WO2016171067A1 - 医療機器 - Google Patents

医療機器 Download PDF

Info

Publication number
WO2016171067A1
WO2016171067A1 PCT/JP2016/062019 JP2016062019W WO2016171067A1 WO 2016171067 A1 WO2016171067 A1 WO 2016171067A1 JP 2016062019 W JP2016062019 W JP 2016062019W WO 2016171067 A1 WO2016171067 A1 WO 2016171067A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
clearance
jaw
clamp part
medical device
Prior art date
Application number
PCT/JP2016/062019
Other languages
English (en)
French (fr)
Inventor
平井 祐治
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP16783088.4A priority Critical patent/EP3216411A4/en
Priority to CN201680003929.7A priority patent/CN106999241B/zh
Priority to JP2016574033A priority patent/JP6109459B2/ja
Publication of WO2016171067A1 publication Critical patent/WO2016171067A1/ja
Priority to US15/615,370 priority patent/US10064676B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320082Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing

Definitions

  • the load pressure of the second clamp part decreases with increasing distance from the rotation axis due to the bending of the second clamp part. For this reason, for example, when a blood vessel is gripped, the crushing state of the blood vessel may be different between the side close to the rotation axis and the side away from the side. For example, when a treatment is performed using high-frequency energy in such a state, it takes a longer time for the treatment to coagulate or seal the living tissue than the side closer to the rotating shaft, etc. Unevenness can occur in the treatment.
  • the first and second clamp portions may be desired to adjust the gripping force regardless of the load pressure depending on the position along the longitudinal direction.
  • An object of the present invention is to provide a medical device capable of adjusting a gripping force according to a position with respect to a rotation axis and performing a desired treatment.
  • a medical device includes a first clamp portion, a rotation shaft, an open position that is rotatable about the rotation shaft and is spaced apart from the first clamp portion, A second clamp part movable between a closed position adjacent to the first clamp part; and provided in the second clamp part, facing the first clamp part and cooperating with the first clamp part And an electrode member that forms a clearance between the first clamp portion and the second position that is separated from the rotation shaft smaller than the first position that is close to the rotation shaft in the closed position.
  • FIG. 5C shows the size of the clearance between the movable jaw and the fixed jaw in a state where the movable jaw is rotated to the closed position with the rotation axis of the treatment instrument according to the modification of the first embodiment as a fulcrum.
  • FIG. 6A is a schematic cross-sectional view showing a state in which a living tissue is grasped at a position along line 4A-4A in FIG. 3B.
  • 6B is a schematic cross-sectional view showing a state in which a living tissue is grasped at a position along line 4B-4B in FIG. 3B.
  • FIG. 7A is a schematic view illustrating a state in which the movable jaw is opened with respect to the fixed jaw of the treatment instrument of the medical device unit according to the first modification of the first embodiment.
  • FIG. 7B is a schematic diagram illustrating a closed position in which the movable jaw is closed with respect to the fixed jaw of the treatment instrument of the medical device unit according to the modified example of the first embodiment.
  • FIG. 8 is a schematic cross-sectional view of a position along line 4A-4A in FIG. 3B.
  • FIG. 9A shows a state in which a load pressure is applied to a living tissue in a state where the movable jaw is rotated to the closed position with the rotation axis of the treatment instrument according to the first modification of the first embodiment as a fulcrum.
  • 11B is a schematic diagram illustrating a closed position in which the first and second jaws of the treatment instrument of the medical device unit according to the second embodiment are closed.
  • 12A is a schematic cross-sectional view of a position along the line 12A-12A in FIG. 11B.
  • 12B is a schematic cross-sectional view of a position along the line 12B-12B in FIG. 11B.
  • 13A is a schematic cross-sectional view showing a state in which a living tissue is grasped at a position along the line 12A-12A in FIG. 11B.
  • FIG. 13B is a schematic cross-sectional view showing a state where a living tissue is grasped at a position along the line 12B-12B in FIG. 11B.
  • FIG. 14A is a schematic view showing a state of an open position in which the movable jaw of the treatment instrument of the medical device unit according to the third embodiment is opened and the rotating member (clamp portion) interlocked with the movable jaw is opened with respect to the fixed jaw.
  • FIG. 14B is a schematic view illustrating a closed position in which the movable jaw of the treatment instrument of the medical device unit according to the third embodiment is closed and the rotating member interlocked with the movable jaw is closed with respect to the fixed jaw.
  • FIG. 15A is a schematic cross-sectional view taken along the line 15A-15A in FIG. 14B.
  • FIG. 15B is a schematic cross-sectional view taken along the line 15B-15B in FIG. 14B.
  • FIG. 15C is a schematic cross-sectional view taken along the line 15C-15C in FIG. 14B.
  • FIG. 16A shows the position of the rotating member when applying a load pressure to the living tissue in a state where the rotating member (clamp portion) of the treatment instrument according to the third embodiment is rotated to the closed position. It is the schematic which shows load pressure.
  • FIG. 16B is a schematic diagram illustrating the size of the clearance between the rotation member and the fixed jaw with respect to the position of the rotation member in a state where the rotation member of the treatment instrument according to the third embodiment is rotated to the closed position.
  • FIG. 16A shows the position of the rotating member when applying a load pressure to the living tissue in a state where the rotating member (clamp portion) of the treatment instrument according to the third embodiment is rotated to the closed position.
  • FIG. 16B is a schematic diagram illustrating the size of the clearance between the rotation member and the fixed jaw with respect to the position of the rotation member in a state where the rotation member of the treatment instrument according to the third embodiment
  • FIG. 16C is a schematic diagram illustrating the size of the clearance between the rotation member and the fixed jaw with respect to the position of the rotation member in a state where the rotation member of the treatment instrument according to the modification of the third embodiment is rotated to the closed position. It is.
  • FIG. 17A is a schematic cross-sectional view showing a state where a living tissue is grasped at a position along the line 15A-15A in FIG. 14B.
  • FIG. 17B is a schematic cross-sectional view showing a state where a living tissue is grasped at a position along the line 15B-15B in FIG. 14B.
  • FIG. 17C is a schematic cross-sectional view showing a state in which the living tissue is gripped at a position along the line 15C-15C in FIG. 14B.
  • the treatment instrument 12 includes a treatment instrument main body 22 and a treatment section (end effector) 24.
  • the treatment instrument 12 further includes an ultrasonic transducer 26 that is preferably detachable from the treatment instrument body 22.
  • An ultrasonic probe (vibration transmitting member) 28 capable of transmitting ultrasonic vibration generated by the ultrasonic transducer 26 is connected to the ultrasonic transducer 26.
  • the ultrasonic probe 28 is made of a conductive material such as a titanium alloy.
  • the distal end portion (probe distal end portion) of the ultrasonic probe 28 protrudes from the distal end of the treatment instrument body 22 and is used as a fixed jaw 32 described later.
  • the treatment section 24 includes a fixed jaw (first clamp section) 32 and a movable jaw (second clamp section) 34.
  • the movable jaw 34 is movable between an open position separated from the fixed jaw 32 and a closed position close to the fixed jaw 32.
  • the movable jaw 34 is supported by the treatment instrument main body 22, more specifically, the rotation shaft 36 at the distal end of the sheath 22 a.
  • the movable jaw 34 can be rotated around the axis of the rotation shaft 36, and has a position (open position) shown in FIG. 3A separated from the fixed jaw 32 and a position (closed position) shown in FIG. It is possible to move between.
  • the treatment portion 24 is further opposed to the first electrode (electrode member) 42 formed as a probe tip portion (first clamp portion) 32 connected to the ultrasonic transducer 26, the first electrode 42, and the movable jaw 34.
  • the second electrode (second electrode member) 44 is provided.
  • the treatment instrument body 22 includes a switch 50.
  • the first electrode 42, the second electrode 44, the ultrasonic transducer 26 and the switch 50 are electrically connected to the controller 14. Note that the first electrode 42 and the second electrode 44 have different potentials.
  • the treatment instrument body 22 has a fixed handle 23a and a movable handle 23b.
  • the treatment portion 24 of the treatment instrument 12 according to this embodiment is formed in a so-called single-open type.
  • the movable jaw 34 opens with respect to the fixed jaw 32 in conjunction with the operation of moving the movable handle 23b of the treatment instrument body 22 away from the fixed handle 23a.
  • the movable jaw 34 is closed with respect to the fixed jaw 32 in conjunction with the operation of bringing the movable handle 23b of the treatment instrument body 22 close to the fixed handle 23a. That is, the treatment section 24 can open and close the movable jaw 34 with respect to the fixed jaw 32.
  • the cross section of the fixed jaw (probe tip) 32 is formed in a substantially octagonal shape.
  • the fixed jaw 32 is used as the first electrode 42 for performing high-frequency output to the living tissue in cooperation with the second electrode 44.
  • the movable jaw 34 has a movable jaw main body 62 and a pressing pad (stopper) 64.
  • a second electrode 44 is disposed on the movable jaw body 62 at a position facing the first electrode 42.
  • the second electrode 44 is formed so as to sandwich the pressing pad 64 therebetween. It is also preferable that the movable jaw body 62 is formed integrally with the second electrode 44.
  • the pressing pad 64 is formed of a material having electrical insulation and heat resistance and wear resistance.
  • the pressing pad 64 is in a position where it can contact the gripping surface 32 a of the fixed jaw 32.
  • the second electrode 44 of the movable jaw 34 can approach the fixed jaw 32, that is, the first electrode 42 with a clearance C.
  • the first and second electrodes 42 and 44 are arranged so that the base ends of the fixed jaw 32 and the movable jaw 34 from the distal end portions (one end portions) 33a and 35a thereof when the movable jaw 34 is in the closed position with respect to the fixed jaw 32. (Other end portions) 33b and 35b are separated. In addition, between the front-end
  • the fixed jaw 32 and the movable jaw 34 are assumed to be straight.
  • the fixed jaw 32 and the movable jaw 34 are formed such that the longitudinal direction is larger than the width direction.
  • the maximum widths of the fixed jaw 32 and the movable jaw 34 are determined by the relationship with the inner diameter of the trocar, for example.
