WO2016171209A1 - Resin molding device, resin molding method, blood purification circuit panel and hollow molded body - Google Patents

Resin molding device, resin molding method, blood purification circuit panel and hollow molded body Download PDF

Info

Publication number
WO2016171209A1
WO2016171209A1 PCT/JP2016/062627 JP2016062627W WO2016171209A1 WO 2016171209 A1 WO2016171209 A1 WO 2016171209A1 JP 2016062627 W JP2016062627 W JP 2016062627W WO 2016171209 A1 WO2016171209 A1 WO 2016171209A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin sheet
roller
flow path
panel
Prior art date
Application number
PCT/JP2016/062627
Other languages
French (fr)
Japanese (ja)
Inventor
康佑 相原
大輔 山嵜
尊 佐野
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015086905A external-priority patent/JP6520348B2/en
Priority claimed from JP2015135670A external-priority patent/JP6582638B2/en
Priority claimed from JP2015142333A external-priority patent/JP6524832B2/en
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Publication of WO2016171209A1 publication Critical patent/WO2016171209A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum

Definitions

  • the first aspect of the present invention relates to a technique for manufacturing a resin molded product by molding a molten resin sheet with a molding die.
  • a second aspect of the present invention relates to a blood purification circuit panel. More specifically, the present invention relates to a blood purification circuit panel including a panel formed of two bonded resin sheets.
  • the 3rd viewpoint of this invention is related with a hollow molded object.
  • Dialysis is a treatment performed for patients whose renal function is impaired, and therefore water adjustment is not performed accurately and urine cannot be discharged.
  • dialysis fluid is dialyzed through a dialyzer as a blood purifier.
  • the blood is purified by contacting the blood.
  • the dialyzer incorporates a plurality of (for example, 8000 to 20,000) thin tubes made of artificial membranes, and blood is discharged from the blood outflow tube through these thin tubes.
  • the dialysate from the dialysate inflow pipe flows out of each narrow tube and then flows out from the dialysate outflow pipe, so that the substance between the blood and the dialysate passes through the membrane of the narrow tube. Exchanges are made and unwanted substances move into the dialysate and useful substances move into the blood.
  • Patent Document 5 As a hollow molded body, for example, as shown in Patent Document 5 below, one in which a groove portion is formed as a flow path by bonding two resin sheets each having a groove is known.
  • the flow path communicates with an opening formed in a part of the periphery of the hollow molded product, and a water injection pipe (insert) is inserted and fused into the opening.
  • a water injection pipe insert
  • a tube insertion opening is formed on the side opposite to the flow path side, and an external tube is inserted and fused to the tube insertion opening.
  • the insert when the insert is selected with a material that can be easily fused with the external tube, the insert may be difficult to fuse with the two resin sheets.
  • a gap or the like is formed at the interface between the insert and the two resin sheets, and the liquid flowing through the flow channel leaks through the gap or the like.
  • Patent Documents 1 and 2 Conventionally, as disclosed in Patent Documents 1 and 2, a stretching device that stretches a molten resin sheet extruded from an extrusion device is constituted by a pair of rollers. Then, the molten resin sheet is sandwiched and crushed by a pair of rollers constituting the stretching device, and the resin sheet is stretched by adjusting the feeding speed of the resin sheet by the pair of rollers and the distance between the pair of rollers, thereby dividing the divided sheet. It hangs down between the molds.
  • the resin sheet is varied so that the extrusion speed of the resin sheet increases as the molding progresses in accordance with the drawdown, thereby increasing the thickness of the resin sheet toward the upper part of the resin sheet corresponding to the final stage of molding. Since it aims at fleshing, in any of the techniques, a pair of rollers for sandwiching and crushing a resin sheet and adjusting a feed speed is an essential configuration.
  • the first aspect of the present invention has been made in view of such circumstances, and provides a molding apparatus capable of preventing a resin sheet from being wound around a roller while stretching the resin sheet.
  • a member such as a pump for flowing blood into and out of the dialyzer and a pump for flowing dialysate into and out of the dialyzer is allowed to pass through the periphery of the dialyzer. Is attached via a tube.
  • a blood purification circuit panel is configured by fixing a dialyzer to a panel formed by bonding two resin sheets, a part of the panel is cut out or opened, etc. A space is formed, and a pump tube for passing a fluid such as blood or dialysate is accommodated and disposed in the space.
  • Such a pump tube serves as a constituent member of the tube pump, and by driving the tube pump, fluid in the pump tube can be sent in one direction, and blood or dialysate sent from the pump tube is connected to a dialyzer. It will be sent to the dialyzer through the blood inflow pipe and the dialysate inflow pipe.
  • a tube pump sequentially presses a part of the pump tube in the longitudinal direction to move the fluid in the pump tube in one direction, and the negative pressure generated in the pump tube causes the fluid in the pump tube to flow into the dialyzer. It will be sent out.
  • the second aspect of the present invention has been made in view of the above problems, and in constructing a blood purification circuit panel having a panel formed of two bonded resin sheets, fluid is supplied to a dialyzer or the like.
  • An object of the present invention is to provide a blood purification circuit panel that does not require a pump tube for feeding.
  • the third aspect of the present invention has been made in view of such circumstances, and an object thereof is to form a flow path at the interface between two bonded resin sheets, and a tube at the end of the flow path.
  • An object of the present invention is to provide a hollow molded product to which the insert can be attached without leakage of the liquid in the flow path when the insert having the insertion port is inserted and fused.
  • an extrusion device for extruding and dropping a resin sheet from an extrusion slit, a molding die used for molding the resin sheet, and a roller disposed between the extrusion device and the molding die
  • the resin molding apparatus is provided, wherein the roller is provided only on one side of the resin sheet at each height position of the resin sheet and is provided so as to contact the resin sheet and change the path of the resin sheet.
  • the present inventors investigated the cause of the resin sheet being wound around the roller in the prior art, when the resin sheet is sandwiched and crushed by a pair of rollers, the resin sheet is pressed against the roller and sticks to the roller. I found out that was the cause. Based on such knowledge, the present inventors removed one of the pair of rollers and conducted an experiment using only the remaining one of the rollers in order to prevent the resin sheet from being wound around the roller. The winding of the resin sheet around the roller no longer occurred. However, another problem has arisen that the resin sheet is not properly stretched and the thickness of the resin sheet becomes non-uniform due to drawdown.
  • the present inventors say that if the roller is arranged at a position where the trajectory of the resin sheet can be changed by the roller, the contact area between the roller and the resin sheet becomes large, so that the resin sheet can be stretched. As a result of conducting an experiment with a hypothesis, the resin sheet was appropriately stretched, and the result that the non-uniformity of the thickness of the resin sheet was suppressed by drawdown resulted in the completion of the present invention.
  • the roller is provided so that a part of the roller is located immediately below the extrusion slit.
  • the resin sheet is extruded from the extrusion slit in a state where the roller is retracted to a position where the roller does not bend the resin sheet.
  • a resin molding method comprising a step of changing the trajectory of the resin sheet by moving the roller toward the resin sheet in a suspended state.
  • the roller is moved toward the resin sheet while rotating.
  • a blood purification circuit panel includes a panel formed by laminating inner surfaces of two resin sheets, and at least one inner surface of the resin sheet.
  • the resin sheet is composed mainly of a styrene elastomer and / or an olefin elastomer, and the resin sheet has a duro A hardness of 30 to 80 according to JIS K6253, and after being treated at 23 ° C. for 22 hours with JIS K6262.
  • the compression set is 50% or less.
  • the blood purification circuit panel according to the second aspect of the present invention is characterized in that, in the above-described present invention, the resin sheet has a melt flow rate (MFR) at 230 ° C. of 0.1 to 5.0 g / 10 min.
  • MFR melt flow rate
  • the blood purification circuit panel according to the second aspect of the present invention is characterized in that, in the above-described present invention, the duro A hardness is 50 to 70.
  • the blood purification circuit panel according to the second aspect of the present invention has a dialyzer fixed to the panel in the present invention described above, and presses a part of the internal flow path to thereby fluidize the internal flow path. Is fed into the dialyzer.
  • a reinforcing member is sandwiched and interposed between the two resin sheets on at least a part of the inner surface of the panel. It is characterized by.
  • the blood purification circuit panel according to the present invention is made of a predetermined resin material, and a resin sheet having a specific range of duro A hardness and compression set is bonded to form a groove on the inner surface of the panel.
  • the hollow internal flow path for allowing the fluid to pass through is provided.
  • Such an internal flow path has an appropriate hardness, resilience, etc., plays the role of a conventional pump tube, and can press a part of the internal flow path to send out fluid to a dialyzer or the like.
  • the arrangement of the internal flow path eliminates the need for a pump tube for feeding fluid to the dialyzer, etc., eliminating the complexity of attaching the pump tube to the panel and reducing the number of parts and cost.
  • the blood purification circuit panel can be reduced.
  • a panel formed by bonding the inner surfaces of two resin sheets together, and a hollow internal flow path for allowing a fluid to pass, formed by a concave groove on at least one inner surface of the resin sheet,
  • the resin sheet is composed mainly of a styrene-based elastomer and / or an olefin-based elastomer
  • a blood purification circuit panel is provided, wherein the resin sheet has a duro A hardness of 30 to 80 according to JIS K6253, and the compression set after treatment at 23 ° C. for 22 hours is 50% or less according to JIS K6252.
  • the resin sheet has a melt flow rate (MFR) at 230 ° C. of 0.1 to 5.0 g / 10 min.
  • MFR melt flow rate
  • the Duro A hardness is 50 to 70.
  • it has a dialyzer fixed to the panel, and the fluid in the internal flow path is fed into the dialyzer by pressing a part of the internal flow path.
  • a reinforcing member is sandwiched and interposed between the two resin sheets on at least a part of the inner surface of the panel.
  • a hollow molded article according to a third aspect of the present invention includes a first resin sheet, a second resin sheet bonded to the first resin sheet, and an interface between the first resin sheet and the second resin sheet.
  • a flow path having openings around the first resin sheet and the second resin sheet, and a tube insertion port into which the tube is inserted and fused and inserted into the opening of the flow path.
  • a cylindrical insert having the first resin member on the tube insertion port side, and the insert on the opposite side of the tube insertion port and fused with the first resin member through the engaging portion.
  • the engaging portion protrudes in a radial direction in one of the first resin member and the second resin member, and the first resin member and the second resin member.
  • the convex portion extends in the axial direction from one of the first resin member and the second resin member. It is formed by the annular body along the circumferential direction on the surface of a cylindrical body.
  • the method for manufacturing a hollow molded product according to the third aspect of the present invention is based on the first resin member on the tube insertion port side into which the tube is inserted from the outside by two-color molding, and on the side opposite to the tube insertion port. And forming a cylindrical insert including the first resin member and the second resin member fused via the engaging portion, and using a mold, the insert is arranged to be clamped.
  • a step of forming a flow path communicating with the insert at the interface between the first resin sheet and the second resin sheet, and the engagement portion includes the first resin member and the second resin sheet.
  • One of the resin members protrudes in the radial direction, is formed by a convex portion covered by the other of the first resin member and the second resin member, and a difference in dissolution parameter between the tube and the first resin member Is 1 or less, One, wherein the difference in the solubility parameter of the first resin sheet and the second resin sheet and the second resin member is 1 or less.
  • the insert is a hollow molded article, and is formed at an interface between the first resin sheet, the second resin sheet bonded to the first resin sheet, and the first resin sheet and the second resin sheet, A cylindrical insert having a flow path having an opening around the first resin sheet and the second resin sheet, and a tube insertion opening that is inserted and fused into the opening of the flow path and into which a tube is inserted from the outside.
  • the insert is a first resin member on the tube insertion port side and a second resin on the opposite side of the tube insertion port and fused with the first resin member via an engaging portion.
  • the engaging portion protrudes in a radial direction in one of the first resin member and the second resin member and is covered by the other of the first resin member and the second resin member.
  • the difference between the dissolution parameters of the tube and the first resin member is 1 or less, and the difference between the dissolution parameters of the first resin sheet and the second resin sheet and the second resin member is 1 or less.
  • a hollow molded article characterized by the above is provided.
  • the convex portion is formed by an annular protrusion along a circumferential direction on a surface of a cylindrical body extending in an axial direction from one of the first resin member and the second resin member.
  • the method is a method for manufacturing a hollow molded article, and is a first resin member on the tube insertion port side into which a tube is inserted from the outside by two-color molding, and the first resin on the side opposite to the tube insertion port.
  • One of the first resin member and the second resin member is protruded in the radial direction and formed by a convex portion covered by the other, and the difference in solubility parameter between the tube and the first resin member is 1 or less.
  • ,And Method for producing a hollow molded article, wherein the serial difference in solubility parameters of the first resin sheet and the second resin sheet and the second resin member is less than or equal to 1 is provided.
  • FIG. 7 It is the figure which took the cross section at the boundary (inner surface) of the resin sheet. It is the schematic which looked at the blood purification circuit panel shown in FIG. 7 from the back side.
  • FIG. 8 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 8 is a sectional view taken along line BB in FIG. It is explanatory drawing which showed the longitudinal cross-section of a connection part periphery. It is the schematic which showed the structure of the pump for pressing an internal flow path.
  • FIG. 30 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a configuration diagram of an insert used for a hollow molded body according to a third aspect of the present invention, in which (a) is a side view and (b) is a cross-sectional view taken along line bb of (a).
  • the molding apparatus 100 includes an extrusion apparatus 1 and a mold 21 f disposed below the extrusion apparatus 1, and molten resin sheets P ⁇ b> 1 and P ⁇ b> 2 extruded from the extrusion apparatus 1. Is sent to the mold 21f, and the resin sheets P1 and P2 are molded by the mold 21f.
  • the extrusion apparatus 1 includes a cylinder 15 provided with a hopper 16, a screw (not shown) provided in the cylinder 15, a hydraulic motor 17 connected to the screw, an accumulator 13 that communicates with the cylinder 15, and an accumulator 13.
  • the resin pellets having a plunger 14 provided therein are melted and kneaded by rotation of a screw by a hydraulic motor 17 in a cylinder 15, and the molten resin is transferred to an accumulator 13.
  • a fixed amount is stored, the molten resin is fed toward the T die 11 by driving the plunger 14, and the resin sheets P ⁇ b> 1 and P ⁇ b> 2 are pushed out through the extrusion slit 12.
  • the resin sheet comes into contact with the resin sheet only on one side of the resin sheet at each height position of the resin sheet extruded by the roller 3a rotating in the direction of the arrow in the figure (right: counterclockwise, left: clockwise). It is provided to change the trajectory.
  • the roller 3 a is provided so that a part thereof is located immediately below the extrusion slit 12.
  • the moving member 4a which moves the roller 3a toward the resin sheet P1 in a substantially horizontal direction is provided.
  • the extruded resin sheet comes into contact with the side surface of the roller 3a, and is sent downward by the frictional force with the side surface of the roller 3a.
  • the two molds 21f are clamped, they are formed by both molds 21f. It hangs down to fit in the sealed space.
  • the mold 21 f has a cavity 23.
  • An uneven portion is provided on the surface of the cavity 23 according to the outer shape and surface shape of a molded product formed from the resin sheets P1 and P2.
  • pinch-off portions 25fa and 25fb are formed around the cavity 23 and project toward the two opposing molds 21f.
  • the tip portions of the pinch-off portions 25fa and 25fb come into contact with each other, and the two molten resin sheets P1 and P2 are formed with a parting line at the periphery.
  • the pinch-off portions 25fa and 25fb may be provided only on one of the molds 21f.
  • the mold 21f is moved by a mold driving device (not shown). Specifically, it moves between an open position where two resin sheets P1 and P2 can be arranged between both molds 21f and a closed position where the pinch-off portions 25fa and 25fb of both molds 21f abut each other. . Then, the resin sheets P1 and P2 are disposed between the two molds 21f, the mold 21f is moved from the open position to the closed position, and the resin sheets P1 and P2 are sandwiched between the two molds 21f, and gas is introduced into the inside thereof. The resin sheet P1 is pressed against the cavity 23 with the pressure, and the resin sheets P1 and P2 are formed into a shape along the surface of the cavity 23.
  • a vacuum suction hole (not shown) communicating with the cavity 23 is provided in the mold 21f, and the resin sheets P1 and P2 are adsorbed toward the cavity 23 by vacuum suction from the vacuum suction hole.
  • a method of molding the resin sheets P1 and P2 into a shape along the surface can also be employed.
  • FIG. 2A is a partially enlarged view of the dotted line region of FIG.
  • the resin sheet P1 extruded from the extrusion slit 12 comes into contact with the side surface of the roller 3a provided below the extrusion slit 12, thereby changing its own trajectory.
  • the resin sheet P1 and the roller 3a are in contact between the S point and the E point, and the resin sheet P1 receives a frictional force from the roller 3a at the S point to the E point.
  • the roller 3a rotates from the point (S point) where contact with the extruded resin sheet P1 starts to the point (E point) where contact ends.
  • the resin sheet P1 rotates in a direction in which a frictional force is applied in the traveling direction of the resin sheet P1.
  • the resin sheet P1 rotates in the direction of the arrow in the figure (counterclockwise), and the resin sheet P1 can be stretched by rotating at a rotation speed faster than the extrusion speed of the resin sheet P1.
  • a rotation speed adjusting device (not shown) to maximize the rotation speed of the roller 3a at the start of extrusion and gradually decreasing the rotation speed toward the end of extrusion, the drawdown of the resin sheet P1 can be eliminated.
  • the rotation speed of the roller 3a is determined so as not to idle with respect to the resin sheet P1. This is because, when idling, the resin sheet P1 is not properly stretched and the thickness of the resin sheet P1 cannot be adjusted appropriately.
  • the resin sheets P1 and P2 are suspended between the molds 21f, the mold 21f is clamped as shown in FIG. 2B, gas is blown into the inside thereof, and the resin sheets P1 and P2 are blown by the pressure. Is pressed against the cavity 23 to mold the resin sheets P1 and P2 into a shape along the uneven surface of the cavity 23. Then, the curved portions of the resin sheets P1 and P2 generated above and below the mold 21f are cut with a cutting blade (not shown) to finish the molding.
  • the resin sheet is received by one roller, and the thickness of the resin sheet can be adjusted by changing the speed of the resin sheet by the frictional force of the contact surface. it can.
  • a roller does not pinch
  • the roller is required to have sufficient strength to withstand the pressure applied via the resin sheet.
  • one roller and a resin are used. Since there is no element to which pressure is applied other than the sheet, the roller can be made of a material having a lower strength, that is, a less expensive material.
  • FIG. 3 summarizes the standard mechanical properties of an aluminum alloy (stretched material).
  • the upper row shows the material properties of a pair of conventional rollers, and the lower row shows the material properties of the roller 3a of the first embodiment.
  • the material of the prior art roller was an aluminum alloy “A7075 (quality O)”, and had a tensile strength of 230 N / mm 2 and a longitudinal elastic modulus of 7.3 ⁇ 1000 kg / mm 2.
  • the material of the roller 3a of this embodiment is an aluminum alloy “A5052 (quality O)”, the tensile strength is 195 N / mm 2, and the longitudinal elastic modulus is 7.2 ⁇ 1000 kg / mm 2.
  • the material of the roller of the present invention preferably has a tensile strength of 160 N / mm 2 to 215 N / mm 2, and more preferably 180 N / mm 2 to 205 N / mm 2.
  • the diameter of the roller is required to be about ⁇ 150 mm. In the first embodiment from one aspect, good results could be obtained even when the roller 3a having a diameter of about 60 mm was used.
  • the diameter of the roller of the present invention is preferably from 40 mm to 80 m, and more preferably from 50 mm to 70 mm.
  • the resin sheet P1 is pushed out from the extrusion slit 12 with the roller 3a retracted to a position where the roller 3a does not bend the resin sheet P1, and the resin sheet P1 is suspended.
  • the roller 3a is moved so as to change the path of the resin sheet P1 toward the resin sheet P1.
  • the moving member 4a stops after moving a predetermined distance, so that the position of the roller 3a is fixed.
  • the roller 3a may rotate after contacting the resin sheet P1, or may be moved toward the resin sheet P1 while rotating the roller 3a.
  • the roller 3a is arranged in the extrusion direction of the resin sheet P1 before the resin sheet P1 is pushed out, the resin sheet P1 may be rebounded and deformed by an impact when contacting the roller 3a. Such a situation can be avoided by pressing the roller 3a against the resin sheet P1. Thereby, it becomes possible to adjust the thickness of the resin sheet P1 more suitably.
  • the resin sheet P1 is adjusted in advance by adjusting the extrusion speed of the resin sheet P1 extruded from the extrusion slit 12, the material of the resin sheet P1, the distance between the extrusion slit 12 and the roller 3a, the material of the roller 3a, etc.
  • the roller 3a may be arranged in the direction of the extrusion and the resin sheet P1 may be pushed out toward the roller 3a.
  • FIG. 1 Another example is shown in FIG.
  • the roller 3a is moved to a position where the entire roller 3a exceeds a dotted line L that is the extrusion direction of the resin sheet P1. Due to the friction between the resin sheet P1 and the roller 3a, the resin sheet P1 pushed out from the extrusion slit 12 is stretched in the left direction in the figure, thereby changing the trajectory of the resin sheet P1.
  • FIG. 5A is a diagram illustrating a first example of the second embodiment of the first aspect.
  • two rollers 3a and 3b are provided between the extrusion device 1 and the mold 21f.
  • the roller 3b is provided below the roller 3a.
  • the roller 3a is provided with a moving member 4a for moving the roller 3a toward the resin sheet P1 in a substantially horizontal direction
  • the roller 3b is provided with a moving member 4b for moving the roller 3b toward the resin sheet P1 in a substantially horizontal direction. It is done.
  • the resin sheet P1 is not sandwiched between the pair of rollers at either the height position H1 where the roller 3a is provided or the height position H2 where the roller 3b is provided.
  • the two rollers 3a and 3b are provided only on one side of the resin sheet P1 at the respective height positions H1 and H2 of the resin sheet P1.
  • the roller 3a is provided so as to contact the resin sheet P1 and change the path of the resin sheet P1. For this reason, also in a present Example, it is suppressed that the thickness of the resin sheet becomes non-uniform
  • the rotation direction of the roller 3b is the same as that of the roller 3a, and even if the resin sheet P1 is likely to be wound around the roller 3a for some reason, the resin sheet P1 can be peeled off from the roller 3a by the roller 3b. The winding of the resin sheet around the roller is further suppressed.
  • the roller 3b is provided below the roller 3a and on the opposite side of the resin sheet P1.
  • the resin sheet P1 is not sandwiched between the pair of rollers at either the height position H1 where the roller 3a is provided or the height position H2 where the roller 3b is provided. Therefore, also in this embodiment, the two rollers 3a and 3b are provided only on one side of the resin sheet P1 at each of the height positions H1 and H2 of the resin sheet P1. For this reason, also in a present Example, it is suppressed that the thickness of the resin sheet becomes non-uniform
  • the rotation direction of the roller 3b is opposite to that of the roller 3a, that is, the direction of the arrow in the figure (clockwise). As in the first example of the second embodiment, even if the resin sheet P1 is likely to be wound around the roller 3a for some reason, the resin sheet P1 can be peeled off from the roller 3a by the roller 3b.
  • FIG. 6A shows a second example of the second embodiment of the first aspect
  • FIG. 6B shows a second example of the third embodiment of the first aspect
  • the roller 3b is provided as an auxiliary roller for suppressing the resin sheet P1 from being wound around the roller 3a.
  • the roller 3b is arranged so that the path of the resin sheet P1 can be changed also in the roller 3b.
  • the resin molding apparatus and the resin molding method according to the first aspect of the present invention are not limited to these.
  • a sand mold, a resin mold, a wooden mold or the like can be used as a mold instead of a mold.
  • a plurality of rollers 3b can also be provided.
  • FIG. 7 is a schematic view showing an embodiment of the blood purification circuit panel 1s according to the second aspect of the present invention
  • FIG. 8 is a view taken along the boundary (inner surface) of the resin sheets 21 and 22 in
  • FIG. 9 is a schematic view of the blood purification circuit panel 1s shown in FIG. 7 as viewed from the back side.
  • a blood purification circuit panel 1s shown in FIG. 7 includes a plate-like panel 2 arranged orthogonal to the ground surface.
  • the panel 2 has a rectangular shape in the present embodiment, and is in a horizontal direction (horizontal in FIG. 7 and the like). Direction) is slightly larger than the width in the orthogonal direction (vertical direction in FIG. 7 and the like).
  • the panel 2 is configured by bonding two resin sheets 21 and 22 made of a predetermined resin material (described later), and the internal flow paths 4 s and 4 sa and a hollow are formed at the interface between the resin sheets 21 and 22.
  • the flow paths 6 and 7 are formed, and the built-in tube Ta or the like, which is a separate member, the connecting portion R1 or the like is partially inserted and sandwiched, and the external tube T1 or the like is externally inserted. Further, as shown in FIG. 7 and the like, in the present embodiment according to the second aspect, the blood from one surface of the panel 2 (forward direction in the case of FIG. 7 and the like) is provided at the approximate center of the panel 2.
  • a dialyzer 3s, which is a purifier, is mounted from one side of the panel 2 (forward direction in FIG. 7 and the like).
  • Dializer 3s In the present embodiment according to the second aspect, the dialyzer 3s has a cylindrical configuration, and is attached to the panel 2 with its longitudinal direction aligned with the vertical direction. In this embodiment, the dialyzer 3s has a length that is slightly larger than the vertical width of the panel 2, and is attached so that each end protrudes above the upper side of the panel 2 and below the lower side. The aspect which is shown is shown.
  • the cylindrical dialyzer 3s sealed at both ends is adapted to receive blood from the blood inflow tube portion 31 at the upper end surface, and the purified blood is discharged from the blood outflow tube portion 32 at the lower end surface. It is like that.
  • Inside the dialyzer 3s there are a plurality of thin tubes 33 (see FIGS. 10 and 11 to be described later) made of an artificial membrane (for example, 8000 to 20000, but not limited to this). It is arranged along the axial direction, and blood is to flow into these narrow tubes 33.
  • the dialyzer 3s is adapted to receive dialysate from a dialysate inflow pipe portion 34 (circulation pipe portion) on the side surface on the lower end side, and a dialysate outflow pipe portion 35 (circulation) on the side surface on the upper end surface.
  • the dialysis fluid from the pipe part) flows out.
  • the dialysate flows outside the narrow tube 33 in the dialyzer 3s, whereby the substance is exchanged between the blood and the dialysate through the membrane of the thin tube 33, and unnecessary substances move to the dialysate. Useful substances are supposed to move into the blood.
  • the attachment to the dialyzer 3s with respect to the panel 2 is not particularly limited, but may be performed, for example, as follows.
  • the attachment method demonstrated below is an example,
  • the attachment of the dialyzer 3s with respect to the panel 2 can employ
  • FIG. 8 is a cross-sectional view taken along the boundary (inner surface) between the resin sheets 21 and 22 in FIG. 7 and shows the panel 2 without the dialyzer 3s attached thereto.
  • a mounting piece 23a extending vertically upward is formed substantially at the center of the upper side of the panel 2 according to the present embodiment according to the second aspect.
  • a cutout 24a is formed by cutting out from one of the vertical sides in the horizontal direction.
  • the notch 24a has a pair of constricted portions 25a so that the inner peripheral portion on the depth side opposite to the opening side has a semicircular arc shape, and the width of the notch 24a is narrowed in the inner peripheral portions facing each other on the opening side.
  • an attachment piece 23b extending vertically downward is formed at substantially the center of the lower side of the panel 2.
  • the mounting piece 23b is formed with a cutout 24b cut out in the horizontal direction.
  • the cutout direction of the cutout 24b of the attachment piece 23b is, for example, the same direction as the cutout direction of the cutout 24a of the attachment piece 23a.
  • the pair of constricted portions 25b is formed in the notch 24b, similarly to the notch 24a.
  • FIG. 9 is a schematic view of the blood purification circuit panel 1s shown in FIG. 7 as viewed from the back side.
  • the notch 24a of the attachment piece 23a of the panel 2 and the notch 24b of the attachment piece 23b are respectively provided with a flange part 36a formed around the dialysate outflow pipe part 35 of the dialyzer 3s, and dialysis.
  • a flange portion 36b formed around the pipe of the liquid inflow pipe portion 34 is fitted.
  • the flange part 36a formed in the dialysate outflow pipe part 35 is made of a circular plate, and its maximum diameter is formed to be slightly larger than the diameter of the notch 24a of the attachment piece 23a.
  • the flange portion 36a has a certain thickness, and an annular groove 37a along the circumferential direction is formed in the center portion of the peripheral side surface.
  • the inner periphery of the notch 24a of the attachment piece 23a is fitted into the annular groove 37a.
  • Such a configuration is common also in the case of the notch 24b of the mounting piece 23b formed on the lower side of the panel 2 and the flange portion 36b and the annular groove 37b formed in the dialysate inflow pipe portion 34 of the dialyzer 3s.
  • the dialyzer 3s is fixed to the panel 2 in the annular grooves 37a and 37b of the flange portions 36a and 36b of the dialyzer 3s, in the notches 24a and 24b of the corresponding mounting pieces 23a and 23b of the panel 2. This is done by engaging the peripheral portions and placing the constricted portions 25a, 25b into the notches 24a, 24b.
  • the flange portions 36a and 36b fitted into the notches 24a and 24b in this way are configured so as not to be easily detached from the notches 24a and 24b by the narrowed portions 25a and 25b.
  • the flange portions 36a and 36b are engaged with the inner peripheral portions of the notches 24a and 24b of the mounting pieces 23a and 23b in the annular grooves 37a and 37b, respectively, so that the displacement in the axial direction is restricted.
  • the dialyzer 3s can be easily and firmly disposed on the panel 2.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG. 7, and FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • the internal flow path 4 formed at the right end of the panel 2 shown in FIG. 7 or the like extends from the upper side to the lower side of the panel 2 and, as shown in FIGS.
  • the groove 41 is formed in the region where the internal flow path 4 of one resin sheet 21 is formed and the region where the internal flow path 4 of the other resin sheet 22 is formed.
  • FIG. 10 and the like show an aspect in which the two resin sheets 21 and 22 are overlapped to form a substantially circular cross section as the concave grooves 41 and 42 having a substantially semicircular cross section. ing.
  • the internal flow path 4sa formed on the other side (left side in FIG. 7 etc.) of the dialyzer 3s of the panel 2 shown in FIG. 7 etc. extends from the upper side to the lower side of the panel 2 and FIG.
  • the grooves 41a and 42a are formed in the panel 2 formed by bonding the two resin sheets 21 and 22, the region where the internal flow path 4 sa of one resin sheet 21 is formed, and the inside of the other resin sheet 22 In the region where the flow path 4sa is formed.
  • the two resin sheets 21 and 22 are overlapped as the grooves 41a and 42a having a substantially semicircular cross section. A mode in which the cross section is substantially circular is shown.
  • the depth of the concave grooves 41, 41a, 42, 42a (hereinafter sometimes simply referred to as “concave grooves 41, 42”) in the internal flow paths 4s, 4sa is not particularly limited, but blood, dialysate, etc. In general, the thickness is preferably 2 to 50 mm in order to efficiently pass the fluid.
  • the concave grooves 41 and 42 may have any shape that allows fluid to pass, such as a polygonal shape such as a triangle or a square.
  • the concave grooves 41 and 42 may be formed on both of the two resin sheets 21 and 22 as shown in FIG. 10 and the like, but are formed on both of the two resin sheets 21 and 22. It is not necessary, and it may be formed on at least one of the resin sheets 21 and 22 as long as the fluid can pass therethrough.
  • Each end of the internal flow path 4s in the panel 2 is connected to the external tube T1 and the like.
  • the connecting portion R2 is disposed so as to be sandwiched between the sheets.
  • the end surfaces of the connecting portion R1 and the connecting portion R2 that are substantially flush with the upper and lower sides of the panel 2 have an inner diameter into which the external tubes T1 and T2 are inserted, and the external tube T1 is inserted on the upper side of the panel.
  • the external tube T2 is inserted on the lower side of the panel.
  • FIG. 12 is an explanatory view showing a longitudinal section around the connecting portion R1 (showing the side where the resin sheet 21 appears).
  • the connecting portion R1 is formed on the external tube T1 side so as to have an inner diameter into which the external tube T1 can be inserted.
  • the connecting portion R1 having such a shape is sandwiched between the resin sheets 21 and 22, and is positioned and disposed in a plane including the panel 2 with respect to the central axis, whereby the axial displacement can be restricted.
  • the connecting portion R2 (and connecting portions R3 and R4 to be described later) has substantially the same structure as the connecting portion R1, and as described above, an external tube is provided on the end surface of the lower side of the panel 2 of the connecting portion R2. T2 is inserted.
  • An internal flow path 4sa having a configuration to be formed is formed.
  • Each of the narrow portions of the panel 2 has a connecting portion R3 and a connecting portion R4.
  • the connecting portion R3 has the same configuration as the connecting portion R1 and the connecting portion R2 has the same configuration as the connecting portion R4.
  • the resin sheets 21 and 22 to be held are sandwiched.
  • An external tube T3 is inserted into the end surface on the upper side of the panel 2 of the connecting portion R3, and an external tube T4 is inserted into the end surface on the lower side of the panel 2 of the connecting portion R4.
  • the resin sheets 21 and 22 are made of a predetermined resin material in the internal flow paths 4s and 4sa and the duro A hardness and the compression set are in a specific range (detailed in (2) described later).
  • the fluid in the internal flow paths 4s and 4sa is sent in one direction.
  • the fluid is sent into the dialyzer 3s.
  • the internal flow paths 4s and 4sa can send the fluid in the internal flow paths 4s and 4sa in one direction by driving a separately provided pump 5s.
  • Blood or dialysate which is a fluid sent out from the internal flow path 4, is sent into the dialyzer 3s via the blood inflow pipe 31 or the dialysate inflow pipe 34 (see FIG. 7 and the like).
  • FIG. 13 is a schematic diagram showing a configuration of a pump 5s for pressing the internal flow path 4s (the same applies to the internal flow path 4sa).
  • the pump 5s incorporates a rotating body 51 and is arranged adjacent to the internal flow path 4s in order to press the internal flow path 4s.
  • the rotating body 51 is provided with a plurality of rollers 52 (four embodiments are shown in FIG. 13 but not limited thereto) along the circumferential direction thereof.
  • the roller 52 sequentially moves in one direction while pressing a part in the longitudinal direction of the internal flow path 4s. For this reason, the fluid in the internal flow path 4 is sent out in one direction (the direction of the dialyzer 3s) by the negative pressure generated in the internal flow path 4s.
