다.
또한, 상기 전단 응력은 온도 25℃, 습도 20% 조건에서 측정하였다.
도 1의 그래프에서 상기 a점은 원형 플레이트들의 탈착이 시작되는 점이고, b점은 이격거리에 대한 전단응력의 순간 변화율이 0.05인 점으로, 원형 플레이트들 간의 분리가 실질적으로 완료된 시점을 나타낸다. 상기 b점을 지나면, 플레이트들 사이에 조성물 층으로부터 늘어난 테일(tail)이 거의 발생하지 않으며, 전단응력 값도 거의 변화되지 않는다.
본 발명에 있어서, 상기 [식 1]의 A는 도 1의 그래프 상의 a점에서의 전단응력 값, 즉, 본 발명의 태양전지 전극 형성용 조성물을 이용하여 합지된 한 쌍의 원형 플레이트들을 탈착시키면서 측정한 전단응력(shear stress)의 최소값(minimum shear stress)을 의미하며, B는 도 1의 그래프 상의 b점에서의 전단 응력값, 즉, 플레이트 간의 이격 거리에 대한 전단응력의 순간 변화율(d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값을 의미한다.
상기 식 1로 표시되는 점착성이 약 60% 내지 약 90%인 범위에서 미세 패턴의 인쇄가 가능하고 우수한 변환효율을 나타낼 수 있다. 점착성이 약 60% 미만인 경우에는 인쇄 시 인쇄 마스크 위의 퍼짐성(flooding)을 저하시킬 수 있으며, 점착성이 약 90%를 초과하는 경우에는 인쇄성의 저하로 인하여 라인 끊김 현상이 발생할 수 있다.
상기와 같은 점착성을 갖는 본 발명의 태양전지 전극 형성용 조성물을 기판 상에 인쇄할 경우, 특히 스크린 인쇄법으로 인쇄하는 경우, 인쇄된 패턴의 선 폭은 약 65 내지 약 90㎛이고, 선 두께는 약 15 ㎛내지 약 25 ㎛일 수 있다. 또한, 인쇄된 패턴의 선 두께 대 선 폭의 비율인 종횡비(선 두께/선 폭)는 약 0.15 이상, 바람직하게는 약 0.15 내지 약 0.50, 보다 바람직하게는 약 0.20 내지 약 0.40일 수 있다. 상기 종횡비의 범위에서 우수한 인쇄성을 가질 수 있다.
본 발명의 태양전지 전극 형성용 조성물은 전도성 분말(A), 유리 프릿(B) 및 유기 비히클(C)을 포함한다. 또한, 선택적으로 표면장력 조절제(D)를 더 포함할 수 있다. 상기 조성물은 스크린 인쇄법으로 웨이퍼 기판상에 인쇄 시 미세선폭의 구현이 가능하고, 상기 조성물로 제조된 태양전지 전극은 변환효율이 우수하다.
이하, 태양전지 전극 형성용 조성물을 구성하는 각 성분에 대하여 상세하게 설명하기로 한다.
(A) 전도성 분말
본 발명에서 사용되는 전도성 분말은 전도성을 가지는 유기물 또는 무기물이 모두 사용될 수 있다. 바람직하게는 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 구리(Cu), 크롬(Cr), 코발트(Co), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 철(Fe), 이리듐(Ir), 오스뮴(Os), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo), 니켈(Nickel) 또는 ITO(인듐틴옥사이드)가 사용될 수 있다. 이러한 전도성 분말은 1종 또는 그 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는 상기 전도성 분말은 은(Ag) 입자를 포함하며, 은 입자 외에 니켈(Ni), 코발트(Co), 철(Fe), 아연(Zn) 또는 구리(Cu) 입자들이 더 첨가될 수 있다.
상기 전도성 분말은 평균입경(D50)이 약 0.1 내지 약 10㎛의 평균 입경을 가지는 것을 사용될 수 있다. 바람직하게는 약 0.2 내지 약 7㎛, 더욱 바람직하게는 약 0.5 내지 약 5㎛이다.
상기 전도성 분말은 조성물 전체 중량 대비 약 50 내지 약 90 중량%로 포함될 수 있으며, 바람직하게는 약 70 내지 약 90 중량%로 포함될 수 있다. 상기 범위에서, 저항의 증가로 변환 효율이 낮아지는 것을 막을 수 있고, 유기 비히클 양의 상대적인 감소로 페이스트화가 어려워지는 것을 막을 수 있으며, 적절한 분산성, 유동성 및 인쇄성을 가질 수 있다.