  • the load pressure F that can be applied to the living tissue sandwiched between the movable jaw 34 and the fixed jaw 32 that is, the load pressure F in the closed position decreases as the distance from the rotation shaft 36 increases. This is considered due to the bending of the movable jaw 34 and the fixed jaw 32.
  • the movable jaw 34 fixes a large pressure as it approaches the rotating shaft 36 and a small pressure as it separates. It can be added to the living tissue sandwiched between the jaws 32.
  • the clearance C is reduced linearly (linearly) from a position close to the rotation shaft 36 toward a position separated from the rotation shaft 36 along the X axis.
  • the clearance Ca is about 0.2 mm, for example
  • the clearance Cb is about 0.1 mm, for example.
  • a clearance C (> 0) larger than 0 is maintained along the X axis between the second electrode 44 of the movable jaw 34 and the fixed jaw 32 as the first electrode 42.
  • the load pressure of the treatment portion 24 by the movable jaw 34 decreases substantially linearly as the distance from the position close to the rotation shaft 36 increases along the X axis.
  • the clearance C between the first electrode 42 of the fixed jaw 32 and the second electrode 44 of the movable jaw 34 increases as the distance from the rotation shaft 36 increases. It decreases as the distance from the position close to 36 increases along the X axis. More specifically, as shown in FIG. 5B, the interval (clearance) C between the fixed jaw 32 and the movable jaw 34 is formed so as to become narrower from the rotation shaft 36 along the X axis toward the tip. Has been.
  • the load pressure F of the movable jaw 34 decreases as the distance from the rotation shaft 36 increases along the X axis.
  • the clearance C between the first electrode 42 of the fixed jaw 32 and the second electrode 44 of the movable jaw 34 is reduced to compensate for the load pressure F for crushing the living tissue.
  • the clearance C of the 2nd position spaced apart from the rotating shaft 36 is formed smaller than the 1st position close to the rotating shaft 36, and the holding pressure of the fixed jaw 32 and the movable jaw 34 is adjusted. .
  • a blood vessel having a longitudinal direction in a direction orthogonal to the X axis is grasped.
  • the blood vessel shown in FIG. 6A showing a cross section taken along line 4A-4A in FIG. 3B (cross section at the first position), and FIG. 6B showing a cross section taken along line 4B-4B in FIG. 3B (cross section taken at the second position).
  • the blood vessel shown in FIG. At this time, the crushing amounts of the blood vessels shown in FIGS. 6A and 6B are substantially the same, and the clearance C is also substantially the same at the positions shown in FIGS. 6A and 6B.
  • the blood vessel is sealed by the high frequency output.
  • the blood vessel is sandwiched with a substantially uniform thickness as shown in FIGS. 6A and 6B. For this reason, the blood vessel is sealed substantially uniformly from the side close to the rotation shaft 36 to the side away from it.
  • the blood vessel is sealed by the high frequency output, and is cut by the ultrasonic output.
  • sealing is performed almost uniformly as described above. For this reason, the blood vessel is cut in a state where seal leakage hardly occurs.
  • the load pressure F of the movable jaw 34 decreases along the longitudinal direction (X axis) in the direction away from the rotation shaft 36. This is adjusted by adjusting the clearance C between the first electrode 42 of the fixed jaw 32 and the second electrode 44 of the movable jaw 34, which is gradually reduced here to compensate for the crushing pressure of the living tissue. Can do. For this reason, the crushing amount between the crushing amount for crushing the living tissue at a position close to the rotation shaft 36 and the crushing amount for crushing the living tissue at a position separated from the rotation shaft 36 along the X axis is approximately. It can be made uniform.
  • the adjustment of the clearance C substantially reduces the entire length of the grasped living tissue region. It can be gripped with a uniform force. For this reason, a substantially constant gripping force can be exhibited regardless of the position along the X axis of the fixed jaw 32 and the movable jaw 34. Therefore, when high-frequency energy is output to the living tissue, the energy can be uniformly input between the side closer to the rotating shaft 36 and the side away from the rotating shaft 36. For this reason, the sealing ability of biological tissues such as blood vessels can be made substantially uniform from the side close to the rotation shaft 36 to the side separated along the X axis.
  • the sealing ability is made substantially uniform. For this reason, it is possible to more reliably prevent blood from being discharged due to blood vessel seal leakage occurring during blood vessel cutting.
  • a living tissue when a living tissue is coagulated using a high-frequency output, it can be coagulated substantially uniformly like a blood vessel. Moreover, when cutting
  • the clearance C is formed as shown in FIG. 5B has been described.
  • the gripping force can be adjusted according to the position away from the rotation shaft 36, that is, the position with respect to the rotation shaft 36.
  • the treatment unit 24 can change the gripping force according to the position along the longitudinal direction.
  • the method of reducing the clearance C as it moves away from the rotation shaft 36 is not limited to the state shown in FIG. 5B or the state shown in FIG. 5C.
  • the clearance C may be reduced to a quadratic curve such as a parabolic shape. good.
  • the treatment instrument main body 22 shown in FIGS. 7A and 7B has double sheaths 22a and 22b arranged concentrically.
  • the movable jaw 34 is supported by the rotation shaft 36 at the tip of the inner sheath 22 a of the treatment instrument body 22.
  • the inner sheath 22a and the outer sheath 22b are relatively moved along the axial direction of the sheaths 22a and 22b by a known mechanism. For this reason, the fixed jaw 32 and the movable jaw 34 open and close as shown in FIGS. 7A and 7B.
  • contact portions (stoppers) 82a and 82b are formed at the distal end of the outer sheath 22b and the proximal end of the movable jaw 34, respectively.
  • the contact portions 82a and 82b can be separated from each other as shown in FIG. 7A, and can contact each other as shown in FIG. 7B.
  • the contact portions (stoppers) 82a and 82b define a range in which the movable jaw 34 is rotated about the rotation shaft 36, and also define a clearance C of the electrode 44 with respect to the electrode 42 of the fixed jaw 32 in the closed position. To do.
  • the clearance C according to this modification is preferably adjusted together with the clearance C described in the first embodiment.
  • the Y axis in a direction orthogonal to an appropriate position along the X axis between the rotation shaft 36 in FIG. 3B and the distal ends 33 a and 35 a of the fixed jaw 32 and the movable jaw 34. I take the.
  • the pressure (load pressure) F that can be applied to the living tissue along the direction orthogonal to the longitudinal direction of the pressing pad 64 of the movable jaw 34 in the closed position where the movable jaw 34 is close to the fixed jaw 32 is as follows. Schematically, it is distributed in the state shown in FIG. 9A.
  • the load pressure F that can be applied to the living tissue sandwiched between the movable jaw 34 and the fixed jaw 32, that is, the load pressure F in the closed position is from the approximate center in the width direction of the fixed jaw 32 and the movable jaw 34 in the Y direction. It goes down as you move along. This is considered due to the bending of the movable jaw 34 and the fixed jaw 32.
  • the clearance C between the second electrode 44 of the movable jaw 34 and the fixed jaw 32 as the first electrode 42 according to this modification is such that the fixed jaw 32 and the pressing pad 64 of the movable jaw 34 are Except for the contact position, it becomes larger as it comes closer to the approximate center in the width direction of the fixed jaw 32 and the movable jaw 34, and becomes smaller as it is separated from the approximate center in the width direction of the fixed jaw 32 and the movable jaw 34 along the Y axis. .
  • the clearance C between the first electrode 42 of the fixed jaw 32 and the second electrode 44 of the movable jaw 34 is reduced as the distance from the approximate center in the width direction of the fixed jaw 32 and the movable jaw 34 is reduced.
  • the load pressure F for crushing the tissue is supplemented. Further, as described in the first embodiment, it is possible to exert a substantially constant gripping force regardless of the position along the X axis among the fixed jaw 32 and the movable jaw 34. Therefore, for example, the blood vessel is sealed substantially uniformly from the center in the width direction of the fixed jaw 32 and the movable jaw 34 to the side away from the center.
  • the sealing ability of biological tissues such as blood vessels can be made substantially uniform from the side close to the rotation shaft 36 to the side separated along the X axis, and the fixed jaw 32 and the movable jaw 34 It can be made substantially uniform from the approximate center in the width direction to the side separated along the Y direction.
  • the width of the second electrode 44 is reduced with respect to the probe tip 32 in the direction along the Y-axis direction orthogonal to the X-axis, so that the width of the fixed jaw 32 and the movable jaw 34 is substantially reduced.
  • the clearance C is reduced from the center toward the edge.
  • the width of the probe tip 32 is made wider with respect to the second electrode 44 so that the fixed jaw 32 and the movable jaw 34 are approximately in the width direction. The clearance C is reduced from the center toward the edge.
  • FIGS. 10 to 13B a second embodiment will be described with reference to FIGS. 10 to 13B.
  • This embodiment is a modification of the first embodiment, and the same members or members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • an example having a so-called double-opening treatment unit 24, which is different from the single-opening treatment unit 24 described in the first embodiment, will be described.
  • the treatment tool 12 according to the first embodiment the case where the treatment of the living tissue by ultrasonic vibration in addition to the treatment of the living tissue by the high frequency energy has been described.
  • the treatment tool 12 for treating a living tissue only with a high-frequency output will be described.
  • the medical device unit 10 according to this embodiment is not provided with the ultrasonic transducer 26 shown in FIG.
  • the medical device unit 10 according to this embodiment includes a foot switch 16 instead of the switch 50.
  • the controller 14 and the foot switch 16 are detachable.
  • the treatment portion 24 is provided at the distal end portion of the treatment instrument main body 22.
  • the treatment portion 24 includes a first jaw (first clamp portion) 132 and a second jaw (movable between a position close to the first jaw 132 (closed position) and a position spaced apart (open position) (open position). 2nd clamp part) 134.
  • the first and second jaws 132 and 134 are supported by a rotation shaft 136 in the vicinity of the distal end portion of the treatment instrument body 22.
  • the first and second jaws 132 and 134 move substantially symmetrically with respect to the rotation shaft 136.
  • each jaw 132, 134 rotates about the axis of each rotation shaft (not shown). It is also suitable that it is configured as described above.