  • the pump 5s is not limited to the configuration shown in FIG. 13, and any configuration that allows fluid in the internal flow path 4s to be fed in one direction by pressing a part of the internal flow path 4s is adopted. can do.
  • FIG. 7 a hollow flow path 6 extending from the upper side to the lower side of the panel 2 is formed in the region between the internal flow path 4s of the panel 2 and the dialyzer 3s.
  • the hollow flow path 6 is the same as the internal flow path 4s described above, in the panel 2 formed by laminating the two resin sheets 21 and 22, a region for forming the hollow flow path 6 of one resin sheet 21, and
  • the other resin sheet 22 is formed by forming concave grooves 61 and 62 in the region where the hollow flow path 6 is formed.
  • the concave grooves 61 and 62 having a substantially semicircular cross section (see also FIG. 11). .) Shows a mode in which two resin sheets 21 and 22 are overlapped to have a substantially circular cross section.
  • the hollow channel 6 is formed with a hollow chamber 63 having a relatively large area in the middle of the path, and extends from the hollow chamber 63 to one side of the panel 2 (for example, the upper side in FIG. 7).
  • Other hollow flow paths (branch flow paths 64 and 65) are formed.
  • the hollow flow path 6 can be comprised as the branch flow paths 64 and 65 other than the hollow flow path 6 which is a confluence
  • a connecting part R5, a connecting part R6, and a connecting part R7 made of a cylindrical member arranged coaxially with the hollow channel 6 are arranged sandwiched between the sheets.
  • the end surfaces that are substantially flush with the upper and lower sides of the connecting portion R5, connecting portion R6, and connecting portion R7 have an inner diameter into which an external tube (not shown) is inserted.
  • the connecting portions R5 and R6 have a configuration substantially the same as that of the connecting portion R1 and the connecting portion R7 described above.
  • hollow channels 7 and 7 a extending from the upper side to the lower side of the panel 2 are juxtaposed in the region outside the left side in FIG. 7 and the like from the internal channel 4 sa of the panel 2. These hollow channels 7, 7a have a common configuration.
  • the hollow flow path 7 is a region where the hollow flow path 7 of one resin sheet 21 is formed in the panel 2 formed by bonding the two resin sheets 21 and 22 as in the above-described internal flow path 4s, And the other resin sheet 22 is formed by forming the concave grooves 71 and 72 in the region where the hollow flow path 7 is formed.
  • two grooves are formed as the concave grooves 71 and 72 having a substantially semicircular cross section.
  • the resin sheets 21 and 22 are overlapped to form a substantially circular cross section.
  • the hollow flow path 7 a is also formed in the region where the hollow flow path 7 a of one resin sheet 21 is formed, and the other resin sheet 22.
  • the grooves 71a and 72b are formed in the region where the hollow flow path 7a is formed.
  • the two resin sheets 21 and 22 are formed as the grooves 71a and 72b having a substantially semicircular cross section. A mode in which the cross-sections are substantially circular is shown.
  • the hollow flow paths 7 and 7a are straight flow paths that are not branched flow paths or merge flow paths as compared with the hollow flow path 6 described above, and are connected to the upper sides of the panel 2 by connecting portions R8 and R10.
  • the connecting portions R9 and R11 are attached to the lower side.
  • FIG. 14 is an explanatory view showing a longitudinal section around the connecting portion R8 (showing the side where the resin sheet 21 appears).
  • the connecting portion R8 has a shape having a constriction at the center, and an external tube T5 and a built-in tube Ta are inserted therein. Note that the connecting portions R9 to R11 are also substantially in common with the connecting portion R8.
  • the connecting portion R8 and the connecting portion R9 are connected by a built-in tube Ta made of a resin material, and the connecting portion R10 and the connecting portion R11 are connected by a built-in tube Tb made of a resin material. ing.
  • the built-in tubes Ta and Tb are sandwiched by the resin sheets 21 and 22 together with the connecting portions R8 to R11.
  • an external tube T5 is inserted into the connecting portion R8, and an external tube T6 is inserted into the connecting portion R9.
  • an external tube T7 is inserted into the connecting portion R10, and an external tube T8 is inserted into the connecting portion R11.
  • the thus configured blood purification circuit panel 1s can configure (mount) the blood purification circuit panel 1s including the dialyzer 3s, the pump 5s and the like on the panel 2 using an external tube. .
  • Resin sheets 21 and 22 constituting panel 2 The panel 2 is formed by bonding the inner surfaces of the two resin sheets 21 and 22 together.
  • the main component of the resin sheets 21 and 22 is a styrene elastomer or an olefin elastomer. Use the resin.
  • One of these styrene elastomers and olefin elastomers may be used alone, or two may be used in combination.
  • the “main component” refers to a component that occupies 50% or more of the entire resin material constituting the resin sheets 21 and 22.
  • styrene-based thermoplastic elastomer examples include a block copolymer having a soft segment composed of a diene block (diene polymer portion) and a hard segment composed of a styrene block (styrene polymer portion) or polystyrene.
  • styrene-butadiene block copolymer SB
  • SBS styrene-butadiene-styrene block copolymer
  • SI styrene-isoprene block copolymer
  • styrene-isoprene-styrene block examples include a block copolymer having a soft segment composed of a diene block (diene polymer portion) and a hard segment composed of a styrene block (styrene polymer portion) or polystyrene.
  • SB styrene-butadiene block copolymer
  • SBS sty
  • Examples thereof include a hydrogenated product of a copolymer (SIS) or a block copolymer thereof. Further, high impact polystyrene and ABS resin (acrylonitrile-butadiene-styrene copolymer) can be used.
  • SIS copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • the above-mentioned hydrogenated product is a block copolymer in which all of the styrene block and diene block are hydrogenated, a block copolymer in which only the diene block is hydrogenated or a part of the styrene block and diene block is hydrogenated. It may be a partially hydrogenated product such as an added block copolymer.
  • the olefin-based elastomer (olefin-based thermoplastic elastomer) is made of a blend of polyolefins such as polypropylene and polyethylene as a hard segment and olefin rubber as a soft segment.
  • the polyolefin as the hard segment is a crystalline polyolefin, and examples thereof include polypropylene, high density polyethylene (HDPE), and low density polyethylene (LDPE).
  • olefin rubbers examples include ethylene propylene rubber (EPR, EPM), ethylene propylene diene rubber (EPDM) (cross-linked, partially cross-linked), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR, ethylene-octene copolymer, ethylene- Butene-1 copolymer, linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), isoprene rubber ( IR), butadiene rubber (BR) and the like.
  • EPR ethylene propylene rubber
  • EPM ethylene propylene diene rubber
  • EPDM ethylene propylene diene rubber
  • NBR acrylonitrile-butadiene rubber
  • hydrogenated NBR hydrogenated NBR
  • ethylene-octene copolymer ethylene-butene-1 copolymer
  • Those in which the hard segment polyolefin is made of polyethylene are classified as polyethylene, and those made of polypropylene are classified in polypropylene.
  • a reactor type olefin elastomer in which polypropylene (polyethylene) is a hard segment and the soft segment is a copolymer containing propylene (ethylene) may be used.
  • the constituent material of the resin sheets 21 and 22 only the above-described styrene-based elastomer or olefin-based elastomer may be used as the constituent material, but a polyolefin-based resin is used in combination with the styrene-based elastomer or olefin-based elastomer. Also good.
  • the polyolefin-based resin By using the polyolefin-based resin in combination, the hardness and moldability of the resin sheets 21 and 22 can be adjusted, and the use of an inexpensive polyolefin-based resin leads to cost reduction.
  • polystyrene resin examples include polypropylene resins such as polypropylene, polyethylene resins such as polyethylene, polybutene, poly-1-butene, poly-4-methyl-1-pentene, and the like.
  • polypropylene resins such as polypropylene
  • polyethylene resins such as polyethylene, polybutene, poly-1-butene, poly-4-methyl-1-pentene, and the like.
  • ethylene / ⁇ -olefin copolymer, ethylene / vinyl alcohol copolymer, ethylene / vinyl acetate copolymer, poly-4-methylpentene-1 resin, propylene / ⁇ -olefin copolymer Etc. examples include polypropylene resins such as polypropylene, polyethylene resins such as polyethylene, polybutene, poly-1-butene, poly-4-methyl-1-pentene, and the like.
  • the content of polyolefin resin should be suitable for the physical properties such as duro A hardness and compression set to be described later.
  • the polyolefin resin may be less than 50.0% by mass with respect to the entire resin sheets 21 and 22 (the entire resin composition constituting the resin sheets 21 and 22; the same shall apply hereinafter).
  • the content is preferably more than 0% by mass and less than 50.0% by mass, particularly preferably 1.0 to 40.0% by mass (the remainder being a styrene elastomer or an olefin elastomer).
  • the melt flow rate (MFR) at 230 ° C. of the resin sheets 21 and 22 is preferably 0.1 to 5.0 g / 10 minutes. If the MFR is in such a range, good moldability and the like can be maintained.
  • the MFR may be a value measured according to JIS K7210 (230 ° C., 2.16 kg) or the like.
  • the constituent materials of the resin sheets 21 and 22 described above are, for example, resin materials other than those described above, plasticizers, antistatic agents, antioxidants, and antifogging agents, as long as the objects and effects of the present invention are not impaired.
  • Various additives generally used in the field of resin materials such as ultraviolet absorbers, heat stabilizers, nucleating agents, mold release agents, colorants, and neutralizing agents, may be added.
  • the resin sheets 21 and 22 constituting the present invention form an internal flow path 4s for serving as a conventional pump tube as a constituent member of the panel 2, it requires predetermined hardness, resilience, and the like. To do.
  • the durometer A hardness (referred to as “type A durometer hardness” and also referred to as “durometer A”) according to JIS K6253 is set to 30-80.
  • the durometer A hardness of the resin sheets 21 and 22 is preferably 50 to 70.
  • the compression set after the resin sheets 21 and 22 are treated at 23 ° C. for 22 hours according to JIS K6262 is 50% or less.
  • the duro A hardness and compression set (and MFR) of the resin sheets 21 and 22 In order to set the duro A hardness and compression set (and MFR) of the resin sheets 21 and 22 to the above-described ranges, for example, the duro A hardness and compression set of the resin material used conform to the above-described ranges. Such resin material can be selected and used. When one type of resin material is used, it is preferable to use a material that fits the above-described range with respect to duro A hardness, compression set, and the like.
  • the duro A hardness and compression set it is preferable to use a material in which the resin materials mixed in combination meet the above-mentioned ranges for the duro A hardness and compression set.
  • resin D has Duro A hardness P
  • resin Y has Duro A hardness Q
  • the value obtained by approximately 1 ⁇ P + m ⁇ Q may be adapted to the above range.
  • the resin V polyolefin-based resin
  • the resin Z styrene-based elastomer, olefin-based elastomer, etc.
  • the resin V has the above-described content. It may be adjusted in combination with the range so as to meet the above-described range.
  • the duro A hardness has been described as an example, the same applies to compression set and MFR. Moreover, what is necessary is just to consider similarly when using combining 3 or more types of resin materials.
  • the styrene elastomer or olefin elastomer (elastomer) described above has a duro A hardness of 30 to 80, or 80 or less.
  • the polyolefin resin is mixed in the above-described content range and adjusted so as to be within the above-mentioned range, including compression set (it is preferable to use 50% or less of elastomer). What should I do?
  • the thickness of the resin sheets 21 and 22 is not particularly limited, but is preferably set to 0.5 to 2.0 mm in consideration of smoothly feeding the fluid in the internal flow path 4. When the thickness is smaller than 0.5 mm, the restoring force of the resin sheets 21 and 22 may be deteriorated. When the thickness exceeds 2.0 mm, the load for pressing may be increased.
  • Example of manufacturing method of panel 2 For the manufacture of the panel 2, the extrusion apparatus 1 described in FIGS. 1 to 6 (the roller is provided only on one side of the resin sheet at each height position of the resin sheet and changes the trajectory of the resin sheet by contacting the resin sheet.
  • the configuration provided as described above can be used.
  • the blood purification circuit panel 1 s according to the embodiment of the second aspect described above is composed of a predetermined resin material, and the resin sheets 21 and 22 having a specific range of duro A hardness and compression set are bonded to the panel 2.
  • the groove 2 is formed on the inner surface of the panel 2 and a hollow internal flow path 4 for allowing the fluid formed of the grooves 41 and 42 to pass therethrough is provided. Since the internal flow path 4 has an appropriate hardness, resilience, and the like, it plays the role of a conventional pump tube, and by pressing a part of the internal flow path 4, fluid can be sent to the dialyzer 3s or the like.
  • the arrangement of the internal flow path 4 eliminates the need for a pump tube for feeding fluid to the dialyzer 3 s, etc., eliminating the complexity of attaching the pump tube to the panel 2 and the like.
  • the blood purification circuit panel 1s can achieve cost reduction and the like.
  • the blood purification circuit panel according to the second aspect of the present invention is not limited to each of the above-described embodiments, and modifications and improvements within a range where the object of the blood purification circuit panel according to the second aspect of the present invention can be achieved.
  • the blood purification circuit panel according to the second aspect of the present invention is included.
  • the concave grooves 41.42 are formed on the inner surfaces of the resin sheets 21 and 22 having a predetermined hardness, resilience, and the like.
  • Internal channels 4s and 4sa (hereinafter, described by taking the internal channel 4 as an example) formed by grooves are provided to feed fluid such as blood into the dialyzer 3s and the like.
  • the internal flow path 4 can fulfill the function of sending out fluid by the action of a pump or the like, but the entire longitudinal direction of the internal flow path 4 is the resin sheets 21 and 22.
  • rigidity As a structural member (site forming the structure), it may be slightly soft as a structural member (site forming the structure), and if necessary, for example, in a portion of the internal flow path 4 In some cases, it is better to increase the rigidity, mechanical strength, etc. (hereinafter sometimes simply referred to as “rigidity”).
  • the parts other than the internal flow path 4 for example, it is desirable to increase the rigidity and the like of the planar part of the panel 2 that is a structural part.
  • two reinforcing members 9 are provided on a part of the inner surface of the panel 2.
  • a configuration in which the resin sheets 21 and 22 are interposed between the resin sheets 21 and 22 may be employed.
  • FIGS. 15 to 18 described below the same structure and the same members as those in FIGS. 7 to 14 described above are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
  • FIG. 15 is an explanatory view showing a portion to which the reinforcing member 9 is applied.
  • the reinforcing member 9 (internal channel reinforcing member 9 a) having the shape shown in FIG. 16, which will be described later, so as to straddle the internal channel 4 s (concave grooves 41, 42) formed in the panel, And the aspect which applied the plate-shaped reinforcement member 9 (plate-shaped reinforcement member 9b) to the side edge of the panel 2 is shown.
  • the reinforcing member 9 is applied to, for example, a portion straddling the internal flow path 4s to increase the rigidity of the internal flow path 4s and its surroundings, or to the side edge of the panel 2 that is a structural part.
  • it can be used as a means for increasing the rigidity of the application site and its surroundings.
  • FIG. 16 is a schematic view showing an example of the internal flow path reinforcing member 9a
  • FIG. 17 is an explanatory view showing a cross-sectional configuration to which the internal flow path reinforcing member 9a is applied.
  • the internal channel reinforcing member 9 a that reinforces the internal channel 4 and its periphery across the internal channel 4 includes a hollow cylindrical channel 91 and both sides of the channel 91.
  • a plate-like support portion 92 is formed integrally.
  • a flow channel portion 91 having a hollow cylindrical shape and having a hollow portion 93 through which a fluid can pass is fitted into the internal flow channel 4, and the plate-shaped support portion 92 is formed on the panel 2 (resin sheet).
  • FIG. 18 is an explanatory view showing a cross-sectional configuration to which the plate-like reinforcing member 9b is applied.
  • the plate-like reinforcing member 9 b that reinforces the application site and its periphery by applying it to the side edge of the panel 2 that is a structural site is in surface contact with the application site of the panel 2 (resin sheets 21 and 22). Will be pinched.
  • the plate-like reinforcing member 9b is sandwiched and interposed between the two resin sheets 21 and 22, and is useful for enhancing the rigidity and mechanical strength of the application site and its periphery.
  • the two reinforcing members 9 having a predetermined shape corresponding to the part are provided.
  • the resin sheets 21 and 22 may be sandwiched and interposed.
  • the reinforcing member 9 is not limited to these parts, but can be applied to any part or the like considered to require improvement in rigidity or the like.
  • the reinforcing member 9 is preferably formed of a material harder than the resin material that constitutes the panel 2 described above.
  • a material harder than the resin material that constitutes the panel 2 described above for example, polycarbonate (PC), polypropylene (PP), acrylonitrile-butadiene-styrene copolymer ( (ABS resin) and engineering plastics such as polytetrafluoroethylene (PTFE) can be used as the constituent material.
  • PC polycarbonate
  • PP polypropylene
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PTFE polytetrafluoroethylene
  • the reinforcing member 9 is inserted before the molds 81 and 82 are clamped in the same manner as the connecting portions R1 to R11 and the built-in tubes Ta and Tb incorporated in the panel 2 and the resin sheet 21 is inserted. , 22 can be attached.
  • the internal flow paths 4s and 4sa are arranged one by one on the left and right sides of the dialyzer 3s, and the hollow flow path 6 is formed between the dialyzer 3s and the internal flow path 4s.
  • the configuration in which the hollow flow paths 7 and 7a are formed beside the internal flow path 4sa has been described with reference to FIGS.
  • the configuration of the panel 2 is not limited to this, and the panel 2 formed by bonding the inner surfaces of the two resin sheets 21 and 22 to the inner surface of at least one of the resin sheets 21 and 22.
  • any configuration in which hollow internal flow paths 4s and 4sa for allowing fluid to pass therethrough are provided by the concave grooves 41 and 42 (the concave grooves 41a and 42a). Further, the number of the internal flow paths 4s and 4sa is arbitrary, and one or more required number of internal flow paths 4s and 4sa may be formed on the inner surface of the panel.
  • the external tube T1 or the like when the external tube T1 or the like is inserted into each flow path formed in the panel 2, the external tube T1 or the like is inserted using the connecting portion R1 or the like.
  • the concave grooves for example, the concave grooves 41 and 42 in the case of the internal flow path 4
  • the external tube T1 or the like is directly formed on the panel without using the connecting portion R1 or the like. You may make it insert in the edge part of another flow path.
  • the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.
  • Example of blood purification circuit panel according to the second aspect of the present invention ⁇ Example of blood purification circuit panel according to the second aspect of the present invention>
  • the blood purification circuit panel according to the second aspect of the present invention will be described in more detail based on Examples and Comparative Examples of the second aspect of the present invention, but the blood purification circuit according to the second aspect of the present invention.
  • the panel is not limited to these.
  • Examples 1 to 4, Comparative Example 1 and Comparative Example 2 The blood purification circuit panel shown in FIGS. 7 to 11 having the resin composition shown in Table 1 using the following resin material is the same as the above-mentioned “(3) Example of manufacturing method of panel 2:” Molded according to 1 to 6.
  • the depth of the groove was 2 to 50 mm, and the thickness of the resin sheet was 0.5 to 2.0 mm.
  • Styrenic elastomer Product name: Lavalon (registered trademark) T331C (SEBS) (manufactured by Mitsubishi Chemical Corporation) MFR: 0.7 g / 10 minutes Duro A hardness: 24 Compression set: 35%
  • Olefin elastomer Product name: TAFMER (registered trademark) DF610 (polyethylene (PE) elastomer) (Mitsui Chemicals, Inc.) MFR: 2.2 g / 10 minutes Duro A hardness: 57 Compression set: 45%
  • Styrenic elastomer Product name: Tuftec (registered trademark) H1062 (SEBS) (manufactured by Asahi Kasei Chemicals Corporation) MFR: 4.5 g / 10 min Duro A hardness: 67 Compression set: 30%
  • the duro A hardness (type A durometer hardness) in Table 1 and Table 1 is a value obtained by treating the compression set according to JIS K6253 and JIS K6262 at 23 ° C. for 22 hours, and the melt flow rate (MFR) is The value measured by JIS K7210 (230 ° C., 2.16 kg) was used.
  • Liquid feeding function As a molded product, a roller-type tube pump having the configuration shown in FIG. 13 with a crushing amount of 1.7 mm and a rotation speed of 120 rpm is applied to a hollow channel having an outer diameter of 7.0 mm and a wall thickness of 0.9 mm for 5 hours ( (The number of times of liquid feeding is 36000 times) is used (the amount of liquid feeding under these conditions is 5 L / hour), and “ ⁇ ” (pass) when the amount of liquid feeding after feeding for 5 hours is 4 L / hour or more, Those less than 4 L / hour were evaluated as “x” (failed).
  • the blood purification circuit panel according to the second aspect of the present invention does not require a pump tube for feeding blood, dialysate, or the like to the dialyzer, thereby reducing the number of members and the complexity of work, thereby reducing costs.
  • a blood purification circuit panel that can contribute industrial applicability is high.
  • FIG. 19 is a plan view showing a first embodiment of a hollow molded body according to a third aspect of the present invention. 20 is a sectional view taken along line II-II in FIG. 19, FIG. 21 is a sectional view taken along line III-III in FIG. 19, and FIG. 22 is a sectional view taken along line VI-VI in FIG.
  • the hollow molded product 1t is configured by partially welding (bonding) the first resin sheet 3t and the second resin sheet 4t.
  • the parting line PL (see FIGS. 20 and 21) formed at the boundary between the first resin sheet 3t and the second resin sheet 4t is provided at substantially the center in the thickness direction of the hollow molded product 1t. ing.
  • flow paths 5a, 5b, 5c through which a liquid can flow are provided.
  • the hollow molded product 1t is provided with two hinge portions 13t so that the hollow molded product 1t can be bent.
  • the two hinge parts 13tt are provided close to each other in parallel.
  • the hollow molded product 1t is divided into a first section 1a and a second section 1b that sandwich the two hinge portions 13t, and a third section 1c that is sandwiched by the two hinge portions 13t.
  • the flow paths 5a and 5b are provided in the first section 1a, and the flow path 5c is provided in the second section 1b.
  • the hinge part 13t is formed by making it thinner than parts other than the hinge part 13t.
  • the hollow molded product 1t can be made compact by folding the hollow molded product 1t at the hinge 13t. Further, the heat exchange efficiency can be improved by folding the hollow molded product 1t with a heat exchange object such as a heater (not shown) interposed therebetween.
  • the flow path 5a communicates with cylindrical inserts 7ta and 7tb which are inserted into the openings at both ends of the flow path 5a on the side surface of the hollow molded product 1t and fused.
  • the inserts 7ta and 7tb both have the same configuration and have an appearance as shown in FIG.
  • FIG. 23B is a cross-sectional view taken along line bb of FIG.
  • the inserts 7ta and 7tb configured as described above are sandwiched between the first resin sheet 3t and the second resin sheet 4t, for example, as shown in the sectional view of FIG. The detailed structure of these inserts 7ta and 7tb will be described in detail later.
  • the inserts 7ta and 7tb have a tube insertion port 8 formed on the end surface opposite to the flow path 5a, and an external tube is inserted into the tube insertion port 8 (see FIG. 23B) from the outside. It is designed to be fitted. That is, the external tube is connected to the flow path 5a of the hollow molded product 1t via the inserts 7ta and 7tb. As shown in FIG. 19, for example, the supply tube 9ta is fitted to the insert 7ta, and the discharge tube 9tb is fitted to the insert 7tb, whereby the fluid can be circulated in the flow path 5a.
  • these tubes when inserting the supply tube 9ta and the discharge tube 9tb into the inserts 7ta and 7tb, these tubes may be press-fitted in a state where the surface is immersed in a solvent and the tube is heated with a heat gun. You may insert in the state which melt
  • SP value dissolution parameter
  • the flow path 5a is formed to meander in the first section 1a, and at least a part of the flow path 5a is provided with an agitation promoting portion 6t that promotes stirring of the liquid flowing in the flow path 5a.
  • the stirring promoting portion 6t is configured by alternately providing large diameter portions 6a and small diameter portions 6b along the longitudinal direction. As a result, the flow rate of the liquid flowing through the stirring promoting portion 6t varies, and stirring is promoted.
  • the flow path 5b communicates with a pair of protruding cylinders 7e protruding from the side surface of the hollow molded product 1t. An opening is provided at the tip of the protruding cylinder 7e.
  • the protruding cylinder 7e can be connected to a supply tube and a discharge tube (not shown).
  • the flow path 5b functions as a functional component accommodating portion 10 that accommodates functional components.
  • the functional component accommodating portion 10 can accommodate functional components such as a filter and a static mixer.
  • the filter can remove foreign substances in the liquid flowing through the flow path 5b, and the static mixer can agitate the liquid flowing through the flow path 5b.
  • the functional part accommodating part 10 is bulky, the functional part accommodating part of the second section 1b is arranged so that the functional part accommodating part 10 does not interfere with the second section 1b when folded into the hollow molded product 1t by the hinge part 13t.
  • An opening 11 t is provided at a portion facing 10.
  • the flow path 5c is meandering in the second section 1b and communicated with cylindrical inserts 7c and 7d that are inserted into the respective openings at both ends of the flow path 5c and fused on the side surface of the hollow molded product 1t. ing.
  • the inserts 7c and 7d have a tube insertion port 8 formed on the end surface opposite to the flow path 5c, and an external tube is inserted into and fitted into the tube insertion port 8. It has become so.
  • inserts 7ta to 7td will be described in more detail. Since all of the inserts 7ta to 7td have the same configuration, only the insert 7ta will be described below.
  • the insert 7ta includes a first resin member 71t on the tube insertion port 8 side, and a second resin member 72t on the flow path 5a side and fused to the first resin member 71t. It consists of and.
  • the insert 7ta is formed by so-called two-color molding.
  • the first resin member 71t and the second resin member 72t are made of different materials.
  • the first resin member 71t is not well fused to the first and second resin sheets, whereas the second resin member 72t Is designed to have good fusion with the first and second resin sheets.
  • the first resin member 71t is formed in a cylindrical shape, and is substantially equal to the outer diameter of the tube so that an external tube (supply tube 9ta) can be inserted to the vicinity of the tip on the inner peripheral surface thereof.
  • a tube insertion port 8 having an inner diameter is formed.
  • the inner diameter of the first resin member 71t is reduced via a step 71A at the tip of the first resin member 71t.
  • the step 71A in the inner diameter of the first resin member 71t functions as a stopper when the tube (supply tube 9ta) is inserted to a predetermined position.
  • the second resin member 72t is formed in a cylindrical shape arranged coaxially with the first resin member 71t, and the inner diameter thereof is substantially equal to the inner diameter of the first resin member 71t at the front end (from the step 71A to the front end). It has become.
  • a cylindrical body 71B having an outer diameter smaller than the outer diameter of the distal end portion is provided at the distal end portion of the first resin member 71t so as to extend in the axial direction.
  • a circumferential direction is provided on the outer circumferential surface of the cylindrical body 71B.
  • a first annular protrusion 73 is formed extending and projecting toward the surface.
  • a second annular protrusion 74 having an annular shape around the axial direction is formed on the distal end surface of the cylindrical body 71B.
  • the second resin member 72t is molded so as to cover the first annular protrusion 73 and the second annular protrusion 74 of the first resin member 71t, whereby the first annular protrusion 73 and the second annular protrusion 74 are It functions as an engaging portion between the resin member 71t and the second resin member 72t.
  • the engagement portion causes the first resin member 71t and the second resin member 72t to Reliable fusion can be achieved.
  • the melting parameter (SP value) of the first resin member 71t and the second resin member 72t is large. Will have a difference. That is, it is empirically known that the solubility (fusion) decreases as the solubility parameter (SP value) of the two components increases.
  • the difference of the dissolution parameter (SP value) of the 1st resin sheet 3t and the 2nd resin sheet 4t, and the 2nd resin member 72t shall be 1 or less, and the 2nd resin member 72t, the 1st resin sheet 3t, and the 2nd Adhesion with the resin sheet 4t is sufficient, and the insert 7ta can be reliably bonded to the first resin sheet 3t and the second resin sheet 4t.
  • the difference in the dissolution parameter (SP value) between the tube (supply tube 9ta) and the first resin member 71t is 1 or less, the tube (supply tube 9ta) is inserted into the first resin member 71t.
  • the interface between the (supply tube 9ta) and the first resin member 71t is pseudo-fused, and a gap can be prevented from being generated.
  • the interface between the first resin member 71t and the tube (supply tube 9ta) is a gap.
  • the first resin sheet 3t, the second resin sheet 4t, the first resin member 71t of the insert 7ta, and the second resin member 72t can be selected as shown in Table 1.
  • the dissolution parameter (SP value) of each material is also shown.
  • each material used for examination is PP (polypropylene resin), PE (polyethylene resin), PVC (polyvinyl chloride resin), PC (polycarbonate resin), and PMMA (polymethyl methacrylate resin).
  • the inserts 7ta to 7td have their through holes 7H connected to a flow path 5a formed at the interface between the first resin sheet 3t and the second resin sheet 4t. .
  • 24 to 27 are process diagrams showing a method for manufacturing the hollow molded product 1t according to the first embodiment of the third aspect described above. First, an outline of a molding apparatus will be shown with reference to FIG.
  • the molding device 80 includes an extrusion device 90 and a mold clamping device 100t disposed below the extrusion device 90.
  • each member is the same as in the first aspect (FIGS. 1 to 6).
  • the molding device 80 is the molding device 100
  • the extrusion device 90 is the extrusion device 1
  • the mold clamping device 100t is the mold 21f. Correspond.
  • the mold clamping device 100t includes a mold 101A and a mold 101B, and the thermoplastic resin sheets PA and PB are both suspended between the molds 101A and 101B divided in the horizontal direction. Yes.
  • the mold 101A and the mold 101B have the same configuration.
  • the corresponding members of the mold 101A and the mold 101B have the same number, and the member on the mold 101A side has the code A. Is indicated by a symbol B on the member on the mold 101B side.
  • the mold 101A will be described.
  • the mold 101B also shows the same configuration and operation.
  • the mold 101A has a plurality of air intake holes that are formed in the thermoplastic resin sheet PA side surface (front surface) so that cavities 102A are formed in accordance with the shape to be formed of the second resin sheet 4t and are scattered at substantially equal intervals.
  • 103A is formed.
  • Each intake hole 103A communicates with a common chamber 104A formed in the mold 101A, and the common chamber 104A is decompressed by a pump or the like (not shown).
  • a mold frame 105A is fitted on the outer periphery of the mold 101A, and is movable relative to the mold 101A.
  • thermoplastic resin sheet PA can be obtained as a second resin sheet 4t formed from a predetermined shape.
  • thermoplastic resin sheet PA is also obtained as the first resin sheet 3t formed in a predetermined shape by the mold 101B.
  • the mold frame 105A comes into contact with the thermoplastic resin sheet PA by protruding toward the mold 101B.
  • the inserts 7ta to 7td formed in advance by another process are arranged at a predetermined position of the second resin sheet 4t on the mold 101A, for example.
  • the inserts 7ta to 7td are arranged in a semicircular arc-shaped concave portion which is a peripheral portion (see FIG. 19) of the second resin sheet 4t and which is a flow path forming region.
  • the inserts 7ta to 7td include the first resin member 71t and the second resin member 72t that is fused to the first resin member 71t (see FIG. 23B), but the first resin member 71t and the second resin member 72t protrude in the radial direction at least in the first resin member 71t, and are engaged by the first annular protrusion (engagement portion) covered by the second resin member 72t.
  • the wear is reliable.
  • each of the inserts 7ta to 7td has a semicircular arc-shaped recess that is a flow path forming area of the second resin sheet 4t and a semicircular arc-shaped recess that is a forming area of the flow path of the first resin sheet 3t. It will be sandwiched between them.
  • the mold 105A moves backward with respect to the mold 101A so that the first resin sheet 3t and the second resin sheet 4t protruding from the molds 101AA and 101B are not brought into contact with each other.
  • FIG. 28 is a cross-sectional view showing the insert 7ta welded between the first resin sheet 3t and the second resin sheet 4t.
  • FIG. 28 shows the positioning pin 109 inserted into the insert 7ta so that the insert 7ta is positioned at a predetermined location of the first resin sheet 3t and the second resin sheet 4t.
  • the mold 101A is moved in the direction of the arrow A ′ in the figure together with the mold 105A and the mold 105B so that the mold 101A and the mold 101B are separated from each other. Move in the B 'direction. Thereby, the hollow molded product 1t can be taken out from the mold 101A and the mold 101B.
  • the insert 7ta is not limited to the configuration described above, and may be modified as follows, for example. That is, as shown in FIG. 29, the first resin member 71t that is to be covered with the supply tube 9ta is made thin, and the first resin member 71t, the first resin sheet 3t, and the second resin sheet 4t are the first. Two resin members 72t are extended to extend. Also when formed in this way, the difference between the dissolution parameters (SP values) of the supply tube 9ta and the first resin member 71t is 1 or less, and the first resin sheet 3t, the second resin sheet 4t, and the second resin member 72t The difference in solubility parameter (SP value) can be made 1 or less.
  • the insert and 7a according to this modification can also be obtained by the same manufacturing method as described above.
  • the engagement between the first resin member 71t and the second resin member 72t of the inserts 7ta to 7td protrudes at least in the radial direction in the first resin member 71t, and the second resin member 72t
  • the present invention is not limited to this, and the second resin member 72t protrudes in the radial direction and is formed by the first resin member 71t. Needless to say, it may be formed by a covered annular projection (convex portion).
  • the resin molding apparatus and the resin molding method according to the first aspect of the present invention can prevent the resin sheet from being wound around the roller while stretching the resin sheet. Furthermore, in the second aspect of the present invention, blood that does not require a pump tube for feeding a fluid to a dialyzer or the like is required for configuring a blood purification circuit panel including a panel formed of two bonded resin sheets. A purification circuit panel can be provided. Furthermore, in a 3rd viewpoint, the hollow molded product which can attach insert so that the liquid in a flow path may not leak can be provided.
  • FIGS. 1 to 6> 1: Extruder, 11: T die, 12: Extrusion slit, 13: Accumulator, 14: Plunger, 15: Cylinder, 16: Hopper, 17: Hydraulic motor, 21f: Mold, 23: Cavity, 25f: Pinch-off part, 3: Roller, 4: Moving member, 100: Molding device
  • FIGS. 7 to 18> 1s: Blood purification circuit panel, 1ss: Extruding device, 2: Panel, 21, 22: Resin sheet, 23a, 23b: Mounting piece, 24a, 24b: Notch, 25a, 25b: Stenosis, 3s: Dialyzer, 31: Blood inflow tube portion, 32: Blood outflow tube portion, 33: Narrow tube, 34: Dialysate inflow tube portion, 35: Dialysate outflow tube portion, 36a, 36b: Flange portion, 37a, 37b: annular groove, 4s, 4sa: Internal flow path, 41, 41a, 42, 42a: concave groove, 5s: pump, 51: rotating body, 52: roller, 6: hollow flow path, 61, 62: concave groove, 63: hollow chamber, 64, 65: Branch flow path, 7, 7a: hollow flow path, 71, 71a, 72, 72a: concave groove, 81, 82: split mold, 83a,
  • FIG. 19 to FIG. 29> 1t: hollow molded product, 1a: first section, 1b: second section, 1c: third section, 3t: first resin sheet, 4t: second resin sheet, 5a to 5c: flow path, 6t: stirring promoting part , 6a: large diameter portion, 6b: small diameter portion, 7ta to 7td: insert, 7e: protruding tube, 8: tube insertion port, 9ta: supply tube, 9tb: discharge tube, 10: functional part accommodating portion, 11t: opening , 13t: hinge part, 71t: first resin member, 72t: second resin member, 71A: step, 71B: cylindrical body, 73: first annular protrusion, 74: second annular protrusion, 80: molding device, 90 : Extruding device, 90A: Extruding device, 91A: Hopper, 92A: Cylinder, 93A: Hydraulic motor, 100t: Clamping device, 101A: Mold, 101B