(B) 유리 프릿
유리 프릿(glass frit)은 전극 페이스트의 소성 공정 중 반사 방지막을 에칭(etching)하고, 은 입자를 용융시켜 저항이 낮아질 수 있도록 에미터 영역에 은 결정 입자를 생성시키고, 전도성 분말과 웨이퍼 사이의 접착력을 향상시키고 소결시에 연화하여 소성 온도를 보다 낮추는 효과를 유도한다.
태양전지의 효율을 증가시키기 위하여 태양전지의 면적을 증가시키면 태양전지의 접촉저항이 높아질 수 있으므로 pn 접합(pn junction)에 대한 피해를 최소화함과 동시에 직렬저항을 최소화시켜야 한다. 또한, 다양한 면저항의 웨이퍼의 증가에 따라 소성 온도가 변동폭이 커지므로 넓은 소성 온도에서도 열안정성을 충분히 확보될 수 있는 유리 프릿을 사용하는 것이 바람직하다.
상기 유리 프릿은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유연 유리 프릿 또는 무연 유리 프릿 중 어느 하나 이상이 사용될 수 있다.
상기 유리 프릿은 산화납, 산화규소, 산화텔루륨, 산화비스무스, 산화아연, 산화붕소, 산화알루미늄, 산화텅스텐 등으로부터 선택된 금속 산화물을 단독으로 또는 이들 혼합물을 포함할 수 있다. 예를 들어, 산화아연-산화규소계(ZnO-SiO2), 산화아연-산화붕소-산화규소계(ZnO-B2O3-SiO2), 산화아연-산화붕소-산화규소-산화알루미늄계(ZnO-B2O3-SiO2-Al2O3), 산화비스무스-산화규소계(Bi2O3-SiO2), 산화비스무스-산화붕소-산화규소계(Bi2O3-B2O3-SiO2), 산화비스무스-산화붕소-산화규소-산화알루미늄계(Bi2O3-B2O3-SiO2-Al2O3), 산화비스무스-산화아연-산화붕소-산화규소계(Bi2O3-ZnO-B2O3-SiO2), 또는 산화비스무스-산화아연-산화붕소-산화규소-산화알루미늄계(Bi2O3-ZnO-B2O3-SiO2-Al2O3) 유리 프릿 등이 이용될 수 있다.
유리 프릿은 통상의 방법을 사용하여 상기 기술된 금속 산화물로부터 제조할 수 있다. 예를 들면, 상기 기술된 금속산화물의 조성으로 혼합한다. 혼합은 볼 밀(ball mill) 또는 플라네터리 밀(planetary mill)을 사용하여 혼합할 수 있다. 혼합된 조성물을 약 900℃ 내지 약 1300℃의 조건에서 용융시키고, 약 25℃에서 퀜칭(quenching)한다. 얻은 결과물을 디스크 밀(disk mill), 플라네터리 밀 등에 의해 분쇄하여 유리 프릿을 얻을 수 있다.
상기 유리 프릿의 형상은 특별히 한정되지 않으며, 예를 들면, 구형 또는 부정형일 수 있다.
상기 유리 프릿은 평균입경(D50)이 약 0.1㎛ 내지 약 5㎛일 수 있다.
상기 유리 프릿은 상용의 제품을 구매하여 사용하거나 원하는 조성을 얻기 위해, 예를 들어, 이산화규소(SiO2), 알루미늄산화물(Al2O3), 붕소산화물(B2O3), 비스무스산화물(Bi2O3), 나트륨산화물(Na2O), 산화아연(ZnO) 등을 선택적으로 용융하여 제조할 수도 있다.
상기 유리 프릿은 조성물 전체 중량 대비 약 1 내지 약 15 중량%로 포함될 수 있으며, 바람직하게는 약 2 내지 약 10 중량%로 포함될 수 있다. 상기 범위에서 적절한 분산성, 유동성 및 인쇄성을 가질 수 있다.
(C) 유기 비히클
유기비히클은 태양전지 전극 형성용 조성물의 무기성분과 기계적 혼합을 통하여 조성물에 인쇄에 적합한 점도 및 유변학적 특성을 부여한다.
상기 유기 비히클은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유기 비히클이 사용될 수 있고, 통상의 바인더 수지와 용매 등을 포함할 수 있다.