  • the stopper 182 defines the clearance C of the electrode 44 of the second jaw 134 with respect to the electrode 42 of the first jaw 132 in the closed position. Therefore, the stopper 182 defines a range in which the first and second jaws 132 and 134 are rotated around the rotation axis 136.
  • the treatment section 24 shown in FIG. 11B does not hold a living tissue.
  • the clearance (Ca) is larger than the interval (clearance) Cb shown in FIG. 12B.
  • the clearance C between the first electrode 42 of the first jaw 132 and the second electrode 44 of the second jaw 134 increases as the distance from the rotation shaft 136 increases.
  • the distance from the rotation axis 136 increases along the X axis, the distance decreases. That is, the clearance C between the first electrode 42 of the first jaw 132 and the second electrode 44 of the second jaw 134 is formed such that Ca> Cb.
  • the blood vessel When the operator presses the switch 16, for example, the blood vessel is sealed by the high frequency output.
  • the blood vessel When the blood vessel is sealed by the high-frequency output, the blood vessel is sandwiched with a substantially uniform thickness as shown in FIGS. 13A and 13B. For this reason, it seals substantially uniformly from the side close to the rotation axis 136 of the blood vessel to the side away from it.
  • the load pressure F between the first and second jaws 132 and 134 decreases along the longitudinal direction (X axis) in the direction away from the rotation shaft 136.
  • the clearance C between the first and second electrodes 42 and 44 of the first and second jaws 132 and 134 here, by gradually reducing the clearance C, particularly from the rotation shaft 136.
  • the collapse pressure of the living tissue can be supplemented at a distal position. For this reason, the crushing amount between the crushing amount for crushing the living tissue at a position close to the rotation shaft 136 and the crushing amount for crushing the living tissue at a position separated from the rotation shaft 136 along the X axis is approximately. It can be made uniform.
  • the force is substantially uniform over the entire length of the grasped living tissue region by adjusting the clearance C. It can be gripped with. For this reason, it is possible to exert a substantially constant gripping force regardless of the position along the X axis of the first jaw 132 and the second jaw 134. Therefore, when high-frequency energy is output to the living tissue, energy can be input uniformly between the side closer to the rotating shaft 136 and the side away from the rotating shaft 136. For this reason, the sealing ability of biological tissues such as blood vessels can be made substantially uniform from the side close to the rotation shaft 136 to the side separated along the X axis.
  • the treatment unit 24 is double-opened.
  • one-sided opening may be used.
  • the second A stopper 82 a may be formed between the jaw 134 and the treatment instrument main body 22.
  • FIGS. 14A to 17C a third embodiment will be described with reference to FIGS. 14A to 17C.
  • This embodiment is a modification of the first and second embodiments, and the same members or members having the same functions as those described in the first and second embodiments are denoted by the same reference numerals and detailed. Description is omitted.
  • the treatment instrument 12 will be described as being capable of high-frequency output and ultrasonic output in the same manner as described in the first embodiment. Of course, the treatment instrument 12 may be formed so that only high-frequency output is possible.
  • the treatment section 24 includes a fixed jaw (first clamp section) 32, a movable jaw 234, and a rotating member (second clamp section) 236. Similar to the movable jaw 34 described in the first embodiment, the movable jaw 234 is supported by the treatment instrument main body 22, more specifically, by a rotation shaft (second rotation shaft) 36 at the distal end of the sheath 22 a. . The rotating member 236 is supported by the movable jaw 234 with a rotating shaft (first rotating shaft) 238 as a fulcrum. The rotating member 236 is located closer to the fixed jaw 32 than the movable jaw 234. The pivot shafts 36 and 238 are preferably parallel to each other. For this reason, the movable jaw 234 and the rotating member 236 move in conjunction with each other and are referred to as a seesaw jaw or a wiper jaw.
  • the movable jaw 234 is provided between the two rotation shafts 36 and 238, and rotates the rotation member 236 as the rotation member 236 rotates about the rotation shaft 36 to open the rotation member 236. And the closed position. That is, the rotating member 236 is located between the position shown in FIG. 14A (open position) separated from the fixed jaw 32 and the position shown in FIG. 14B (closed position) adjacent to the fixed jaw 32 as the movable jaw 234 rotates. Is movable.
  • the rotating member 236 includes a rotating member main body 262 and a pressing pad (stopper) 64.
  • a second electrode 44 is disposed on the rotating member main body 262 at a position facing the first electrode 42 (fixed jaw 32).
  • the second electrode 44 is formed so as to sandwich the pressing pad 64 therebetween. It is also preferable that the rotating member main body 262 is formed integrally with the second electrode 44.
  • the pressing pad 64 is in a position in contact with the fixed jaw 32.
  • the second electrode 44 of the rotating member 236 can approach the fixed jaw 32, that is, the first electrode 42 with a clearance C.
  • the fixed jaw 32 and the rotating member 262 have distal end portions (one end portions) 33a and 236a and proximal end portions (other end portions) 33b and 236b, respectively.
  • the proximal end portions (other end portions) 33b and 236b are close to the rotation shaft 36 and are closest to the proximal end at a position where the living tissue can be gripped.
  • the clearance C is formed so as to continuously extend from the distal end portions (one end portions) 33a and 236a of the fixed jaw 32 and the rotating member 236 to the base end portions (other end portions) 33b and 236b.
  • the first and second electrodes 42 and 44 are based on the distal end portions (one end portions) 33 a and 236 a of the fixed jaw 32 and the rotating member 236 in a state where the rotating member 236 is in the closed position with respect to the fixed jaw 32. It is separated to the end portions (other end portions) 33b and 236b.
  • the movable jaw 234 When the movable handle 23b is brought relatively close to the fixed handle 23a of the treatment instrument body 22, the movable jaw 234 is rotated around the rotation axis 36 at the distal end of the treatment instrument body 22 in conjunction with the operation of the movable handle 23b.
  • the rotating member 236 supported by the movable jaw 234 approaches the fixed jaw 32.
  • the movable jaw 234 rotates around the axis of the rotation shaft 36 in conjunction with the operation of the movable handle 23b.
  • the rotating member 236 supported by the movable jaw 234 is separated.
  • the fixed jaw 32, the movable jaw 234, and the rotating member 236 are formed such that the longitudinal direction thereof is larger than the width direction.
  • the maximum widths of the fixed jaw 32, the movable jaw 234, and the rotating member 236 are determined by the relationship with the inner diameter of the trocar, for example.
  • the rotating member 236 supported by the movable jaw 234 With the rotating member 236 supported by the movable jaw 234 closed with respect to the fixed jaw 32, the rotating member 236 supported by the movable jaw 234 is close to the rotating shaft 238, as shown in FIG. 16A.
  • Such a large pressure can be applied to the living tissue sandwiched between the fixed jaw 32.
  • the rotating member 236 supported by the movable jaw 234 decreases the force applied to the living tissue sandwiched between the rotating jaw 234 and the fixed jaw 32 as it moves away from the rotating shaft 238.
  • the clearance C is reduced linearly (linearly) from a position close to the rotation shaft 238 toward a position separated from the rotation shaft 238 along the X axis.
  • the clearance C ⁇ is about 0.2 mm at the position shown in FIG. 15A
  • the clearance C ⁇ is about 0.1 mm at the position shown in FIG. 15B
  • the clearance C ⁇ is about 0.1 mm at the position shown in FIG. 15C. It is.
  • a clearance C (> 0) larger than 0 is maintained along the X axis between the second electrode 44 of the movable jaw 234 and the fixed jaw 32 as the first electrode 42.
  • the treatment unit 24 grips a blood vessel having a longitudinal direction in a direction orthogonal to the X axis, for example.
  • the blood vessel shown in FIG. 17A showing a cross section taken along the line 15A-15A in FIG. 14B (cross section at the first position), and the cross section taken along the line 15B-15B in FIG. 14B (cross section taken at the second position) shown in FIG.
  • the blood vessel shown in FIG. 14 and the blood vessel shown in FIG. 17C showing the cross section along the line 15C-15C in FIG. 14C (the cross section at the third position) are similarly crushed.
  • the collapse amounts of the blood vessels shown in FIGS. 17A to 17C are substantially the same, and the clearance C is also substantially the same at the positions shown in FIGS. 17A to 17C.
  • the load pressure F of the rotating member 236 decreases along the longitudinal direction (X axis) in the direction away from the rotating shaft 238. This is adjusted by adjusting the clearance C between the first electrode 42 of the fixed jaw 32 and the second electrode 44 of the rotating member 236, which is gradually reduced here to compensate for the crushing pressure of the living tissue. be able to. For this reason, the crushing amount between the crushing amount for crushing the living tissue at a position close to the rotation shaft 238 and the crushing amount for crushing the living tissue at a position separated from the rotation shaft 238 along the X axis is approximately. It can be made uniform.
  • the clearance C is adjusted so that the force is substantially uniform over the entire length of the grasped living tissue region. It can be gripped.
  • the fixed jaw 32 and the rotating member 236 can exhibit a substantially constant gripping force regardless of the position along the X axis. Therefore, when high-frequency energy is output to the living tissue, energy can be input uniformly between the side closer to the rotating shaft 238 and the side away from the rotating shaft 238. For this reason, the sealing ability of biological tissues such as blood vessels can be made substantially uniform from the side close to the rotation shaft 238 to the side separated along the X axis.
  • the clearance C decreases from the center side toward the edge side by narrowing the width of the second electrode 44 with respect to the probe tip portion 32.
  • the clearance C is increased from the center side toward the edge side by increasing the width of the probe tip 32 with respect to the second electrode 44. Make it smaller.
  • the method of reducing the clearance C as it moves away from the rotation shaft 238 is not limited to the state shown in FIG. 16B or the state shown in FIG. 16C.
  • the rotating member 236 is rotatably supported by the rotating shaft 238 on the first jaw 132 shown in FIGS. 11A and 11B, and the second jaw 134 is rotated by the rotating shaft 238.
  • the member 236 can be rotatably supported. In this case, the rotating members 236 themselves face each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Mechanical Engineering (AREA)
  • Dentistry (AREA)
  • Surgical Instruments (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)