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • External Artificial Organs (AREA)

Abstract

The purpose of the present invention is to provide a resin molding device that can prevent a resin sheet from becoming wound around a roller while the resin sheet is being drawn. The present invention provides a resin molding device comprising the following: an extrusion device from which a resin sheet is extruded from an extrusion slit and caused to hang; a molding mold used to mold the resin sheet; and a roller disposed between the extrusion device and the molding mold. The roller is disposed only on one side of the resin sheet at a height position of the resin sheet, and is disposed so as to be in contact with the resin sheet in order to change the trajectory of the resin sheet.

Description

樹脂成形装置、樹脂成形方法、血液浄化回路パネル及び中空成形体Resin molding apparatus, resin molding method, blood purification circuit panel, and hollow molded body
 本発明の第1観点は、溶融状態の樹脂シートを成形型で成形して樹脂成形品を製造する技術に関する。本発明の第2観点は、血液浄化回路パネルに関する。さらに詳しくは、貼り合わされた2枚の樹脂シートで形成されるパネルを備えた血液浄化回路パネルに関する。本発明の第3観点は、中空成形体に関する。 The first aspect of the present invention relates to a technique for manufacturing a resin molded product by molding a molten resin sheet with a molding die. A second aspect of the present invention relates to a blood purification circuit panel. More specifically, the present invention relates to a blood purification circuit panel including a panel formed of two bonded resin sheets. The 3rd viewpoint of this invention is related with a hollow molded object.
(第1観点)
 従来、樹脂成形品を成形する方法として、押出装置から押し出された溶融状態の樹脂シートを分割金型の間に垂下し、その樹脂シートを分割金型で型締めしてブローあるいは真空成形する方法がある(例えば、特許文献1、特許文献2参照)。この方法は、押出装置から押し出された溶融状態の樹脂シートを分割金型の間に配置して型締めしているため、樹脂を再加熱することに起因する加熱の不均一性などの問題点を引き起こすことなく、樹脂成形品を容易に成形することができる。
(First viewpoint)
Conventionally, as a method for molding a resin molded product, a molten resin sheet extruded from an extrusion apparatus is suspended between divided molds, and the resin sheet is clamped with a divided mold and blown or vacuum molded. (For example, refer to Patent Document 1 and Patent Document 2). In this method, since the molten resin sheet extruded from the extrusion device is placed between the molds and clamped, there are problems such as heating non-uniformity caused by reheating the resin. It is possible to easily mold a resin molded product without causing the above.
(第2観点)
 透析は、腎機能が損なわれ、その為に水分調整等が的確になされず尿の排出ができない患者のためになされる治療であり、例えば、血液浄化器であるダイアライザーを介して、透析液と血液を接触させることにより血液を浄化するものである。
(Second viewpoint)
Dialysis is a treatment performed for patients whose renal function is impaired, and therefore water adjustment is not performed accurately and urine cannot be discharged. For example, dialysis fluid is dialyzed through a dialyzer as a blood purifier. The blood is purified by contacting the blood.
 ダイアライザーを備える血液浄化回路は、これまでも種々の検討がなされている(例えば、特許文献3や特許文献4を参照。)。ダイアライザーは、複数(例えば、8000~20000本等。)の人口膜でできた細管を内蔵し、血液流入管から血液が、これらの細管を通して血液流出管から流出されるようになっている。また、ダイアライザーには、透析液流入管からの透析液が、各細管の外側を流れた後に、透析液流出管から流出され、これにより、細管の膜を介して血液と透析液の間で物質交換がなされ、不要な物質は透析液に移動し、有用な物質は血液の中に移動することになる。 Various studies have been made on blood purification circuits equipped with a dialyzer (see, for example, Patent Document 3 and Patent Document 4). The dialyzer incorporates a plurality of (for example, 8000 to 20,000) thin tubes made of artificial membranes, and blood is discharged from the blood outflow tube through these thin tubes. In the dialyzer, the dialysate from the dialysate inflow pipe flows out of each narrow tube and then flows out from the dialysate outflow pipe, so that the substance between the blood and the dialysate passes through the membrane of the narrow tube. Exchanges are made and unwanted substances move into the dialysate and useful substances move into the blood.
(第3観点)
 中空成形体として、たとえば下記特許文献5に示すように、溝を形成した2枚の樹脂シートを貼り合わせることによって、当該溝の部分を流路として形成したものが知られている。
(Third viewpoint)
As a hollow molded body, for example, as shown in Patent Document 5 below, one in which a groove portion is formed as a flow path by bonding two resin sheets each having a groove is known.
 流路は、中空成形品その周辺の一部に形成された開口に連通され、該開口には注水管(インサート)が挿入融着されるようになっている。インサートは流路側と反対側にチューブ挿入口が形成され、このチューブ挿入口には外付け用のチューブが挿入融着されるようになっている。 The flow path communicates with an opening formed in a part of the periphery of the hollow molded product, and a water injection pipe (insert) is inserted and fused into the opening. In the insert, a tube insertion opening is formed on the side opposite to the flow path side, and an external tube is inserted and fused to the tube insertion opening.
 しかし、この場合において、インサートを外付け用のチューブと融着し易い材料で選定したときに、インサートは2枚の樹脂シートと融着し難くなってしまうということがあり得る。この場合、インサートと2枚の樹脂シートとの界面に隙間等ができ、流路を流れる液体が該隙間等を通して漏れてしまうという不都合を有する。 However, in this case, when the insert is selected with a material that can be easily fused with the external tube, the insert may be difficult to fuse with the two resin sheets. In this case, there is a disadvantage that a gap or the like is formed at the interface between the insert and the two resin sheets, and the liquid flowing through the flow channel leaks through the gap or the like.
特許第4902789号公報Japanese Patent No. 4902789 特開2013-49186号公報JP 2013-49186 A 特開平8-38597号公報JP-A-8-38597 特開平9-313603号公報JP-A-9-313603 特開2013-49196号公報JP 2013-49196 A
(第1観点)
 従来は、特許文献1,2に開示されているように、押出装置から押し出された溶融状態の樹脂シートを延伸する延伸装置を一対のローラで構成している。そして、溶融状態の樹脂シートを、延伸装置を構成する一対のローラで挟み込んで押し潰し、一対のローラによる樹脂シートの送り出し速度や一対のローラの間隔を調整して樹脂シートを延伸して分割金型の間に垂下するようにしている。
(First viewpoint)
Conventionally, as disclosed in Patent Documents 1 and 2, a stretching device that stretches a molten resin sheet extruded from an extrusion device is constituted by a pair of rollers. Then, the molten resin sheet is sandwiched and crushed by a pair of rollers constituting the stretching device, and the resin sheet is stretched by adjusting the feeding speed of the resin sheet by the pair of rollers and the distance between the pair of rollers, thereby dividing the divided sheet. It hangs down between the molds.
 これらの技術は、溶融状態の樹脂シートに生じるドローダウン(主に中空成形で、押し出されたパリソンが自重とスウェリング現象のため、金型に挾まれる前に垂れ下り(縦方向に伸び)、パリソンの上部よりも下部か直径、肉厚ともに大きくなる現象)やネックイン(Tダイによるフィルムの成形において、Tダイの有効幅よりも押し出されたフィルムの幅の方がかなり小さくなる現象)により、樹脂シートの押出方向又は幅方向に金型による成形前の樹脂シートの厚みが不均一となることを防ぐための技術である。そのため、樹脂シートの成形中に、ドローダウンに応じて成形の進行に伴い樹脂シートの押出速度を増大するように変動させ、それにより成形終盤に相当する樹脂シートの上部ほど樹脂シートの厚みを厚肉化することを目的としているので、いずれの技術においても樹脂シートを挟み込んで押し潰し、送り速度を調整するための一対のローラは必須の構成とされていた。 These technologies draw down on the molten resin sheet (mainly hollow molding, and the extruded parison hangs down before it is squeezed into the mold due to its own weight and swelling phenomenon (extends in the vertical direction) , The lower part of the parison or the diameter and thickness of the lower part of the parison) and neck-in (when the film is formed with a T-die, the width of the extruded film is much smaller than the effective width of the T-die) Therefore, the thickness of the resin sheet before being molded by the mold in the extrusion direction or the width direction of the resin sheet is prevented from becoming nonuniform. Therefore, during the molding of the resin sheet, the resin sheet is varied so that the extrusion speed of the resin sheet increases as the molding progresses in accordance with the drawdown, thereby increasing the thickness of the resin sheet toward the upper part of the resin sheet corresponding to the final stage of molding. Since it aims at fleshing, in any of the techniques, a pair of rollers for sandwiching and crushing a resin sheet and adjusting a feed speed is an essential configuration.
 しかし、一対のローラで樹脂シートを延伸する際に、樹脂シートが一対のローラの一方に巻き付く現象が発生する場合がある。樹脂シートのローラへの巻き付きは、樹脂シートを薄くした場合(例えば、1mm程度)や、樹脂シートに粘り気がある場合などに顕著に発生する。樹脂シートがローラに巻き付いてしまうと、樹脂シートの成形ができなくなってしまう。 However, when the resin sheet is stretched by the pair of rollers, a phenomenon that the resin sheet is wound around one of the pair of rollers may occur. The winding of the resin sheet around the roller occurs remarkably when the resin sheet is thin (for example, about 1 mm) or when the resin sheet is sticky. If the resin sheet is wound around the roller, the resin sheet cannot be molded.
 本発明の第1観点はこのような事情に鑑みてなされたものであり、樹脂シートを延伸しつつ樹脂シートのローラへの巻き付きを防止することができる成形装置を提供するものである。 The first aspect of the present invention has been made in view of such circumstances, and provides a molding apparatus capable of preventing a resin sheet from being wound around a roller while stretching the resin sheet.
(第2観点)
 ここで、ダイアライザーを前記したように機能させるためにあたって、ダイアライザーの周辺には、ダイアライザーに血液を流入・流出させるポンプや、ダイアライザーに透析液を流入・流出させるポンプ等の部材が、流体を通過させるためのチューブを介して取り付けられる。
(Second viewpoint)
Here, in order for the dialyzer to function as described above, a member such as a pump for flowing blood into and out of the dialyzer and a pump for flowing dialysate into and out of the dialyzer is allowed to pass through the periphery of the dialyzer. Is attached via a tube.
 また、例えば、2枚の樹脂シートを貼り合わせることで形成されるパネルにダイアライザーを固定して血液浄化回路パネルを構成する場合には、パネルの一部を切り欠いたり、開口させたりする等により空間を形成させ、かかる空間に血液や透析液等の流体を通過させるためのポンプチューブを収容、配置するようにしていた。 In addition, for example, when a blood purification circuit panel is configured by fixing a dialyzer to a panel formed by bonding two resin sheets, a part of the panel is cut out or opened, etc. A space is formed, and a pump tube for passing a fluid such as blood or dialysate is accommodated and disposed in the space.
 かかるポンプチューブは、チューブポンプの一構成部材となり、かかるチューブポンプの駆動により、ポンプチューブ内の流体を一方向に送出させることができ、ポンプチューブより送出された血液または透析液は、ダイアライザーに繋がる血液流入管部や透析液流入管部を介してダイアライザーへ送り込まれることとなる。例えば、チューブポンプは、かかるポンプチューブの長手方向の一部を順次押圧させて、ポンプチューブ内部の流体を一方向に移動させ、ポンプチューブ内に発生する負圧によってポンプチューブ内の流体がダイアライザーに送出されるようになる。 Such a pump tube serves as a constituent member of the tube pump, and by driving the tube pump, fluid in the pump tube can be sent in one direction, and blood or dialysate sent from the pump tube is connected to a dialyzer. It will be sent to the dialyzer through the blood inflow pipe and the dialysate inflow pipe. For example, a tube pump sequentially presses a part of the pump tube in the longitudinal direction to move the fluid in the pump tube in one direction, and the negative pressure generated in the pump tube causes the fluid in the pump tube to flow into the dialyzer. It will be sent out.
 しかし、パネルとは別部材であるポンプチューブを別途パネルに取り付けることの作業の繁雑さが以前より問題になっており、また、ポンプチューブがなくなれば部材点数及びコストの削減等に繋がるため、改善が望まれていた。 However, the complexity of the work of attaching the pump tube, which is a separate member from the panel, to the panel has been a problem, and if the pump tube disappears, it will lead to reduction in the number of members and cost, etc. Was desired.
 本発明の第2観点は、前記の課題に鑑みてなされたものであり、貼り合わされた2枚の樹脂シートで形成されるパネルを備えた血液浄化回路パネルを構成するにあたり、ダイアライザー等に流体を送り込むためのポンプチューブが不要な血液浄化回路パネルを提供することにある。 The second aspect of the present invention has been made in view of the above problems, and in constructing a blood purification circuit panel having a panel formed of two bonded resin sheets, fluid is supplied to a dialyzer or the like. An object of the present invention is to provide a blood purification circuit panel that does not require a pump tube for feeding.
(第3観点)
 本発明の第3観点は、このような事情に鑑みてなされたものであり、その目的は、貼り合わされた2枚の樹脂シートの界面に流路を形成し、この流路の端部にチューブ挿入口を有するインサートを挿入融着させる場合において、流路内の液体の漏れなく該インサートを取付けることができる中空成形品を提供することにある。
(Third viewpoint)
The third aspect of the present invention has been made in view of such circumstances, and an object thereof is to form a flow path at the interface between two bonded resin sheets, and a tube at the end of the flow path. An object of the present invention is to provide a hollow molded product to which the insert can be attached without leakage of the liquid in the flow path when the insert having the insertion port is inserted and fused.
 以下、上記の第1~第3観点の課題を解決する手段を説明する。以下に提示する第1~第3観点の解決手段は、互いに組み合わせ可能である。 Hereinafter, means for solving the problems of the first to third viewpoints will be described. The solving means of the first to third aspects presented below can be combined with each other.
(第1観点)
 本発明の第1観点によれば、押出スリットから樹脂シートを押し出して垂下させる押出装置と、前記樹脂シートの成形に用いられる成形型と、前記押出装置と前記成形型の間に配置されるローラを備え、前記ローラは、前記樹脂シートの各高さ位置において前記樹脂シートの片側にのみ設けられ前記樹脂シートに当接して前記樹脂シートの軌道を変えるように設けられる、樹脂成形装置が提供される。
(First viewpoint)
According to the first aspect of the present invention, an extrusion device for extruding and dropping a resin sheet from an extrusion slit, a molding die used for molding the resin sheet, and a roller disposed between the extrusion device and the molding die The resin molding apparatus is provided, wherein the roller is provided only on one side of the resin sheet at each height position of the resin sheet and is provided so as to contact the resin sheet and change the path of the resin sheet. The
 従来技術において樹脂シートがローラに巻き付いてしまう原因について本発明者らが調査したところ、一対のローラで樹脂シートを挟み込んで押し潰す際に樹脂シートがローラに押し付けられてローラに貼り付いてしまうことが原因であると分かった。このような知見に基づいて、本発明者らは、樹脂シートのローラへの巻き付きを防ぐべく、一対のローラの一方を除去して、残りの一方のローラのみを用いて実験を行ってみたところ、樹脂シートのローラへの巻き付きは発生しなくなった。しかし、樹脂シートが適切に延伸されずに、ドローダウンによって樹脂シートの厚みが不均一になるという別の問題が生じてしまった。このような状況において本発明者らは、ローラによって樹脂シートの軌道が変えられるような位置にローラを配置すればローラと樹脂シートの接触面積が大きくなるので、樹脂シートの延伸が可能になるとの仮説を立てて実験を行ったところ、樹脂シートが適切に延伸されてドローダウンによって樹脂シートの厚みの不均一性が抑制されたという結果を得て、本発明の完成に到った。 When the present inventors investigated the cause of the resin sheet being wound around the roller in the prior art, when the resin sheet is sandwiched and crushed by a pair of rollers, the resin sheet is pressed against the roller and sticks to the roller. I found out that was the cause. Based on such knowledge, the present inventors removed one of the pair of rollers and conducted an experiment using only the remaining one of the rollers in order to prevent the resin sheet from being wound around the roller. The winding of the resin sheet around the roller no longer occurred. However, another problem has arisen that the resin sheet is not properly stretched and the thickness of the resin sheet becomes non-uniform due to drawdown. In such a situation, the present inventors say that if the roller is arranged at a position where the trajectory of the resin sheet can be changed by the roller, the contact area between the roller and the resin sheet becomes large, so that the resin sheet can be stretched. As a result of conducting an experiment with a hypothesis, the resin sheet was appropriately stretched, and the result that the non-uniformity of the thickness of the resin sheet was suppressed by drawdown resulted in the completion of the present invention.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記ローラは、その一部が前記押出スリットの直下に位置するように設けられる。
 好ましくは、前記樹脂成形装置を用いた樹脂成形方法であって、前記ローラが前記樹脂シートを屈曲させない位置に前記ローラを退避させた状態で前記押出スリットから前記樹脂シートを押し出し、前記樹脂シートが垂下されている状態で前記ローラを前記樹脂シートに向かって移動させて前記樹脂シートの軌道を変える工程を備える、樹脂成形方法が提供される。
 好ましくは、前記樹脂成形方法は、前記ローラを回転させながら前記樹脂シートに向かって移動させる。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the roller is provided so that a part of the roller is located immediately below the extrusion slit.
Preferably, in the resin molding method using the resin molding apparatus, the resin sheet is extruded from the extrusion slit in a state where the roller is retracted to a position where the roller does not bend the resin sheet, There is provided a resin molding method comprising a step of changing the trajectory of the resin sheet by moving the roller toward the resin sheet in a suspended state.
Preferably, in the resin molding method, the roller is moved toward the resin sheet while rotating.
(第2観点)
 前記の課題を解決するために、本発明の第2観点に係る血液浄化回路パネルは、2枚の樹脂シートの内面同士を貼り合わせることによりなるパネルと、前記樹脂シートの少なくとも1枚の内面に、凹溝によりなる、流体を通過させるための中空の内部流路と、を備え、前記内部流路の一部を押圧することにより、当該内部流路中の流体が一方向に送り込まれ、前記樹脂シートは、スチレン系エラストマー及び/またはオレフィン系エラストマーを主成分として構成され、前記樹脂シートのJIS K6253によるデュロA硬度が30~80であり、JIS K6262により、23℃で22時間処理した後の圧縮永久歪みが50%以下であることを特徴とする。
(Second viewpoint)
In order to solve the above-described problems, a blood purification circuit panel according to a second aspect of the present invention includes a panel formed by laminating inner surfaces of two resin sheets, and at least one inner surface of the resin sheet. A hollow internal flow path for allowing fluid to pass therethrough, and by pressing a part of the internal flow path, the fluid in the internal flow path is fed in one direction, The resin sheet is composed mainly of a styrene elastomer and / or an olefin elastomer, and the resin sheet has a duro A hardness of 30 to 80 according to JIS K6253, and after being treated at 23 ° C. for 22 hours with JIS K6262. The compression set is 50% or less.
 本発明の第2観点に係る血液浄化回路パネルは、前記した本発明において、前記樹脂シートは、230℃におけるメルトフローレート(MFR)が0.1~5.0g/10分であることを特徴とする。 The blood purification circuit panel according to the second aspect of the present invention is characterized in that, in the above-described present invention, the resin sheet has a melt flow rate (MFR) at 230 ° C. of 0.1 to 5.0 g / 10 min. And
 本発明の第2観点に係る血液浄化回路パネルは、前記した本発明において、前記デュロA硬度が50~70であることを特徴とする。 The blood purification circuit panel according to the second aspect of the present invention is characterized in that, in the above-described present invention, the duro A hardness is 50 to 70.
 本発明の第2観点に係る血液浄化回路パネルは、前記した本発明において、前記パネルに固定されるダイアライザーを有し、前記内部流路の一部を押圧することにより、当該内部流路の流体が前記ダイアライザーに送り込まれることを特徴とする。 The blood purification circuit panel according to the second aspect of the present invention has a dialyzer fixed to the panel in the present invention described above, and presses a part of the internal flow path to thereby fluidize the internal flow path. Is fed into the dialyzer.
 本発明の第2観点に係る血液浄化回路パネルは、前記した本発明において、前記パネルの内面の少なくとも一部には、補強部材が前記2枚の樹脂シートに狭持されて介在されていることを特徴とする。 In the blood purification circuit panel according to the second aspect of the present invention, in the above-described present invention, a reinforcing member is sandwiched and interposed between the two resin sheets on at least a part of the inner surface of the panel. It is characterized by.
<本発明の第2観点の効果>
 本発明に係る血液浄化回路パネルは、所定の樹脂材料で構成され、デュロA硬度及び圧縮永久歪みを特定範囲とした樹脂シートを貼り合わせてパネルの内面に凹溝を形成し、かかる凹溝からなる流体を通過させるための中空の内部流路を設けている。かかる内部流路は適度な硬度と復元性等を有し、従来のポンプチューブの役割を果たし、内部流路の一部を押圧することにより、流体をダイアライザー等に送り出すことができる。加えて、内部流路の配設により、ダイアライザー等に流体を送り込むためのポンプチューブが不要となるため、ポンプチューブをパネルに取り付けることの作業等の繁雑さを解消できるとともに、部材点数及びコストの削減等を図ることができる血液浄化回路パネルとなる。
<Effect of the 2nd viewpoint of this invention>
The blood purification circuit panel according to the present invention is made of a predetermined resin material, and a resin sheet having a specific range of duro A hardness and compression set is bonded to form a groove on the inner surface of the panel. The hollow internal flow path for allowing the fluid to pass through is provided. Such an internal flow path has an appropriate hardness, resilience, etc., plays the role of a conventional pump tube, and can press a part of the internal flow path to send out fluid to a dialyzer or the like. In addition, the arrangement of the internal flow path eliminates the need for a pump tube for feeding fluid to the dialyzer, etc., eliminating the complexity of attaching the pump tube to the panel and reducing the number of parts and cost. The blood purification circuit panel can be reduced.
 好ましくは、2枚の樹脂シートの内面同士を貼り合わせることによりなるパネルと、前記樹脂シートの少なくとも1枚の内面に、凹溝によりなる、流体を通過させるための中空の内部流路と、を備え、前記内部流路の一部を押圧することにより、当該内部流路中の流体が一方向に送り込まれ、前記樹脂シートは、スチレン系エラストマー及び/またはオレフィン系エラストマーを主成分として構成され、前記樹脂シートのJIS K6253によるデュロA硬度が30~80であり、JISK6262により、23℃で22時間処理した後の圧縮永久歪みが50%以下であることを特徴とする血液浄化回路パネルが提供される。
 好ましくは、前記樹脂シートは、230℃におけるメルトフローレート(MFR)が0.1~5.0g/10分である。
 好ましくは、前記デュロA硬度が50~70である。
 好ましくは、前記パネルに固定されるダイアライザーを有し、前記内部流路の一部を押圧することにより、当該内部流路の流体が前記ダイアライザーに送り込まれる。
 好ましくは、前記パネルの内面の少なくとも一部には、補強部材が前記2枚の樹脂シートに狭持されて介在されている。
Preferably, a panel formed by bonding the inner surfaces of two resin sheets together, and a hollow internal flow path for allowing a fluid to pass, formed by a concave groove on at least one inner surface of the resin sheet, Provided, by pressing a part of the internal flow path, the fluid in the internal flow path is sent in one direction, the resin sheet is composed mainly of a styrene-based elastomer and / or an olefin-based elastomer, A blood purification circuit panel is provided, wherein the resin sheet has a duro A hardness of 30 to 80 according to JIS K6253, and the compression set after treatment at 23 ° C. for 22 hours is 50% or less according to JIS K6252. The
Preferably, the resin sheet has a melt flow rate (MFR) at 230 ° C. of 0.1 to 5.0 g / 10 min.
Preferably, the Duro A hardness is 50 to 70.
Preferably, it has a dialyzer fixed to the panel, and the fluid in the internal flow path is fed into the dialyzer by pressing a part of the internal flow path.
Preferably, a reinforcing member is sandwiched and interposed between the two resin sheets on at least a part of the inner surface of the panel.
(第3観点)
 本発明の第3観点は、以下の構成によって把握される。(1)本発明の第3観点の中空成形品は、第1樹脂シートと、前記第1樹脂シートに貼り合わされた第2樹脂シートと、前記第1樹脂シートと前記第2樹脂シートとの界面に形成され、前記第1樹脂シート及び前記第2樹脂シートの周辺に開口を有する流路と、前記流路の前記開口に挿入されて融着され、外部からチューブが挿入されるチューブ挿入口を有する筒状のインサートと、を備え、前記インサートは、前記チューブ挿入口側の第1樹脂部材と、前記チューブ挿入口と反対側であって前記第1樹脂部材と係合部を介して融着される第2樹脂部材とを含み、前記係合部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方において径方向に突出し、前記第1樹脂部材及び前記第2樹脂部材のうちの他方によって被われた凸部によって形成され、前記チューブと前記第1樹脂部材の溶解パラメータの差が1以下であり、かつ、前記第1樹脂シート及び前記第2樹脂シートと前記第2樹脂部材の溶解パラメータの差が1以下であることを特徴とする。
(Third viewpoint)
The third aspect of the present invention is grasped by the following configuration. (1) A hollow molded article according to a third aspect of the present invention includes a first resin sheet, a second resin sheet bonded to the first resin sheet, and an interface between the first resin sheet and the second resin sheet. A flow path having openings around the first resin sheet and the second resin sheet, and a tube insertion port into which the tube is inserted and fused and inserted into the opening of the flow path. A cylindrical insert having the first resin member on the tube insertion port side, and the insert on the opposite side of the tube insertion port and fused with the first resin member through the engaging portion. The engaging portion protrudes in a radial direction in one of the first resin member and the second resin member, and the first resin member and the second resin member. By the convex part covered by the other of And the difference between the dissolution parameters of the tube and the first resin member is 1 or less, and the difference between the dissolution parameters of the first resin sheet and the second resin sheet and the second resin member is 1 or less. It is characterized by being.
(2)本発明の第3観点の中空成形品は、(1)の構成において、前記凸部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方から軸方向に延在する筒状体の表面に周方向に沿った環状体によって形成されていることを特徴とする。 (2) In the hollow molded article according to the third aspect of the present invention, in the configuration of (1), the convex portion extends in the axial direction from one of the first resin member and the second resin member. It is formed by the annular body along the circumferential direction on the surface of a cylindrical body.
(3)本発明の第3観点の中空成形品の製造方法は、2色成形によって、外部からチューブが挿入されるチューブ挿入口側の第1樹脂部材と、前記チューブ挿入口と反対側であって前記第1樹脂部材と係合部を介して融着される第2樹脂部材とを含む筒状のインサートを形成する工程と、金型を用いて、前記インサートを挟持するように配置される第1樹脂シートと第2樹脂シートを、これらの界面に前記インサートと連通される流路を形成して貼り合わせる工程と、を備え、前記係合部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方において径方向に突出し、前記第1樹脂部材及び前記第2樹脂部材のうちの他方によって被われた凸部によって形成され、前記チューブと前記第1樹脂部材の溶解パラメータの差が1以下であり、かつ、前記第1樹脂シート及び前記第2樹脂シートと前記第2樹脂部材の溶解パラメータの差が1以下であることを特徴とする。 (3) The method for manufacturing a hollow molded product according to the third aspect of the present invention is based on the first resin member on the tube insertion port side into which the tube is inserted from the outside by two-color molding, and on the side opposite to the tube insertion port. And forming a cylindrical insert including the first resin member and the second resin member fused via the engaging portion, and using a mold, the insert is arranged to be clamped. A step of forming a flow path communicating with the insert at the interface between the first resin sheet and the second resin sheet, and the engagement portion includes the first resin member and the second resin sheet. One of the resin members protrudes in the radial direction, is formed by a convex portion covered by the other of the first resin member and the second resin member, and a difference in dissolution parameter between the tube and the first resin member Is 1 or less, One, wherein the difference in the solubility parameter of the first resin sheet and the second resin sheet and the second resin member is 1 or less.
<本発明の第3観点の効果>
 このように構成した中空成形品によれば、貼り合わされた2枚の樹脂シートの界面に流路を形成し、この流路の端部にチューブ挿入口を有するインサートを挿入融着させる場合において、流路内の液体の漏れなく該インサートを取付けることができるようになる。
<Effect of the third aspect of the present invention>
According to the hollow molded article configured in this manner, when a flow path is formed at the interface between the two resin sheets bonded together, and an insert having a tube insertion port is inserted and fused at the end of the flow path, The insert can be attached without leakage of liquid in the flow path.
 好ましくは、中空成形品であって、第1樹脂シートと、前記第1樹脂シートに貼り合わされた第2樹脂シートと、前記第1樹脂シートと前記第2樹脂シートとの界面に形成され、前記第1樹脂シート及び前記第2樹脂シートの周辺に開口を有する流路と、前記流路の前記開口に挿入されて融着され、外部からチューブが挿入されるチューブ挿入口を有する筒状のインサートと、を備え、前記インサートは、前記チューブ挿入口側の第1樹脂部材と、前記チューブ挿入口と反対側であって前記第1樹脂部材と係合部を介して融着される第2樹脂部材とを含み、前記係合部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方において径方向に突出し、前記第1樹脂部材及び前記第2樹脂部材のうちの他方によって被われた凸部によって形成され、前記チューブと前記第1樹脂部材の溶解パラメータの差が1以下であり、かつ、前記第1樹脂シート及び前記第2樹脂シートと前記第2樹脂部材の溶解パラメータの差が1以下であることを特徴とする中空成形品が提供される。
 好ましくは、前記凸部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方から軸方向に延在する筒状体の表面に周方向に沿った環状突起によって形成されている。
 好ましくは、中空成形品の製造方法であって、2色成形によって、外部からチューブが挿入されるチューブ挿入口側の第1樹脂部材と、前記チューブ挿入口と反対側であって前記第1樹脂部材と係合部を介して融着される第2樹脂部材とを含む筒状のインサートを形成する工程と、金型を用いて、前記インサートを挟持するように配置される第1樹脂シートと第2樹脂シートを、これらの界面に前記インサートと連通される流路を形成して貼り合わせる工程と、を備え、前記係合部が、前記第1樹脂部材及び前記第2樹脂部材のうちの一方において径方向に突出し、前記第1樹脂部材及び前記第2樹脂部材のうちの他方によって被われた凸部によって形成され、前記チューブと前記第1樹脂部材の溶解パラメータの差が1以下であり、かつ、前記第1樹脂シート及び前記第2樹脂シートと前記第2樹脂部材の溶解パラメータの差が1以下であることを特徴とする中空成形品の製造方法が提供される。
Preferably, it is a hollow molded article, and is formed at an interface between the first resin sheet, the second resin sheet bonded to the first resin sheet, and the first resin sheet and the second resin sheet, A cylindrical insert having a flow path having an opening around the first resin sheet and the second resin sheet, and a tube insertion opening that is inserted and fused into the opening of the flow path and into which a tube is inserted from the outside. And the insert is a first resin member on the tube insertion port side and a second resin on the opposite side of the tube insertion port and fused with the first resin member via an engaging portion. The engaging portion protrudes in a radial direction in one of the first resin member and the second resin member and is covered by the other of the first resin member and the second resin member. Formed by convex parts The difference between the dissolution parameters of the tube and the first resin member is 1 or less, and the difference between the dissolution parameters of the first resin sheet and the second resin sheet and the second resin member is 1 or less. A hollow molded article characterized by the above is provided.
Preferably, the convex portion is formed by an annular protrusion along a circumferential direction on a surface of a cylindrical body extending in an axial direction from one of the first resin member and the second resin member.
Preferably, the method is a method for manufacturing a hollow molded article, and is a first resin member on the tube insertion port side into which a tube is inserted from the outside by two-color molding, and the first resin on the side opposite to the tube insertion port. A step of forming a cylindrical insert including a member and a second resin member fused via the engaging portion; and a first resin sheet disposed so as to sandwich the insert using a mold Forming a flow path that communicates with the insert at the interface between the second resin sheet, and the engagement portion of the first resin member and the second resin member. One of the first resin member and the second resin member is protruded in the radial direction and formed by a convex portion covered by the other, and the difference in solubility parameter between the tube and the first resin member is 1 or less. ,And, Method for producing a hollow molded article, wherein the serial difference in solubility parameters of the first resin sheet and the second resin sheet and the second resin member is less than or equal to 1 is provided.
(本発明の第1観点の実施形態の図面)
本発明の第1観点の第1実施形態の成形装置の構成例を表す図である。 (a)は図1の点線領域の部分拡大図、(b)は金型を型締めしたときの図である。 本発明の第1観点の成形装置を構成するローラの性質を表す図である。 本発明の第1観点の第1実施形態の成形装置を利用した成形方法を表す図であり、(a)はローラの移動前、(b)はローラの移動後、(c)はローラの移動後の他の例を表す図である。 本発明の第1観点の第2実施形態及び第3実施形態を表す図であり、(a)は第2実施形態の第1実施例、(b)は第3実施形態の第1実施例を表す図である。 本発明の第1観点の第2実施形態及び第3実施形態を表す図であり、(a)は第2実施形態の第2実施例、(b)は第3実施形態の第2実施例を表す図である。
(Drawing of the embodiment of the first aspect of the present invention)