상기 바인더 수지로는 아크릴레이트계 또는 셀룰로오스계 수지 등을 사용할 수 있으며 에틸 셀룰로오스가 일반적으로 사용되는 수지이다. 그러나, 에틸 하이드록시에틸 셀룰로오스, 니트로 셀룰로오스, 에틸 셀룰로오스와 페놀 수지의 혼합물, 알키드 수지, 페놀계 수지, 아크릴산 에스테르계 수지, 크실렌계 수지, 폴리부텐계 수지, 폴리에스테르계 수지, 요소계 수지, 멜라민계 수지, 초산비닐계 수지, 목재 로진(rosin) 또는 알코올의 폴리메타크릴레이트 등을 사용할 수도 있다.
상기 용매로는 예를 들어, 헥산, 톨루엔, 에틸셀로솔브, 시클로헥사논, 부틸센로솔브, 부틸 카비톨(디에틸렌글리콜모노부틸 에테르), 디부틸카비톨(디에틸렌글리콜디부틸 에테르), 부틸 카비톨 아세테이트(디에틸렌글리콜모노부틸 에테르 아세테이트), 프로필렌글리콜모노메틸 에테르, 헥실렌글리콜, 터핀올(Terpineol), 메틸에틸케톤, 벤질알콜, 감마부티로락톤 또는 에틸락테이트 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기 비히클은 태양전지 전극 형성용 조성물 전체 중량 대비 약 5 내지 약 40 중량%로 포함될 수 있다. 상기 범위에서 충분한 접착강도와 우수한 인쇄성을 확보할 수 있다.
(D) 표면장력 조절제
본 발명의 조성물은 표면장력 조절제(surface tension modifier)를 더 포함할 수 있다. 본 발명에서 상기 표면장력 조절제는 20℃에서 표면장력이 약 40 mN/m 이상, 예를 들면 약 40 내지 약 65 mN/m인 공용매(co-solvent)를 의미한다. 본 발명에서의 표면장력은 온도 20, 측정규격 ASTM D 1331에 의해 측정된 표면장력 값을 의미한다.
일 예로서, 상기 표면장력 조절제는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 폴리에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 프로필렌카보네이트, 포름아미드, 글리세롤, 푸르푸랄 등을 포함할 수 있다. 이들은 단독 또는 2종 이상 조합하여 사용될 수 있다.
상기 표면장력 조절제는 태양전지 전극 형성용 조성물 전체 중량 대비 약 0.1 내지 약 40 중량%, 바람직하게는 약 0.1 내지 약 25 중량%로 포함될 수 있다. 상기 범위에서 적절한 유동성 및 인쇄성을 가질 수 있다.
(E) 기타 첨가제
본 발명의 태양전지 전극 형성용 조성물은 상기에서 기술한 구성 요소 외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 필요에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제는 분산제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 이들은 태양전지 전극 형성용 조성물 전체 중량 대비 약 0.1 내지 약 5 중량%로 포함될 수 있지만 필요에 따라 함량을 변경할 수 있다.
태양전지 전극 및 이를 포함하는 태양전지
본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로부터 형성된 전극 및 이를 포함하는 태양전지에 관한 것이다. 도 2는 본 발명의 일 구체예에 따른 태양전지의 구조를 나타낸 것이다.
도 2를 참조하면, p층(또는 n층)(101) 및 에미터로서의 n층(또는 p층)(102)을 포함하는 웨이퍼(100) 또는 기판 상에, 전극 형성용 조성물을 인쇄하고 소성하여 후면 전극(210) 및 전면 전극(230)을 형성할 수 있다. 예컨대, 전극 형성용 조성물을 웨이퍼의 후면에 인쇄 도포한 후, 약 200℃ 내지 약 400℃ 온도로 약 10 내지 약 60초 정도 건조하여 후면 전극을 위한 사전 준비 단계를 수행할 수 있다. 또한, 웨이퍼의 전면에 전극 형성용 조성물을 인쇄한 후 건조하여 전면 전극을 위한 사전 준비단계를 수행할 수 있다. 이후에, 약 400℃ 내지 약 950℃, 바람직하게는 약 750℃ 내지 약 950℃ 에서 약 30초 내지 약 50초 소성하는 소성 과정을 수행하여 전면 전극 및 후면 전극을 형성할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예 1
유기 바인더로서 에틸셀룰로오스(Dow chemical company, STD4, SDT200) 1.5중량%를 용매인 부틸카비톨(Dow Chem.社) 6.2 중량%에 60 에서 충분히 용해하여 유기 비히클을 제조하고, 유기 비히클에 평균입경이 2.0㎛인 구형의 은 분말(Dowa Hightech CO. LTD, AG-4-8) 85 중량%, 평균 입경이 1.0 ㎛인 유리 프릿((주)파티클로지, CI-124) 3 중량%, 표면장력 조절제로서 테트라에틸렌글리콜(Tetraethylene glycol)(시그마 알드리치社) 0.3 중량%과 포름아마이드(Formamide, 시그마 알드리치社) 0.6 중량%, 첨가제로서 분산제(BYK102, BYK-chemie) 0.2 중량%, 요변제(Thixatrol ST, Elementis co.)을 0.3 중량% 및 가소제 디메틸아디페이트(시그마 알드리치社) 2.9 중량%를 투입하여 골고루 믹싱 후 3롤 혼련기로 혼합 분산시켜 태양전지 전극 형성용 조성물을 제조하였다.