Abstract

医療機器(12)は固定ジョー(32)及び可動ジョー(34)を有する。可動ジョー(34)は回動軸(36)周りに、開位置と閉位置の間で回動できる。固定ジョー(32)は第1電極(42)であり、可動ジョー(34)には第2電極(44)が設けられている。固定ジョー(32)に対して可動ジョー(34)を閉じた状態で、固定ジョー(32)と第2電極(44)との間にはクリアランス(Ca、Cb)が存在する。回動軸(36)に近接する位置におけるクリアランス(Ca)は、回動軸(36)から離隔する位置におけるクリアランス(Cb)より大きい。このため、血管を固定ジョー(32)と可動ジョー(34)の間に把持するとき、前者の位置における把持圧力と後者の位置における把持圧力がほぼ等しい。したがって、電極(42、44)から高周波を出力すると、血管をほぼ均一にシールできる。

Description

医療機器
 この発明は、生体組織を把持して処置を行う医療機器に関する。
 例えばUS 2009/088667 A1に開示されているように、第1クランプ部に対して可動する第2クランプ部を回動軸を支点として回動させて、種々の生体組織に負荷圧力を付加して把持する医療機器が開示されている。
 第2クランプ部の負荷圧力は、第2クランプ部の撓み等により、回動軸から離れるにつれて減少していく。このため、例えば血管を把持する場合、回動軸に近接する側と離隔した側では、血管の潰し具合が異なる場合がある。このような状態で例えば高周波エネルギを用いて処置を行うと、回動軸に離隔する側の方が近接する側の方よりも生体組織を凝固させたりシールさせたりする処置に時間がかかるなど、処置にムラが生じ得る。 
 第1及び第2クランプ部は、長手方向に沿った位置に応じて、負荷圧力にかかわらず把持力を調整することが望まれる場合がある。
 この発明は、回動軸に対する位置に応じて把持力を調整して、所望の処置を行うことが可能な医療機器を提供することを目的とする。
 この発明の一態様に係る医療機器は、第1クランプ部と、回動軸と、前記回動軸の軸周りに回動可能で、前記第1クランプ部に対して離隔する開位置と、前記第1クランプ部に近接する閉位置との間を移動可能な第2クランプ部と、前記第2クランプ部に設けられ、前記第1クランプ部に対向し、前記第1クランプ部と協働して、前記閉位置において、前記第1クランプ部との間に、前記回動軸に近接する第1位置よりも、前記回動軸に離隔する第2位置のクリアランスを小さく形成する電極部材とを有する。
図1は、第1実施形態に係る医療機器ユニットを示す概略的なブロック図である。 図2は、第1実施形態に係る医療機器ユニットの処置具(医療機器)を示す概略図である。 図3Aは、第1実施形態に係る医療機器ユニットの処置具の固定ジョー(クランプ部)に対して可動ジョー(クランプ部)を開いた開位置の状態を示す概略図である。 図3Bは、第1実施形態に係る医療機器ユニットの処置具の固定ジョーに対して可動ジョーを閉じた閉位置の状態を示す概略図である。 図4Aは、図3B中の4A-4A線に沿う位置の概略的な横断面図である。 図4Bは、図3B中の4B-4B線に沿う位置の概略的な横断面図である。 図5Aは、第1実施形態に係る処置具の回動軸を支点として可動ジョーを閉位置に回動させた状態で、生体組織に負荷圧力を付加しようとするときの、可動ジョーの位置に対する負荷圧力を示す概略図である。 図5Bは、第1実施形態に係る処置具の回動軸を支点として可動ジョーを閉位置に回動させた状態で、可動ジョーの位置に対する固定ジョーとの間のクリアランスの大きさを示す概略図である。 図5Cは、第1実施形態の変形例に係る処置具の回動軸を支点として可動ジョーを閉位置に回動させた状態で、可動ジョーの位置に対する固定ジョーとの間のクリアランスの大きさを示す概略図である。 図6Aは、図3B中の4A-4A線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図6Bは、図3B中の4B-4B線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図7Aは、第1実施形態の第1変形例に係る医療機器ユニットの処置具の固定ジョーに対して可動ジョーを開いた開位置の状態を示す概略図である。 図7Bは、第1実施形態の変形例に係る医療機器ユニットの処置具の固定ジョーに対して可動ジョーを閉じた閉位置の状態を示す概略図である。 図8は、図3B中の4A-4A線に沿う位置の概略的な横断面図である。 図9Aは、第1実施形態の第1変形例に係る処置具の回動軸を支点として可動ジョーを閉位置に回動させた状態で、生体組織に負荷圧力を付加しようとするときの、可動ジョーの位置に対する負荷圧力を示す概略図である。 図9Bは、第1実施形態の第1変形例に係る処置具の回動軸を支点として可動ジョーを閉位置に回動させた状態で、可動ジョーの位置に対する固定ジョーとの間のクリアランスの大きさを示す概略図である。 図10は、第2実施形態に係る医療機器ユニットを示す概略的なブロック図である。 図11Aは、第2実施形態に係る医療機器ユニットの処置具の第1及び第2ジョー(クランプ部)を開いた開位置の状態を示す概略図である。 図11Bは、第2実施形態に係る医療機器ユニットの処置具の第1及び第2ジョーを閉じた閉位置の状態を示す概略図である。 図12Aは、図11B中の12A-12A線に沿う位置の概略的な横断面図である。 図12Bは、図11B中の12B-12B線に沿う位置の概略的な横断面図である。 図13Aは、図11B中の12A-12A線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図13Bは、図11B中の12B-12B線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図14Aは、第3実施形態に係る医療機器ユニットの処置具の可動ジョーを開いて、固定ジョーに対して可動ジョーに連動する回動部材(クランプ部)を開いた開位置の状態を示す概略図である。 図14Bは、第3実施形態に係る医療機器ユニットの処置具の可動ジョーを閉じて、固定ジョーに対して可動ジョーに連動する回動部材を閉じた閉位置の状態を示す概略図である。 図15Aは、図14B中の15A-15A線に沿う位置の概略的な横断面図である。 図15Bは、図14B中の15B-15B線に沿う位置の概略的な横断面図である。 図15Cは、図14B中の15C-15C線に沿う位置の概略的な横断面図である。 図16Aは、第3実施形態に係る処置具の回動部材(クランプ部)を閉位置に回動させた状態で、生体組織に負荷圧力を付加しようとするときの、回動部材の位置に対する負荷圧力を示す概略図である。 図16Bは、第3実施形態に係る処置具の回動部材を閉位置に回動させた状態で、回動部材の位置に対する固定ジョーとの間のクリアランスの大きさを示す概略図である。 図16Cは、第3実施形態の変形例に係る処置具の回動部材を閉位置に回動させた状態で、回動部材の位置に対する固定ジョーとの間のクリアランスの大きさを示す概略図である。 図17Aは、図14B中の15A-15A線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図17Bは、図14B中の15B-15B線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。 図17Cは、図14B中の15C-15C線に沿う位置で生体組織を把持した状態を示す概略的な横断面図である。
 以下、図面を参照しながらこの発明を実施するための形態について説明する。
 [第1実施形態]
 第1実施形態について図1から図6Bを用いて説明する。
 図1に示すように、この実施形態に係る医療機器ユニット10は、処置具(医療機器)12と、電源を含むコントローラ14とを有する。処置具12とコントローラ14とは着脱可能であることが好適である。
 図2に示すように、処置具12は、処置具本体22と、処置部(エンドエフェクタ)24とを有する。ここでは、処置具12は、さらに、処置具本体22に着脱可能であることが好適な超音波トランスデューサ26を有する。超音波トランスデューサ26には、超音波トランスデューサ26で発生させた超音波振動を伝達可能な超音波プローブ(振動伝達部材)28が接続されている。超音波プローブ28は、例えばチタン合金等の導電性を有する素材で形成されている。超音波プローブ28の先端部(プローブ先端部)は、処置具本体22の先端から突出し、後述する固定ジョー32として用いられる。
 図3A及び図3Bに示すように、処置部24は、固定ジョー(第1クランプ部)32と、可動ジョー(第2クランプ部)34とを有する。可動ジョー34は、固定ジョー32に対して離隔する開位置と、固定ジョー32に近接する閉位置との間を移動可能である。
 可動ジョー34は、処置具本体22、より具体的にはシース22aの先端の回動軸36に支持されている。可動ジョー34は、回動軸36の軸周りに回動可能で、固定ジョー32に対して離隔した図3Aに示す位置(開位置)と、近接した図3Bに示す位置(閉位置)との間を移動可能である。処置部24は、更に、超音波トランスデューサ26に接続されたプローブ先端部(第1クランプ部)32として形成された第1電極(電極部材)42と、第1電極42に対向し、可動ジョー34に設けられた第2電極(第2電極部材)44とを有する。図1に示すように、処置具本体22は、スイッチ50を有する。第1電極42、第2電極44、超音波トランスデューサ26及びスイッチ50はコントローラ14に電気的に接続される。なお、第1電極42及び第2電極44は異なる電位となる。
 図2に示すように、スイッチ50は、この実施形態では、第1スイッチ52と第2スイッチ54とを有する。第1スイッチ52を押圧すると、第1スイッチ52からコントローラ14に信号が入力される。このとき、コントローラ14は第1及び第2電極42,44を制御してシールモードでバイポーラ高周波出力を行う。このため、第1スイッチ52を押圧すると、生体組織の凝固(生体組織が血管であれば、血管のシール)を行うことができる。第2スイッチ54を押圧すると、第2スイッチ54からコントローラ14に信号が入力される。このとき、コントローラ14はシール&カットモードで超音波出力及びバイポーラ高周波出力を行う。このため、第2スイッチ54を押圧すると、生体組織の凝固・切開(生体組織が血管であれば、血管のシール・切開)を行うことができる。
 図2に示すように、処置具本体22は、固定ハンドル23aと、可動ハンドル23bとを有する。この実施形態に係る処置具12の処置部24は、いわゆる片開き型に形成されている。処置具本体22の可動ハンドル23bを固定ハンドル23aに対して離隔させる操作に連動して固定ジョー32に対して可動ジョー34が開く。処置具本体22の可動ハンドル23bを固定ハンドル23aに対して近接させる操作に連動して固定ジョー32に対して可動ジョー34が閉じる。すなわち、処置部24は、固定ジョー32に対して可動ジョー34を開閉可能である。固定ジョー32に対して可動ジョー34を閉じることで、固定ジョー32と可動ジョー34との間に生体組織が把持される。なお、固定ジョー32に対して可動ジョー34を開閉させる機構は種々の公知の機構を適宜に用いれば良いので、ここでの説明を省略する。