It is a figure showing the example of a structure of the shaping | molding apparatus of 1st Embodiment of the 1st viewpoint of this invention. (A) is the elements on larger scale of the dotted-line area | region of FIG. 1, (b) is a figure when a metal mold | die is clamped. It is a figure showing the property of the roller which comprises the shaping | molding apparatus of the 1st viewpoint of this invention. It is a figure showing the shaping | molding method using the shaping | molding apparatus of 1st Embodiment of the 1st viewpoint of this invention, (a) is before movement of a roller, (b) is after movement of a roller, (c) is movement of a roller. It is a figure showing the other example after. It is a figure showing 2nd Embodiment and 3rd Embodiment of the 1st viewpoint of this invention, (a) is 1st Example of 2nd Embodiment, (b) is 1st Example of 3rd Embodiment. FIG. It is a figure showing 2nd Embodiment and 3rd Embodiment of the 1st viewpoint of this invention, (a) is 2nd Example of 2nd Embodiment, (b) is 2nd Example of 3rd Embodiment. FIG.
(本発明の第2観点の実施形態の図面)
本発明の第2観点の血液浄化回路パネルの一態様を示した概略図である。 図7において、樹脂シートの境界(内面)で断面を取った図である。 図7に示した血液浄化回路パネルを裏側から見た概略図である 図7のA-A断面図である。 図7のB-B断面図である 連結部周辺の縦断面を示した説明図である。 内部流路を押圧するためのポンプの構成を示した概略図である。 連結部周辺の縦断面を示した説明図である。 補強部材を適用した箇所を示した説明図である。 内部流路用補強部材の一例を示した概略図である。 内部流路用補強部材を適用した断面構成を示した説明図である。 板状補強部材を適用した断面構成を示した説明図である。
(Drawing of the embodiment of the second aspect of the present invention)
It is the schematic which showed the one aspect | mode of the blood purification circuit panel of the 2nd viewpoint of this invention. In FIG. 7, it is the figure which took the cross section at the boundary (inner surface) of the resin sheet. It is the schematic which looked at the blood purification circuit panel shown in FIG. 7 from the back side. FIG. 8 is a cross-sectional view taken along the line AA of FIG. FIG. 8 is a sectional view taken along line BB in FIG. It is explanatory drawing which showed the longitudinal cross-section of a connection part periphery. It is the schematic which showed the structure of the pump for pressing an internal flow path. It is explanatory drawing which showed the longitudinal cross-section of a connection part periphery. It is explanatory drawing which showed the location to which the reinforcement member was applied. It is the schematic which showed an example of the reinforcement member for internal flow paths. It is explanatory drawing which showed the cross-sectional structure to which the reinforcement member for internal flow paths was applied. It is explanatory drawing which showed the cross-sectional structure to which a plate-shaped reinforcement member is applied.
(本発明の第3観点の実施形態の図面)
本発明の第3観点の中空成形体の第1実施形態を示す平面図である。 図19のII-II線における断面図である。 図19のIII-III線における断面図である。 図19のIV-IV線における断面図である。 本発明の第3観点の中空成形体に用いられるインサートの構成図で、(a)は側面図、(b)は(a)のb-b線における断面図である。 本発明の第3観点の第1実施形態に係る中空成形体の製造方法を示す第1の工程図である。 本発明の第3観点の第1実施形態に係る中空成形体の製造方法を示す第2の工程図である。 本発明の第3観点の第1実施形態に係る中空成形体の製造方法を示す第3の工程図である。 本発明の第3観点の第1実施形態に係る中空成形体の製造方法を示す第4の工程図である。 図26の工程におけるインサート近傍の断面図である。 本発明の第3観点の中空成形体に用いられるインサートの変形例を図22に対応させて示す断面図である。
(Drawing of the embodiment of the third aspect of the present invention)
It is a top view which shows 1st Embodiment of the hollow molded object of the 3rd viewpoint of this invention. It is sectional drawing in the II-II line of FIG. FIG. 30 is a cross-sectional view taken along line III-III in FIG. It is sectional drawing in the IV-IV line of FIG. FIG. 4 is a configuration diagram of an insert used for a hollow molded body according to a third aspect of the present invention, in which (a) is a side view and (b) is a cross-sectional view taken along line bb of (a). It is a 1st process drawing which shows the manufacturing method of the hollow molded object which concerns on 1st Embodiment of the 3rd viewpoint of this invention. It is a 2nd process figure showing the manufacturing method of the hollow fabrication object concerning a 1st embodiment of the 3rd viewpoint of the present invention. It is a 3rd process figure showing the manufacturing method of the hollow fabrication object concerning a 1st embodiment of the 3rd viewpoint of the present invention. It is a 4th process figure showing the manufacturing method of the hollow fabrication object concerning a 1st embodiment of the 3rd viewpoint of the present invention. It is sectional drawing of the insert vicinity in the process of FIG. It is sectional drawing which shows the modification of the insert used for the hollow molded object of the 3rd viewpoint of this invention corresponding to FIG.
 以下、本発明の第1~第3観点の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、第1~第3観点の各種特徴事項は、互いに組み合わせ可能である。 Hereinafter, embodiments of the first to third aspects of the present invention will be described. Various characteristic items shown in the following embodiments can be combined with each other. Various feature items of the first to third viewpoints can be combined with each other.
(第1観点の実施形態)
 図1を用いて第1観点の第1実施形態の成形装置100の構成について説明する。図1に示されるように、成形装置100は、押出装置1と、押出装置1の下方に配置された金型21fとを有し、押出装置1から押し出された溶融状態の樹脂シートP1及びP2を金型21fに送り、金型21fにより樹脂シートP1及びP2を成形するようにしている。
(Embodiment of the first aspect)
The structure of the shaping | molding apparatus 100 of 1st Embodiment of a 1st viewpoint is demonstrated using FIG. As shown in FIG. 1, the molding apparatus 100 includes an extrusion apparatus 1 and a mold 21 f disposed below the extrusion apparatus 1, and molten resin sheets P <b> 1 and P <b> 2 extruded from the extrusion apparatus 1. Is sent to the mold 21f, and the resin sheets P1 and P2 are molded by the mold 21f.
 押出装置1は、ホッパ16が付設されたシリンダ15と、シリンダ15内に設けられた図示しないスクリューと、スクリューに連結された油圧モータ17と、シリンダ15と内部が連通したアキュムレータ13と、アキュムレータ13内に設けられたプランジャ14とを有し、ホッパ16から投入された樹脂ペレットが、シリンダ15内で油圧モータ17によるスクリューの回転により溶融、混練され、溶融状態の樹脂がアキュムレータ13に移送されて一定量貯留され、プランジャ14の駆動によりTダイ11に向けて溶融樹脂を送り、押出スリット12を通じて樹脂シートP1及びP2が押し出される。 The extrusion apparatus 1 includes a cylinder 15 provided with a hopper 16, a screw (not shown) provided in the cylinder 15, a hydraulic motor 17 connected to the screw, an accumulator 13 that communicates with the cylinder 15, and an accumulator 13. The resin pellets having a plunger 14 provided therein are melted and kneaded by rotation of a screw by a hydraulic motor 17 in a cylinder 15, and the molten resin is transferred to an accumulator 13. A fixed amount is stored, the molten resin is fed toward the T die 11 by driving the plunger 14, and the resin sheets P <b> 1 and P <b> 2 are pushed out through the extrusion slit 12.
 また、図の矢印方向(右側:反時計回り、左側:時計回り)に回転するローラ3aが押し出された樹脂シートの各高さ位置において樹脂シートの片側にのみ、樹脂シートに当接して樹脂シートの軌道を変えるように設けられる。本実施形態では、ローラ3aはその一部が押出スリット12の直下に位置するように設けられる。そして、ローラ3aを樹脂シートP1に向かって略水平方向に移動させる移動部材4aが設けられる。 Also, the resin sheet comes into contact with the resin sheet only on one side of the resin sheet at each height position of the resin sheet extruded by the roller 3a rotating in the direction of the arrow in the figure (right: counterclockwise, left: clockwise). It is provided to change the trajectory. In the present embodiment, the roller 3 a is provided so that a part thereof is located immediately below the extrusion slit 12. And the moving member 4a which moves the roller 3a toward the resin sheet P1 in a substantially horizontal direction is provided.
 押し出された樹脂シートは、ローラ3aの側面と接触し、ローラ3aの側面との摩擦力により下方へ向かって送り出され、2つの金型21fを型締めしたときに両金型21fにより形成される密閉空間に収まるように垂下される。 The extruded resin sheet comes into contact with the side surface of the roller 3a, and is sent downward by the frictional force with the side surface of the roller 3a. When the two molds 21f are clamped, they are formed by both molds 21f. It hangs down to fit in the sealed space.
 金型21fは、キャビティ23を有する。キャビティ23の表面には、樹脂シートP1及びP2から成形される成形品の外形及び表面形状に応じて凹凸部が設けられる。キャビティ23のまわりには、ピンチオフ部25fa,25fbが形成される。ピンチオフ部25fa,25fbは、キャビティ23のまわりに環状に形成され、対向する2つの金型21fに向かって突出する。これにより、2つの金型21fを型締めする際、ピンチオフ部25fa,25fbの先端部が当接し、2枚の溶融状態の樹脂シートP1及びP2は、その周縁にパーティングラインが形成されるように溶着される。なお、ピンチオフ部25fa,25fbは、いずれか一方の金型21fにのみ設けてもよい。 The mold 21 f has a cavity 23. An uneven portion is provided on the surface of the cavity 23 according to the outer shape and surface shape of a molded product formed from the resin sheets P1 and P2. Around the cavity 23, pinch-off portions 25fa and 25fb are formed. The pinch-off portions 25fa and 25fb are formed in an annular shape around the cavity 23 and project toward the two opposing molds 21f. As a result, when the two molds 21f are clamped, the tip portions of the pinch-off portions 25fa and 25fb come into contact with each other, and the two molten resin sheets P1 and P2 are formed with a parting line at the periphery. To be welded. Note that the pinch-off portions 25fa and 25fb may be provided only on one of the molds 21f.
 金型21fは図示しない金型駆動装置により移動する。具体的には、両金型21fの間に2枚の樹脂シートP1及びP2が配置可能な開位置と、両金型21fのピンチオフ部25fa,25fbが互いに当接する閉位置との間を移動する。そして、樹脂シートP1及びP2を両金型21fの間に配置し、金型21fを開位置から閉位置へと移動させて樹脂シートP1及びP2を両金型21fで挟み込み、その内側に気体を吹き込み、その圧力でキャビティ23に樹脂シートP1を押しつけてキャビティ23の表面に沿った形状に樹脂シートP1及びP2を成形する。他にも、金型21fの内部にキャビティ23に連通する図示しない真空吸引孔を設け、真空吸引孔から真空吸引することでキャビティ23に向かって樹脂シートP1及びP2を吸着させて、キャビティ23の表面に沿った形状に樹脂シートP1及びP2を成形する手法も採用可能である。 The mold 21f is moved by a mold driving device (not shown). Specifically, it moves between an open position where two resin sheets P1 and P2 can be arranged between both molds 21f and a closed position where the pinch-off portions 25fa and 25fb of both molds 21f abut each other. . Then, the resin sheets P1 and P2 are disposed between the two molds 21f, the mold 21f is moved from the open position to the closed position, and the resin sheets P1 and P2 are sandwiched between the two molds 21f, and gas is introduced into the inside thereof. The resin sheet P1 is pressed against the cavity 23 with the pressure, and the resin sheets P1 and P2 are formed into a shape along the surface of the cavity 23. In addition, a vacuum suction hole (not shown) communicating with the cavity 23 is provided in the mold 21f, and the resin sheets P1 and P2 are adsorbed toward the cavity 23 by vacuum suction from the vacuum suction hole. A method of molding the resin sheets P1 and P2 into a shape along the surface can also be employed.
 次に、図2(a)を用いて、樹脂シートP1とローラ3aとの間の作用について説明する。図2(a)は図1の点線領域の部分拡大図である。押出スリット12から押し出された樹脂シートP1は、押出スリット12の下方に設けられたローラ3aの側面と接触し、それにより自身の軌道が変えられる。樹脂シートP1とローラ3aはS地点~E地点の間で接触しており、樹脂シートP1はS地点~E地点においてローラ3aからの摩擦力を受ける。ローラ3aは押し出された樹脂シートP1との接触を開始する点(S地点)から接触を終了する点(E地点)へ向けて回転する。換言すると、樹脂シートP1に対して樹脂シートP1の進行方向に摩擦力がかかる方向に回転する。具体的には、図の矢印方向(反時計回り)に回転しており、樹脂シートP1の押出速度よりも速い回転速度で回転させることで、樹脂シートP1を延伸することが可能となる。図示しない回転速度調整装置により、ローラ3aの回転速度を押出開始時に最大にし、押出終了時に向けて回転速度を徐々に減少させていくことで、樹脂シートP1のドローダウンを解消させることができる。 Next, the operation between the resin sheet P1 and the roller 3a will be described with reference to FIG. FIG. 2A is a partially enlarged view of the dotted line region of FIG. The resin sheet P1 extruded from the extrusion slit 12 comes into contact with the side surface of the roller 3a provided below the extrusion slit 12, thereby changing its own trajectory. The resin sheet P1 and the roller 3a are in contact between the S point and the E point, and the resin sheet P1 receives a frictional force from the roller 3a at the S point to the E point. The roller 3a rotates from the point (S point) where contact with the extruded resin sheet P1 starts to the point (E point) where contact ends. In other words, the resin sheet P1 rotates in a direction in which a frictional force is applied in the traveling direction of the resin sheet P1. Specifically, the resin sheet P1 rotates in the direction of the arrow in the figure (counterclockwise), and the resin sheet P1 can be stretched by rotating at a rotation speed faster than the extrusion speed of the resin sheet P1. By using a rotation speed adjusting device (not shown) to maximize the rotation speed of the roller 3a at the start of extrusion and gradually decreasing the rotation speed toward the end of extrusion, the drawdown of the resin sheet P1 can be eliminated.
 ここで、ローラ3aの回転速度は樹脂シートP1に対して空転しないように定められる。これは、空転すると樹脂シートP1が適切に延伸されなくなり、樹脂シートP1の厚みを適切に調整できなくなるためである。 Here, the rotation speed of the roller 3a is determined so as not to idle with respect to the resin sheet P1. This is because, when idling, the resin sheet P1 is not properly stretched and the thickness of the resin sheet P1 cannot be adjusted appropriately.
 その後、樹脂シートP1及びP2が金型21fの間に垂下され、図2(b)に示されるように金型21fを型締めし、その内側に気体を吹き込み、その圧力により樹脂シートP1及びP2をキャビティ23に対して押し付けて、キャビティ23の凹凸表面に沿った形状に樹脂シートP1及びP2を成形する。そして、金型21fの上下に発生する樹脂シートP1及びP2の湾曲部を図示しない切断刃で切断し、成形を終える。なお、単一の樹脂シートP1を成形する場合、分割金型を用いて金型同士を型締めする代わりに、単一の金型を用いて、かかる金型の側方に押し出された樹脂シートP1を配置し、型締めすることなく、樹脂シートP1と金型との間に形成された密閉空間を減圧したり、樹脂シートP1を金型に向かって加圧することによってキャビティ23に沿った形状に成形してもよい。 Thereafter, the resin sheets P1 and P2 are suspended between the molds 21f, the mold 21f is clamped as shown in FIG. 2B, gas is blown into the inside thereof, and the resin sheets P1 and P2 are blown by the pressure. Is pressed against the cavity 23 to mold the resin sheets P1 and P2 into a shape along the uneven surface of the cavity 23. Then, the curved portions of the resin sheets P1 and P2 generated above and below the mold 21f are cut with a cutting blade (not shown) to finish the molding. In addition, when shape | molding the single resin sheet P1, instead of clamping molds using a split mold, the resin sheet extruded to the side of this mold using a single mold The shape along the cavity 23 by disposing the P1 and reducing the pressure of the sealed space formed between the resin sheet P1 and the mold or pressurizing the resin sheet P1 toward the mold without clamping. You may shape | mold.
 このように、第1観点の第1実施形態の成形装置100では、1つのローラにより樹脂シートを受け止め、接触面の摩擦力により樹脂シートの速度を変化させて樹脂シートの厚みを調整することができる。これにより、ローラが樹脂シートを挟み込むことがないので、樹脂シートのローラへの巻きつきを低減することが可能となる。さらに、従来技術のように一対のローラで樹脂シートを挟み込む場合には、樹脂シートを介してかかる圧力に耐えうるだけの強度がローラに要求されたが、本実施形態では、一つのローラと樹脂シート以外には圧力がかかる要素がないため、より強度が低い、つまりより安価な材料でローラを作成することが可能となる。さらに、従来技術では垂下される樹脂シートの軌道を変えないように一対のローラが配置されていたので、樹脂シートとローラとの接触面積を確保するために比較的大径のローラを用いていたが、本実施形態では、樹脂シートの軌道を変えるようにローラを配置しているので、ローラの径をより小さくすることができ、装置全体として小型化することが可能となる。 Thus, in the molding apparatus 100 according to the first embodiment of the first aspect, the resin sheet is received by one roller, and the thickness of the resin sheet can be adjusted by changing the speed of the resin sheet by the frictional force of the contact surface. it can. Thereby, since a roller does not pinch | interpose a resin sheet, it becomes possible to reduce the winding of a resin sheet to the roller. Further, when the resin sheet is sandwiched between a pair of rollers as in the prior art, the roller is required to have sufficient strength to withstand the pressure applied via the resin sheet. In this embodiment, one roller and a resin are used. Since there is no element to which pressure is applied other than the sheet, the roller can be made of a material having a lower strength, that is, a less expensive material. Furthermore, in the prior art, since a pair of rollers are arranged so as not to change the trajectory of the resin sheet to be dropped, a relatively large diameter roller was used to secure a contact area between the resin sheet and the roller. However, in this embodiment, since the rollers are arranged so as to change the trajectory of the resin sheet, the diameter of the rollers can be further reduced, and the entire apparatus can be downsized.
 次に、図3を用いて第1観点の第1実施形態のローラ3aの材料について説明する。図3はアルミニウム合金(展伸材)の標準機械的性質をまとめたものであり、上段は従来技術の一対のローラの材料の性質を、下段は第1実施形態のローラ3aの材料の性質を示す。従来技術のローラの材料は「A7075(質別O)」というアルミ合金であり、引張強さが230N/mm2、縦弾性係数が7.3×1000kg/mm2であった。これに対し、本実施形態のローラ3aの材料は「A5052(質別O)」というアルミ合金であり、引張強さが195N/mm2、縦弾性係数が7.2×1000kg/mm2である。本発明のローラの材料は、引張強さが160N/mm2~215N/mm2が好ましく、180N/mm2~205N/mm2がさらに好ましい。 Next, the material of the roller 3a according to the first embodiment of the first aspect will be described with reference to FIG. FIG. 3 summarizes the standard mechanical properties of an aluminum alloy (stretched material). The upper row shows the material properties of a pair of conventional rollers, and the lower row shows the material properties of the roller 3a of the first embodiment. Show. The material of the prior art roller was an aluminum alloy “A7075 (quality O)”, and had a tensile strength of 230 N / mm 2 and a longitudinal elastic modulus of 7.3 × 1000 kg / mm 2. On the other hand, the material of the roller 3a of this embodiment is an aluminum alloy “A5052 (quality O)”, the tensile strength is 195 N / mm 2, and the longitudinal elastic modulus is 7.2 × 1000 kg / mm 2. The material of the roller of the present invention preferably has a tensile strength of 160 N / mm 2 to 215 N / mm 2, and more preferably 180 N / mm 2 to 205 N / mm 2.
 なお、ローラ3aの回転速度は2cm/s~7cm/s、好ましくは3cm/s~6cm/sの範囲において良好な結果が得られた。さらに、上述の説明のように、従来技術の一対のローラでは樹脂シートを挟み込むために、ローラと樹脂シートとの接触面を確保すべく、ローラの径は約φ150mm必要とされていたが、第1観点の第1実施形態では約60mmの径のローラ3aを利用しても良好な結果を得ることができた。本発明のローラの径は、40mm~80mが好ましく、50mm~70mmがさら好ましい。 It should be noted that good results were obtained when the rotation speed of the roller 3a was in the range of 2 cm / s to 7 cm / s, preferably 3 cm / s to 6 cm / s. Further, as described above, in order to secure the contact surface between the roller and the resin sheet in order to sandwich the resin sheet with the pair of rollers of the prior art, the diameter of the roller is required to be about φ150 mm. In the first embodiment from one aspect, good results could be obtained even when the roller 3a having a diameter of about 60 mm was used. The diameter of the roller of the present invention is preferably from 40 mm to 80 m, and more preferably from 50 mm to 70 mm.
 次に、図4を用いて第1観点の第1実施形態の成形装置100を利用した成形方法について説明する。図4(a)に示されるように、ローラ3aが樹脂シートP1を屈曲させない位置にローラ3aを退避させた状態で押出スリット12から樹脂シートP1を押し出し、樹脂シートP1が垂下されている状態でローラ3aを樹脂シートP1に向かって樹脂シートP1の軌道を変えるようにローラ3aを移動させる。そして、図4(b)に示されるように所定の距離を移動した後に移動部材4aが停止することでローラ3aの位置が固定される。このとき、樹脂シートP1と接触した後にローラ3aが回転してもよく、また、ローラ3aを回転させながら樹脂シートP1に向かって移動させてもよい。 Next, a molding method using the molding apparatus 100 according to the first embodiment of the first aspect will be described with reference to FIG. As shown in FIG. 4A, the resin sheet P1 is pushed out from the extrusion slit 12 with the roller 3a retracted to a position where the roller 3a does not bend the resin sheet P1, and the resin sheet P1 is suspended. The roller 3a is moved so as to change the path of the resin sheet P1 toward the resin sheet P1. Then, as shown in FIG. 4B, the moving member 4a stops after moving a predetermined distance, so that the position of the roller 3a is fixed. At this time, the roller 3a may rotate after contacting the resin sheet P1, or may be moved toward the resin sheet P1 while rotating the roller 3a.
 樹脂シートP1が押し出される前から樹脂シートP1の押出方向にローラ3aを配置しておくと、ローラ3aと接触するときの衝撃で樹脂シートP1がはじけて変形してしまう虞れがあるが、垂下されている樹脂シートP1に対してローラ3aを押し当てることで、このような事態を回避することが可能となる。これにより、より好適に樹脂シートP1の厚みを調整することが可能となる。なお、はじけて変形しないように押出スリット12から押し出される樹脂シートP1の押出速度、樹脂シートP1の材料、押出スリット12とローラ3aとの距離、ローラ3aの材料等を調整し、予め樹脂シートP1の押出方向にローラ3aを配置しておき、ローラ3aにめがけて樹脂シートP1を押し出す構成としてもよい。 If the roller 3a is arranged in the extrusion direction of the resin sheet P1 before the resin sheet P1 is pushed out, the resin sheet P1 may be rebounded and deformed by an impact when contacting the roller 3a. Such a situation can be avoided by pressing the roller 3a against the resin sheet P1. Thereby, it becomes possible to adjust the thickness of the resin sheet P1 more suitably. The resin sheet P1 is adjusted in advance by adjusting the extrusion speed of the resin sheet P1 extruded from the extrusion slit 12, the material of the resin sheet P1, the distance between the extrusion slit 12 and the roller 3a, the material of the roller 3a, etc. Alternatively, the roller 3a may be arranged in the direction of the extrusion and the resin sheet P1 may be pushed out toward the roller 3a.
 また、他の例を図4(c)に示す。この例では、ローラ3aの全体が樹脂シートP1の押出方向である点線Lを超えるところまで、ローラ3aを移動させている。樹脂シートP1とローラ3aの間の摩擦により、押出スリット12から押し出された樹脂シートP1が図の左方向に引き伸ばされ、これにより樹脂シートP1の軌道が変えられる。 Another example is shown in FIG. In this example, the roller 3a is moved to a position where the entire roller 3a exceeds a dotted line L that is the extrusion direction of the resin sheet P1. Due to the friction between the resin sheet P1 and the roller 3a, the resin sheet P1 pushed out from the extrusion slit 12 is stretched in the left direction in the figure, thereby changing the trajectory of the resin sheet P1.
 次に、図5及び図6を用いて第1観点の第2実施形態及び第3実施形態について説明する。図5(a)は第1観点の第2実施形態の第1実施例を表す図である。本実施例では、押出装置1と金型21fの間に2つのローラ3a,3bが設けられている。ローラ3bは、ローラ3aの下方に設けられている。そして、ローラ3aにはローラ3aを樹脂シートP1に向かって略水平方向に移動させる移動部材4aが、ローラ3bにはローラ3bを樹脂シートP1に向かって略水平方向に移動させる移動部材4bが設けられる。ローラ3aが設けられる高さ位置H1でも、ローラ3bが設けられる高さ位置H2でも、樹脂シートP1は、一対のローラによって挟まれていない。このように、本実施例では、2つのローラ3a,3bは、樹脂シートP1の各高さ位置H1,H2において樹脂シートP1の片側にのみ設けられている。また、ローラ3aは、樹脂シートP1に当接して樹脂シートP1の軌道を変えるように設けられている。このため、本実施例においても、樹脂シートのローラへの巻き付きを抑制しつつ樹脂シートの厚みが不均一になることが抑制されている。 Next, the second and third embodiments of the first aspect will be described with reference to FIGS. 5 and 6. FIG. 5A is a diagram illustrating a first example of the second embodiment of the first aspect. In this embodiment, two rollers 3a and 3b are provided between the extrusion device 1 and the mold 21f. The roller 3b is provided below the roller 3a. The roller 3a is provided with a moving member 4a for moving the roller 3a toward the resin sheet P1 in a substantially horizontal direction, and the roller 3b is provided with a moving member 4b for moving the roller 3b toward the resin sheet P1 in a substantially horizontal direction. It is done. The resin sheet P1 is not sandwiched between the pair of rollers at either the height position H1 where the roller 3a is provided or the height position H2 where the roller 3b is provided. Thus, in this embodiment, the two rollers 3a and 3b are provided only on one side of the resin sheet P1 at the respective height positions H1 and H2 of the resin sheet P1. The roller 3a is provided so as to contact the resin sheet P1 and change the path of the resin sheet P1. For this reason, also in a present Example, it is suppressed that the thickness of the resin sheet becomes non-uniform | uniformity, suppressing the winding of the resin sheet to the roller.
 また、ローラ3bの回転方向はローラ3aと同じであり、何らかの事情で樹脂シートP1がローラ3aに巻き付きそうになった場合でも、ローラ3bにより樹脂シートP1をローラ3aから引き剥がすことができるので、樹脂シートのローラへの巻き付きがより一層抑制される。 Further, the rotation direction of the roller 3b is the same as that of the roller 3a, and even if the resin sheet P1 is likely to be wound around the roller 3a for some reason, the resin sheet P1 can be peeled off from the roller 3a by the roller 3b. The winding of the resin sheet around the roller is further suppressed.
 次に、図5(b)を用いて第1観点の第3実施形態の第1実施例について説明する。本実施例では、ローラ3bをローラ3aの下方かつ樹脂シートP1を挟んだ反対側に設けている。ローラ3aが設けられる高さ位置H1でも、ローラ3bが設けられる高さ位置H2でも、樹脂シートP1は、一対のローラによって挟まれていない。従って、本実施例でも、2つのローラ3a,3bは、樹脂シートP1の各高さ位置H1,H2において樹脂シートP1の片側にのみ設けられている。このため、本実施例においても、樹脂シートのローラへの巻き付きを抑制しつつ樹脂シートの厚みが不均一になることが抑制されている。 Next, a first example of the third embodiment of the first aspect will be described with reference to FIG. In this embodiment, the roller 3b is provided below the roller 3a and on the opposite side of the resin sheet P1. The resin sheet P1 is not sandwiched between the pair of rollers at either the height position H1 where the roller 3a is provided or the height position H2 where the roller 3b is provided. Therefore, also in this embodiment, the two rollers 3a and 3b are provided only on one side of the resin sheet P1 at each of the height positions H1 and H2 of the resin sheet P1. For this reason, also in a present Example, it is suppressed that the thickness of the resin sheet becomes non-uniform | uniformity, suppressing the winding of the resin sheet to the roller.
 ローラ3bの回転方向はローラ3aと逆、つまり図の矢印の方向(時計回り)である。そして、第2実施形態の第1実施例と同様に、何らかの事情で樹脂シートP1がローラ3aに巻き付きそうになった場合でも、ローラ3bにより樹脂シートP1をローラ3aから引き剥がすことができる。 The rotation direction of the roller 3b is opposite to that of the roller 3a, that is, the direction of the arrow in the figure (clockwise). As in the first example of the second embodiment, even if the resin sheet P1 is likely to be wound around the roller 3a for some reason, the resin sheet P1 can be peeled off from the roller 3a by the roller 3b.
 図6(a)は第第1観点の2実施形態の第2実施例を、図6(b)は第1観点の第3実施形態の第2実施例を表す図である。第1観点の第2実施形態及び第3実施形態の第1実施例では、ローラ3bは、樹脂シートP1がローラ3aに巻き付くことを抑制するための補助ローラとして設けられているが、第2実施例ではローラ3bにおいても樹脂シートP1の軌道が変えられるようにローラ3bを配置している。 FIG. 6A shows a second example of the second embodiment of the first aspect, and FIG. 6B shows a second example of the third embodiment of the first aspect. In the second embodiment of the first aspect and the first example of the third embodiment, the roller 3b is provided as an auxiliary roller for suppressing the resin sheet P1 from being wound around the roller 3a. In the embodiment, the roller 3b is arranged so that the path of the resin sheet P1 can be changed also in the roller 3b.
 以上、種々の実施形態について説明したが、本発明の第1観点に係る樹脂成形装置及び樹脂成形方法はこれらに限定されない。例えば、成形型として、金型の代わりに砂型、樹脂製の型、木製の型等を利用することができる。また、ローラ3bをさらに複数設けることもできる。 Although various embodiments have been described above, the resin molding apparatus and the resin molding method according to the first aspect of the present invention are not limited to these. For example, a sand mold, a resin mold, a wooden mold or the like can be used as a mold instead of a mold. A plurality of rollers 3b can also be provided.
(第2観点)
 以下、本発明の第2観点に係る血液浄化回路パネル1sの一態様について説明する。
(Second viewpoint)
Hereinafter, one mode of the blood purification circuit panel 1s according to the second aspect of the present invention will be described.
(1)血液浄化回路パネル1sの構成:
 図7は、本発明の第2観点に係る血液浄化回路パネル1sの一態様を示した概略図、図8は、図7において、樹脂シート21,22の境界(内面)で断面を取った図、図9は、図7に示した血液浄化回路パネル1sを裏側から見た概略図、をそれぞれ示す。
(1) Configuration of blood purification circuit panel 1s:
FIG. 7 is a schematic view showing an embodiment of the blood purification circuit panel 1s according to the second aspect of the present invention, and FIG. 8 is a view taken along the boundary (inner surface) of the resin sheets 21 and 22 in FIG. 9 is a schematic view of the blood purification circuit panel 1s shown in FIG. 7 as viewed from the back side.
 図7に示す血液浄化回路パネル1sは、地表に対して直交して配置される板状のパネル2を備え、かかるパネル2は本実施形態では矩形状をなし、水平方向(図7等の横方向。)の幅が直交方向(図7等の縦方向。)の幅より若干大きくなっている。なお、このパネル2は、所定の樹脂材料(後記する。)からなる2枚の樹脂シート21,22を貼り合わせて構成され、この樹脂シート21,22の界面に内部流路4s,4saや中空流路6,7が形成され、部分的に、別部材である内蔵チューブTa等や連結部R1等がインサートされて狭持され、外付けチューブT1等が外付けで挿入される。また、図7等に示すように、第2観点に係る本実施形態にあっては、パネル2の略中央には、パネル2の一方の面(図7等であれば前方向。)から血液浄化器であるダイアライザー3sが、パネル2の一方の面(図7等であれば前方向。)から装着されている。 A blood purification circuit panel 1s shown in FIG. 7 includes a plate-like panel 2 arranged orthogonal to the ground surface. The panel 2 has a rectangular shape in the present embodiment, and is in a horizontal direction (horizontal in FIG. 7 and the like). Direction) is slightly larger than the width in the orthogonal direction (vertical direction in FIG. 7 and the like). The panel 2 is configured by bonding two resin sheets 21 and 22 made of a predetermined resin material (described later), and the internal flow paths 4 s and 4 sa and a hollow are formed at the interface between the resin sheets 21 and 22. The flow paths 6 and 7 are formed, and the built-in tube Ta or the like, which is a separate member, the connecting portion R1 or the like is partially inserted and sandwiched, and the external tube T1 or the like is externally inserted. Further, as shown in FIG. 7 and the like, in the present embodiment according to the second aspect, the blood from one surface of the panel 2 (forward direction in the case of FIG. 7 and the like) is provided at the approximate center of the panel 2. A dialyzer 3s, which is a purifier, is mounted from one side of the panel 2 (forward direction in FIG. 7 and the like).
(1-1)ダイアライザー3s:
 ダイアライザー3sは、第2観点に係る本実施形態では筒状からなる構成のものを示しており、その長手方向を垂直方向に一致付けられてパネル2に取り付けられている。ダイアライザー3sは、本実施形態にあっては、その長さがパネル2の垂直幅より若干大きく、各端部においてそれぞれパネル2の上辺よりも上方に、下辺よりも下方に突出するように取り付けられている態様を示している。
(1-1) Dializer 3s:
In the present embodiment according to the second aspect, the dialyzer 3s has a cylindrical configuration, and is attached to the panel 2 with its longitudinal direction aligned with the vertical direction. In this embodiment, the dialyzer 3s has a length that is slightly larger than the vertical width of the panel 2, and is attached so that each end protrudes above the upper side of the panel 2 and below the lower side. The aspect which is shown is shown.
 ここで、ダイアライザー3sの概略的な構成について説明する。両端が密閉された筒状のダイアライザー3sには、その上端面の血液流入管部31から血液が流入されるようになっており、下端面の血液流出管部32から浄化した血液が流出されるようになっている。ダイアライザー3sの内部には複数(例えば、8000~20000本等であるが、これには限定されない。)の人工膜でできた細管33(後記する図10、図11を参照。)がダイアライザー3sの軸方向に沿って配設され、これらの細管33には血液が流入されることになっている。 Here, a schematic configuration of the dialyzer 3s will be described. The cylindrical dialyzer 3s sealed at both ends is adapted to receive blood from the blood inflow tube portion 31 at the upper end surface, and the purified blood is discharged from the blood outflow tube portion 32 at the lower end surface. It is like that. Inside the dialyzer 3s, there are a plurality of thin tubes 33 (see FIGS. 10 and 11 to be described later) made of an artificial membrane (for example, 8000 to 20000, but not limited to this). It is arranged along the axial direction, and blood is to flow into these narrow tubes 33.