실시예 2 - 6 및 비교예 1
하기 표 1의 조성으로 각 성분이 포함된 것을 제외하고는 상기 실시예 1과 같은 방법으로 태양전지 전극 형성용 조성물을 제조하였다.
물성 측정 방법
(1) 점착성(Tackiness)의 측정
온도 25℃, 습도 20% 조건에서 원형 플레이트(지름 25 mm, 두께 2 mm인 스테인레스 스틸) 한 쌍을 실시예 1 ~ 6 및 비교예 1에 의해 제조된 태양전지 전극 형성용 조성물 20g을 매개로 합지시킨 후 외력을 가하여 탈착시키면서 전단응력을 측정한 후 하기 식 1에 대입하여 점착성을 측정하였으며, 그 결과를 표 1에 나타내었다.
[식 1]
점착성(tackiness)(%)={(A-B)/A}×100
상기 [식 1]의 A는 측정된 전단응력(shear stress)의 최소값(minimum shear stress)을 의미하며, B는 상기 플레이트 간의 이격 거리에 대한 전단응력의 순간 변화율(d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값이다.
(2) 단락전류 및 변환효율 측정
상기 실시예 1~6 및 비교예 1에서 준비된 태양전지 전극 형성용 조성물을 결정계 모노웨이퍼(Wafer) 전면에 일정한 패턴으로 스크린 프린팅 하여 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 600℃ 내지 900℃ 사이로 60초 내지 210초간 소성을 하여 Cell을 제작하였다. 제작된 Cell은 태양전지효율 측정장비 (Pasan社, CT-801)를 사용하여 태양전지의 단락전류(Isc) 및 변환효율(%)을 측정하였으며, 그 결과를 표 1에 나타내었다.
(3) 선 폭 및 두께 측정
실시예 1 내지 6 및 비교예 1의 태양전지 전극 형성용 조성물을 약 30 ㎛ 내지 약 50 ㎛의 선 폭으로 설계된 스크린 마스크를 사용하여 웨이퍼(Wafer) 전면에 일정한 패턴으로 스크린 프린팅하여 인쇄하였다. 인쇄한 웨이퍼를 건조, 소성한 후 제조된 전극(finger bar)의 선 폭 및 두께를 VK 장비(KEYENCE社 VK9710)를 이용하여 측정하였으며, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2015012733-appb-T000001
[단위: 중량%]
상기 [표 1]의 결과값을 참고하면, 상기 식 1로부터 계산된 점착성이 약 60 내지 약 90%인 실시예 1 내지 6의 태양전지 전극 형성용 조성물은 미세패턴 제조에 있어 인쇄성이 우수하고, 이로부터 제조된 태양전지 전극은 변환효율이 우수한 것을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (11)

  1. 전도성 분말, 유리 프릿 및 유기 비히클을 포함하며,
    하기 [식 1]로 정의되는 점착성(tackiness)이 약 60% 내지 약 90%인 태양전지 전극 형성용 조성물:
    [식 1]
    점착성(tackiness)(%)={(A-B)/A}×100
    상기 [식 1]에서, A는 지름이 25mm인 원형 플레이트 한 쌍을 태양전지 전극 형성용 조성물을 매개로 평행하게 합지시킨 후 외력을 가하여 상기 원형 플레이트를 탈착시키면서 측정한 전단응력(shear stress)의 최소값(minimum shear stress)을 의미하며, B는 상기 플레이트 간의 이격 거리에 대한 전단응력의 순간 변화율(d(전단응력)/d(이격거리))이 0.05인 점에서의 전단응력 값을 의미한다.
  2. 제1항에 있어서, 상기 조성물은
    전도성 분말 약 50 중량% 내지 약 90 중량%;
    상기 유리 프릿 약 1 중량% 내지 약 15 중량%; 및
    상기 유기 비히클 약 5 중량% 내지 약 40 중량%;를 포함하는 태양전지 전극 형성용 조성물.
  3. 제1항에 있어서,
    상기 조성물은 표면장력이 약 40mN/m 내지 약 65mN/m인 표면장력 조절제를 더 포함하는 태양전지 전극 형성용 조성물.
  4. 제3항에 있어서,
    상기 표면장력 조절제는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 폴리에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 프로필렌카보네이트, 포름아미드, 글리세롤, 및 푸르푸랄 중 1종 이상의 화합물을 포함하는 것인 태양전지 전극 형성용 조성물.
  5. 제3항에 있어서,
    상기 표면장력 조절제는 전극형성용 조성물 중 약 0.1 중량% 내지 약 40 중량%로 포함되는 태양전지 전극 형성용 조성물.
  6. 제1항에 있어서,
    상기 전도성 분말은 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 구리(Cu), 크롬(Cr), 코발트(Co), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 철(Fe), 이리듐(Ir), 오스뮴(Os), 로듐(Rh), 텅스텐(W), 몰리브덴(Mo), 니켈(Nickel) 및 ITO(인듐틴옥사이드) 중 1종 이상을 포함하는 태양전지 전극 형성용 조성물.
  7. 제1항에 있어서,
    상기 유리 프릿은 유연 유리 프릿, 무연 유리 프릿 또는 이들의 혼합물을 포함하는 태양전지 전극 형성용 조성물.
  8. 제1항에 있어서,
    상기 유리 프릿은 평균입경(D50)이 약 0.1㎛ 내지 약 5㎛인 것을 특징으로 하는 태양전지 전극 형성용 조성물.
  9. 제1항에 있어서,
    상기 조성물은 분산제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제 중 1종 이상을 더 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
  10. 제1항에 있어서,
    상기 [식 1]로 표시되는 점착성(tackiness)이 약 65% 내지 약 90%인 태양전지 전극 형성용 조성물.
  11. 제1항 내지 제10항 중 어느 한 항의 태양전지 전극 형성용 조성물로 제조된 태양전지 전극.
PCT/KR2015/012733 2015-04-22 2015-11-25 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 WO2016171359A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/305,378 US10115845B2 (en) 2015-04-22 2015-11-25 Composition for forming solar cell electrodes and electrodes fabricated using the same
JP2017527633A JP6755247B2 (ja) 2015-04-22 2015-11-25 太陽電池電極形成用組成物及び当該組成物から製造された電極
CN201580021050.0A CN106304850B (zh) 2015-04-22 2015-11-25 用于形成太阳电池电极的组成物及太阳电池电极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0056794 2015-04-22
KR1020150056794A KR20160126169A (ko) 2015-04-22 2015-04-22 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Publications (1)

Publication Number Publication Date
WO2016171359A1 true WO2016171359A1 (ko) 2016-10-27

Family

ID=57144073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012733 WO2016171359A1 (ko) 2015-04-22 2015-11-25 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Country Status (6)

Country Link
US (1) US10115845B2 (ko)
JP (1) JP6755247B2 (ko)
KR (1) KR20160126169A (ko)
CN (1) CN106304850B (ko)
TW (1) TWI595511B (ko)
WO (1) WO2016171359A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074077A (ja) * 2016-11-02 2018-05-10 ソニー株式会社 撮像素子、固体撮像装置及び電子デバイス
KR20190068352A (ko) * 2017-12-08 2019-06-18 삼성에스디아이 주식회사 태양전지 셀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252104A1 (en) * 2005-11-17 2010-10-07 Palo Alto Research Center Incorporated Solar Cell With High Aspect Ratio Gridlines Supported Between Co-Extruded Support Structures
US20100323123A1 (en) * 2006-11-20 2010-12-23 E. I. Du Pont De Menours And Company Paste patterns formation method and transfer film used therein
WO2013032092A1 (ko) * 2011-08-31 2013-03-07 공주대학교 산학협력단 태양전지 전극 형성용 금속 페이스트
US20140124713A1 (en) * 2011-03-29 2014-05-08 Diptarka Majumdar High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
KR20140123204A (ko) * 2013-04-11 2014-10-22 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393938B2 (ja) 2004-07-16 2010-01-06 信越化学工業株式会社 電極材料及び太陽電池、並びに太陽電池の製造方法
KR100982213B1 (ko) 2008-04-18 2010-09-14 계명대학교 산학협력단 태양전지용 전극 페이스트 조성물 및 이를 이용한 전극 형성방법
KR20100000685A (ko) 2008-06-25 2010-01-06 에스에스씨피 주식회사 전도성 페이스트 조성물 및 이를 이용한 전극 제조방법
KR20100069950A (ko) 2008-12-17 2010-06-25 에스에스씨피 주식회사 태양전지용 전극, 그 제조방법 및 태양전지
CN102763172B (zh) 2009-10-13 2015-03-18 Lg化学株式会社 银糊剂组合物及其制备方法以及使用该银糊剂组合物的太阳能电池
CN101840743B (zh) * 2010-05-06 2012-07-04 中国科学院宁波材料技术与工程研究所 一种透明导电氧化物纳米粉体浆料的制备方法
TWI570197B (zh) 2011-03-31 2017-02-11 Taiyo Holdings Co Ltd Conductive paste
CN102629496B (zh) * 2012-04-27 2015-02-18 西安银泰新能源材料科技有限公司 晶体硅太阳能电池正面电极无铅导电银浆料及其制备方法
EP2907164B1 (en) * 2012-10-15 2017-12-27 Dow Global Technologies LLC Conductive composition
KR102226109B1 (ko) 2013-03-28 2021-03-09 도요 알루미늄 가부시키가이샤 도전성 입자, 그 제조 방법, 그것을 함유하는 도전성 수지 조성물 및 도전성 도포물
CN103400634B (zh) * 2013-07-22 2016-02-10 上海玻纳电子科技有限公司 一种晶体硅太阳能电池正面电极用导电银浆及其制备方法
KR101693070B1 (ko) 2013-08-28 2017-01-04 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252104A1 (en) * 2005-11-17 2010-10-07 Palo Alto Research Center Incorporated Solar Cell With High Aspect Ratio Gridlines Supported Between Co-Extruded Support Structures
US20100323123A1 (en) * 2006-11-20 2010-12-23 E. I. Du Pont De Menours And Company Paste patterns formation method and transfer film used therein
US20140124713A1 (en) * 2011-03-29 2014-05-08 Diptarka Majumdar High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
WO2013032092A1 (ko) * 2011-08-31 2013-03-07 공주대학교 산학협력단 태양전지 전극 형성용 금속 페이스트
KR20140123204A (ko) * 2013-04-11 2014-10-22 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Also Published As

Publication number Publication date
CN106304850A (zh) 2017-01-04
CN106304850B (zh) 2019-06-04
JP6755247B2 (ja) 2020-09-16
US20170141247A1 (en) 2017-05-18
TWI595511B (zh) 2017-08-11
TW201638973A (zh) 2016-11-01
KR20160126169A (ko) 2016-11-02
US10115845B2 (en) 2018-10-30
JP2018517271A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2015037933A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014126293A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2015037798A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2013085112A1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
WO2014196712A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014098351A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2014157800A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TW201823172A (zh) 用於製備太陽能電池電極的糊劑組合物、太陽能電池電極及太陽能電池
KR101648245B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2019088525A1 (ko) 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
JP6917981B2 (ja) 太陽電池電極調製用ペースト組成物、太陽電池の電極及び太陽電池
WO2015160066A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2017160074A1 (ko) 태양전지용 무연 도전 페이스트
WO2016171359A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US10544314B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
KR20140127947A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2019103278A1 (ko) 유리프릿, 이를 포함하는 perc 태양전지 전극 형성용 페이스트, 및 perc 태양전지 전극
WO2011132962A2 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2015160067A1 (en) Conductive paste composition and semiconductor device comprising the same
WO2017074150A1 (ko) 태양전지용 전극 페이스트 및 이를 사용하여 제조된 태양전지
WO2017183881A1 (ko) 태양전지 후면전극용 페이스트 조성물
KR102269870B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102040302B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
WO2018080093A1 (ko) 태양전지용 기판 및 이를 구비한 태양전지
WO2017052025A1 (ko) 태양전지 전극용 결정질 분말, 이의 페이스트 조성물과 태양전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15305378

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890025

Country of ref document: EP

Kind code of ref document: A1