 図4A及び図4Bに示すように、固定ジョー(プローブ先端部)32の横断面は略八角形に形成されている。固定ジョー32は、第2電極44と協働して、生体組織に高周波出力を行うための第1電極42として用いられる。
 可動ジョー34は、可動ジョー本体62と、押圧パッド(ストッパ)64とを有する。可動ジョー本体62には、第1電極42に対向する位置に第2電極44が配設されている。第2電極44は、押圧パッド64を間に挟んだ状態に形成されている。可動ジョー本体62は、第2電極44と一体的に形成されていることも好適である。押圧パッド64は電気絶縁性を有するとともに耐熱性、耐摩耗性を有する素材で形成されている。押圧パッド64は、固定ジョー32の把持面32aに接触し得る位置にある。これに対し、可動ジョー34の第2電極44は、固定ジョー32すなわち第1電極42に対してクリアランスCを持って近接可能である。
 固定ジョー32及び可動ジョー34はそれぞれ先端部(一端部)33a,35a及び基端部(他端部)33b,35bを有する。基端部(他端部)33b,35bは、回動軸36に近接し、生体組織を把持可能な位置の最も基端の近傍である。クリアランスCは、固定ジョー32及び可動ジョー34の先端部(一端部)33a,35aから基端部(他端部)33b,35bまで連続的に形成されている。すなわち、第1及び第2電極42,44は、固定ジョー32に対して可動ジョー34が閉位置の状態で、固定ジョー32及び可動ジョー34の先端部(一端部)33a,35aから基端部(他端部)33b,35bまで離間している。なお、固定ジョー32のうち、先端部(一端部)33a及び基端部(他端部)33bの間は、真っ直ぐでも良く、曲がっていても良い。可動ジョー34のうち、先端部(一端部)35a及び基端部(他端部)35bの間は、真っ直ぐでも良く、曲がっていても良い。ここでは説明の簡略化のため、固定ジョー32及び可動ジョー34が真っ直ぐであるものとして説明する。
 処置具本体22の固定ハンドル23aに対して可動ハンドル23bを相対的に近接させると、可動ハンドル23bの操作に連動して、可動ジョー34が処置具本体22の先端の回動軸36の軸周りに回動して、固定ジョー32に対して可動ジョー34が近接する。固定ハンドル23aに対して可動ハンドル23bを相対的に離隔させると、可動ハンドル23bの操作に連動して、可動ジョー34が回動軸36の軸周りに回動して、固定ジョー32に対して可動ジョー34が離隔する。
 なお、固定ジョー32及び可動ジョー34は、その長手方向が幅方向に比べて大きく形成されている。固定ジョー32及び可動ジョー34の最大幅は、例えばトロッカーの内径との関係により決められる。
 ここで、図3Bに示すように、回動軸36を原点OとしてX軸を取る。特に、可動ジョー34の回動軸36から処置具本体22とは反対側の延出方向に向かってX軸を取る。
 固定ジョー32に対して可動ジョー34が近接した閉位置の状態で、可動ジョー34の押圧パッド64がその長手方向(X軸方向)に沿って、生体組織に付加可能な圧力(負荷圧力)Fは、概略的には、図5Aに示す状態に分布する。可動ジョー34が固定ジョー32との間に挟持する生体組織に付加可能な負荷圧力F、すなわち、閉位置における負荷圧力Fは、回動軸36から離れるにつれて低下していく。これは、可動ジョー34及び固定ジョー32の撓みに起因するものと考えられる。このため、固定ジョー32に対して可動ジョー34を閉じた状態で、図5Aに示すように、可動ジョー34は、回動軸36に近接するほど大きな圧力を、離隔するほど小さな圧力を、固定ジョー32との間に挟持する生体組織に付加することができる。
 図3Bに示す処置部24は生体組織を把持していない。このとき、固定ジョー32に対して可動ジョー34を閉じた状態で、図4Aに示す可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間の間隔(クリアランス)Caは、図4Bに示す間隔(クリアランス)Cbよりも大きい。そして、図5Bに示すように、この実施形態に係る可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間のクリアランスCは、回動軸36に近接するほど大きく、回動軸36からX軸に沿って離隔するにつれて小さくなる。すなわち、可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間のクリアランスCは、Ca>Cbに形成されている。
 ここでは、クリアランスCは、図5Bに示すように、回動軸36に近接する位置からX軸に沿って回動軸36に離隔する位置に向かって線型的(直線的)に小さくしている。例えば、図4Aに示す位置ではクリアランスCaは例えば0.2mm程度であり、図4Bに示す位置ではクリアランスCbは例えば0.1mm程度である。可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間は、0よりも大きなクリアランスC(>0)がX軸に沿って維持されている。
 なお、クリアランスCは、第1電極42としての固定ジョー32の、X軸に沿う方向の各位置におけるX軸に直交する幅方向の幅を調整しても良いし、X軸に沿う方向の各位置におけるX軸に直交する可動ジョー34の第2電極44の形状を調整しても良い。
 次に、この実施形態に係る処置具12の作用について説明する。 
 術者が処置具12を適宜に保持し、固定ハンドル23aに対して可動ハンドル23bを適宜に操作して、生体組織(例えば血管)を固定ジョー32と可動ジョー34との間に把持する。
 このとき、可動ジョー34による処置部24の負荷圧力は、図5Aに示すように、回動軸36に近接する位置からX軸に沿って離隔するにつれて略線型的に低下する。図4A、図4B及び図5Bに示すように、固定ジョー32の第1電極42と可動ジョー34の第2電極44との間のクリアランスCは回動軸36に近接するほど大きく、回動軸36に近接する位置からX軸に沿って離隔するにつれて減少する。より具体的には、図5Bに示すように、固定ジョー32と可動ジョー34との間の間隔(クリアランス)Cが、回動軸36からX軸に沿って先端に向かうにつれて狭くなるように形成されている。このため、X軸に沿って回動軸36から離隔するにつれて可動ジョー34の負荷圧力Fが減少する。しかしながら、ここでは、固定ジョー32の第1電極42と可動ジョー34の第2電極44との間のクリアランスCを小さくすることで、生体組織の潰すための負荷圧力Fを補っている。このため、回動軸36に近接する第1位置よりも、回動軸36に離隔する第2位置のクリアランスCを小さく形成して、固定ジョー32及び可動ジョー34の把持圧力を調整している。
 処置部24で、例えばX軸に直交する方向に長手方向を有する血管を把持する。このとき、図3B中の4A-4A線における断面(第1位置における断面)を示す図6Aに示す血管と、図3B中の4B-4B線における断面(第2位置における断面)を示す図6Bに示す血管とが、同様に潰される。このとき、図6A及び図6Bに示す血管の潰し量は略同一であり、クリアランスCも図6A及び図6Bに示す位置で略同一である。
 そして、術者が例えば第1スイッチ52を押圧すると、高周波出力により血管がシールされる。高周波出力により血管がシールされる場合、血管は図6A及び図6Bに示すように略均一の厚さに挟持されている。このため、血管は回動軸36に近接する側から離隔する側まで、略均一的にシールされる。
 一方、術者が例えば第2スイッチ54を押圧すると、高周波出力により血管がシールされながら、超音波出力により切断される。高周波出力及び超音波出力を同時に出力させて血管をシールしながら切断する場合、上述したように略均一的にシールされる。このため、シール漏れが発生し難い状態で血管が切断される。
 以上説明したように、この実施形態に係る処置具12によれば、以下のことが言える。
 回動軸36から離隔する方向の長手方向(X軸)に沿って、可動ジョー34の負荷圧力Fが減少する。これを、固定ジョー32の第1電極42と可動ジョー34の第2電極44との間のクリアランスCを調整すること、ここでは徐々に小さくしていくことで、生体組織の潰し圧力を補うことができる。このため、回動軸36に近接する位置で生体組織を潰す潰し量と、回動軸36に対してX軸に沿って離隔する位置で生体組織を潰す潰し量との間の潰し量を略均一化できる。すなわち、固定ジョー32と可動ジョー34との間に挟持する生体組織への負荷圧力FがX軸に沿って異なっていても、クリアランスCの調整により、把持された生体組織の領域の全長にわたって略均一の力で把持することができる。このため、固定ジョー32及び可動ジョー34のうち、X軸に沿った位置にかかわらず、略一定の把持力を発揮できる。したがって、高周波エネルギを生体組織に出力したとき、回動軸36に対して近接する側と離隔する側との間に、均一的にエネルギを入力することができる。このため、血管等の生体組織のシール能力を、回動軸36に近接する側から、X軸に沿って離隔する側まで、略均一化することができる。
 また、血管等の生体組織を切断する場合、シール能力を略均一化している。このため、血管の切断の際に血管のシール漏れが発生し、血液が吐出するのをより確実に防止できる。
 なお、高周波出力を用いて生体組織を凝固させる際も、血管と同様に、略均一的に凝固させることができる。また、生体組織を切断する場合、シール能力を略均一化している。このため、生体組織の切断の際に生体組織の凝固漏れが発生するのをより確実に防止できる。
 なお、この実施形態では、クリアランスCを図5Bに示すように形成する例について説明した。その他、図5Cに示すように、回動軸36からX軸に沿って離隔するにつれて、段階的にクリアランスCを小さくすることも好適である。 
 この場合、回動軸36から離れる位置、すなわち回動軸36に対する位置に応じて把持力を調整することができる。このため、処置部24は、長手方向に沿った位置に応じて、把持力を変えることができる。
 また、クリアランスCを回動軸36から離れるにつれて小さくする方式は、図5Bに示す状態や、図5Cに示す状態に限られることはなく、例えば放物線状等、二次曲線的に小さくしても良い。
 次に、第1実施形態の第1変形例について図7A及び図7Bを用いて説明する。
 図7A及び図7Bに示す処置具本体22は、同心状に配置された2重シース22a,22bを有する。ここでは、可動ジョー34は、処置具本体22の内シース22aの先端の回動軸36に支持されている。固定ハンドル23aに対して可動ハンドル23bを操作すると、公知の機構により、内シース22a及び外シース22bが相対的にシース22a,22bの軸方向に沿って移動する。このため、固定ジョー32及び可動ジョー34は、図7A及び図7Bに示すように開閉する。