 また、ダイアライザー3sには、その下端側の側面の透析液流入管部34(流通管部)から透析液が流入されるようになっており、上端面の側面の透析液流出管部35(流通管部)からの透析液が流出されるようになっている。透析液はダイアライザー3s内の細管33の外側を流れるようになっており、これにより、細管33の膜を介して血液と透析液の間で物質交換がなされ、不要な物質は透析液に移動し、有用な物質は血液の中に移動するようになっている。 The dialyzer 3s is adapted to receive dialysate from a dialysate inflow pipe portion 34 (circulation pipe portion) on the side surface on the lower end side, and a dialysate outflow pipe portion 35 (circulation) on the side surface on the upper end surface. The dialysis fluid from the pipe part) flows out. The dialysate flows outside the narrow tube 33 in the dialyzer 3s, whereby the substance is exchanged between the blood and the dialysate through the membrane of the thin tube 33, and unnecessary substances move to the dialysate. Useful substances are supposed to move into the blood.
 パネル2に対するダイアライザー3sへの取り付けは、特に制限はないが、例えば、次のようにして実施するようにすればよい。なお、以下に説明する取り付け方法は一例であり、パネル2に対するダイアライザー3sの取り付けは、パネル2やダイアライザー3s、及び他の部材等の形状や構成等に応じた任意の方法を採用することができる。 The attachment to the dialyzer 3s with respect to the panel 2 is not particularly limited, but may be performed, for example, as follows. In addition, the attachment method demonstrated below is an example, The attachment of the dialyzer 3s with respect to the panel 2 can employ | adopt arbitrary methods according to the shape, structure, etc. of the panel 2, the dialyzer 3s, and another member. .
 図8は、図7において、樹脂シート21,22の境界(内面)で断面を取った図であり、ダイアライザー3sを取り付けていない状態のパネル2を示した図である。図8に示すように、第2観点に係る本実施形態に係るパネル2の上辺のほぼ中央には、垂直上方に延在する取り付け片23aが形成されており、この取り付け片23aには、その垂直辺の一方から水平方向に向かって切り欠かれた切り欠き24aが形成されている。切り欠き24aは、その開口側と反対側の奥行き側の内周部が半円弧状をなすとともに、開口側の互いに対向する内周部において切り欠き24aの幅を狭めるように一対の狭窄部25a(例えば、凸部。)を備えた形状とされている。同様に、パネル2の下辺のほぼ中央には、垂直下方に延在する取り付け片23bが形成されている。この取り付け片23bには、水平方向に向かって切り欠かれた切り欠き24bが形成されている。この場合、取り付け片23bの切り欠き24bの切り欠かれた方向は、例えば、前述の取り付け片23aの切り欠き24aの切り欠かれた方向と同じ方向となっている。切り欠き24bに一対の狭窄部25bが形成されていることも、切り欠き24aと同様である。 FIG. 8 is a cross-sectional view taken along the boundary (inner surface) between the resin sheets 21 and 22 in FIG. 7 and shows the panel 2 without the dialyzer 3s attached thereto. As shown in FIG. 8, a mounting piece 23a extending vertically upward is formed substantially at the center of the upper side of the panel 2 according to the present embodiment according to the second aspect. A cutout 24a is formed by cutting out from one of the vertical sides in the horizontal direction. The notch 24a has a pair of constricted portions 25a so that the inner peripheral portion on the depth side opposite to the opening side has a semicircular arc shape, and the width of the notch 24a is narrowed in the inner peripheral portions facing each other on the opening side. (For example, it is a shape provided with a convex part.). Similarly, an attachment piece 23b extending vertically downward is formed at substantially the center of the lower side of the panel 2. The mounting piece 23b is formed with a cutout 24b cut out in the horizontal direction. In this case, the cutout direction of the cutout 24b of the attachment piece 23b is, for example, the same direction as the cutout direction of the cutout 24a of the attachment piece 23a. The pair of constricted portions 25b is formed in the notch 24b, similarly to the notch 24a.
 また、図9は、図7に示した血液浄化回路パネル1sを裏側から見た概略図である。図9において、パネル2の取り付け片23aの切り欠き24a、取り付け片23bの切り欠き24bには、それぞれ、ダイアライザー3sの透析液流出管部35の管の周りに形成されたフランジ部36a、及び透析液流入管部34の管の周りに形成されたフランジ部36bが嵌め込まれている。 FIG. 9 is a schematic view of the blood purification circuit panel 1s shown in FIG. 7 as viewed from the back side. In FIG. 9, the notch 24a of the attachment piece 23a of the panel 2 and the notch 24b of the attachment piece 23b are respectively provided with a flange part 36a formed around the dialysate outflow pipe part 35 of the dialyzer 3s, and dialysis. A flange portion 36b formed around the pipe of the liquid inflow pipe portion 34 is fitted.
 透析液流出管部35に形成されたフランジ部36aは円形板材からなり、その最大径は、取り付け片23aの切り欠き24aの径より若干大きくなるように形成されている。フランジ部36aはある程度の厚さを有し、その周側面の中央部には周方向に沿った環状溝37aが形成されている。環状溝37aには、取り付け片23aの切り欠き24aの内周部が嵌合されるようになっている。なお、かかる構成は、パネル2の下辺に形成された取り付け片23bの切り欠き24bとダイアライザー3sの透析液流入管部34に形成されたフランジ部36b及び環状溝37bの場合においても共通する。 The flange part 36a formed in the dialysate outflow pipe part 35 is made of a circular plate, and its maximum diameter is formed to be slightly larger than the diameter of the notch 24a of the attachment piece 23a. The flange portion 36a has a certain thickness, and an annular groove 37a along the circumferential direction is formed in the center portion of the peripheral side surface. The inner periphery of the notch 24a of the attachment piece 23a is fitted into the annular groove 37a. Such a configuration is common also in the case of the notch 24b of the mounting piece 23b formed on the lower side of the panel 2 and the flange portion 36b and the annular groove 37b formed in the dialysate inflow pipe portion 34 of the dialyzer 3s.
 このような構成において、ダイアライザー3sのパネル2に対する固定は、ダイアライザー3sの各フランジ部36a,36bの環状溝37a,37bに、パネル2の対応する取り付け片23a,23bの切り欠き24a,24bの内周部を係合させ、狭窄部25a,25bを載せて切り欠き24a,24bに嵌め込ませることによってなされる。このように切り欠き24a,24bに嵌め込まれたフランジ部36a,36bは、狭窄部25a,25bによって切り欠き24a,24bからは容易に外れないように構成される。また、フランジ部36a,36bは、その環状溝37a,37bに取り付け片23a,23bの切り欠き24a,24bの内周部が係合され、その軸方向への変位が規制される。以上により、ダイアライザー3sをパネル2に簡便かつ強固に配設することができる。 In such a configuration, the dialyzer 3s is fixed to the panel 2 in the annular grooves 37a and 37b of the flange portions 36a and 36b of the dialyzer 3s, in the notches 24a and 24b of the corresponding mounting pieces 23a and 23b of the panel 2. This is done by engaging the peripheral portions and placing the constricted portions 25a, 25b into the notches 24a, 24b. The flange portions 36a and 36b fitted into the notches 24a and 24b in this way are configured so as not to be easily detached from the notches 24a and 24b by the narrowed portions 25a and 25b. Further, the flange portions 36a and 36b are engaged with the inner peripheral portions of the notches 24a and 24b of the mounting pieces 23a and 23b in the annular grooves 37a and 37b, respectively, so that the displacement in the axial direction is restricted. As described above, the dialyzer 3s can be easily and firmly disposed on the panel 2.
(1-2)内部流路4s,4sa:
 次に、かかるダイアライザー3sへ血液や透析液等の流体を送り込むための内部流路4s,4saについて説明する。
(1-2) Internal flow paths 4s, 4sa:
Next, the internal flow paths 4s and 4sa for feeding fluid such as blood and dialysate into the dialyzer 3s will be described.
 図10は、図7のA-A断面図、図11は、図7のB-B断面図、をそれぞれ示す。本実施形態において、図7等に示したパネル2の右端に形成された内部流路4は、パネル2の上辺から下辺にかけて延在し、図7ないし図11に示すように、2枚の樹脂シート21,22の貼り合わせで形成されるパネル2に、一方の樹脂シート21の内部流路4を形成する領域、及び他方の樹脂シート22の内部流路4を形成する領域について凹溝41,42を形成することにより構成され、図10等では、断面が略半円状の凹溝41,42として、2枚の樹脂シート21,22が重ね合わさって断面が略円状となる態様を示している。 10 is a cross-sectional view taken along the line AA in FIG. 7, and FIG. 11 is a cross-sectional view taken along the line BB in FIG. In the present embodiment, the internal flow path 4 formed at the right end of the panel 2 shown in FIG. 7 or the like extends from the upper side to the lower side of the panel 2 and, as shown in FIGS. In the panel 2 formed by bonding the sheets 21 and 22, the groove 41 is formed in the region where the internal flow path 4 of one resin sheet 21 is formed and the region where the internal flow path 4 of the other resin sheet 22 is formed. FIG. 10 and the like show an aspect in which the two resin sheets 21 and 22 are overlapped to form a substantially circular cross section as the concave grooves 41 and 42 having a substantially semicircular cross section. ing.
 同様に、図7等に示したパネル2のダイアライザー3sよりも他方の側(図7等における左側。)に形成された内部流路4saは、パネル2の上辺から下辺にかけて延在し、図7ないし図11に示すように、2枚の樹脂シート21,22の貼り合わせで形成されるパネル2に、一方の樹脂シート21の内部流路4saを形成する領域、及び他方の樹脂シート22の内部流路4saを形成する領域について凹溝41a,42aを形成することにより構成され、図10等では、断面が略半円状の凹溝41a,42aとして、2枚の樹脂シート21,22が重ね合わさって断面が略円状となる態様を示している。 Similarly, the internal flow path 4sa formed on the other side (left side in FIG. 7 etc.) of the dialyzer 3s of the panel 2 shown in FIG. 7 etc. extends from the upper side to the lower side of the panel 2 and FIG. As shown in FIG. 11, in the panel 2 formed by bonding the two resin sheets 21 and 22, the region where the internal flow path 4 sa of one resin sheet 21 is formed, and the inside of the other resin sheet 22 In the region where the flow path 4sa is formed, the grooves 41a and 42a are formed. In FIG. 10 and the like, the two resin sheets 21 and 22 are overlapped as the grooves 41a and 42a having a substantially semicircular cross section. A mode in which the cross section is substantially circular is shown.
 内部流路4s,4saにおける凹溝41,41a,42、42a(以下、単に「凹溝41,42」とする場合もある。)の深さは、特に制限はないが、血液や透析液等の流体を効率よく通過させるべく、概ね、2~50mmとすることが好ましい。また、凹溝41,42の形状は、断面が略円形状のほか、断面が三角形、四角形等の多角形状等の流体が通過可能な任意の形状を採用することができる。さらに、凹溝41,42は、図10等に示すように、2枚の樹脂シート21,22の両方に形成するようにしてもよいが、2枚の樹脂シート21,22の両方に形成する必要はなく、流体が通過可能であれば、樹脂シート21,22の少なくとも一方に形成されていればよい。 The depth of the concave grooves 41, 41a, 42, 42a (hereinafter sometimes simply referred to as “ concave grooves 41, 42”) in the internal flow paths 4s, 4sa is not particularly limited, but blood, dialysate, etc. In general, the thickness is preferably 2 to 50 mm in order to efficiently pass the fluid. In addition to the substantially circular cross section, the concave grooves 41 and 42 may have any shape that allows fluid to pass, such as a polygonal shape such as a triangle or a square. Furthermore, the concave grooves 41 and 42 may be formed on both of the two resin sheets 21 and 22 as shown in FIG. 10 and the like, but are formed on both of the two resin sheets 21 and 22. It is not necessary, and it may be formed on at least one of the resin sheets 21 and 22 as long as the fluid can pass therethrough.
 パネル2における内部流路4sの各端部には、外付けチューブT1等と連結するために、内部流路4s同軸に、所定の樹脂材料等から形成された筒状部材からなる連結部R1、連結部R2がシートに狭持されて配置されている。連結部R1、連結部R2のパネル2の上辺、下辺とほぼ面一になる端面には、外付けチューブT1,T2が挿入される内径を有し、パネルの上辺側において外付けチューブT1が挿入されるようになっており、パネルの下辺側において外付けチューブT2が挿入されるようになっている。 Each end of the internal flow path 4s in the panel 2 is connected to the external tube T1 and the like. The connecting portion R2 is disposed so as to be sandwiched between the sheets. The end surfaces of the connecting portion R1 and the connecting portion R2 that are substantially flush with the upper and lower sides of the panel 2 have an inner diameter into which the external tubes T1 and T2 are inserted, and the external tube T1 is inserted on the upper side of the panel. The external tube T2 is inserted on the lower side of the panel.
 図12は、連結部R1周辺の縦断面を示した説明図である(樹脂シート21が現れる側を示す。)。連結部R1は、図10ないし図12に示すように、外付けチューブT1側において、外付けチューブT1が挿入できる内径を有して形成される。このような形状からなる連結部R1は、樹脂シート21,22に狭持され、中心軸についてパネル2を含む面内に位置付けて配置されることにより、軸方向の変位を規制できることになる。なお、連結部R2(及び後記する連結部R3,R4)は連結部R1と略共通する構成となっており、前記したように、連結部R2のパネル2の下辺側の端面には外付けチューブT2が挿入されるようになっている。 FIG. 12 is an explanatory view showing a longitudinal section around the connecting portion R1 (showing the side where the resin sheet 21 appears). As shown in FIGS. 10 to 12, the connecting portion R1 is formed on the external tube T1 side so as to have an inner diameter into which the external tube T1 can be inserted. The connecting portion R1 having such a shape is sandwiched between the resin sheets 21 and 22, and is positioned and disposed in a plane including the panel 2 with respect to the central axis, whereby the axial displacement can be restricted. The connecting portion R2 (and connecting portions R3 and R4 to be described later) has substantially the same structure as the connecting portion R1, and as described above, an external tube is provided on the end surface of the lower side of the panel 2 of the connecting portion R2. T2 is inserted.
 以上の内容は、図7等におけるパネル2の右端に形成された内部流路4sについて説明したが、パネル2のダイアライザー3sよりも他方の側(図7等における左側。)の領域にも、共通する構成の内部流路4saが形成されている。パネル2の幅狭の部分のそれぞれには連結部R3、連結部R4が存在し、連結部R3は連結部R1と、連結部R2は連結部R4とほぼ同様の構成からなり、パネル2を構成する樹脂シート21,22に狭持されている。連結部R3のパネル2の上辺側の端面には外付けチューブT3が、連結部R4のパネル2の下辺側の端面には外付けチューブT4が挿入されている。 The above content has been described for the internal flow path 4s formed at the right end of the panel 2 in FIG. 7 and the like, but is also common to the region on the other side (the left side in FIG. 7 and the like) of the panel 2 dialyzer 3s. An internal flow path 4sa having a configuration to be formed is formed. Each of the narrow portions of the panel 2 has a connecting portion R3 and a connecting portion R4. The connecting portion R3 has the same configuration as the connecting portion R1 and the connecting portion R2 has the same configuration as the connecting portion R4. The resin sheets 21 and 22 to be held are sandwiched. An external tube T3 is inserted into the end surface on the upper side of the panel 2 of the connecting portion R3, and an external tube T4 is inserted into the end surface on the lower side of the panel 2 of the connecting portion R4.
 ここで、内部流路4s,4saは、樹脂シート21,22が所定の樹脂材料で構成され、デュロA硬度及び圧縮永久歪みを特定範囲としているため(後記する(2)で詳説する。)、その一部を押圧することにより、内部流路4s,4sa中の流体が一方向に送り込まれ、本実施形態にあっては、流体がダイアライザー3sに送り込まれることになる。内部流路4s,4saは、例えば、別途配設されるポンプ5sの駆動により、内部流路4s,4sa中の流体を一方向に送出させることができる。内部流路4より送り出された流体である血液や透析液は、血液流入管部31または透析液流入管部34(図7等参照。)を介してダイアライザー3sの内部へ送り込まれることとなる。 Here, since the resin sheets 21 and 22 are made of a predetermined resin material in the internal flow paths 4s and 4sa and the duro A hardness and the compression set are in a specific range (detailed in (2) described later). By pressing a part of the fluid, the fluid in the internal flow paths 4s and 4sa is sent in one direction. In the present embodiment, the fluid is sent into the dialyzer 3s. For example, the internal flow paths 4s and 4sa can send the fluid in the internal flow paths 4s and 4sa in one direction by driving a separately provided pump 5s. Blood or dialysate, which is a fluid sent out from the internal flow path 4, is sent into the dialyzer 3s via the blood inflow pipe 31 or the dialysate inflow pipe 34 (see FIG. 7 and the like).
 図13は、内部流路4s(内部流路4saも同様。)を押圧するためのポンプ5sの構成を示した概略図である。ポンプ5sは、回転体51を内蔵し、内部流路4sを押圧するために、かかる回転体51を内部流路4sに隣接して配置するようにしている。回転体51にはその周方向に沿って複数(図13では4個の態様を示しているが、これには限定されない。)のローラ52が設けられ、回転体51が回転することにより、各ローラ52が順次内部流路4sの長手方向の一部を押圧させながら一方向に移動するようになる。このため、内部流路4s中に発生する負圧によって内部流路4中の流体が、一方向(ダイアライザー3sの方向。)に送り出されるようになる。なお、ポンプ5sについては、図13に示した構成に限らず、内部流路4sの一部を押圧することにより、内部流路4s中の流体が一方向に送り込むことができる任意の構成を採用することができる。 FIG. 13 is a schematic diagram showing a configuration of a pump 5s for pressing the internal flow path 4s (the same applies to the internal flow path 4sa). The pump 5s incorporates a rotating body 51 and is arranged adjacent to the internal flow path 4s in order to press the internal flow path 4s. The rotating body 51 is provided with a plurality of rollers 52 (four embodiments are shown in FIG. 13 but not limited thereto) along the circumferential direction thereof. The roller 52 sequentially moves in one direction while pressing a part in the longitudinal direction of the internal flow path 4s. For this reason, the fluid in the internal flow path 4 is sent out in one direction (the direction of the dialyzer 3s) by the negative pressure generated in the internal flow path 4s. Note that the pump 5s is not limited to the configuration shown in FIG. 13, and any configuration that allows fluid in the internal flow path 4s to be fed in one direction by pressing a part of the internal flow path 4s is adopted. can do.
(1-3)その他の流路(中空流路6,7,7a):
 次に、本発明の第2観点に係る血液浄化回路パネル1sに配設されるその他の流路(中空流路6,7,7a)について説明する。図7等に示すように、パネル2の内部流路4sとダイアライザー3sの間の領域において、パネル2の上辺から下辺にかけて延在する中空流路6が形成されている。中空流路6は、前記した内部流路4sと同様、2枚の樹脂シート21,22の貼り合わせで形成されるパネル2において、一方の樹脂シート21の中空流路6を形成する領域、及び他方の樹脂シート22の中空流路6を形成する領域について凹溝61,62を形成することにより構成され、図10等では、断面が略半円状の凹溝61,62(図11も参照。)として、2枚の樹脂シート21,22が重ね合わさって断面が略円状となる態様を示している。
(1-3) Other channels ( hollow channels 6, 7, 7a):
Next, other flow paths ( hollow flow paths 6, 7, and 7a) disposed in the blood purification circuit panel 1s according to the second aspect of the present invention will be described. As shown in FIG. 7 and the like, a hollow flow path 6 extending from the upper side to the lower side of the panel 2 is formed in the region between the internal flow path 4s of the panel 2 and the dialyzer 3s. The hollow flow path 6 is the same as the internal flow path 4s described above, in the panel 2 formed by laminating the two resin sheets 21 and 22, a region for forming the hollow flow path 6 of one resin sheet 21, and The other resin sheet 22 is formed by forming concave grooves 61 and 62 in the region where the hollow flow path 6 is formed. In FIG. 10 and the like, the concave grooves 61 and 62 having a substantially semicircular cross section (see also FIG. 11). .) Shows a mode in which two resin sheets 21 and 22 are overlapped to have a substantially circular cross section.
 なお、中空流路6は、その経路の途中において、平面的に比較的大きい領域を有する中空室63が形成され、この中空室63からパネル2の一方の辺(例えば図7では上辺。)にかけて他の中空流路(分岐流路64,65)が形成されている。これにより、中空流路6は、流体の流れを変えることによって、合流流路である中空流路6のほか、分岐流路64,65として構成できる。 The hollow channel 6 is formed with a hollow chamber 63 having a relatively large area in the middle of the path, and extends from the hollow chamber 63 to one side of the panel 2 (for example, the upper side in FIG. 7). Other hollow flow paths (branch flow paths 64 and 65) are formed. Thereby, the hollow flow path 6 can be comprised as the branch flow paths 64 and 65 other than the hollow flow path 6 which is a confluence | merging flow path by changing the flow of the fluid.
 中空流路6の各端部には、中空流路6と同軸に配置される筒状部材からなる連結部R5、連結部R6、連結部R7が各シートに狭持されて配置されている。連結部R5、連結部R6、連結部R7のパネルの上辺、下辺とほぼ面一になる端面には、図示しない外付けチューブが挿入される内径を有するようになっている。連結部R5,R6は前記した連結部R1、連結部R7は前記したR2とほぼ共通した構成を有する。 At each end of the hollow channel 6, a connecting part R5, a connecting part R6, and a connecting part R7 made of a cylindrical member arranged coaxially with the hollow channel 6 are arranged sandwiched between the sheets. The end surfaces that are substantially flush with the upper and lower sides of the connecting portion R5, connecting portion R6, and connecting portion R7 have an inner diameter into which an external tube (not shown) is inserted. The connecting portions R5 and R6 have a configuration substantially the same as that of the connecting portion R1 and the connecting portion R7 described above.
 また、パネル2の内部流路4saより外方(図7等の左側。)の領域には、パネル2の上辺から下辺に延在する中空流路7,7aが並設されている。これら中空流路7,7aはいずれも共通する構成となっている。 Further, hollow channels 7 and 7 a extending from the upper side to the lower side of the panel 2 are juxtaposed in the region outside the left side in FIG. 7 and the like from the internal channel 4 sa of the panel 2. These hollow channels 7, 7a have a common configuration.
 中空流路7は、前記した内部流路4s等と同様、2枚の樹脂シート21,22の貼り合わせで形成されるパネル2において、一方の樹脂シート21の中空流路7を形成する領域、及び他方の樹脂シート22の中空流路7を形成する領域について凹溝71,72を形成することにより構成され、図11等では、断面が略半円状の凹溝71,72として、2枚の樹脂シート21,22が重ね合わさって断面が略円状となる態様を示している。 The hollow flow path 7 is a region where the hollow flow path 7 of one resin sheet 21 is formed in the panel 2 formed by bonding the two resin sheets 21 and 22 as in the above-described internal flow path 4s, And the other resin sheet 22 is formed by forming the concave grooves 71 and 72 in the region where the hollow flow path 7 is formed. In FIG. 11 and the like, two grooves are formed as the concave grooves 71 and 72 having a substantially semicircular cross section. The resin sheets 21 and 22 are overlapped to form a substantially circular cross section.
 同様に、中空流路7aも、2枚の樹脂シート21,22の貼り合わせで形成されるパネル2において、一方の樹脂シート21の中空流路7aを形成する領域、及び他方の樹脂シート22の中空流路7aを形成する領域について凹溝71a,72bを形成することにより構成され、図10等では、断面が略半円状の凹溝71a,72bとして、2枚の樹脂シート21,22が重ね合わさって断面が略円状となる態様を示している。 Similarly, in the panel 2 formed by bonding the two resin sheets 21 and 22, the hollow flow path 7 a is also formed in the region where the hollow flow path 7 a of one resin sheet 21 is formed, and the other resin sheet 22. In the region where the hollow flow path 7a is formed, the grooves 71a and 72b are formed. In FIG. 10 and the like, the two resin sheets 21 and 22 are formed as the grooves 71a and 72b having a substantially semicircular cross section. A mode in which the cross-sections are substantially circular is shown.
 ここで、中空流路7,7aは、前記した中空流路6と比較して、分岐流路あるいは合流流路となっていない直線流路であり、パネル2の上辺には連結部R8,R10、下辺には、連結部R9,R11が取り付けられている。 Here, the hollow flow paths 7 and 7a are straight flow paths that are not branched flow paths or merge flow paths as compared with the hollow flow path 6 described above, and are connected to the upper sides of the panel 2 by connecting portions R8 and R10. The connecting portions R9 and R11 are attached to the lower side.
 図14は、連結部R8周辺の縦断面を示した説明図である(樹脂シート21が現れる側を示す。)。連結部R8は、中央にくびれを有する形状とされ、外付けチューブT5と内蔵チューブTaが挿入されている。なお、連結部R9~R11も、連結部R8と略共通する構成となる。 FIG. 14 is an explanatory view showing a longitudinal section around the connecting portion R8 (showing the side where the resin sheet 21 appears). The connecting portion R8 has a shape having a constriction at the center, and an external tube T5 and a built-in tube Ta are inserted therein. Note that the connecting portions R9 to R11 are also substantially in common with the connecting portion R8.
 図8に示すように、連結部R8と連結部R9との間は樹脂材からなる内蔵チューブTaによって連結され、連結部R10と連結部R11との間は樹脂材からなる内蔵チューブTbによって連結されている。この内蔵チューブTa,Tbは、連結部R8~R11とともに樹脂シート21,22によって狭持されている。 As shown in FIG. 8, the connecting portion R8 and the connecting portion R9 are connected by a built-in tube Ta made of a resin material, and the connecting portion R10 and the connecting portion R11 are connected by a built-in tube Tb made of a resin material. ing. The built-in tubes Ta and Tb are sandwiched by the resin sheets 21 and 22 together with the connecting portions R8 to R11.
 また、連結部R8には外付けチューブT5が、また、連結部R9には外付けチューブT6が挿入されている。同様に、連結部R10には外付けチューブT7が、また、連結部R11には外付けチューブT8が挿入されている。 Further, an external tube T5 is inserted into the connecting portion R8, and an external tube T6 is inserted into the connecting portion R9. Similarly, an external tube T7 is inserted into the connecting portion R10, and an external tube T8 is inserted into the connecting portion R11.
 このように構成された血液浄化回路パネル1sは、パネル2上において、外付けチューブを用いて、ダイアライザー3s、ポンプ5s等を含む血液浄化回路パネル1sを構成(搭載)することができるようになる。 The thus configured blood purification circuit panel 1s can configure (mount) the blood purification circuit panel 1s including the dialyzer 3s, the pump 5s and the like on the panel 2 using an external tube. .
(2)パネル2を構成する樹脂シート21,22:
 パネル2は、2枚の樹脂シート21,22の内面同士を貼り合わせることによりなるが、本発明にあっては、樹脂シート21,22の構成材料として、スチレン系エラストマーやオレフィン系エラストマーを主成分とした樹脂を使用する。かかるスチレン系エラストマーとオレフィン系エラストマーは、その1種を単独で使用してもよく、2種を組み合わせて使用してもよい。なお、本発明にあって、「主成分」とは、樹脂シート21,22を構成する樹脂材料全体に対して50%以上を占める成分であることを指す。
(2) Resin sheets 21 and 22 constituting panel 2:
The panel 2 is formed by bonding the inner surfaces of the two resin sheets 21 and 22 together. In the present invention, the main component of the resin sheets 21 and 22 is a styrene elastomer or an olefin elastomer. Use the resin. One of these styrene elastomers and olefin elastomers may be used alone, or two may be used in combination. In the present invention, the “main component” refers to a component that occupies 50% or more of the entire resin material constituting the resin sheets 21 and 22.
 スチレン系エラストマー(スチレン系熱可塑性エラストマー)としては、ジエンブロック(ジエン重合体部)からなるソフトセグメントとスチレンブロック(スチレン重合体部)やポリスチレン等からなるハードセグメントとを有するブロック共重合体が挙げられ、具体的には、例えば、スチレン-ブタジエンブロック共重合体(SB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレンブロック共重合体(SI)及びスチレン-イソプレン-スチレンブロック共重合体(SIS)もしくはそれらブロック共重合体の水素添加物が挙げられる。また、ハイインパクトポリスチレン及びABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)等を使用することができる。 Examples of the styrene-based elastomer (styrene-based thermoplastic elastomer) include a block copolymer having a soft segment composed of a diene block (diene polymer portion) and a hard segment composed of a styrene block (styrene polymer portion) or polystyrene. Specifically, for example, styrene-butadiene block copolymer (SB), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene block copolymer (SI), and styrene-isoprene-styrene block. Examples thereof include a hydrogenated product of a copolymer (SIS) or a block copolymer thereof. Further, high impact polystyrene and ABS resin (acrylonitrile-butadiene-styrene copolymer) can be used.
 前記した水素添加物は、スチレンブロックとジエンブロックの全てが水素添加されたブロック共重合体であっても、ジエンブロックのみ水素添加されたブロック共重合体あるいはスチレンブロックとジエンブロックの一部が水素添加されたブロック共重合体等の部分水素添加物等であってもよい。具体的には、例えば、(水素添加)スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、(水素添加)スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、(水素添加)スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、(水素添加)スチレン-ブタジエンブロック共重合体(SEB)、(水素添加)スチレン-エチレン-プロピレンブロック共重合体(SEP)等が挙げられる。 Even if the above-mentioned hydrogenated product is a block copolymer in which all of the styrene block and diene block are hydrogenated, a block copolymer in which only the diene block is hydrogenated or a part of the styrene block and diene block is hydrogenated. It may be a partially hydrogenated product such as an added block copolymer. Specifically, for example, (hydrogenated) styrene-ethylene-butylene-styrene block copolymer (SEBS), (hydrogenated) styrene-ethylene-propylene-styrene block copolymer (SEPS), (hydrogenated) styrene -Ethylene-ethylene-propylene-styrene block copolymer (SEEPS), (hydrogenated) styrene-butadiene block copolymer (SEB), (hydrogenated) styrene-ethylene-propylene block copolymer (SEP), etc. It is done.
 オレフィン系エラストマー(オレフィン系熱可塑性エラストマー)としては、ハードセグメントとしてポリプロピレンやポリエチレン等のポリオレフィンを用い、ソフトセグメントとしてオレフィン系ゴムを用い、これらをブレンドしたものからなる。ハードセグメントとしてのポリオレフィンは結晶性のポリオレフィンであり、ポリプロピレンや高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)などが挙げられる。オレフィン系ゴムとしては、エチレンプロピレンゴム(EPR、EPM)、エチレンプロピレンジエンゴム(EPDM)(架橋、部分架橋)、アクリロニトリル-ブタジエンゴム(NBR)、水素添加NBR、エチレン-オクテン共重合体、エチレン-ブテン-1共重合体、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-酢酸ビニル共重合体(EVA)、イソプレンゴム(IR)、ブタジエンゴム(BR)などが挙げられる。ハードセグメントのポリオレフィンがポリエチレンよりなるものはポリエチレン系に分類され、ポリプロピレンよりなるものはポリプロピレン系に分類される。また、例えば、ポリプロピレン(ポリエチレン)をハードセグメントとし、ソフトセグメントをプロピレン(エチレン)を含む共重合体とした、リアクター型オレフィン系エラストマー(R-TPO)等を用いてもよい。 The olefin-based elastomer (olefin-based thermoplastic elastomer) is made of a blend of polyolefins such as polypropylene and polyethylene as a hard segment and olefin rubber as a soft segment. The polyolefin as the hard segment is a crystalline polyolefin, and examples thereof include polypropylene, high density polyethylene (HDPE), and low density polyethylene (LDPE). Examples of olefin rubbers include ethylene propylene rubber (EPR, EPM), ethylene propylene diene rubber (EPDM) (cross-linked, partially cross-linked), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR, ethylene-octene copolymer, ethylene- Butene-1 copolymer, linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), isoprene rubber ( IR), butadiene rubber (BR) and the like. Those in which the hard segment polyolefin is made of polyethylene are classified as polyethylene, and those made of polypropylene are classified in polypropylene. Further, for example, a reactor type olefin elastomer (R-TPO) in which polypropylene (polyethylene) is a hard segment and the soft segment is a copolymer containing propylene (ethylene) may be used.
 また、樹脂シート21,22の構成材料としては、前記したスチレン系エラストマーやオレフィン系エラストマーのみを構成材料としてもよいが、かかるスチレン系エラストマーやオレフィン系エラストマーに、ポリオレフィン系樹脂を併用するようにしてもよい。ポリオレフィン系樹脂を併用することにより、樹脂シート21,22の硬さや成形性等を調整することができるとともに、安価なポリオレフィン系樹脂の使用によりコストの低減等にも繋がる。ポリオレフィン系樹脂としては、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレン等のポリエチレン系樹脂、ポリブテン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン等が挙げられる。また、エチレン・α-オレフィン系共重合体、エチレン・ビニルアルコール系共重合体、エチレン・酢酸ビニル系共重合体、ポリ-4-メチルペンテン-1系樹脂、プロピレン・α-オレフィン系共重合体等が挙げられ、これらの1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。この中でも、適度な硬度を付与でき、低コスト、汎用性等という点で、ポリプロピレン系樹脂やプロピレン・α-オレフィン系共重合体等を使用することが好ましい。主成分となるスチレン系エラストマーやオレフィン系エラストマーとポリオレフィン系樹脂を併用する場合、ポリオレフィン系樹脂の含有量は、後記するデュロA硬度や圧縮永久歪み等の物性値が後記する範囲に適合するように適宜調整すればよいが、例えば、ポリオレフィン系樹脂を樹脂シート21,22全体(樹脂シート21,22を構成する樹脂組成物全体のこと。以下同じ。)に対して、50.0質量%未満とし、0質量%を超えて50.0質量%未満とすることが好ましく、1.0~40.0質量%とすることが特に好ましい(残部はスチレン系エラストマーやオレフィン系エラストマーとなる。)。 In addition, as the constituent material of the resin sheets 21 and 22, only the above-described styrene-based elastomer or olefin-based elastomer may be used as the constituent material, but a polyolefin-based resin is used in combination with the styrene-based elastomer or olefin-based elastomer. Also good. By using the polyolefin-based resin in combination, the hardness and moldability of the resin sheets 21 and 22 can be adjusted, and the use of an inexpensive polyolefin-based resin leads to cost reduction. Examples of the polyolefin resin include polypropylene resins such as polypropylene, polyethylene resins such as polyethylene, polybutene, poly-1-butene, poly-4-methyl-1-pentene, and the like. Also, ethylene / α-olefin copolymer, ethylene / vinyl alcohol copolymer, ethylene / vinyl acetate copolymer, poly-4-methylpentene-1 resin, propylene / α-olefin copolymer Etc., and one of these may be used alone, or two or more may be used in combination. Among these, it is preferable to use a polypropylene-based resin, a propylene / α-olefin-based copolymer, etc. from the viewpoints of providing an appropriate hardness, low cost, versatility, and the like. When using styrene elastomer or olefin elastomer as the main component and polyolefin resin in combination, the content of polyolefin resin should be suitable for the physical properties such as duro A hardness and compression set to be described later. For example, the polyolefin resin may be less than 50.0% by mass with respect to the entire resin sheets 21 and 22 (the entire resin composition constituting the resin sheets 21 and 22; the same shall apply hereinafter). The content is preferably more than 0% by mass and less than 50.0% by mass, particularly preferably 1.0 to 40.0% by mass (the remainder being a styrene elastomer or an olefin elastomer).
 樹脂シート21,22の、230℃におけるメルトフローレート(MFR)は、0.1~5.0g/10分であることが好ましい。MFRがかかる範囲であれば、良好な成形性等を維持することができる。MFRは、JIS K7210(230℃、2.16kg)等により測定した値を用いればよい。 The melt flow rate (MFR) at 230 ° C. of the resin sheets 21 and 22 is preferably 0.1 to 5.0 g / 10 minutes. If the MFR is in such a range, good moldability and the like can be maintained. The MFR may be a value measured according to JIS K7210 (230 ° C., 2.16 kg) or the like.
 なお、前記した樹脂シート21,22の構成材料には、本発明の目的及び効果を損なわない範囲において、例えば、前記した以外の樹脂材料、可塑剤、帯電防止剤、酸化防止剤、防曇剤、紫外線吸収剤、熱安定剤、増核剤、離型剤、着色剤及び中和剤等、樹脂材料の分野で一般に使用される各種添加剤を添加するようにしてもよい。 The constituent materials of the resin sheets 21 and 22 described above are, for example, resin materials other than those described above, plasticizers, antistatic agents, antioxidants, and antifogging agents, as long as the objects and effects of the present invention are not impaired. Various additives generally used in the field of resin materials, such as ultraviolet absorbers, heat stabilizers, nucleating agents, mold release agents, colorants, and neutralizing agents, may be added.
 本発明を構成する樹脂シート21,22は、パネル2の構成部材として、従来のポンプチューブの役割を果たすための内部流路4sを形成しているため、所定の硬度と復元性等を必要とする。 Since the resin sheets 21 and 22 constituting the present invention form an internal flow path 4s for serving as a conventional pump tube as a constituent member of the panel 2, it requires predetermined hardness, resilience, and the like. To do.
 本発明の第2観点にあっては、JIS K6253によるデュロA硬度(「タイプAデュロメータ硬度」のことを指し、「デュロ硬度A」とも呼ばれる。)を30~80としている。デュロA硬度を前記した範囲とすることにより、良好な復元力を適度に保ち、送液量を維持し、内部流路を押圧するためのポンプ等の負荷や摩耗等を抑えることができる。これに対して、シートのデュロA硬度が30より小さいと摩耗が激しくなり、また、復元が良すぎて送液量が減る場合があり、デュロA硬度が80よりも高いと硬すぎて、押圧するための負荷が過度に高くなる場合がある。樹脂シート21,22のデュロA硬度は、50~70であることが好ましい。 In the second aspect of the present invention, the durometer A hardness (referred to as “type A durometer hardness” and also referred to as “durometer A”) according to JIS K6253 is set to 30-80. By setting the durometer A hardness in the above-described range, it is possible to appropriately maintain a good restoring force, maintain a liquid feeding amount, and suppress a load or wear of a pump or the like for pressing an internal flow path. On the other hand, if the sheet has a duro A hardness of less than 30, the wear may be severe, and the restoration may be too good and the amount of liquid delivered may be reduced. The load for doing so may become excessively high. The duro A hardness of the resin sheets 21 and 22 is preferably 50 to 70.
 また、樹脂シート21,22について、JIS K6262による、23℃で22時間処理した後の圧縮永久歪みは50%以下とする。圧縮永久歪みは、低いほど復元性に優れる(繰り返し圧縮によるへたり等が少なくなる。)ことになるが、圧縮永久歪みが50%を超えると、成形されたシートが復元しにくくなる場合がある。 In addition, the compression set after the resin sheets 21 and 22 are treated at 23 ° C. for 22 hours according to JIS K6262 is 50% or less. The lower the compression set, the better the recoverability (the less settling due to repeated compression, etc.). However, if the compression set exceeds 50%, the molded sheet may be difficult to recover. .
 樹脂シート21,22のデュロA硬度や圧縮永久歪み(及びMFR)を前記した範囲とするためには、例えば、使用する樹脂材料のデュロA硬度や圧縮永久歪み等について、前記した範囲に適合するような樹脂材料を選定して使用することが挙げられる。樹脂材料を1種類とする場合には、デュロA硬度及び圧縮永久歪み等について、前記した範囲に適合するような材料を使用することが好ましい。 In order to set the duro A hardness and compression set (and MFR) of the resin sheets 21 and 22 to the above-described ranges, for example, the duro A hardness and compression set of the resin material used conform to the above-described ranges. Such resin material can be selected and used. When one type of resin material is used, it is preferable to use a material that fits the above-described range with respect to duro A hardness, compression set, and the like.
 2種以上の樹脂材料を組み合わせて使用する場合には、組み合わせて混合した樹脂材料が、デュロA硬度及び圧縮永久歪みについて、前記した範囲に適合するような材料を使用することが好ましい。例えば、2種の材料(樹脂Xと樹脂Yで、配合比がX/Y=l/m)を使用して、樹脂XのデュロA硬度がP、樹脂YのデュロA硬度がQの場合、前記した樹脂材料が1種の場合も含め、成形条件等で多少の変動はあるが、概ねl・P+m・Qで求まる値が前記した範囲に適合するようにすればよい。また、主成分となる、デュロA硬度が判明している樹脂Z(スチレン系エラストマー、オレフィン系エラストマー等。)のデュロA硬度を高くすべく、樹脂V(ポリオレフィン系樹脂)を前記した含有量の範囲で併用して調整して、前記した範囲に適合するようにすればよい。 When two or more kinds of resin materials are used in combination, it is preferable to use a material in which the resin materials mixed in combination meet the above-mentioned ranges for the duro A hardness and compression set. For example, when two materials (resin X and resin Y, the compounding ratio is X / Y = 1 / m) are used, and resin D has Duro A hardness P and resin Y has Duro A hardness Q, Although there is some variation in the molding conditions including the case where the above-mentioned resin material is one kind, the value obtained by approximately 1 · P + m · Q may be adapted to the above range. In addition, in order to increase the Duro A hardness of the resin Z (styrene-based elastomer, olefin-based elastomer, etc.) whose Duro A hardness is known as the main component, the resin V (polyolefin-based resin) has the above-described content. It may be adjusted in combination with the range so as to meet the above-described range.
 なお、デュロA硬度を例にして説明したが、圧縮永久歪みやMFRについても同様である。また、3種以上の樹脂材料を組み合わせて使用した場合も、同様にして考えればよい。例えば、樹脂シート21,22のデュロA硬度や圧縮永久歪みについて、前記したスチレン系エラストマーやオレフィン系エラストマー(エラストマー)について、デュロA硬度が30~80のものを選択、もしくは80以下のものに対してポリオレフィン系樹脂を前記した含有量の範囲で混合して、圧縮永久歪み(エラストマーについては50%以下のものを使用することが好ましい。)等も含めて、前記した範囲内に収まるよう調整するようにすればよい。 In addition, although the duro A hardness has been described as an example, the same applies to compression set and MFR. Moreover, what is necessary is just to consider similarly when using combining 3 or more types of resin materials. For example, for the duro A hardness and compression set of the resin sheets 21 and 22, the styrene elastomer or olefin elastomer (elastomer) described above has a duro A hardness of 30 to 80, or 80 or less. The polyolefin resin is mixed in the above-described content range and adjusted so as to be within the above-mentioned range, including compression set (it is preferable to use 50% or less of elastomer). What should I do?
 樹脂シート21,22の厚さは、特に制限はないが、内部流路4において流体をスムースに送り出すことを考慮して、0.5~2.0mmとすることが好ましい。厚さが0.5mmより小さいと、樹脂シート21,22の復元力等が悪くなる場合があり、厚さが2.0mmを超えると、押圧するための負荷が高くなる場合がある。 The thickness of the resin sheets 21 and 22 is not particularly limited, but is preferably set to 0.5 to 2.0 mm in consideration of smoothly feeding the fluid in the internal flow path 4. When the thickness is smaller than 0.5 mm, the restoring force of the resin sheets 21 and 22 may be deteriorated. When the thickness exceeds 2.0 mm, the load for pressing may be increased.
(3)パネル2の製造方法の一例:
 パネル2の製造には、図1~図6で説明した押出装置1(ローラは、樹脂シートの各高さ位置において樹脂シートの片側にのみ設けられ樹脂シートに当接して樹脂シートの軌道を変えるように設けられる構成)を利用することができる。
(3) Example of manufacturing method of panel 2:
For the manufacture of the panel 2, the extrusion apparatus 1 described in FIGS. 1 to 6 (the roller is provided only on one side of the resin sheet at each height position of the resin sheet and changes the trajectory of the resin sheet by contacting the resin sheet. The configuration provided as described above can be used.
(4)本発明の第2観点の実施形態に係る血液浄化回路パネルの効果:
 以上説明した本第2観点の実施形態に係る血液浄化回路パネル1sは、所定の樹脂材料で構成し、デュロA硬度及び圧縮永久歪みを特定範囲とした樹脂シート21,22を貼り合わせてパネル2を形成し、パネル2の内面に凹溝41,42を形成し、かかる凹溝41,42からなる流体を通過させるための中空の内部流路4を配設している。かかる内部流路4は適度な硬度と復元性等を有するため、従来のポンプチューブの役割を果たし、内部流路4の一部を押圧することにより、流体をダイアライザー3s等に送り出すことができる。加えて、内部流路4の配設により、ダイアライザー3s等に流体を送り込むためのポンプチューブが不要となるため、ポンプチューブをパネル2に取り付けることの作業等の繁雑さを解消できるとともに、部材点数及びコストの削減等を図ることができる血液浄化回路パネル1sとなる。
(4) Effects of the blood purification circuit panel according to the embodiment of the second aspect of the present invention:
The blood purification circuit panel 1 s according to the embodiment of the second aspect described above is composed of a predetermined resin material, and the resin sheets 21 and 22 having a specific range of duro A hardness and compression set are bonded to the panel 2. The groove 2 is formed on the inner surface of the panel 2 and a hollow internal flow path 4 for allowing the fluid formed of the grooves 41 and 42 to pass therethrough is provided. Since the internal flow path 4 has an appropriate hardness, resilience, and the like, it plays the role of a conventional pump tube, and by pressing a part of the internal flow path 4, fluid can be sent to the dialyzer 3s or the like. In addition, the arrangement of the internal flow path 4 eliminates the need for a pump tube for feeding fluid to the dialyzer 3 s, etc., eliminating the complexity of attaching the pump tube to the panel 2 and the like. In addition, the blood purification circuit panel 1s can achieve cost reduction and the like.
(5)第2観点の実施形態の変形:
 なお、以上説明した態様は、本発明の第2観点に係る血液浄化回路パネルの一態様を示したものであって、本発明の第2観点に係る血液浄化回路パネルは、前記した実施形態に限定されるものではなく、本発明の第2観点に係る血液浄化回路パネルの構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明の第2観点に係る血液浄化回路パネルを実施する際における具体的な構造及び形状等は、本発明の第2観点に係る血液浄化回路パネルの目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明の第2観点に係る血液浄化回路パネルは前記した各実施形態に限定されるものではなく、本発明の第2観点に係る血液浄化回路パネルの目的を達成できる範囲での変形や改良は、本発明の第2観点に係る血液浄化回路パネルに含まれるものである。
(5) Modification of the embodiment of the second aspect:
The embodiment described above shows one embodiment of the blood purification circuit panel according to the second aspect of the present invention, and the blood purification circuit panel according to the second aspect of the present invention is the same as that of the above-described embodiment. The present invention includes modifications and improvements within the range in which the object and effects can be achieved, including the configuration of the blood purification circuit panel according to the second aspect of the present invention, without being limited thereto. Needless to say. In addition, the specific structure, shape, and the like when implementing the blood purification circuit panel according to the second aspect of the present invention are within a range in which the purpose and effect of the blood purification circuit panel according to the second aspect of the present invention can be achieved. There is no problem with other structures and shapes. The blood purification circuit panel according to the second aspect of the present invention is not limited to each of the above-described embodiments, and modifications and improvements within a range where the object of the blood purification circuit panel according to the second aspect of the present invention can be achieved. The blood purification circuit panel according to the second aspect of the present invention is included.
 前記したように、本発明の第2観点に係る血液浄化回路パネルにあっては、所定の硬度及び復元性等を有する樹脂シート21,22の内面に凹溝41.42を形成し、かかる凹溝によりなる内部流路4s,4sa(以下、内部流路4を例に挙げて説明する。)を設けて、ダイアライザー3s等へ血液等の流体を送り込むようにしている。一方、所定の硬度及び復元性等を有することにより、内部流路4はポンプ等のはたらきにより流体を送り出すという機能を果たすことができるが、内部流路4の長手方向全体が樹脂シート21,22だけで構成される場合、流体の流路としては適するが、構造部材(構造体を形成する部位)としては若干軟らかい場合もあり、必要により、例えば、内部流路4の部分部分にあっては剛性や機械的強度等(以下、単に「剛性等」という場合がある。)を高めておいた方がよいこともある。 As described above, in the blood purification circuit panel according to the second aspect of the present invention, the concave grooves 41.42 are formed on the inner surfaces of the resin sheets 21 and 22 having a predetermined hardness, resilience, and the like. Internal channels 4s and 4sa (hereinafter, described by taking the internal channel 4 as an example) formed by grooves are provided to feed fluid such as blood into the dialyzer 3s and the like. On the other hand, by having a predetermined hardness, resilience and the like, the internal flow path 4 can fulfill the function of sending out fluid by the action of a pump or the like, but the entire longitudinal direction of the internal flow path 4 is the resin sheets 21 and 22. However, it may be slightly soft as a structural member (site forming the structure), and if necessary, for example, in a portion of the internal flow path 4 In some cases, it is better to increase the rigidity, mechanical strength, etc. (hereinafter sometimes simply referred to as “rigidity”).
 また、内部流路4以外の部位に関し、例えば、構造部位であるパネル2の平面部分等についても、剛性等を高めておくことが望ましい。以上より、剛性等が必要とされる部分等については、パネル2(樹脂シート21,22)の各部分における剛性等を向上させるべく、パネル2の内面の一部に、補強部材9が2枚の樹脂シート21,22に狭持されて介在されているような構成を採用するようにしてもよい。
 なお、以下に説明する図15~図18においては、前記した図7~図14における内容と同様の構造及び同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
Further, regarding the parts other than the internal flow path 4, for example, it is desirable to increase the rigidity and the like of the planar part of the panel 2 that is a structural part. As mentioned above, about the part etc. to which rigidity etc. are required, in order to improve the rigidity etc. in each part of the panel 2 (resin sheets 21 and 22), two reinforcing members 9 are provided on a part of the inner surface of the panel 2. A configuration in which the resin sheets 21 and 22 are interposed between the resin sheets 21 and 22 may be employed.
In FIGS. 15 to 18 described below, the same structure and the same members as those in FIGS. 7 to 14 described above are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
 図15は、補強部材9を適用した箇所を示した説明図である。図15にあっては、パネルに形成された内部流路4s(凹溝41,42)を跨ぐように、後記する図16に示した形状の補強部材9(内部流路用補強部材9a)、及びパネル2の側縁に板状の補強部材9(板状補強部材9b)を適用した態様を示している。このように、補強部材9は、例えば、内部流路4sを跨いだ部分に適用して、内部流路4s及びその周辺の剛性等を高めたり、構造部位であるパネル2の側縁に適用して適用部位分及びその周辺の剛性を高めたりする手段等として使用することができる。 FIG. 15 is an explanatory view showing a portion to which the reinforcing member 9 is applied. In FIG. 15, the reinforcing member 9 (internal channel reinforcing member 9 a) having the shape shown in FIG. 16, which will be described later, so as to straddle the internal channel 4 s (concave grooves 41, 42) formed in the panel, And the aspect which applied the plate-shaped reinforcement member 9 (plate-shaped reinforcement member 9b) to the side edge of the panel 2 is shown. In this way, the reinforcing member 9 is applied to, for example, a portion straddling the internal flow path 4s to increase the rigidity of the internal flow path 4s and its surroundings, or to the side edge of the panel 2 that is a structural part. Thus, it can be used as a means for increasing the rigidity of the application site and its surroundings.
 図16は、内部流路用補強部材9aの一例を示した概略図、図17は、内部流路用補強部材9aを適用した断面構成を示した説明図、である。内部流路4を跨いで内部流路4及びその周辺を補強する内部流路用補強部材9aは、図16に示すように、中空筒状の流路部91と、流路部91の両脇に形成される板状の支持部92が一体成形されてなる。図17に断面を示すように、中空筒状で、流体が通過可能な中空部93を有する流路部91は、内部流路4に嵌め込まれ、板状の支持部92はパネル2(樹脂シート21,22)に面接触されて挟持されることになる。このようにして図16及び図17に示した内部流路用補強部材9aは、2枚の樹脂シート21,22に狭持されて介在され、内部流路4及びその周辺の剛性や機械的強度等を高めるのに役立つ。 FIG. 16 is a schematic view showing an example of the internal flow path reinforcing member 9a, and FIG. 17 is an explanatory view showing a cross-sectional configuration to which the internal flow path reinforcing member 9a is applied. As shown in FIG. 16, the internal channel reinforcing member 9 a that reinforces the internal channel 4 and its periphery across the internal channel 4 includes a hollow cylindrical channel 91 and both sides of the channel 91. A plate-like support portion 92 is formed integrally. As shown in a cross section in FIG. 17, a flow channel portion 91 having a hollow cylindrical shape and having a hollow portion 93 through which a fluid can pass is fitted into the internal flow channel 4, and the plate-shaped support portion 92 is formed on the panel 2 (resin sheet). 21 and 22) are brought into surface contact and sandwiched. In this way, the internal flow path reinforcing member 9a shown in FIGS. 16 and 17 is interposed between the two resin sheets 21 and 22, and the rigidity and mechanical strength of the internal flow path 4 and its surroundings are interposed. Helps increase etc.
 次に、図18は、板状補強部材9bを適用した断面構成を示した説明図である。図18に示すように、構造部位であるパネル2の側縁に適用して適用部位及びその周辺を補強する板状補強部材9bは、パネル2(樹脂シート21,22)の適用部位に面接触されて挟持されることになる。このようにして、板状補強部材9bは、2枚の樹脂シート21,22に狭持されて介在されることになり、適用部位及びその周辺の剛性や機械的強度等を高めるのに役立つ。 Next, FIG. 18 is an explanatory view showing a cross-sectional configuration to which the plate-like reinforcing member 9b is applied. As shown in FIG. 18, the plate-like reinforcing member 9 b that reinforces the application site and its periphery by applying it to the side edge of the panel 2 that is a structural site is in surface contact with the application site of the panel 2 (resin sheets 21 and 22). Will be pinched. In this way, the plate-like reinforcing member 9b is sandwiched and interposed between the two resin sheets 21 and 22, and is useful for enhancing the rigidity and mechanical strength of the application site and its periphery.
 また、これ以外の部位、例えば、外付けチューブT1等を取り付ける部位等やダイアライザー3sを取り付ける部位等は、剛性等が高い方が望ましいため、部位にあわせた所定の形状の補強部材9を2枚の樹脂シート21、22に狭持されて介在されるようにすればよい。そして、補強部材9はこれらの部位に限らず、剛性等の向上が必要と考えられる任意の部位等に適用することができる。 Further, since it is desirable that the other parts such as the part for attaching the external tube T1 or the like or the part for attaching the dialyzer 3s have higher rigidity, the two reinforcing members 9 having a predetermined shape corresponding to the part are provided. The resin sheets 21 and 22 may be sandwiched and interposed. The reinforcing member 9 is not limited to these parts, but can be applied to any part or the like considered to require improvement in rigidity or the like.
 ここで、補強部材9は、前記したパネル2を構成する樹脂材料等より硬質な材料で形成することが好ましく、例えば、ポリカーボネート(PC)、ポリプロピレン(PP)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)や、ポリテトラフルオロエチレン(PTFE)等のエンジニアリングプラスチック等を構成材料とすることができる。 Here, the reinforcing member 9 is preferably formed of a material harder than the resin material that constitutes the panel 2 described above. For example, polycarbonate (PC), polypropylene (PP), acrylonitrile-butadiene-styrene copolymer ( (ABS resin) and engineering plastics such as polytetrafluoroethylene (PTFE) can be used as the constituent material.
 また、補強部材9は、前記したパネル2に内蔵される連結部R1~R11や内蔵チューブTa,Tb等と同様に、分割金型81,82を型締めする前にインサートして、樹脂シート21,22に取り付けておけばよい。 The reinforcing member 9 is inserted before the molds 81 and 82 are clamped in the same manner as the connecting portions R1 to R11 and the built-in tubes Ta and Tb incorporated in the panel 2 and the resin sheet 21 is inserted. , 22 can be attached.
 また、前記した実施形態では、パネル2の構成として、内部流路4s,4saがダイアライザー3sを挟んで左右1本ずつ配設され、ダイアライザー3sと内部流路4sの間に中空流路6が形成され、内部流路4saの脇に中空流路7,7aが形成された構成を、図7ないし図9に示して説明した。一方、パネル2の構成としてはこれには限定されず、2枚の樹脂シート21、22の内面同士を貼り合わせることによりなるパネル2に対して、樹脂シート21,22の少なくとも1枚の内面に、凹溝41,42(凹溝41a,42a)によりなる、流体を通過させるための中空の内部流路4s,4saが配設されている任意の構成を採用することができる。また、内部流路4s,4saの数も任意であり、1つ以上の必要とされる数の内部流路4s,4saをパネルの内面に形成するようにすればよい。 In the above-described embodiment, as the configuration of the panel 2, the internal flow paths 4s and 4sa are arranged one by one on the left and right sides of the dialyzer 3s, and the hollow flow path 6 is formed between the dialyzer 3s and the internal flow path 4s. The configuration in which the hollow flow paths 7 and 7a are formed beside the internal flow path 4sa has been described with reference to FIGS. On the other hand, the configuration of the panel 2 is not limited to this, and the panel 2 formed by bonding the inner surfaces of the two resin sheets 21 and 22 to the inner surface of at least one of the resin sheets 21 and 22. Any configuration in which hollow internal flow paths 4s and 4sa for allowing fluid to pass therethrough are provided by the concave grooves 41 and 42 (the concave grooves 41a and 42a). Further, the number of the internal flow paths 4s and 4sa is arbitrary, and one or more required number of internal flow paths 4s and 4sa may be formed on the inner surface of the panel.
 前記した実施形態では、外付けチューブT1等をパネル2に形成された各流路に挿入するに際し、連結部R1等を用いて外付けチューブT1等を挿入していたが、パネル2に形成される各流路を構成する凹溝(例えば内部流路4であれば凹溝41,42。)等の形状によっては、連結部R1等を用いず、外付けチューブT1等を直接パネルに形成された流路の端部に挿入するようにしてもよい。
 その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
In the above-described embodiment, when the external tube T1 or the like is inserted into each flow path formed in the panel 2, the external tube T1 or the like is inserted using the connecting portion R1 or the like. Depending on the shape of the concave grooves (for example, the concave grooves 41 and 42 in the case of the internal flow path 4) that form each flow path, the external tube T1 or the like is directly formed on the panel without using the connecting portion R1 or the like. You may make it insert in the edge part of another flow path.
In addition, the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.
<本発明の第2観点に係る血液浄化回路パネルの実施例>
 以下、本発明の第2観点の実施例及び比較例に基づき本発明の本発明の第2観点に係る血液浄化回路パネルをさらに詳細に説明するが、本発明の第2観点に係る血液浄化回路パネルは、これらに限定されるものではない。
<Example of blood purification circuit panel according to the second aspect of the present invention>
Hereinafter, the blood purification circuit panel according to the second aspect of the present invention will be described in more detail based on Examples and Comparative Examples of the second aspect of the present invention, but the blood purification circuit according to the second aspect of the present invention. The panel is not limited to these.
 [実施例1ないし実施例4、比較例1及び比較例2]
 下記の樹脂材料を用いて表1に示した樹脂の構成で、図7ないし図11に示した血液浄化回路パネルを、前記した「(3)パネル2の製造方法の一例:」にならい、図1ないし図6に従って成形した。凹溝の深さは2~50mm、樹脂シートの厚さは0.5~2.0mmに収まるようにした。
[Examples 1 to 4, Comparative Example 1 and Comparative Example 2]
The blood purification circuit panel shown in FIGS. 7 to 11 having the resin composition shown in Table 1 using the following resin material is the same as the above-mentioned “(3) Example of manufacturing method of panel 2:” Molded according to 1 to 6. The depth of the groove was 2 to 50 mm, and the thickness of the resin sheet was 0.5 to 2.0 mm.
(a)スチレン系エラストマー:
 品名:ラバロン(登録商標) T331C(SEBS)(三菱化学(株)製)
 MFR:0.7g/10分
 デュロA硬度:24
 圧縮永久歪み:35%
(A) Styrenic elastomer:
Product name: Lavalon (registered trademark) T331C (SEBS) (manufactured by Mitsubishi Chemical Corporation)
MFR: 0.7 g / 10 minutes Duro A hardness: 24
Compression set: 35%
(b)オレフィン系エラストマー:
 品名:タフマー(登録商標) DF610(ポリエチレン(PE)系エラストマー)(三井化学(株)製)
 MFR:2.2g/10分
 デュロA硬度:57
 圧縮永久歪み:45%
(B) Olefin elastomer:
Product name: TAFMER (registered trademark) DF610 (polyethylene (PE) elastomer) (Mitsui Chemicals, Inc.)
MFR: 2.2 g / 10 minutes Duro A hardness: 57
Compression set: 45%
(c)スチレン系エラストマー:
 品名:タフテック(登録商標) H1062(SEBS)(旭化成ケミカルズ(株)製)
 MFR:4.5g/10分
 デュロA硬度:67
 圧縮永久歪み:30%
(C) Styrenic elastomer:
Product name: Tuftec (registered trademark) H1062 (SEBS) (manufactured by Asahi Kasei Chemicals Corporation)
MFR: 4.5 g / 10 min Duro A hardness: 67
Compression set: 30%
(d)併用するポリポレフィン(PO)系樹脂:
 品名:プライムポリプロ(登録商標) B242WC((株)プライムポリマー製)(実施例1、実施例2及び比較例2について、表1に示した含有量(残部は(a)スチレン系エラストマー)として使用した。)
 MFR:1.5g/10分
(D) Polyolefin (PO) resin used in combination:
Product name: Prime Polypro (registered trademark) B242WC (manufactured by Prime Polymer Co., Ltd.) (Example 1, Example 2 and Comparative Example 2 are used as the contents shown in Table 1 (the remainder is (a) styrene elastomer)) did.)
MFR: 1.5g / 10min
 なお、前記及び表1のデュロA硬度(タイプAデュロメータ硬度)は、JIS K6253により、圧縮永久歪みは、JIS K6262により、23℃で22時間処理した後の値を、メルトフローレート(MFR)は、JIS K7210(230℃、2.16kg)により測定した値を用いた。 The duro A hardness (type A durometer hardness) in Table 1 and Table 1 is a value obtained by treating the compression set according to JIS K6253 and JIS K6262 at 23 ° C. for 22 hours, and the melt flow rate (MFR) is The value measured by JIS K7210 (230 ° C., 2.16 kg) was used.
 [試験例1]
 前記のようにして得られた実施例1ないし実施例4、比較例1及び比較例2について、下記の条件で「(1)成形性」及び「(2)送液機能」を評価した。結果を、構成する樹脂も含め表1に示す。
[Test Example 1]
With respect to Examples 1 to 4, Comparative Example 1 and Comparative Example 2 obtained as described above, “(1) moldability” and “(2) liquid feeding function” were evaluated under the following conditions. The results are shown in Table 1 including the constituent resins.
(1)成形性:
 成形時、外観が良好で、潰れや薄肉部等の外観不良がなかったものを「○」(合格)、潰れや薄肉部等の外観不良があったものを「×」(不合格)とした。
(1) Formability:
At the time of molding, the appearance was good, and there was no appearance failure such as crushing or thin-walled portion, “○” (passed), and the one with appearance failure such as crushing or thin-walled portion was designated “x” (failed). .
(2)送液機能:
 成形品として、外径が7.0mm、肉厚0.9mmの中空流路に対して、押し潰し量1.7mm、回転速度120rpmの図13に示した構成のローラ式チューブポンプを5時間(送液回数36000回)使用し(この条件での送液量は5L/時間となる。)、5時間送液した後の送液量が4L/時間以上のものを「○」(合格)、4L/時間未満のものを「×」(不合格)とした。
(2) Liquid feeding function:
As a molded product, a roller-type tube pump having the configuration shown in FIG. 13 with a crushing amount of 1.7 mm and a rotation speed of 120 rpm is applied to a hollow channel having an outer diameter of 7.0 mm and a wall thickness of 0.9 mm for 5 hours ( (The number of times of liquid feeding is 36000 times) is used (the amount of liquid feeding under these conditions is 5 L / hour), and “○” (pass) when the amount of liquid feeding after feeding for 5 hours is 4 L / hour or more, Those less than 4 L / hour were evaluated as “x” (failed).
 (構成する樹脂及び結果)
Figure JPOXMLDOC01-appb-T000001
(Constituent resin and results)
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、樹脂シートのデュロA硬度及び圧縮永久歪みをそれぞれ特定の範囲とした実施例1ないし実施例4は、成形性が良好であり、また、送液機能も優れたものであった。 As shown in Table 1, Examples 1 to 4 in which the duro A hardness and compression set of the resin sheet are in specific ranges, respectively, have good moldability and excellent liquid feeding function. there were.
<産業上の利用可能性>
 本発明の第2観点に係る血液浄化回路パネルは、ダイアライザーへ血液や透析液等を送り込むためのポンプチューブを必要としないため、部材点数の削減や作業の繁雑さを解消し、コストの低減に貢献できる血液浄化回路パネルとして、産業上の利用可能性は高いものである。
<Industrial applicability>
The blood purification circuit panel according to the second aspect of the present invention does not require a pump tube for feeding blood, dialysate, or the like to the dialyzer, thereby reducing the number of members and the complexity of work, thereby reducing costs. As a blood purification circuit panel that can contribute, industrial applicability is high.
(第3観点)
 以下、添付図面を参照して、本発明の第3観点に係る中空成形体を実施するための形態(以下、実施形態)について詳細に説明する。なお、図19~図29において、第3観点の実施形態の説明の全体を通して同じ要素には同じ番号を付している。
(Third viewpoint)
Hereinafter, with reference to an accompanying drawing, the form (henceforth embodiment) for carrying out the hollow fabrication object concerning the 3rd viewpoint of the present invention is explained in detail. In FIG. 19 to FIG. 29, the same numbers are assigned to the same elements throughout the description of the embodiment of the third aspect.
(第3観点の第1実施形態)
 図19は、本発明の第3観点に係る中空成形体の第1実施形態を示す平面図である。図20は、図19のII-II線における断面図、図21は、図19のIII-III線における断面図、図22は、図19のVI-VI線における断面図である。
(First embodiment of the third aspect)
FIG. 19 is a plan view showing a first embodiment of a hollow molded body according to a third aspect of the present invention. 20 is a sectional view taken along line II-II in FIG. 19, FIG. 21 is a sectional view taken along line III-III in FIG. 19, and FIG. 22 is a sectional view taken along line VI-VI in FIG.
 図19~図21に示すように、中空成形品1tは、第1樹脂シート3tと第2樹脂シート4tが部分的に溶着されて(貼り合わされて)構成されている。第1樹脂シート3tと第2樹脂シート4tの境界に形成されるパーティングラインPL(図20、図21参照)は、本実施形態では、中空成形品1tの厚さ方向の略中央に設けられている。第1樹脂シート3tと第2樹脂シート4tの界面には液体が流通できる流路5a,5b,5cが設けられている。 As shown in FIGS. 19 to 21, the hollow molded product 1t is configured by partially welding (bonding) the first resin sheet 3t and the second resin sheet 4t. In the present embodiment, the parting line PL (see FIGS. 20 and 21) formed at the boundary between the first resin sheet 3t and the second resin sheet 4t is provided at substantially the center in the thickness direction of the hollow molded product 1t. ing. At the interface between the first resin sheet 3t and the second resin sheet 4t, flow paths 5a, 5b, 5c through which a liquid can flow are provided.
 中空成形品1tには、中空成形品1tを屈曲できるようにヒンジ部13tが2個所設けられている。2つのヒンジ部13ttは、近接して略平行に設けられている。中空成形品1tは、2つのヒンジ部13tを挟む第1セクション1a及び第2セクション1bと、2つのヒンジ部13tによって挟まれる第3セクション1cに区分されている。流路5a,5bは、第1セクション1aに設けられ、流路5cは、第2セクション1bに設けられている。 The hollow molded product 1t is provided with two hinge portions 13t so that the hollow molded product 1t can be bent. The two hinge parts 13tt are provided close to each other in parallel. The hollow molded product 1t is divided into a first section 1a and a second section 1b that sandwich the two hinge portions 13t, and a third section 1c that is sandwiched by the two hinge portions 13t. The flow paths 5a and 5b are provided in the first section 1a, and the flow path 5c is provided in the second section 1b.
 ヒンジ部13tは、ヒンジ部13t以外の部位よりも薄厚にすることによって形成されている。ヒンジ部13tで中空成形品1tを折り畳むことによって中空成形品1tをコンパクトにすることができるようになっている。また、ヒーター(図示せず)などの熱交換対象物を挟んで中空成形品1tを折り畳むことによって、熱交換効率を向上させることができるようになっている。 The hinge part 13t is formed by making it thinner than parts other than the hinge part 13t. The hollow molded product 1t can be made compact by folding the hollow molded product 1t at the hinge 13t. Further, the heat exchange efficiency can be improved by folding the hollow molded product 1t with a heat exchange object such as a heater (not shown) interposed therebetween.
 流路5aは、中空成形品1tの側面において該流路5aの両端の各開口に挿入されて融着される筒状のインサート7ta,7tbに連通されている。インサート7ta,7tbはいずれも同様の構成を有しており、図23(a)に示すような外観をなしている。また、図23(b)は図23(a)のb-b線における断面図である。このように構成されるインサート7ta,7tbは、たとえば図22の断面図で示すように、第1樹脂シート3t及び第2樹脂シート4tによって挟持されるようになっている。これらインサート7ta,7tbの詳細な構成は後に詳述する。 The flow path 5a communicates with cylindrical inserts 7ta and 7tb which are inserted into the openings at both ends of the flow path 5a on the side surface of the hollow molded product 1t and fused. The inserts 7ta and 7tb both have the same configuration and have an appearance as shown in FIG. FIG. 23B is a cross-sectional view taken along line bb of FIG. The inserts 7ta and 7tb configured as described above are sandwiched between the first resin sheet 3t and the second resin sheet 4t, for example, as shown in the sectional view of FIG. The detailed structure of these inserts 7ta and 7tb will be described in detail later.
 インサート7ta,7tbは、流路5aと反対側の端面において、チューブ挿入口8が形成され、このチューブ挿入口8(図23(b)参照)には外付け用のチューブが外部から挿入されて嵌合されるようになっている。すなわち、外付け用のチューブはインサート7ta,7tbを介して中空成形品1tの流路5aに連結されるようになっている。図19に示すように、たとえばインサート7taに供給チューブ9taを嵌合させ、インサート7tbに排出チューブ9tbを嵌合させることによって、流路5a内に流体を流通させることができるようになっている。 The inserts 7ta and 7tb have a tube insertion port 8 formed on the end surface opposite to the flow path 5a, and an external tube is inserted into the tube insertion port 8 (see FIG. 23B) from the outside. It is designed to be fitted. That is, the external tube is connected to the flow path 5a of the hollow molded product 1t via the inserts 7ta and 7tb. As shown in FIG. 19, for example, the supply tube 9ta is fitted to the insert 7ta, and the discharge tube 9tb is fitted to the insert 7tb, whereby the fluid can be circulated in the flow path 5a.
 ここで、供給チューブ9ta、排出チューブ9tbのインサート7ta,7tbへの挿入にあたっては、これらチューブを一端溶媒に浸して表面を溶かした状態で圧入してもよいし、チューブをヒートガンで加熱してその表面を軽く溶かした状態で挿入してもよい。このようにすると、これらチューブと、後述するインサート7ta,7tbの第1樹脂部材71tの溶解パラメータ(SP値)の差を1以下とすることができ、これらチューブを第1樹脂部材71tに挿入した際に、チューブと第1樹脂部材71tとの界面が疑似融着され、隙間が生じることを抑制することが可能となる。 Here, when inserting the supply tube 9ta and the discharge tube 9tb into the inserts 7ta and 7tb, these tubes may be press-fitted in a state where the surface is immersed in a solvent and the tube is heated with a heat gun. You may insert in the state which melt | dissolved the surface lightly. If it does in this way, the difference of the dissolution parameter (SP value) of these tubes and the 1st resin member 71t of insert 7ta, 7tb mentioned later can be made into 1 or less, and these tubes were inserted in the 1st resin member 71t. At this time, the interface between the tube and the first resin member 71t is pseudo-fused, and it is possible to suppress the generation of a gap.
 流路5aは、第1セクション1a内で蛇行して形成され、流路5aの少なくとも一部には、流路5a内を流れる液体の撹拌を促進する撹拌促進部6tが設けられている。撹拌促進部6tは、大径部6aと小径部6bとが長手方向に沿って交互に設けられて構成されている。これにより、撹拌促進部6tを流れる液体の流速が変動して撹拌が促進されるようになっている。 The flow path 5a is formed to meander in the first section 1a, and at least a part of the flow path 5a is provided with an agitation promoting portion 6t that promotes stirring of the liquid flowing in the flow path 5a. The stirring promoting portion 6t is configured by alternately providing large diameter portions 6a and small diameter portions 6b along the longitudinal direction. As a result, the flow rate of the liquid flowing through the stirring promoting portion 6t varies, and stirring is promoted.
 流路5bは、中空成形品1tの側面から突出する一対の突出筒7eに連通されている。突出筒7eの先端には開口部が設けられている。突出筒7eは、図示しない供給チューブ及び排出チューブに連結させることができるようになっている。流路5bには、機能部品を収容する機能部品収容部10として機能するようになっている。機能部品収容部10にはたとえばフィルタやスタテックミキサなどの機能部品を収容することができるようになっている。フィルタは、流路5bを流れる液体中の異物を除去することができ、スタテックミキサは、流路5bを流れる液体を撹拌することができる。機能部品収容部10は嵩高いので、ヒンジ部13tで中空成形品1t内に折り畳んだ時に、機能部品収容部10が第2セクション1bに干渉しないように、第2セクション1bの、機能部品収容部10に対向する部位には開口部11tが設けられている。 The flow path 5b communicates with a pair of protruding cylinders 7e protruding from the side surface of the hollow molded product 1t. An opening is provided at the tip of the protruding cylinder 7e. The protruding cylinder 7e can be connected to a supply tube and a discharge tube (not shown). The flow path 5b functions as a functional component accommodating portion 10 that accommodates functional components. The functional component accommodating portion 10 can accommodate functional components such as a filter and a static mixer. The filter can remove foreign substances in the liquid flowing through the flow path 5b, and the static mixer can agitate the liquid flowing through the flow path 5b. Since the functional part accommodating part 10 is bulky, the functional part accommodating part of the second section 1b is arranged so that the functional part accommodating part 10 does not interfere with the second section 1b when folded into the hollow molded product 1t by the hinge part 13t. An opening 11 t is provided at a portion facing 10.
 流路5cは、第2セクション1b内で蛇行して形成され、中空成形品1tの側面において該流路5cの両端各開口に挿入されて融着される筒状のインサート7c,7dに連通されている。 The flow path 5c is meandering in the second section 1b and communicated with cylindrical inserts 7c and 7d that are inserted into the respective openings at both ends of the flow path 5c and fused on the side surface of the hollow molded product 1t. ing.
 インサート7c,7dは、インサート7ta,7tbと同様、流路5cと反対側の端面において、チューブ挿入口8が形成され、このチューブ挿入口8には外付け用のチューブが挿入されて嵌合されるようになっている。 As with the inserts 7ta and 7tb, the inserts 7c and 7d have a tube insertion port 8 formed on the end surface opposite to the flow path 5c, and an external tube is inserted into and fitted into the tube insertion port 8. It has become so.
 ここで、インサート7ta~7tdについてさらに詳述する。インサート7ta~7tdはいずれも同様の構成を有しているため、以下、インサート7taのみについて説明する。 Here, the inserts 7ta to 7td will be described in more detail. Since all of the inserts 7ta to 7td have the same configuration, only the insert 7ta will be described below.
 インサート7taは、図23(b)に示すように、チューブ挿入口8側の第1樹脂部材71tと、流路5a側であって該第1樹脂部材71tと融着される第2樹脂部材72tとで構成されている。インサート7taはいわゆる2色成形によって形成されている。第1樹脂部材71tと第2樹脂部材72tは異なる材料から構成されており、第1樹脂部材71tが第1及び第2樹脂シートに対して融着が良好でないのに対し、第2樹脂部材72tは第1及び第2樹脂シートに対して融着が良好となるようになっている。第1樹脂部材71tは、筒状に形成されており、その内周面には外付け用のチューブ(供給チューブ9ta)が先端部の近くまで挿入できるように、該チューブの外径とほぼ等しい内径を有するチューブ挿入口8が形成されている。第1樹脂部材71tの内径は第1樹脂部材71tの先端部において段差71Aを介して小さくなっている。第1樹脂部材71tの内径における段差71Aは、チューブ(供給チューブ9ta)を所定位置まで挿入された際のストッパとして機能するようになっている。 As shown in FIG. 23B, the insert 7ta includes a first resin member 71t on the tube insertion port 8 side, and a second resin member 72t on the flow path 5a side and fused to the first resin member 71t. It consists of and. The insert 7ta is formed by so-called two-color molding. The first resin member 71t and the second resin member 72t are made of different materials. The first resin member 71t is not well fused to the first and second resin sheets, whereas the second resin member 72t Is designed to have good fusion with the first and second resin sheets. The first resin member 71t is formed in a cylindrical shape, and is substantially equal to the outer diameter of the tube so that an external tube (supply tube 9ta) can be inserted to the vicinity of the tip on the inner peripheral surface thereof. A tube insertion port 8 having an inner diameter is formed. The inner diameter of the first resin member 71t is reduced via a step 71A at the tip of the first resin member 71t. The step 71A in the inner diameter of the first resin member 71t functions as a stopper when the tube (supply tube 9ta) is inserted to a predetermined position.
 第2樹脂部材72tは、第1樹脂部材71tと同軸に配置される筒状に形成されており、その内径は第1樹脂部材71tの先端部(段差71Aから先端まで)側の内径とほぼ等しくなっている。 The second resin member 72t is formed in a cylindrical shape arranged coaxially with the first resin member 71t, and the inner diameter thereof is substantially equal to the inner diameter of the first resin member 71t at the front end (from the step 71A to the front end). It has become.
 第1樹脂部材71tの先端部には、該先端部の外径よりも小さな外径を有する筒状体71Bが軸方向に延在されて設けられ、この筒状体71Bの外周面に周方向へ延在して突出する第1環状突起73が形成されている。また、筒状体71Bの先端面には、軸方向の周りに環状をなす第2環状突起74が形成されている。 A cylindrical body 71B having an outer diameter smaller than the outer diameter of the distal end portion is provided at the distal end portion of the first resin member 71t so as to extend in the axial direction. A circumferential direction is provided on the outer circumferential surface of the cylindrical body 71B. A first annular protrusion 73 is formed extending and projecting toward the surface. In addition, a second annular protrusion 74 having an annular shape around the axial direction is formed on the distal end surface of the cylindrical body 71B.
 第2樹脂部材72tは、第1樹脂部材71tの第1環状突起73及び第2環状突起74を被うように成形され、これにより、第1環状突起73及び第2環状突起74は、第1樹脂部材71tと第2樹脂部材72tとの係合部として機能するようになっている。この場合、第1樹脂部材71tと第2樹脂部材72tとが、それらの材料によって充分な融着が期待できなくても、該係合部によって第1樹脂部材71tと第2樹脂部材72tとの信頼性ある融着を図ることができるようになる。 The second resin member 72t is molded so as to cover the first annular protrusion 73 and the second annular protrusion 74 of the first resin member 71t, whereby the first annular protrusion 73 and the second annular protrusion 74 are It functions as an engaging portion between the resin member 71t and the second resin member 72t. In this case, even if the first resin member 71t and the second resin member 72t cannot be expected to be sufficiently fused by their materials, the engagement portion causes the first resin member 71t and the second resin member 72t to Reliable fusion can be achieved.
 なお、このように第1樹脂部材71tと第2樹脂部材72tとの間に充分な融着が期待できない場合、これら第1樹脂部材71tと第2樹脂部材72tの溶解パラメータ(SP値)に大きな差を有することになる。すなわち、2つの成分の溶解パラメータ(SP値)が大きいほど溶解度(融着)が小さくなることが経験的に知られている。 When sufficient fusion cannot be expected between the first resin member 71t and the second resin member 72t as described above, the melting parameter (SP value) of the first resin member 71t and the second resin member 72t is large. Will have a difference. That is, it is empirically known that the solubility (fusion) decreases as the solubility parameter (SP value) of the two components increases.
 そして、第1樹脂シート3t及び第2樹脂シート4tと第2樹脂部材72tの溶解パラメータ(SP値)の差を1以下とすることによって、第2樹脂部材72tと第1樹脂シート3t及び第2樹脂シート4tとの融着が充分となり、第1樹脂シート3t及び第2樹脂シート4tに対するインサート7taの融着が信頼性よくできるようになる。また、チューブ(供給チューブ9ta)と第1樹脂部材71tの溶解パラメータ(SP値)の差を1以下とすることによって、チューブ(供給チューブ9ta)を第1樹脂部材71tに挿入した際に、チューブ(供給チューブ9ta)と第1樹脂部材71tとの界面が疑似融着され、隙間が生じることを抑制することが可能となる。 And the difference of the dissolution parameter (SP value) of the 1st resin sheet 3t and the 2nd resin sheet 4t, and the 2nd resin member 72t shall be 1 or less, and the 2nd resin member 72t, the 1st resin sheet 3t, and the 2nd Adhesion with the resin sheet 4t is sufficient, and the insert 7ta can be reliably bonded to the first resin sheet 3t and the second resin sheet 4t. In addition, when the difference in the dissolution parameter (SP value) between the tube (supply tube 9ta) and the first resin member 71t is 1 or less, the tube (supply tube 9ta) is inserted into the first resin member 71t. The interface between the (supply tube 9ta) and the first resin member 71t is pseudo-fused, and a gap can be prevented from being generated.
 このようなことから、第1樹脂シート3t及び第2樹脂シート4tに対するインサート7taの融着を信頼性よくするために、また、第1樹脂部材71tとチューブ(供給チューブ9ta)との界面を隙間なく連結させるために、表1に示すように、第1樹脂シート3t及び第2樹脂シート4t、インサート7taの第1樹脂部材71t、第2樹脂部材72tのそれぞれの材料を選択することができる。この場合、表1中において、各材料の溶解パラメータ(SP値)を併せ示している。ここで、検討に用いた各材料は、PP(ポリプロピレン樹脂)、PE(ポリエチレン樹脂)、PVC(ポリ塩化ビニル樹脂)、PC(ポリカーボネート樹脂)及びPMMA(ポリメタクリル酸メチル樹脂)である。 For this reason, in order to improve the reliability of the fusion of the insert 7ta to the first resin sheet 3t and the second resin sheet 4t, the interface between the first resin member 71t and the tube (supply tube 9ta) is a gap. As shown in Table 1, the first resin sheet 3t, the second resin sheet 4t, the first resin member 71t of the insert 7ta, and the second resin member 72t can be selected as shown in Table 1. In this case, in Table 1, the dissolution parameter (SP value) of each material is also shown. Here, each material used for examination is PP (polypropylene resin), PE (polyethylene resin), PVC (polyvinyl chloride resin), PC (polycarbonate resin), and PMMA (polymethyl methacrylate resin).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この表2から、チューブ(供給チューブ9ta)と第1樹脂部材71tの溶解パラメータ(SP値)の差が1以下であり、かつ、第1樹脂シート3t及び第2樹脂シート4tと第2樹脂部材72tの溶解パラメータ(SP値)の差が1以下であることが明らかとなる。 From Table 2, the difference in the dissolution parameter (SP value) between the tube (supply tube 9ta) and the first resin member 71t is 1 or less, and the first resin sheet 3t, the second resin sheet 4t, and the second resin member It becomes clear that the difference in the solubility parameter (SP value) of 72t is 1 or less.
 なお、インサート7ta~7tdは、たとえば図22に示すように、その貫通孔7Hが第1樹脂シート3t及び第2樹脂シート4tの界面に形成される流路5aに連結されるようになっている。 For example, as shown in FIG. 22, the inserts 7ta to 7td have their through holes 7H connected to a flow path 5a formed at the interface between the first resin sheet 3t and the second resin sheet 4t. .
 図24~図27は、上述した第3観点の第1実施形態に係る中空成形品1tの製造方法を示す工程図である。まず、図24を用いて成形装置の概略を示す。 24 to 27 are process diagrams showing a method for manufacturing the hollow molded product 1t according to the first embodiment of the third aspect described above. First, an outline of a molding apparatus will be shown with reference to FIG.
 図24に示すように、成形装置80は、押出装置90と、押出装置90の下方に配置された型締装置100tとを有する。 24, the molding device 80 includes an extrusion device 90 and a mold clamping device 100t disposed below the extrusion device 90.
 ここで、各部材については第1観点(図1~図6)と同様であり、成形装置80は成形装置100に、押出装置90は押出装置1に、型締装置100tは金型21fにそれぞれ対応する。 Here, each member is the same as in the first aspect (FIGS. 1 to 6). The molding device 80 is the molding device 100, the extrusion device 90 is the extrusion device 1, and the mold clamping device 100t is the mold 21f. Correspond.
 型締装置100tは、金型101A及び金型101Bによって構成され、熱可塑性樹脂シートPA,PBは、いずれも、水平方向に分割された金型101A,101Bの間に垂下されるようになっている。ここで、金型101Aと金型101Bは、同様の構成となっており、金型101Aと金型101Bの各対応する部材には同一の番号を、そして金型101A側の部材には符号Aを、金型101B側の部材には符号Bを付して示している。以下、金型101Aについて説明する。金型101Bも同様の構成・動作を示す。 The mold clamping device 100t includes a mold 101A and a mold 101B, and the thermoplastic resin sheets PA and PB are both suspended between the molds 101A and 101B divided in the horizontal direction. Yes. Here, the mold 101A and the mold 101B have the same configuration. The corresponding members of the mold 101A and the mold 101B have the same number, and the member on the mold 101A side has the code A. Is indicated by a symbol B on the member on the mold 101B side. Hereinafter, the mold 101A will be described. The mold 101B also shows the same configuration and operation.
 金型101Aは、その熱可塑性樹脂シートPA側の面(表面)に、前記第2樹脂シート4tの形成すべき形状に合わせたキャビティ102Aが形成され、複数のほぼ等間隔に散在された吸気孔103Aが形成されている。各吸気孔103Aは金型101A内に形成された共通室104Aに連通され、該共通室104Aは図示しないポンプ等によって減圧されるようになっている。また、金型101Aの外周部には型枠105Aが外嵌され、金型101Aに対して相対的に移動可能となっている。 The mold 101A has a plurality of air intake holes that are formed in the thermoplastic resin sheet PA side surface (front surface) so that cavities 102A are formed in accordance with the shape to be formed of the second resin sheet 4t and are scattered at substantially equal intervals. 103A is formed. Each intake hole 103A communicates with a common chamber 104A formed in the mold 101A, and the common chamber 104A is decompressed by a pump or the like (not shown). In addition, a mold frame 105A is fitted on the outer periphery of the mold 101A, and is movable relative to the mold 101A.
 このような構成において、図25に示すように、垂下された熱可塑性樹脂シートPAに金型101Aのキャビティ102Aの面が熱可塑性樹脂シートPAに当接するように図中矢印A方向に移動し、共通室104Aを減圧させ、熱可塑性樹脂シートPAを金型Aのキャビティ102Aの面に密接させることによって、熱可塑性樹脂シートPAは所定形状から形成された第2樹脂シート4tとして得られるようになる。同様に、熱可塑性樹脂シートPAも金型101Bによって所定形状から形成された第1樹脂シート3tとして得られるようになる。この場合、型枠105Aは、金型101Bに向かって突出することにより熱可塑性樹脂シートPAに当接するようになっている。 In such a configuration, as shown in FIG. 25, the surface of the cavity 102A of the mold 101A is moved in the direction of the arrow A in the figure so that the surface of the cavity 101A of the mold 101A is in contact with the thermoplastic resin sheet PA, as shown in FIG. By depressurizing the common chamber 104A and bringing the thermoplastic resin sheet PA into close contact with the surface of the cavity 102A of the mold A, the thermoplastic resin sheet PA can be obtained as a second resin sheet 4t formed from a predetermined shape. . Similarly, the thermoplastic resin sheet PA is also obtained as the first resin sheet 3t formed in a predetermined shape by the mold 101B. In this case, the mold frame 105A comes into contact with the thermoplastic resin sheet PA by protruding toward the mold 101B.
 そして、別の工程によって予め形成されたインサート7ta~7tdを、たとえば金型101A上の第2樹脂シート4tの所定の位置に配置させるようにする。図25では、第2樹脂シート4tの周辺部(図19参照)であって、流路の形成領域である半円弧状の凹部内にインサート7ta~7tdが配置されるようになる。 Then, the inserts 7ta to 7td formed in advance by another process are arranged at a predetermined position of the second resin sheet 4t on the mold 101A, for example. In FIG. 25, the inserts 7ta to 7td are arranged in a semicircular arc-shaped concave portion which is a peripheral portion (see FIG. 19) of the second resin sheet 4t and which is a flow path forming region.
 インサート7ta~7tdは、上述したように、第1樹脂部材71tと該第1樹脂部材71tと融着される第2樹脂部材72tとを含むが(図23(b)参照)、第1樹脂部材71tと第2樹脂部材72tは、少なくとも第1樹脂部材71tにおいて径方向に突出し、第2樹脂部材72tによって被われた第1環状突起(係合部)によって係合されているため、それらの融着は信頼性のあるものとなっている。 As described above, the inserts 7ta to 7td include the first resin member 71t and the second resin member 72t that is fused to the first resin member 71t (see FIG. 23B), but the first resin member 71t and the second resin member 72t protrude in the radial direction at least in the first resin member 71t, and are engaged by the first annular protrusion (engagement portion) covered by the second resin member 72t. The wear is reliable.
 さらに、図26に示すように、金型101Aを図中矢印A方向へ金型101Bを図中矢印B方向へ移動させることにより、金型101A及び金型101Bによって第2樹脂シート4t及び第1樹脂シート3tを挟持させるようにする。これにより、インサート7ta~7tdは、いずれも、第2樹脂シート4tの流路の形成領域である半円弧状の凹部及び第1樹脂シート3tの流路の形成領域である半円弧状の凹部の間に挟持されるようになる。この場合、型枠105Aは、金型101Aに対して後退することによって、金型101AA,101Bからはみ出た第1樹脂シート3t及び第2樹脂シート4tが互いに接触されないようになっている。 Further, as shown in FIG. 26, the mold 101A is moved in the direction of the arrow A in the figure, and the mold 101B is moved in the direction of the arrow B in the figure, whereby the second resin sheet 4t and the first resin are moved by the mold 101A and the mold 101B. The resin sheet 3t is sandwiched. As a result, each of the inserts 7ta to 7td has a semicircular arc-shaped recess that is a flow path forming area of the second resin sheet 4t and a semicircular arc-shaped recess that is a forming area of the flow path of the first resin sheet 3t. It will be sandwiched between them. In this case, the mold 105A moves backward with respect to the mold 101A so that the first resin sheet 3t and the second resin sheet 4t protruding from the molds 101AA and 101B are not brought into contact with each other.
 そして、第1樹脂シート3t及び第2樹脂シート4tに熱を加えることによって、第1樹脂シート3t及び第2樹脂シート4tが溶着による貼り合わせがなされるとともに、インサート7ta~7tdが第1樹脂シート3t及び第2樹脂シート4tとの間に挟持されて溶着がなされるようになっている。図28は、第1樹脂シート3t及び第2樹脂シート4tとの間に溶着されたインサート7taを示す断面図である。この場合、第1樹脂シート3t及び第2樹脂シート4tと第2樹脂部材72tの溶解パラメータ(SP値)の差が1以下であることから、第1樹脂シート3t及び第2樹脂シート4tと第2樹脂部材72tとの溶融が充分になされ、第1樹脂シート3t及び第2樹脂シート4tに対するインサート7taとの界面からの液体の漏れを回避できるようになる。なお、図28では、インサート7taが第1樹脂シート3t及び第2樹脂シート4tの所定の個所に位置付けられるようにインサート7taに挿入された位置決めピン109を示している。 Then, by applying heat to the first resin sheet 3t and the second resin sheet 4t, the first resin sheet 3t and the second resin sheet 4t are bonded together, and the inserts 7ta to 7td are attached to the first resin sheet. It is sandwiched between 3t and the second resin sheet 4t to be welded. FIG. 28 is a cross-sectional view showing the insert 7ta welded between the first resin sheet 3t and the second resin sheet 4t. In this case, since the difference in the dissolution parameter (SP value) between the first resin sheet 3t and the second resin sheet 4t and the second resin member 72t is 1 or less, the first resin sheet 3t and the second resin sheet 4t The two resin members 72t are sufficiently melted, and the liquid leakage from the interface between the first resin sheet 3t and the second resin sheet 4t with the insert 7ta can be avoided. FIG. 28 shows the positioning pin 109 inserted into the insert 7ta so that the insert 7ta is positioned at a predetermined location of the first resin sheet 3t and the second resin sheet 4t.
 次に、図27に示すように、金型101A及び金型101Bを互いに離間させるように、型枠105A及び型枠105Bとともに金型101Aを図中矢印A'方向へ金型101Bを図中矢印B'方向へ移動させる。これにより、金型101A及び金型101Bから中空成形品1tを取り出すことができるようになる。 Next, as shown in FIG. 27, the mold 101A is moved in the direction of the arrow A ′ in the figure together with the mold 105A and the mold 105B so that the mold 101A and the mold 101B are separated from each other. Move in the B 'direction. Thereby, the hollow molded product 1t can be taken out from the mold 101A and the mold 101B.
 なお、図24~図27で説明した押出装置90(間隔を隔てて配置された一対のローラー98によって挟圧されながら下方へ向かって送りだされて垂下される構成)に変えて、図1~図6で説明した押出装置1(ローラは、樹脂シートの各高さ位置において樹脂シートの片側にのみ設けられ樹脂シートに当接して樹脂シートの軌道を変えるように設けられる構成)を利用することができる。 It should be noted that, instead of the extrusion device 90 described in FIGS. 24 to 27 (a configuration in which the extrusion device 90 is sent downwards while being pinched by a pair of rollers 98 arranged at intervals), the configuration shown in FIGS. Utilizing the extrusion device 1 described in FIG. 6 (the roller is provided only on one side of the resin sheet at each height position of the resin sheet and is configured to contact the resin sheet and change the trajectory of the resin sheet). Can do.
(インサートの変形例)
 ところで、インサート7taについては、以上に説明したような構成に限定されることなく、例えば次のような変形例としてもよい。すなわち、図29に示すように、供給チューブ9taが被われることとなる第1樹脂部材71tを薄厚とし、第1樹脂部材71tと第1樹脂シート3t及び第2樹脂シート4tとの間については第2樹脂部材72tを延在させることによって充実させるものである。このように形成した場合も、供給チューブ9taと第1樹脂部材71tの溶解パラメータ(SP値)の差を1以下、かつ、第1樹脂シート3t及び第2樹脂シート4tと第2樹脂部材72tの溶解パラメータ(SP値)の差を1以下とすることができる。また、この変形例に係るインサーと7aについても、上述したものと同様の製造方法で得ることができる。
(Modified example of insert)
Incidentally, the insert 7ta is not limited to the configuration described above, and may be modified as follows, for example. That is, as shown in FIG. 29, the first resin member 71t that is to be covered with the supply tube 9ta is made thin, and the first resin member 71t, the first resin sheet 3t, and the second resin sheet 4t are the first. Two resin members 72t are extended to extend. Also when formed in this way, the difference between the dissolution parameters (SP values) of the supply tube 9ta and the first resin member 71t is 1 or less, and the first resin sheet 3t, the second resin sheet 4t, and the second resin member 72t The difference in solubility parameter (SP value) can be made 1 or less. The insert and 7a according to this modification can also be obtained by the same manufacturing method as described above.
(第3観点の第2実施形態)
 第3観点の第1実施形態では、インサート7ta~7tdの第1樹脂部材71tと第2樹脂部材72tとの係合は、少なくとも、第1樹脂部材71tにおいて径方向に突出し、第2樹脂部材72tによって被われた第1環状突起73(凸部)によってなされたものとしたものであるが、これに限定されることはなく、第2樹脂部材72tにおいて径方向に突出し、第1樹脂部材71tによって被われた環状突起(凸部)によってなされたものであってもよいことはいうまでもない。
(Second embodiment of the third aspect)
In the first embodiment of the third aspect, the engagement between the first resin member 71t and the second resin member 72t of the inserts 7ta to 7td protrudes at least in the radial direction in the first resin member 71t, and the second resin member 72t However, the present invention is not limited to this, and the second resin member 72t protrudes in the radial direction and is formed by the first resin member 71t. Needless to say, it may be formed by a covered annular projection (convex portion).
 以上、各実施形態を用いて本発明の第3観点に係る中空成形体を説明したが、本発明の第3観点に係る中空成形体の技術的範囲は上記各実施形態に記載の範囲には限定されないことは言うまでもない。上記各実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。また、その様な変更又は改良を加えた形態も本発明の第3観点に係る中空成形体の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although the hollow molded object which concerns on the 3rd viewpoint of this invention was demonstrated using each embodiment, the technical scope of the hollow molded object which concerns on the 3rd viewpoint of this invention is in the range as described in each said embodiment. It goes without saying that it is not limited. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiments. Moreover, it is clear from the description of the scope of claims that the embodiment added with such changes or improvements can be included in the technical scope of the hollow molded body according to the third aspect of the present invention.
 以上説明したように、本発明の第1観点に係る樹脂成形装置及び樹脂成形方法により、樹脂シートを延伸しつつ樹脂シートのローラへの巻き付きを防止することができる。
 さらに、本発明の第2観点においては、貼り合わされた2枚の樹脂シートで形成されるパネルを備えた血液浄化回路パネルを構成するにあたり、ダイアライザー等に流体を送り込むためのポンプチューブが不要な血液浄化回路パネルを提供することができる。
 さらに、第3観点においては、流路内の液体が漏れないようにインサートを取付けることができる中空成形品を提供することができる。
As described above, the resin molding apparatus and the resin molding method according to the first aspect of the present invention can prevent the resin sheet from being wound around the roller while stretching the resin sheet.
Furthermore, in the second aspect of the present invention, blood that does not require a pump tube for feeding a fluid to a dialyzer or the like is required for configuring a blood purification circuit panel including a panel formed of two bonded resin sheets. A purification circuit panel can be provided.
Furthermore, in a 3rd viewpoint, the hollow molded product which can attach insert so that the liquid in a flow path may not leak can be provided.
<第1観点:図1~図6>
1:押出装置、11:Tダイ、12:押出スリット、13:アキュムレータ、14:プランジャ、15:シリンダ、16:ホッパ、17:油圧モータ、21f:金型、23:キャビティ、25f:ピンチオフ部、3:ローラ、4:移動部材、100:成形装置
<First viewpoint: FIGS. 1 to 6>
1: Extruder, 11: T die, 12: Extrusion slit, 13: Accumulator, 14: Plunger, 15: Cylinder, 16: Hopper, 17: Hydraulic motor, 21f: Mold, 23: Cavity, 25f: Pinch-off part, 3: Roller, 4: Moving member, 100: Molding device
<第2観点:図7~図18>
1s:血液浄化回路パネル、1ss:押出装置、2:パネル、21,22:樹脂シート、23a,23b:取り付け片、24a,24b:切り欠き、25a,25b:狭窄部、3s:ダイアライザー、31:血液流入管部、32:血液流出管部、33:細管、34:透析液流入管部、35:透析液流出管部、36a,36b:フランジ部、37a,37b:環状溝、4s,4sa:内部流路、41,41a,42,42a:凹溝、5s:ポンプ、51:回転体、52:ローラ、6:中空流路、61,62:凹溝、63:中空室、64,65:分岐流路、7,7a:中空流路、71,71a,72,72a:凹溝、81,82:分割金型、83a,83b:Tダイ、84a,84b:押出スリット、85a~85d:ローラ、86a,86b,87a,87b:型枠、88a,88b:キャビティ、89a,89b:ピンチオフ部、9:補強部材、9a:内部流路用補強部材、91:流路部、92:支持部、93:中空部、9b:板状補強部材、R1~R11:連結部、S1,S2:密閉空間、T1~T8:外付けチューブ、Ta,Tb:内蔵チューブ
<Second viewpoint: FIGS. 7 to 18>
1s: Blood purification circuit panel, 1ss: Extruding device, 2: Panel, 21, 22: Resin sheet, 23a, 23b: Mounting piece, 24a, 24b: Notch, 25a, 25b: Stenosis, 3s: Dialyzer, 31: Blood inflow tube portion, 32: Blood outflow tube portion, 33: Narrow tube, 34: Dialysate inflow tube portion, 35: Dialysate outflow tube portion, 36a, 36b: Flange portion, 37a, 37b: annular groove, 4s, 4sa: Internal flow path, 41, 41a, 42, 42a: concave groove, 5s: pump, 51: rotating body, 52: roller, 6: hollow flow path, 61, 62: concave groove, 63: hollow chamber, 64, 65: Branch flow path, 7, 7a: hollow flow path, 71, 71a, 72, 72a: concave groove, 81, 82: split mold, 83a, 83b: T die, 84a, 84b: extrusion slit, 85a to 85d: roller , 86a, 86b, 7a, 87b: mold, 88a, 88b: cavity, 89a, 89b: pinch-off part, 9: reinforcing member, 9a: reinforcing member for internal flow path, 91: flow path part, 92: support part, 93: hollow part, 9b: plate-like reinforcing member, R1 to R11: connecting portion, S1, S2: sealed space, T1 to T8: external tube, Ta, Tb: built-in tube
<第3観点図19~図29>
1t:中空成形品、1a:第1セクション、1b:第2セクション、1c:第3セクション、3t:第1樹脂シート、4t:第2樹脂シート、5a~5c:流路、6t:撹拌促進部、6a:大径部、6b:小径部、7ta~7td:インサート、7e:突出筒、8:チューブ挿入口、9ta:供給チューブ、9tb:排出チューブ、10:機能部品収容部、11t:開口部、13t:ヒンジ部、71t:第1樹脂部材、72t:第2樹脂部材、71A:段差、71B:筒状体、73:第1環状突起、74:第2環状突起、80:成形装置、90:押出装置、90A:押出装置、91A:ホッパー、92A:シリンダー、93A:油圧モータ、100t:型締装置、101A:金型、101B:金型、102A:キャビティ、103A:吸気孔、104A:共通室、105A:型枠、109:位置決めピン
<Third viewpoint FIG. 19 to FIG. 29>
1t: hollow molded product, 1a: first section, 1b: second section, 1c: third section, 3t: first resin sheet, 4t: second resin sheet, 5a to 5c: flow path, 6t: stirring promoting part , 6a: large diameter portion, 6b: small diameter portion, 7ta to 7td: insert, 7e: protruding tube, 8: tube insertion port, 9ta: supply tube, 9tb: discharge tube, 10: functional part accommodating portion, 11t: opening , 13t: hinge part, 71t: first resin member, 72t: second resin member, 71A: step, 71B: cylindrical body, 73: first annular protrusion, 74: second annular protrusion, 80: molding device, 90 : Extruding device, 90A: Extruding device, 91A: Hopper, 92A: Cylinder, 93A: Hydraulic motor, 100t: Clamping device, 101A: Mold, 101B: Mold, 102A: Cavity, 103A: Intake hole 104A: common chamber, 105A: mold, 109: Positioning pin

Claims (4)

  1.  押出スリットから樹脂シートを押し出して垂下させる押出装置と、前記樹脂シートの成形に用いられる成形型と、前記押出装置と前記成形型の間に配置されるローラを備え、
     前記ローラは、前記樹脂シートの各高さ位置において前記樹脂シートの片側にのみ設けられ前記樹脂シートに当接して前記樹脂シートの軌道を変えるように設けられる、樹脂成形装置。
    An extrusion device for extruding and dropping a resin sheet from an extrusion slit, a molding die used for molding the resin sheet, and a roller disposed between the extrusion device and the molding die,
    The resin molding apparatus, wherein the roller is provided only on one side of the resin sheet at each height position of the resin sheet so as to contact the resin sheet and change a path of the resin sheet.
  2.  前記ローラは、その一部が前記押出スリットの直下に位置するように設けられる、請求項1に記載の樹脂成形装置。 The resin molding apparatus according to claim 1, wherein the roller is provided so that a part thereof is positioned immediately below the extrusion slit.
  3.  請求項1又は請求項2に記載の樹脂成形装置を用いた樹脂成形方法であって、
     前記ローラが前記樹脂シートを屈曲させない位置に前記ローラを退避させた状態で前記押出スリットから前記樹脂シートを押し出し、
     前記樹脂シートが垂下されている状態で前記ローラを前記樹脂シートに向かって移動させて前記樹脂シートの軌道を変える工程を備える、樹脂成形方法。
    A resin molding method using the resin molding apparatus according to claim 1 or 2,
    Extruding the resin sheet from the extrusion slit with the roller retracted to a position where the roller does not bend the resin sheet,
    A resin molding method comprising a step of changing the trajectory of the resin sheet by moving the roller toward the resin sheet in a state where the resin sheet is suspended.
  4.  前記ローラを回転させながら前記樹脂シートに向かって移動させる、請求項3に記載の樹脂成形方法。 The resin molding method according to claim 3, wherein the roller is moved toward the resin sheet while rotating.
PCT/JP2016/062627 2015-04-21 2016-04-21 Resin molding device, resin molding method, blood purification circuit panel and hollow molded body WO2016171209A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-086905 2015-04-21
JP2015086905A JP6520348B2 (en) 2015-04-21 2015-04-21 Blood purification circuit panel
JP2015135670A JP6582638B2 (en) 2015-07-06 2015-07-06 Resin molding apparatus and resin molding method
JP2015-135670 2015-07-06
JP2015-142333 2015-07-16
JP2015142333A JP6524832B2 (en) 2015-07-16 2015-07-16 Hollow molded body

Publications (1)

Publication Number Publication Date
WO2016171209A1 true WO2016171209A1 (en) 2016-10-27

Family

ID=57143985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062627 WO2016171209A1 (en) 2015-04-21 2016-04-21 Resin molding device, resin molding method, blood purification circuit panel and hollow molded body

Country Status (1)

Country Link
WO (1) WO2016171209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098739A (en) * 2017-11-29 2019-06-24 キョーラク株式会社 Resin-made panel and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112965A (en) * 1978-02-22 1979-09-04 Teraoka Shoichi Molding method
JPS61261021A (en) * 1985-05-15 1986-11-19 Kyoraku Co Ltd Extruding exquipment for sheetlike molding article
JPH01154725A (en) * 1987-12-12 1989-06-16 Yamakawa Kogyo Kk Continuous extrusion pressing method of resin sheet
JPH04270627A (en) * 1991-02-26 1992-09-28 Japan Steel Works Ltd:The Manufacture and device for hollow bag
JP2008302565A (en) * 2007-06-06 2008-12-18 Kawakami Sangyo Co Ltd Manufacturing method and manufacturing apparatus for plastic bubble sheet
JP2011073422A (en) * 2009-09-30 2011-04-14 Kyoraku Co Ltd Molding method
JP2012240361A (en) * 2011-05-23 2012-12-10 Japan Steel Works Ltd:The Crosshead

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112965A (en) * 1978-02-22 1979-09-04 Teraoka Shoichi Molding method
JPS61261021A (en) * 1985-05-15 1986-11-19 Kyoraku Co Ltd Extruding exquipment for sheetlike molding article
JPH01154725A (en) * 1987-12-12 1989-06-16 Yamakawa Kogyo Kk Continuous extrusion pressing method of resin sheet
JPH04270627A (en) * 1991-02-26 1992-09-28 Japan Steel Works Ltd:The Manufacture and device for hollow bag
JP2008302565A (en) * 2007-06-06 2008-12-18 Kawakami Sangyo Co Ltd Manufacturing method and manufacturing apparatus for plastic bubble sheet
JP2011073422A (en) * 2009-09-30 2011-04-14 Kyoraku Co Ltd Molding method
JP2012240361A (en) * 2011-05-23 2012-12-10 Japan Steel Works Ltd:The Crosshead

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098739A (en) * 2017-11-29 2019-06-24 キョーラク株式会社 Resin-made panel and manufacturing method therefor
JP7078848B2 (en) 2017-11-29 2022-06-01 キョーラク株式会社 Resin panel and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100439773B1 (en) Medical Non-PVC Multilayer Tubing and Its Manufacturing Process and Use
KR20140015569A (en) Method for forming resin molded product, and resin molded product
US20100310854A1 (en) Porous film for heat-sealable bag-constituting member, heat-sealable bag-constituting member and disposable body warmer
WO2015156299A1 (en) Hollow molded article
WO2016171209A1 (en) Resin molding device, resin molding method, blood purification circuit panel and hollow molded body
JP5829098B2 (en) Adhesive laminate for insert molding
JP6520348B2 (en) Blood purification circuit panel
JP2016190235A (en) Liquid treatment arrangements and methods of making liquid treatment arrangements
JP2011189922A (en) Extrusion molded product having core material
JP5403252B2 (en) Molding method
JP6960079B2 (en) panel
KR101704627B1 (en) Extrusion-molded two-layer tube for medical use and infusion bag product
JP2000177036A (en) Thermoplastic resin structure
JP5769078B2 (en) Manufacturing method of resin heat transfer unit
JP3949739B2 (en) Medical multi-chamber container
JP2019209527A (en) Hollow molded panel
US10611113B2 (en) Resin panel and forming method
JP6409200B2 (en) Blood purification circuit panel
JP6017007B2 (en) Composite molded body
JP2014172329A (en) Cutting device for cylindrical film
JP6409198B2 (en) Blood purification circuit panel
JP6524832B2 (en) Hollow molded body
JP2012192522A (en) Molding apparatus and molding method
JP2023006427A (en) Fitting tool and bag body with fitting tool
JP4016049B2 (en) Medical multi-chamber container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783230

Country of ref document: EP

Kind code of ref document: A1