 ここで、外シース22bの先端及び可動ジョー34の基端には、それぞれ当接部(ストッパ)82a,82bが形成されている。当接部82a,82b同士は、図7Aに示すように、互いに離隔可能であるとともに、図7Bに示すように互いに当接可能である。当接部(ストッパ)82a,82bは、可動ジョー34を回動軸36の軸周りに回動させる範囲を規定するとともに、閉位置において、固定ジョー32の電極42に対する電極44のクリアランスCを規定する。
 このため、図7Bに示すように、閉状態のとき、固定ジョー32に対する可動ジョー34の回動量を調整して、図4A及び図4Bに示すクリアランスCa,Cbを調整可能である。
 固定ジョー32が超音波プローブ28として用いられず、高周波電極42として用いられる場合、可動ジョー34の開閉方向に沿ってクリアランスCを形成する。このため、電極42,44に電気絶縁性を有する突起を設ける必要がなくなり、電極42,44をより大きな面積に形成することができる。
 次に、第1実施形態の第2変形例について図8から図9Bを用いて説明する。この変形例に係るクリアランスCは、第1実施形態で説明したクリアランスCと合わせて調整されることが好適である。
 図8に示すように、図3B中の回動軸36と固定ジョー32及び可動ジョー34のそれぞれの先端部33a,35aとの間のX軸に沿った適宜の位置に直交する方向にY軸を取る。
 固定ジョー32に対して可動ジョー34が近接した閉位置の状態で、可動ジョー34の押圧パッド64がその長手方向に直交する方向に沿って、生体組織に付加可能な圧力(負荷圧力)Fは、概略的には、図9Aに示す状態に分布する。可動ジョー34が固定ジョー32との間に挟持する生体組織に付加可能な負荷圧力F、すなわち、閉位置における負荷圧力Fは、固定ジョー32及び可動ジョー34の幅方向の略中央から、Y方向に沿って離れるにつれて低下していく。これは、可動ジョー34及び固定ジョー32の撓みに起因するものと考えられる。このため、固定ジョー32に対して可動ジョー34を閉じた状態で、図9Aに示すように、可動ジョー34は、固定ジョー32及び可動ジョー34の幅方向の略中央に近接するほど大きな圧力を、離隔するほど小さな圧力を、固定ジョー32との間に挟持する生体組織に付加することができる。なお、図9A中の中央の付加圧力が一定の部分は、可動ジョー34及び固定ジョー32の中点Mを含む、図8中の可動ジョー34の押圧パッド64に固定ジョー32(第1電極42)の把持面32aが当接している部分に相当する。
 図3Bに示す処置部24は生体組織を把持していない。このとき、固定ジョー32に対して可動ジョー34を閉じた状態で、図8に示す可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間の間隔(クリアランス)をCとする。図9Bに示すように、この変形例に係る可動ジョー34の第2電極44と第1電極42としての固定ジョー32との間のクリアランスCは、固定ジョー32及び可動ジョー34の押圧パッド64が接触する位置を除いて、固定ジョー32及び可動ジョー34の幅方向の略中央に近接するほど大きく、固定ジョー32及び可動ジョー34の幅方向の略中央からY軸に沿って離隔するにつれて小さくなる。そして、固定ジョー32の第1電極42と可動ジョー34の第2電極44との間のクリアランスCを、固定ジョー32及び可動ジョー34の幅方向の略中央から離隔するにつれて小さくすることで、生体組織の潰すための負荷圧力Fを補っている。また、第1実施形態で説明したように、固定ジョー32及び可動ジョー34のうち、X軸に沿った位置にかかわらず、略一定の把持力を発揮できる。したがって、例えば血管は固定ジョー32及び可動ジョー34の幅方向の略中央から離隔する側まで、略均一的にシールされる。このため、血管等の生体組織のシール能力を、回動軸36に近接する側から、X軸に沿って離隔する側まで、略均一化することができるとともに、固定ジョー32及び可動ジョー34の幅方向の略中央からY方向に沿って離隔する側まで、略均一化することができる。
 なお、好ましくは、X軸に対して直交するY軸方向に沿う方向に関して、プローブ先端部32に対して第2電極44の幅を狭めることで、固定ジョー32及び可動ジョー34の幅方向の略中央から縁部に向かうにつれてクリアランスCを小さくする。また、好ましくは、X軸に対して直交するY軸方向に沿う方向に関して、第2電極44に対してプローブ先端部32の幅を広くすることで固定ジョー32及び可動ジョー34の幅方向の略中央から縁部に向かうにつれてクリアランスCを小さくする。
 [第2実施形態]
 次に、第2実施形態について図10から図13Bを用いて説明する。この実施形態は第1実施形態の変形例であって、第1実施形態で説明した部材と同一の部材又は同一の機能を有する部材には同一の符号を付し、詳しい説明を省略する。 
 ここでは、第1実施形態で説明した、片開きの処置部24とは異なり、いわゆる両開きの処置部24を有する例について説明する。また、第1実施形態に係る処置具12では高周波エネルギによる生体組織の処置に加えて、超音波振動による生体組織の処置を行える場合について説明した。ここでは、高周波出力のみにより生体組織を処置する処置具12について説明する。このため、図10に示すように、この実施形態に係る医療機器ユニット10は、図1に示す超音波トランスデューサ26が配設されていない。また、この実施形態に係る医療機器ユニット10は、スイッチ50の代わりにフットスイッチ16を有するものとする。コントローラ14とフットスイッチ16とは着脱可能である。
 図11Aから図12Bに示すように、処置部24は、処置具本体22の先端部に設けられている。処置部24は、第1ジョー(第1クランプ部)132と、第1ジョー132に対して近接した位置(閉位置)と離隔した位置(開位置)との間を移動可能な第2ジョー(第2クランプ部)134とを有する。第1及び第2ジョー132,134は、処置具本体22の先端部近傍の回動軸136に支持されている。第1及び第2ジョー132,134は、回動軸136に対して略対称に動く。なお、第1及び第2ジョー132,134を開閉させる機構は平行四辺形リンク機構など種々の公知の機構を適宜に用いれば良いので、ここでの説明を省略する。なお、この実施形態の図11A及び図11B中では、1つの回動軸136として図示しているが、各ジョー132,134はそれぞれの回動軸(図示せず)の軸周りに回動するように構成されていることも好適である。
 第1ジョー132には第1電極42が配設され、第2ジョー134には第2電極44が配設されている。第1電極42及び第2電極44は、この実施形態では、閉位置において、略平行となる平板状に形成されている。第1及び第2ジョー132,134が閉位置にある場合、第1及び第2電極42,44は近接するが、互いに離間している。そして、閉位置における第1及び第2電極42,44間の距離は、回動軸136に近接するほど大きく、回動軸136から離隔するほど小さい。なお、この実施形態では、第1及び第2電極42,44間は、第1電極42に設けられた電気絶縁性を有するストッパ182により、互いに離間している。ストッパ182は、閉位置において、第1ジョー132の電極42に対する第2ジョー134の電極44のクリアランスCを規定する。したがって、ストッパ182は、第1及び第2ジョー132,134を回動軸136の軸周りに回動させる範囲を規定している。
 図11Bに示す処置部24は生体組織を把持していない。このとき、第1ジョー132に対して第2ジョー134を閉じた状態で、図12Aに示す第2ジョー134の第2電極44と第1電極42としての第1ジョー132との間の間隔(クリアランス)Caは、図12Bに示す間隔(クリアランス)Cbよりも大きい。そして、図5Bに示すように、この実施形態に係る第1ジョー132の第1電極42と第2ジョー134の第2電極44との間のクリアランスCは、回動軸136に近接するほど大きく、回動軸136からX軸に沿って離隔するにつれて小さくなる。すなわち、第1ジョー132の第1電極42と第2ジョー134の第2電極44との間のクリアランスCは、Ca>Cbに形成されている。
 次に、この実施形態に係る処置具12の作用について説明する。 
 処置部24で、例えばX軸に直交する方向に長手方向を有する血管を把持する。このとき、図11B中の12A-12A線における断面(第1位置における断面)を示す図13Aに示す血管と、図11B中の12B-12B線における断面(第2位置における断面)を示す図13Bに示す血管とが、同様に潰される。このとき、図13A及び図13Bに示す血管の潰し量は略同一であり、クリアランスCも図13A及び図13Bに示す位置で略同一である。
 そして、術者が例えばスイッチ16を押圧すると、高周波出力により血管がシールされる。高周波出力により血管がシールされる場合、血管は図13A及び図13Bに示すように略均一の厚さに挟持されている。このため、血管の回動軸136に近接する側から離隔する側まで、略均一的にシールされる。
 以上説明したように、この実施形態に係る処置具12によれば、以下のことが言える。
 回動軸136から離隔する方向の長手方向(X軸)に沿って、第1及び第2ジョー132,134間の負荷圧力Fが減少する。これを、第1及び第2ジョー132,134の第1及び第2電極42,44との間のクリアランスCを調整すること、ここでは徐々に小さくしていくことで、特に回動軸136から遠位の位置で生体組織の潰し圧力を補うことができる。このため、回動軸136に近接する位置で生体組織を潰す潰し量と、回動軸136に対してX軸に沿って離隔する位置で生体組織を潰す潰し量との間の潰し量を略均一化できる。すなわち、第1ジョー132と第2ジョー134との間に挟持する生体組織への負荷圧力Fが異なっていても、クリアランスCの調整により、把持された生体組織の領域の全長にわたって略均一の力で把持することができる。このため、第1ジョー132及び第2ジョー134のうち、X軸に沿った位置にかかわらず、略一定の把持力を発揮できる。したがって、高周波エネルギを生体組織に出力したとき、回動軸136に対して近接する側と離隔する側との間に、均一的にエネルギを入力することができる。このため、血管等の生体組織のシール能力を、回動軸136に近接する側から、X軸に沿って離隔する側まで、略均一化することができる。
 なお、高周波出力を用いて、血管だけでなく、生体組織を凝固させる際も、血管と同様に、略均一的に凝固させることができる。
 高周波出力のみを用いる例について、処置部24が両開きである場合について説明した。第1実施形態で説明したように、片開きであっても良い。この場合、第1及び第2電極42,44の少なくとも一方に電気絶縁性を有するストッパ182を配置するほか、図7に示すように、第1ジョー132と処置具本体22との間、第2ジョー134と処置具本体22との間にストッパ82aを形成しても良い。
 [第3実施形態]
 次に、第3実施形態について図14Aから図17Cを用いて説明する。この実施形態は第1及び第2実施形態の変形例であって、第1及び第2実施形態で説明した部材と同一の部材又は同一の機能を有する部材には同一の符号を付し、詳しい説明を省略する。ここでの処置具12は、第1実施形態で説明したのと同様に、高周波出力及び超音波出力可能であるものとして説明する。処置具12が高周波出力のみ可能であるように形成されても良いことはもちろんである。
 図14Aから図15Cに示すように、処置部24は、固定ジョー(第1クランプ部)32と、可動ジョー234と、回動部材(第2クランプ部)236とを有する。可動ジョー234は、第1実施形態で説明した可動ジョー34と同様に、処置具本体22、より具体的にはシース22aの先端の回動軸(第2回動軸)36に支持されている。回動部材236は、可動ジョー234に回動軸(第1回動軸)238を支点として支持されている。回動部材236は可動ジョー234よりも固定ジョー32に近接する位置にある。回動軸36,238は互いに平行であることが好適である。このため、可動ジョー234及び回動部材236は連動して動き、シーソージョーや、ワイパージョーなどと称される。
 可動ジョー234は、2つの回動軸36,238間に設けられ、回動軸36の軸周りに回動するのに伴って回動部材236を回動させて、回動部材236を開位置と閉位置との間を移動させることができる。すなわち、回動部材236は、可動ジョー234の回動にしたがって、固定ジョー32に対して離隔した図14Aに示す位置(開位置)と、近接した図14Bに示す位置(閉位置)との間を移動可能である。
 回動部材236は、回動部材本体262と、押圧パッド(ストッパ)64とを有する。回動部材本体262には、第1電極42(固定ジョー32)に対向する位置に第2電極44が配設されている。第2電極44は、押圧パッド64を間に挟んだ状態に形成されている。回動部材本体262は、第2電極44と一体的に形成されていることも好適である。押圧パッド64は、固定ジョー32に接触する位置にある。これに対し、回動部材236の第2電極44は、固定ジョー32すなわち第1電極42に対してクリアランスCを持って近接可能である。
 固定ジョー32及び回動部材262はそれぞれ先端部(一端部)33a,236a及び基端部(他端部)33b,236bを有する。基端部(他端部)33b,236bは、回動軸36に近接し、生体組織を把持可能な位置の最も基端の近傍である。クリアランスCは、固定ジョー32及び回動部材236の先端部(一端部)33a,236aから基端部(他端部)33b,236bまで連続的に延伸した状態に形成されている。すなわち、第1及び第2電極42,44は、固定ジョー32に対して回動部材236が閉位置の状態で、固定ジョー32及び回動部材236の先端部(一端部)33a,236aから基端部(他端部)33b,236bまで離間している。
 処置具本体22の固定ハンドル23aに対して可動ハンドル23bを相対的に近接させると、可動ハンドル23bの操作に連動して、可動ジョー234が処置具本体22の先端の回動軸36の軸周りに回動して、固定ジョー32に対して可動ジョー234に支持された回動部材236が近接する。固定ハンドル23aに対して可動ハンドル23bを相対的に離隔させると、可動ハンドル23bの操作に連動して、可動ジョー234が回動軸36の軸周りに回動して、固定ジョー32に対して可動ジョー234とともに、可動ジョー234に支持された回動部材236が離隔する。
 なお、固定ジョー32、可動ジョー234及び回動部材236は、その長手方向が幅方向に比べて大きく形成されている。固定ジョー32、可動ジョー234及び回動部材236の最大幅は、例えばトロッカーの内径との関係により決められる。
 ここで、図14Bに示すように、回動軸36を原点OとしてX軸を取る。特に、可動ジョー234の回動軸36から処置具本体22とは反対側の延出方向に向かってX軸を取る。固定ジョー32に対して可動ジョー234に支持された回動部材236が近接した閉位置の状態で、可動ジョー234に支持された回動部材236の長手方向(X軸方向)に対して、生体組織に付加可能な圧力(負荷圧力)Fは、概略的には、図16Aに示す状態に分布する。固定ジョー32に対して可動ジョー234に支持された回動部材236を閉じた状態で、図16Aに示すように、可動ジョー234に支持された回動部材236は、回動軸238に近接するほど大きな圧力を、固定ジョー32との間に挟持する生体組織に付加することができる。このため、可動ジョー234に支持された回動部材236は、回動軸238から離れるにつれて、固定ジョー32との間に挟持する生体組織に付加する力を減少させる。
 図14Bに示す処置部24は生体組織を把持していない。このとき、固定ジョー32に対して可動ジョー234を閉じた状態で、図15Aに示す可動ジョー234が支持された回動部材236の第2電極44と第1電極42としての固定ジョー32との間の間隔(クリアランス)Cαは、図15Bに示す間隔(クリアランス)Cβ、図15Cに示す間隔(クリアランス)Cγよりもそれぞれ大きい。そして、図16Bに示すように、この実施形態に係る回動部材236の第2電極44と第1電極42としての固定ジョー32との間のクリアランスCは、回動部材236の回動軸238に近接するほど大きく、回動軸238からX軸に沿って離隔するにつれて小さく形成されている。すなわち、回動部材236の第2電極44と第1電極42としての固定ジョー32との間のクリアランスCは、Cα>Cβ、Cα>Cγに形成されている。
 ここでは、クリアランスCは、図16Bに示すように、回動軸238に近接する位置からX軸に沿って回動軸238に離隔する位置に向かって線型的(直線的)に小さくしている。例えば、図15Aに示す位置ではクリアランスCαは例えば0.2mm程度であり、図15Bに示す位置ではクリアランスCβは例えば0.1mm程度であり、図15Cに示す位置ではクリアランスCγは例えば0.1mm程度である。可動ジョー234の第2電極44と第1電極42としての固定ジョー32との間は、0よりも大きなクリアランスC(>0)がX軸に沿って維持されている。
 次に、この実施形態に係る処置具12の作用について説明する。 
 例えば、処置部24で、例えばX軸に直交する方向に長手方向を有する血管を把持する。このとき、図14B中の15A-15A線における断面(第1位置における断面)を示す図17Aに示す血管と、図14B中の15B-15B線における断面(第2位置における断面)を示す図17Bに示す血管と、図14C中の15C-15C線における断面(第3位置における断面)を示す図17Cに示す血管とが、同様に潰される。このとき、図17Aから図17Cに示す血管の潰し量は略同一であり、クリアランスCも図17Aから図17Cに示す位置で略同一である。
 そして、術者が例えば第1スイッチ52を押圧すると、高周波出力により血管がシールされる。高周波出力により血管がシールされる場合、血管は図17Aから図17Cに示すように略均一の厚さに挟持されている。このため、血管は、回動部材236の先端部236aから基端部236bに至るまで、いずれの位置においても略均一的にシールされる。
 一方、術者が例えば第2スイッチ54を押圧すると、高周波出力により血管がシールされながら、超音波出力により切断される。高周波出力及び超音波出力を同時に出力させて血管をシールしながら切断する場合、上述したように略均一的にシールされる。このため、シール漏れが発生し難い状態で血管が切断される。
 以上説明したように、この実施形態に係る処置具12によれば、以下のことが言える。 
 回動軸238から離隔する方向の長手方向(X軸)に沿って、回動部材236の負荷圧力Fが減少する。これを、固定ジョー32の第1電極42と回動部材236の第2電極44との間のクリアランスCを調整すること、ここでは徐々に小さくしていくことで、生体組織の潰し圧力を補うことができる。このため、回動軸238に近接する位置で生体組織を潰す潰し量と、回動軸238に対してX軸に沿って離隔する位置で生体組織を潰す潰し量との間の潰し量を略均一化できる。すなわち、固定ジョー32と回動部材236との間に挟持する生体組織への負荷圧力Fが異なっていても、クリアランスCの調整により、把持された生体組織の領域の全長にわたって略均一の力で把持することができる。このため、固定ジョー32及び回動部材236のうち、X軸に沿った位置にかかわらず、略一定の把持力を発揮できる。したがって、高周波エネルギを生体組織に出力したとき、回動軸238に対して近接する側と離隔する側との間に、均一的にエネルギを入力することができる。このため、血管等の生体組織のシール能力を、回動軸238に近接する側から、X軸に沿って離隔する側まで、略均一化することができる。
 また、血管等の生体組織を切断する場合、シール能力を略均一化している。このため、血管の切断の際に血管のシール漏れが発生し、血液が吐出するのをより確実に防止できる。
 高周波出力を用いて、血管だけでなく、生体組織を凝固させる際も、血管と同様に、略均一的に凝固させることができる。また、生体組織を切断する場合、シール能力を略均一化している。このため、生体組織の切断の際に生体組織の凝固漏れが発生するのをより確実に防止できる。
 なお、この実施形態では、クリアランスCを図16Bに示すように形成する例について説明した。その他、図16Cに示すように、回動軸238からX軸に沿って離隔するにつれて、段階的にクリアランスCを小さくすることも好適である。この場合、回動軸238から離れる位置、すなわち回動軸238に対する位置に応じて把持力を調整することができる。このため、処置部24は、長手方向に沿った位置に応じて、把持力を変えることができる。クリアランスCはプローブ先端部32のX軸に対して直交するY軸方向に沿う第2電極44との間の幅を調整することで形成しても良いし、第2電極44に対してプローブ先端部32のX軸に対して直交するY軸方向に沿う幅を調整することで形成しても良い。好ましくは、X軸に対して直交するY軸方向に沿う方向に関して、プローブ先端部32に対して第2電極44の幅を狭めることで中央側から縁部側に向かうにつれてクリアランスCを小さくする。また、好ましくは、X軸に対して直交するY軸方向に沿う方向に関して、第2電極44に対してプローブ先端部32の幅を広くすることで中央側から縁部側に向かうにつれてクリアランスCを小さくする。
 また、クリアランスCを回動軸238から離れるにつれて小さくする方式は、図16Bに示す状態や、図16Cに示す状態に限られることはない。
 第2実施形態で説明した図11A及び図11Bに示す両開きの第1ジョー132に回動軸238で回動部材236を回動可能に支持し、第2ジョー134に回動軸238で回動部材236を回動可能に支持することが可能であることはもちろんである。この場合、回動部材236同士自体が対向する。
 これまで、いくつかの実施形態について図面を参照しながら具体的に説明したが、この発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれるすべての実施を含む。

Claims (15)

  1.  第1クランプ部と、
     回動軸と、
     前記回動軸の軸周りに回動可能で、前記第1クランプ部に対して離隔する開位置と、前記第1クランプ部に近接する閉位置との間を移動可能な第2クランプ部と、
     前記第2クランプ部に設けられ、前記第1クランプ部に対向し、前記第1クランプ部と協働して、前記閉位置において、前記第1クランプ部との間に、前記回動軸に近接する第1位置よりも、前記回動軸に離隔する第2位置のクリアランスを小さく形成して、把持圧力を調整する電極部材と
     を有する、医療機器。
  2.  前記第1クランプ部及び前記電極部材は、協働して、前記閉位置において、前記クリアランスを、前記第1位置から前記第2位置まで、徐々に小さくしている、請求項1に記載の医療機器。
  3.  前記第1クランプ部及び前記電極部材は、協働して、前記閉位置において、前記クリアランスを、前記第1位置から前記第2位置まで段階的に小さくしている、請求項1に記載の医療機器。
  4.  前記第2クランプ部の前記回動軸の軸周りの前記閉位置における負荷圧力は、前記回動軸から離隔するにつれて低下し、
     前記第1クランプ部と前記第2クランプ部の前記電極部材との間の前記クリアランスを調整して、前記第1クランプ部と前記第2クランプ部の前記電極部材との間に生体組織を把持したときの把持圧力を前記第1位置と前記第2位置とで均一化している、請求項1に記載の医療機器。
  5.  前記第1クランプ部及び前記第2クランプ部はそれぞれ一端部及び他端部を有し、
     前記クリアランスは、前記一端部から前記他端部まで連続的に形成されている、請求項1に記載の医療機器。
  6.  前記回動軸に平行な第2回動軸と、
     前記回動軸と前記第2回動軸との間に設けられ、前記第2回動軸の軸周りに回動するのに伴って前記第2クランプ部を回動させて、前記第2クランプ部を前記開位置と前記閉位置との間を移動させるジョーと
     を有する、請求項1に記載の医療機器。
  7.  前記回動軸は、前記第2クランプ部の一端と他端との間を支持している、請求項6に記載の医療機器。
  8.  前記第1クランプ部は、前記電極部材とは異なる電位の第2電極部材として形成されている、請求項1に記載の医療機器。
  9.  前記第2クランプ部を前記回動軸の軸周りに回動させる範囲を規定するとともに、前記閉位置において、前記第1クランプ部の前記第2電極部材に対する前記電極部材の前記クリアランスを規定するストッパを有する、請求項8に記載の医療機器。
  10.  前記ストッパは、電気絶縁性を有する、請求項9に記載の医療機器。
  11.  前記ストッパは、前記第1クランプ部と前記第2クランプ部に設けられた前記電極部材とを前記閉位置において離間させる、請求項9に記載の医療機器。
  12.  前記第1クランプ部は、導電性を有し超音波振動を伝達可能な振動伝達部材として形成されている、請求項8に記載の医療機器。
  13.  第1クランプ部と、
     前記第1クランプ部に対して離隔した開位置と、前記第1クランプ部に近接した閉位置との間を移動可能で、前記閉位置において前記第1クランプ部と当接する当接部を有する第2クランプ部と、
     前記第2クランプ部に設けられ、前記第1クランプ部に対向し、前記閉位置において、前記第1クランプ部との間に先端部から基端部に沿って延伸したクリアランスが形成され、前記先端部から前記基端部にわたって延伸する方向に沿った前記第1クランプ部に対する前記第2クランプ部の負荷圧力に基づいて、前記先端部から前記基端部に向かって前記第1クランプ部と協働して前記クリアランスを調整する電極部材と
     を有する、医療機器。
  14.  前記閉位置において、前記負荷圧力が大きい位置におけるクリアランスに比べて、前記負荷圧力が小さい位置における前記クリアランスが小さい、請求項13に記載の医療機器。
  15.  前記閉位置において、前記第1クランプ部と前記第2クランプ部の前記電極部材との間の前記クリアランスを調整して、前記第1クランプ部と前記第2クランプ部の前記電極部材との間に生体組織を把持したときの把持圧力を、前記第2クランプ部の前記負荷圧力が大きい位置と前記負荷圧力が小さい位置とで均一化している、請求項13に記載の医療機器。
PCT/JP2016/062019 2015-04-24 2016-04-14 医療機器 WO2016171067A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16783088.4A EP3216411A4 (en) 2015-04-24 2016-04-14 Medical device
CN201680003929.7A CN106999241B (zh) 2015-04-24 2016-04-14 医疗设备
JP2016574033A JP6109459B2 (ja) 2015-04-24 2016-04-14 医療機器
US15/615,370 US10064676B2 (en) 2015-04-24 2017-06-06 Medical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-089674 2015-04-24
JP2015089674 2015-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/615,370 Continuation US10064676B2 (en) 2015-04-24 2017-06-06 Medical apparatus

Publications (1)

Publication Number Publication Date
WO2016171067A1 true WO2016171067A1 (ja) 2016-10-27

Family

ID=57143919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062019 WO2016171067A1 (ja) 2015-04-24 2016-04-14 医療機器

Country Status (5)

Country Link
US (1) US10064676B2 (ja)
EP (1) EP3216411A4 (ja)
JP (1) JP6109459B2 (ja)
CN (1) CN106999241B (ja)
WO (1) WO2016171067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087841A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 振動伝達部材及び超音波処置具
WO2019097608A1 (ja) * 2017-11-15 2019-05-23 オリンパス株式会社 医療機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4295790A3 (en) 2019-01-10 2024-02-21 AtriCure, Inc. Surgical clamp
WO2021152753A1 (ja) * 2020-01-29 2021-08-05 オリンパス株式会社 処置具、及び処置具の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207666A (ja) * 2008-03-04 2009-09-17 Hoya Corp 内視鏡用バイポーラ型高周波切開具
JP2009240773A (ja) * 2008-03-28 2009-10-22 Olympus Medical Systems Corp 外科手術装置
WO2014148281A1 (ja) * 2013-03-18 2014-09-25 オリンパスメディカルシステムズ株式会社 処置具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079633A (ja) * 2001-09-13 2003-03-18 Aloka Co Ltd 超音波手術器
EP1750608B1 (en) * 2004-06-02 2012-10-03 Medtronic, Inc. Ablation device with jaws
US7645278B2 (en) * 2006-02-22 2010-01-12 Olympus Corporation Coagulating cutter
US7766929B2 (en) 2007-09-28 2010-08-03 Olympus Medical Systems Corp. Surgical operating apparatus
DE102008019380B4 (de) * 2008-04-17 2012-11-22 Erbe Elektromedizin Gmbh Bipolare Klemme für die HF-Chirurgie
CA2766945A1 (en) * 2010-02-04 2011-08-11 Aesculap Ag Laparoscopic radiofrequency surgical device
PL2554132T3 (pl) * 2011-08-01 2016-06-30 Erbe Elektromedizin Instrument do łączenia tkanek
JP5625135B2 (ja) * 2012-06-01 2014-11-12 オリンパスメディカルシステムズ株式会社 エネルギを用いた処置具
EP2893895B1 (en) * 2012-09-10 2017-04-12 Olympus Corporation Endoscope treatment tool
EP3005966A4 (en) * 2013-06-07 2017-02-08 Olympus Corporation Grasping treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207666A (ja) * 2008-03-04 2009-09-17 Hoya Corp 内視鏡用バイポーラ型高周波切開具
JP2009240773A (ja) * 2008-03-28 2009-10-22 Olympus Medical Systems Corp 外科手術装置
WO2014148281A1 (ja) * 2013-03-18 2014-09-25 オリンパスメディカルシステムズ株式会社 処置具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216411A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087841A1 (ja) * 2016-11-09 2018-05-17 オリンパス株式会社 振動伝達部材及び超音波処置具
CN109937018A (zh) * 2016-11-09 2019-06-25 奥林巴斯株式会社 振动传递构件及超声波处置器具
CN109937018B (zh) * 2016-11-09 2022-03-11 奥林巴斯株式会社 振动传递构件及超声波处置器具
US11602369B2 (en) 2016-11-09 2023-03-14 Olympus Corporation Vibration transmitter and ultrasonic treatment instrument
WO2019097608A1 (ja) * 2017-11-15 2019-05-23 オリンパス株式会社 医療機器
US11596464B2 (en) 2017-11-15 2023-03-07 Olympus Corporation Medical apparatus

Also Published As

Publication number Publication date
EP3216411A1 (en) 2017-09-13
US20170265930A1 (en) 2017-09-21
CN106999241B (zh) 2019-09-17
EP3216411A4 (en) 2018-08-01
JP6109459B2 (ja) 2017-04-05
JPWO2016171067A1 (ja) 2017-06-01
CN106999241A (zh) 2017-08-01
US10064676B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
US11278347B2 (en) Electrosurgical devices including transverse electrode configurations
EP2554135B1 (en) Tissue fusion jaw angle improvement
US8317787B2 (en) Tissue fusion jaw angle improvement
US8784417B2 (en) Tissue fusion jaw angle improvement
US9668808B2 (en) Bifurcated shaft for surgical instrument
JP6109459B2 (ja) 医療機器
EP1301135B1 (en) Bipolar electrosurgical forceps with non-conductive stop members
US20150066026A1 (en) Switch assemblies for multi-function, energy-based surgical instruments
AU2011218765B2 (en) Dynamic and static bipolar electrical sealing and cutting device
US20100057081A1 (en) Tissue Fusion Jaw Angle Improvement
US7877853B2 (en) Method of manufacturing end effector assembly for sealing tissue
US7628792B2 (en) Bilateral foot jaws
EP3318209A1 (en) Treatment tool
JPH09108234A (ja) バイポーラ電気手術器具
JP2012055694A (ja) 電気外科器具
JP6125117B2 (ja) 医療機器
EP3207889B1 (en) Grasping treatment unit
CN106063722A (zh) 超精细解剖用血管密封分隔钳
US20230380885A1 (en) Thermal cutting elements and electrosurgical instruments including thermal cutting elements
US11490953B2 (en) Electrosurgical instrument and passively cooled jaw members thereof
CN117179886A (zh) 一种可以分区能量控制的组织闭合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574033

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016783088

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE