WO2016170803A1 - グレーティング素子および照明装置 - Google Patents

グレーティング素子および照明装置 Download PDF

Info

Publication number
WO2016170803A1
WO2016170803A1 PCT/JP2016/050471 JP2016050471W WO2016170803A1 WO 2016170803 A1 WO2016170803 A1 WO 2016170803A1 JP 2016050471 W JP2016050471 W JP 2016050471W WO 2016170803 A1 WO2016170803 A1 WO 2016170803A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
grating
phosphor
light
support substrate
Prior art date
Application number
PCT/JP2016/050471
Other languages
English (en)
French (fr)
Inventor
直剛 岡田
山口 省一郎
孝介 丹羽
浅井 圭一郎
近藤 順悟
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2017514121A priority Critical patent/JPWO2016171115A1/ja
Priority to PCT/JP2016/062329 priority patent/WO2016171115A1/ja
Publication of WO2016170803A1 publication Critical patent/WO2016170803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like

Definitions

  • the present invention relates to a grating element and a lighting device that emits white light.
  • a white light source combining a blue laser or an ultraviolet laser and a phosphor.
  • the light density of the excitation light can be increased by condensing the laser light, and the light intensity of the excitation light can be increased by condensing a plurality of laser lights on the phosphor.
  • the luminous flux and the luminance can be increased simultaneously without changing the light emitting area.
  • a white light source in which a semiconductor laser and a phosphor are combined attracts attention as a light source that replaces an LED.
  • the phosphor glass used in automotive headlights is the phosphor glass “Lumifas” manufactured by Nippon Electric Glass Co., Ltd., National Research and Development Corporation, National Institute for Materials Science, Tamra Manufacturing Co., Ltd. The body is considered.
  • FIG. 15 For example, in an automobile headlight, a configuration schematically shown in FIG. 15 is conceivable. That is, laser light is emitted from a plurality of blue semiconductor laser light sources 31 and is condensed on the phosphor glass plate 33 by the condensing optical system 32. As a result, white light is emitted from the phosphor glass plate 33 as indicated by an arrow D. The white light D is projected by the parabolic reflector 34, and the white light is projected to the outside through the filter 35. The filter 35 prevents the blue laser light from being projected to the outside.
  • Non-Patent Document 1 proposes that white light is generated by irradiating an optical fiber made of phosphor glass with laser light.
  • Patent Document 1 discloses a structure in which a reflector made of a grating element is arranged on the output side of a laser light source.
  • the phosphor is disposed outside the apparatus, and an optical component such as a lens for condensing light is necessary, which is problematic in terms of miniaturization.
  • Patent Document 2 by converting YAG into a single crystal, the conversion efficiency does not deteriorate even when the temperature rises, and high-efficiency fluorescence characteristics are exhibited, enabling application in the high power field.
  • This material can obtain white light by emitting yellow light which is a complementary color by 450 nm blue excitation light, and development for application to projectors and headlights is underway.
  • Ce: YAG single crystal phosphors in which Ce is doped in yttrium aluminum garnet (Y 3 Al 5 O 12 : YAG) have also been developed.
  • Ce: YAG phosphors have been realized by sintering synthesis or being dispersed in glass.
  • heat radiation becomes difficult and efficiency is lowered. It was.
  • Patent 5231990 Japanese Patent No. 5620562 Patent 3864943 WO 2013/077031 A1
  • the number of parts of the optical system necessary for condensing is large and the cost becomes high.
  • the axis is likely to be displaced due to the vibration of the automobile, and the luminous efficiency is lowered.
  • the phosphor deteriorates due to heat generation and moisture absorption, and the light emission efficiency decreases.
  • An object of the present invention is to provide long-term reliability because the number of parts is small when emitting fluorescent light by irradiating phosphor glass with laser light, and to suppress fluctuations in output and wavelength of emitted fluorescence. Is to provide a structure.
  • the grating element according to the present invention is Support substrate, An optical waveguide made of a phosphor provided on a support substrate and a Bragg grating formed on the optical waveguide are provided.
  • the present invention includes a light source that oscillates laser light and the grating element, and white light is generated from the optical waveguide.
  • the optical waveguide made of the phosphor is integrated on the support substrate, the number of parts is small and the reliability is high.
  • the wavelength of the laser light is stabilized, thereby succeeding in stabilizing the wavelength and output of the white light oscillated from the optical waveguide. The invention has been reached.
  • FIG. 1 is a perspective view schematically showing a grating element 1 of the present invention.
  • 1 is a side view showing an illumination device including a grating element 1 and a light source 11.
  • FIG. 1 is a side view showing an illumination device including a grating element 1A and a light source 11.
  • FIG. It is a side view which shows the illuminating device which consists of the grating element 1B and the light source 11A.
  • sectional drawing which shows typically the grating element 21 using a ridge type
  • FIG. 7 shows an illumination device according to another embodiment of the present invention, which is an example in which white light is emitted to the outside of an optical waveguide by a Bragg grating. It is a schematic diagram which shows the relationship between the incident light and emitted light in a Bragg grating coupler. It is a schematic diagram which shows the reference example using fluorescent substance glass for the headlamp use for motor vehicles. It is a schematic diagram which shows the suitable planar pattern of a channel type
  • the grating element 1 includes a support substrate 2, a lower cladding layer 3 provided on the support substrate 2, a slab type optical waveguide 4 provided on the lower cladding layer 3, and An upper clad layer 6 covering the upper surface of the optical waveguide 4 is provided (the upper clad layer 6 is not shown in FIG. 1).
  • the slab type optical waveguide 4 has a thin plate shape, and has an incident surface 4a on which laser light is incident and an output surface 4b that emits white light.
  • an uneven Bragg grating 5 is formed on the upper surface 4f of the slab type optical waveguide 4 to constitute a grating portion 4d.
  • An incident-side propagation part 4c without a Bragg grating is provided between the incident surface 4a and the grating part 4d, and an emission-side propagation part 4e without a diffraction grating is provided between the emission surface 4b and the grating part 4d. It has been.
  • the Bragg grating 5 may be formed on the bottom surface 4 g side of the slab type optical waveguide 4.
  • a light source 11 is installed facing the grating element 1.
  • the light source 11 has a substrate 12 and an active layer 13, and the active layer 13 faces the incident surface 4 a of the slab type optical waveguide 4.
  • the laser light emitted from the active layer 13 enters the slab type optical waveguide 4 as indicated by an arrow A and propagates through the optical waveguide 4. At this time, it is diffracted by the Bragg grating and reflected as indicated by an arrow C, and the wavelength of the laser light is stabilized. Further, white light is emitted from the emission surface 4 b of the optical waveguide 4 as indicated by an arrow B.
  • the grating element 1A in FIG. 3 is provided on the support substrate 2, the lower clad layer 3 provided on the support substrate 2, the adhesive layer 7 provided below the lower clad layer 3, and the lower clad layer 3.
  • the slab type optical waveguide 4 and the upper cladding layer 6 on the upper surface of the optical waveguide 4 are provided.
  • the grating element 1B shown in FIG. 4 includes a support substrate 9, a lower clad layer 3 provided on the support substrate 9, a slab type optical waveguide 4 provided on the lower clad layer 3, and an upper surface of the optical waveguide 4.
  • An upper cladding layer 6 is provided.
  • a light source 11A is mounted on the support substrate 9 of the grating element 1B via a solder layer 14, for example, and the active layer 13 of the light source 11A faces the slab type optical waveguide 4.
  • the optical waveguide 4 made of a phosphor is integrated on the support substrates 2 and 9, the number of parts is small and the reliability is high.
  • the wavelength of the laser light can be stabilized, and thereby the wavelength and output of the white light oscillated from the phosphor can be stabilized.
  • an external resonator between a Bragg grating provided in an optical waveguide made of a phosphor and a light source, since the wavelength of white light oscillated from the optical waveguide is further stabilized.
  • 5 to 8 show examples of grating elements using ridge type optical waveguides.
  • the support substrate 2 the lower clad layer 3 provided on the support substrate 2, the phosphor layer 24 provided on the lower clad layer 3, and the phosphor layer 24
  • the upper clad layer 6 is provided on the upper surface 24a (the upper clad layer 6 is not shown in FIG. 5).
  • a ridge groove 26 is formed on the upper surface 24 a of the phosphor layer 24, and a ridge type optical waveguide 25 is formed.
  • the ridge groove 26 can also be formed on the bottom surface 24b side.
  • the optical waveguide 25 includes an entrance surface 25a, an exit surface 25b, a grating portion 25d on which the Bragg grating 5A is formed, an entrance side propagation portion 25c between the grating portion 25d and the entrance surface 25a, and the grating portion 25d and the exit surface 25b.
  • the output side propagation part 25e is provided.
  • a ridge groove 26 is formed on the bottom surface 24b side of the phosphor layer 24, whereby a ridge type optical waveguide 25 is formed.
  • the optical waveguide includes a core made of an optical material, and a clad surrounds the core.
  • the cross section of the core (cross section in the direction perpendicular to the light propagation direction) is a convex figure.
  • the convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section.
  • a convex figure is a general geometric term. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like.
  • a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
  • a ridge type (channel type) optical waveguide 41 made of a phosphor is formed on a support substrate 36 via a lower clad layer 43.
  • the cross-sectional shape of the optical waveguide 41 is a trapezoid, and the upper surface 41a is narrower than the lower surface 41b.
  • An adhesive layer can also be formed between the clad layer 43 and the support substrate 36.
  • a clad layer 42 is provided on a support substrate 36, and an optical waveguide 41 made of phosphor is embedded in the clad layer 42.
  • the clad layer 42 has an upper surface covering portion 42b that covers the upper surface of the optical waveguide, a side surface covering portion 42c that covers the side surface of the optical waveguide, and a bottom surface covering portion 42a positioned between the optical waveguide and the support substrate.
  • a cladding layer 42 is provided on a support substrate 36, and an optical waveguide 41A made of a phosphor is embedded in the cladding layer 42.
  • the clad layer 42 includes an upper surface covering portion 42b that covers the upper surface of the optical waveguide, a side surface covering portion 42c that covers the side surface of the optical waveguide, and a bottom surface covering portion 42a between the optical waveguide and the support substrate.
  • an optical waveguide 41 made of a phosphor is formed on the support substrate 36 via a lower clad layer 43.
  • An upper cladding layer 40 is formed on the side surface and the upper surface 41 a of the optical waveguide 41 to cover the optical waveguide 41.
  • the upper cladding layer 40 includes a side surface covering portion 40b that covers the side surface of the optical waveguide 41 and an upper surface covering portion 40a that covers the upper surface.
  • an optical waveguide 41A made of a phosphor is formed.
  • the cross-sectional shape of the optical waveguide 41A is a trapezoid, and the lower surface is narrower than the upper surface.
  • the upper cladding layer 40 includes a side surface covering portion 40b that covers the side surface of the optical waveguide 41A and an upper surface covering portion 40a that covers the upper surface.
  • the light emitting device shown in FIG. 11 includes a light source module 55 and a grating element 1D.
  • the light source module 55 one or more light sources 11 are mounted on the support substrate 51. Although one light source 11 is illustrated in FIG. 11, the number of light sources is not limited.
  • the light source 11 includes a substrate 12 and an active layer 13 thereon. The active layer 13 is connected to the pad 50 through a wire 49.
  • the grating element 1D includes a support substrate 2, a lower clad layer 3 provided on the support substrate 2, and a phosphor layer 54 provided on the lower clad layer 3.
  • the phosphor layer 54 functions as a slab type optical waveguide, and the incident surface 54 a of the phosphor layer faces the emission surface of the light source 11.
  • the Bragg grating 5 made of irregularities is formed on the upper surface 54f of the slab type optical waveguide 54 made of phosphor.
  • a Bragg grating can be provided on the lower surface 54 g of the slab type optical waveguide 54.
  • the optical waveguide 54 includes a grating portion 54d provided with the Bragg grating 5, an incident-side propagation portion 54c provided between the grating portion 54d and the incident surface 54a, and the grating portion 54d and the emission side.
  • a propagation part 54e without a Bragg grating is provided between the end face 54b and the end face 54b.
  • the light emitted from the active layer 13 of the light source 11 enters the incident surface 54a of the slab type optical waveguide 54 made of a phosphor, and propagates through the optical waveguide as indicated by an arrow D. And the light which passed the fluorescent substance is radiate
  • the light emitting device shown in FIG. 12 is similar to that shown in FIG. However, in the example of FIG. 12, a pair of ridge grooves 26 are formed in the optical waveguide layer 54 made of phosphor, and the ridge type optical waveguide 25 is provided between the pair of ridge grooves 26.
  • the optical waveguide 25 includes an entrance surface 25a, an exit surface 25b, a grating portion 25d on which the Bragg grating 5 is formed, an entrance-side propagation portion 25c between the grating portion 25d and the entrance surface 25a, and the grating portion 25d and the exit surface 25b.
  • the output side propagation part 25e is provided.
  • the light emitted from the active layer 13 of the light source 11 enters the incident surface 25a of the ridge-type optical waveguide 25 made of a phosphor, and propagates through the optical waveguide. And the light which passed the fluorescent substance is radiate
  • the propagation direction of incident light incident on the optical waveguide can be changed by the Bragg grating and radiated from the optical waveguide.
  • FIG. 13 relates to this embodiment.
  • the light emitting device shown in FIG. 13 includes a light source module 53 and a grating element 1C.
  • the light source module 53 has a plurality of light sources 11 mounted on a support substrate 51.
  • Each light source 11 includes a substrate 12 and an active layer 13 thereon.
  • Each active layer 13 is connected to the pad 50 through a wire 49.
  • the grating element 1 ⁇ / b> C includes a support substrate 2, a lower clad layer 3 provided on the support substrate 2, and a phosphor layer 44 provided on the lower clad layer 3.
  • the phosphor layer 44 functions as a slab type optical waveguide, and the incident surface 44 a of the phosphor layer faces the emission surface of each light source 11.
  • a Bragg grating 5A made of irregularities is formed on the upper surface 44f of the slab type optical waveguide 44 made of a phosphor.
  • a Bragg grating can also be provided on the lower surface 44 g of the slab type optical waveguide 44.
  • the optical waveguide 44 includes a grating portion 44d provided with the Bragg grating 5A, an incident-side propagation portion 44c provided between the grating portion 44d and the incident surface 44a, and the grating portion 44d and the end surface 44b provided without the Bragg grating. And a propagating portion 44e without a Bragg grating provided between the two.
  • each active layer 13 of each light source 11 enters the incident surface 44a of the slab type optical waveguide 44 made of a phosphor, and propagates through the optical waveguide as indicated by an arrow D.
  • the light is diffracted by the Bragg grating 5A, and is emitted outward from the upper surface of the optical waveguide 44 as indicated by an arrow E.
  • the light propagating through the optical waveguide 44 undergoes wavelength conversion and becomes white light, so that the white light E is radiated to the outside.
  • the traveling direction of light propagating through the optical waveguide is changed by the Bragg grating, and the light is emitted from the optical waveguide to the outside.
  • the principle of this grating coupler will be described.
  • incident light that has entered the optical waveguide 44 propagates in the z direction, for example, with a propagation constant ⁇ o as indicated by an arrow D.
  • K 2 ⁇ / ⁇ .
  • na and ns indicate the refractive indexes of the upper cladding and the lower cladding of the optical waveguide core, respectively.
  • K represents the wave number.
  • the angles (90- ⁇ a) and (90- ⁇ s) between the propagation direction D in the optical waveguide core and the direction of the emitted light are not particularly limited, but are usually preferably 30 to 90 °, more preferably 45 to 90 °. preferable. From the above, it can be seen that the radiation angle varies depending on the wavelength. In particular, when a grating is formed on the phosphor, it is necessary to satisfy the radiation angle condition for each of the excitation light and the fluorescence.
  • a reflective film that reflects the emitted light from the optical waveguide is provided between the cladding under the optical waveguide and the support substrate.
  • a reflective film may be a metal film such as gold, aluminum, copper, silver, or a dielectric multilayer film.
  • a metal layer such as Cr, Ni, Ti, etc. can be formed as a buffer layer of the metal film so that the clad layer formed thereon is not peeled off. .
  • an antireflection (AR) coat or a moth-eye structure is provided between the upper clad layer and the phosphor layer, so that reflection between the upper clad layer and the phosphor layer is achieved. Can be reduced.
  • the material of the lower clad layer and the upper clad layer may be a material having a refractive index smaller than that of the phosphor layer, and may be an adhesive layer.
  • the upper cladding layer may be air, which is equivalent to the case without the upper cladding layer.
  • the lower cladding layer is essential, so that the light is confined in the optical waveguide and the propagation loss of the waveguide is reduced. It is preferable from the viewpoint.
  • a reflection film (not shown) can be provided on the outer end surface of the light source opposite to the grating element.
  • a low reflection film can be provided because the light source independently oscillates, but a non-reflection film can also be formed.
  • a non-reflective layer (not shown) can be provided on each of the incident surface and the exit surface of the optical waveguide of the grating element.
  • the reflectance of these non-reflective layers may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted, and a reflective film may be provided instead of the non-reflective layer.
  • the reflectance of the non-reflective layer needs to be less than or equal to the grating reflectivity, and examples of the film material formed on the non-reflective layer include films laminated with oxides such as silicon dioxide, tantalum pentoxide, and magnesium fluoride. it can.
  • the oscillation wavelength of the laser light is determined by the wavelength reflected by the Bragg grating. If the reflected light from the Bragg grating and the reflected light from the end face of the active layer on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
  • the feedback amount from the grating may be increased.
  • the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer.
  • a semiconductor laser made of a GaN material having high reliability is suitable for exciting the phosphor for illumination.
  • a light source such as a laser array arranged in a one-dimensional manner can also be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA).
  • Non-Patent Document 2 Furukawa Electric Times, January 2000, No. 105, p24-29
  • the Bragg grating can be formed by physical or chemical etching as follows.
  • a metal film such as Ni, Ti, Cr, and Al is formed on the phosphor glass layer, and windows are periodically formed by photolithography to form an etching mask.
  • periodic grating grooves are formed in the cladding layer by a dry etching apparatus such as reactive ion etching.
  • the metal mask is removed.
  • the ridge-type optical waveguide is obtained by, for example, physical processing and molding by cutting with an outer peripheral blade or laser ablation processing.
  • the ridge type optical waveguide can also be formed by dry etching in the same manner as the grating groove on the cladding layer.
  • the method for generating white light from the semiconductor laser and the phosphor is not particularly limited, but the following methods are conceivable.
  • Method of obtaining white light by generating yellow fluorescence with blue laser and phosphor Method of obtaining white light by generating red and green fluorescence with blue laser and phosphor Red, blue with phosphor from blue laser or ultraviolet laser
  • Method of generating green fluorescence and obtaining white light Method of obtaining blue and yellow fluorescence with a phosphor from a blue laser or ultraviolet laser to obtain white light
  • the phosphor glass is obtained by dispersing rare earth element ions in a base glass.
  • the base glass include silica, boron oxide, calcium oxide, lanthanum oxide, barium oxide, zinc oxide, phosphorus oxide, aluminum fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and oxide glass containing barium chloride.
  • YAG yttrium, aluminum, garnet
  • YAG yttrium, aluminum, garnet
  • the rare earth element ions dispersed in the phosphor glass are preferably Tb, Eu, Ce, and Nd, but may be La, Pr, Sc, Sm, Er, Tm, Dy, Gd, and Lu.
  • TAG terbium, aluminum, garnet
  • sialon e.g., sialon
  • BOS barium orthosilicate
  • YAG yttrium, aluminum, garnet
  • Y 3 Al 5 O 12 , Ba 5 Si 11 Al 7 N 25 , and Tb 3 Al 5 O 12 are preferable.
  • rare earth element ions such as Tb, Eu, Ce, and Nd are used.
  • the specific material of the support substrate is not particularly limited, and may be glass such as lithium niobate, lithium tantalate, quartz glass, or quartz.
  • a support substrate having good heat dissipation characteristics can be used.
  • alumina, aluminum nitride, silicon carbide, Si and the like can be exemplified.
  • each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection.
  • the grating element and the support substrate may be bonded together by adhesion or direct bonding.
  • the grating element may be formed on the support substrate by a film forming method such as sputtering or CVD.
  • an AR coat made of a dielectric multilayer film is formed on at least one of the entrance surface and the exit surface of the optical waveguide.
  • a single layer film made of a material having a refractive index lower than that of the material constituting the phosphor layer is formed.
  • the thickness of such a single layer film does not need to be determined exactly as in the AR coating, and end face reflection can be reduced simply by forming a single layer film.
  • the degree of reflection suppression may be reduced or eliminated depending on the relationship between the refractive index and the thickness between the multilayer films, and it is necessary to control the thickness of each layer of the multilayer film. Therefore, the single layer film is superior. Thereby, the end surface reflectance of the grating element can be surely reduced as compared with the case where there is no single layer film.
  • the thickness of the single layer film is preferably 1 ⁇ m or less.
  • the optical waveguide is a channel type optical waveguide like a ridge type optical waveguide, and the optical waveguide width on the exit surface is larger than the optical waveguide width on the entrance surface of the optical element.
  • the optical waveguide width on the exit surface is larger than the optical waveguide width on the entrance surface of the optical element.
  • FIG. 16 relates to this embodiment, and shows a planar pattern of the channel type optical waveguide 51 formed in the optical element 50.
  • the optical waveguide 51 includes an incident part 51a, a grating part 51b provided with a grating, a tapered part 51c, and an emitting part 51d.
  • W out / W in is preferably 2 or more, and particularly preferably 5 or more.
  • W out / W in is preferably 1000 or less, particularly preferably 500 or less.
  • the width W gr of the grating portion is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more, from the viewpoint that the transverse mode is set to the multi-mode to suppress speckle noise.
  • the width W gr of the grating portion is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less, from the viewpoint of stabilizing laser oscillation. Note that W gr is the width of the grating portion (the width of the optical waveguide in the grating portion), as shown in FIGS.
  • W gr is larger than the spot size of the light source (near-field diameter) is provided with a tapered portion in the input unit, the W in can be smaller than W gr.
  • the width W gr of the grating part 51b is the same as the width W in of the incident part.
  • the width of the tapered portion 51c is a W in the incident side, on the exit surface side is turned W out, gradually increases towards to the exit surface 51f side from the incident surface 51e side therebetween.
  • the widths W in , W out , and W gr of the channel type optical waveguide are optical waveguide widths in a cross section perpendicular to the longitudinal direction of the optical waveguide. is there.
  • the width of the optical waveguide is the width of the narrowest portion of the width in the cross section of the optical waveguide.
  • the total length L wg of the optical element is not particularly limited, but is usually preferably 1 mm to 30 mm.
  • the length L g of the grating portion 51b is preferably 10 ⁇ m or more from the viewpoint of the function as an external resonator.
  • the length L tp of the tapered portion 51c is preferably 50 ⁇ m to 5000 ⁇ m from the viewpoint of reducing propagation loss.
  • a plurality of light source elements are arranged in parallel on the array and input to the phosphor, thereby realizing a miniaturized and high output lighting device. Furthermore, it is also possible to realize an illuminating device in which excitation light is propagated through the entire area of the phosphor glass by folding the end face of the phosphor glass with a single light source element, and white light is generated from the entire area.
  • the phosphor is made of a single crystal doped with rare earth element ions, and the thickness of the optical waveguide is 3 ⁇ m or more and 80 ⁇ m or less.
  • the phosphor composed of a single crystal doped with rare earth element ions is as described above.
  • an optical waveguide is provided on a support substrate, and the thickness of the optical waveguide is 80 ⁇ m or less.
  • the thickness of the optical waveguide is a dimension of the optical waveguide viewed in a direction perpendicular to the surface of the support substrate, and corresponds to T shown in FIGS.
  • the present inventor has examined a technique for generating white light from a phosphor made of a single crystal doped with a rare earth element.
  • these so-called single crystal phosphors are fragile, and are difficult to handle when downsized. For this reason, such a single crystal phosphor was fixed on a support substrate and blue light or the like was incident to observe the emitted light.
  • so-called color unevenness occurs in the white light actually emitted from the single crystal phosphor. That is, when the emitted light from the single crystal phosphor is observed, the color tone varies depending on the location, and there are many locations where the target white light is not obtained.
  • the present inventor examined the reason and obtained the following knowledge. That is, the concentration of rare earth element ions in the single crystal phosphor inevitably varies, and the ion concentration varies depending on the location.
  • the concentration of rare earth element ions in the single crystal phosphor inevitably varies, and the ion concentration varies depending on the location.
  • the spectrum of the emitted light reflects the density of the rare earth ion concentration in the single crystal phosphor plate.
  • the inventor tried to form the optical waveguide by fixing the single crystal phosphor on the support substrate, but in this case, when the optical waveguide is thick, the spectrum of the emitted light is Reflecting the density of rare earth ions in the single crystal phosphor, it was found that color unevenness occurs.
  • the present inventor based on such knowledge, has found that when the single crystal phosphor is provided on the support substrate, the color unevenness of the emitted light can be suppressed by setting the thickness to 80 ⁇ m or less. For this reason, when the single crystal phosphor provided on the support substrate is thinned, the propagating light is repeatedly reflected between the interface with the support substrate and the surface on the opposite side. It is thought that the influence of the density of rare earth ions is averaged.
  • the thickness of the optical waveguide is set to 80 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less. This further reduces color unevenness and increases the coherence length of the emitted light.
  • the thickness of the optical waveguide is 3 ⁇ m or more, further 10 ⁇ m or more, the average output power of the emitted light is improved and the coherence length is also improved.
  • Example 1 A grating element 1 as shown in FIGS. 1 and 2 was produced. Specifically, a lower clad layer 3 made of SiO 2 is formed on a support substrate 2 made of quartz by a sputtering apparatus to a thickness of 1.0 ⁇ m, and phosphors of three primary colors of red, blue, and green are dispersed. After directly bonding to the fluorescent glass plate, the slab type optical waveguide 4 was formed by polishing the fluorescent glass plate to a thickness of 3 ⁇ m. Next, Ni was deposited on the slab type optical waveguide 4, and a grating pattern was produced by a photolithography technique.
  • a grating groove having a pitch interval of ⁇ 118 nm and a length of 3000 ⁇ m was formed by reactive ion etching using the Ni pattern as a mask.
  • Groove depth t d of the grating was set to 100 nm.
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • a module was fabricated by optically coupling a GaN-based blue laser light source 11 having an output of 30 mW to a chipped grating element.
  • the output fluctuation was within 1%.
  • the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no variation in the peak wavelength.
  • white light with no output fluctuation of 3 lm on average could be observed from the output side of the module.
  • the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 2 A grating element 1A as shown in FIGS. 1 and 3 was produced. Specifically, the lower clad layer 3 made of SiO 2 is formed on the phosphor glass plate with a thickness of 1.0 ⁇ m, and then the phosphor glass plate deposition surface and the support substrate 2 are bonded together by resin bonding. It was. Next, the phosphor glass plate was polished in the same manner as in Example 1 to obtain a slab type optical waveguide 4 having a thickness of 3 ⁇ m. When the obtained element was tested in the same manner as in Example 1, white light with no output fluctuation of 3 lm on average could be observed from the output side of the module. Further, it was confirmed that the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 3 A grating element 21 as shown in FIGS. 5 and 6 was produced. Specifically, a lower clad layer 3 made of SiO 2 is formed on a support substrate 2 made of quartz by a sputtering apparatus with a thickness of 1.0 ⁇ m, and phosphors of three primary colors of red, blue, and green are dispersed. After directly joining with the fluorescent glass plate, the fluorescent glass plate was polished to a thickness (T gr ) of 3 ⁇ m to form a phosphor glass layer. Next, Ni was formed on the optical waveguide layer, and a grating pattern was produced by a photolithography technique.
  • a grating groove having a pitch interval of ⁇ 116 nm and a length of 3000 ⁇ m was formed by reactive ion etching using the Ni pattern as a mask.
  • Groove depth t d of the grating was set to 100 nm.
  • a ridge groove 26 and a ridge type optical waveguide 25 having a width W gr of 3 ⁇ m and a depth of T r of 2 ⁇ m were formed by reactive ion etching in the same manner as described above.
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • the module was fabricated by optically coupling the chipped grating element to a 30 mW GaN blue laser light source 11. At this time, as a result of measuring the output of the laser beam with a monitoring photodiode, the output fluctuation was within 1%. Moreover, as a result of measuring the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no wavelength variation. As a result, white light having an output fluctuation of 2.4 lm on average was observed from the output side of the module. Further, it was confirmed that the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 4 In Example 3, a lower clad layer 3 made of SiO 2 was formed to a thickness of 1.0 ⁇ m on a support substrate 2 made of quartz, and then bonded to a fluorescent glass plate by resin bonding. Other than that, a grating element was obtained in the same manner as in Example 3. When the obtained element was tested in the same manner as in Example 3, white light with no output fluctuation of 2.4 lm on average could be observed from the output side of the module. Further, it was confirmed that the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 5 A device similar to that of Example 3 was produced. However, after processing the fluorescent glass plate to a thickness of 3 ⁇ m, ten ridge-type waveguides 25 were formed at intervals of 80 ⁇ m by forming ridge grooves on the upper surface of the obtained slab type optical waveguide. Thereafter, a laser array in which the same laser light sources as those in Example 3 were arranged at intervals of 80 ⁇ m was opposed to produce a module.
  • Example 1 In Example 1, no Bragg grating was provided on the slab type optical waveguide. Otherwise, a grating element was fabricated in the same manner as in Example 1. Then, similarly to Example 1, a module coupled with a GaN laser light source was assembled, and the optical characteristics were evaluated.
  • the output fluctuation was 5% or more as a result of measuring the output of the laser beam with the monitor photodiode.
  • the peak wavelength variation was ⁇ 5 nm.
  • white light with an output fluctuation of 2.7 lm on average was observed from the output side of the module.
  • Example 6 A grating element and an illumination module similar to those in Example 1 were produced. Specifically, a lower clad layer 3 made of SiO 2 is formed on a support substrate 2 made of quartz by a sputtering apparatus with a thickness of 1.0 ⁇ m, and a single crystal YAG phosphor plate is directly bonded thereon. The phosphor plate was polished to a thickness of 3 ⁇ m to form a slab type optical waveguide 4 made of a YAG single crystal. Next, an Al film was formed on the slab type optical waveguide 4, and a grating pattern was produced by a photolithography technique.
  • a grating groove having a pitch interval of ⁇ 123 nm and a length of 300 ⁇ m was formed by reactive ion etching using the Al pattern as a mask, and a Bragg grating 5 was obtained.
  • Groove depth t d of the grating was set to 100 nm.
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • a module was fabricated by optically coupling the GaN-based blue laser light source 11 having a wavelength of 450 nm and an output of 30 mW to the chip grating element 1.
  • the output fluctuation was within 1%.
  • the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no variation in the peak wavelength.
  • white light having an output fluctuation of 3.2 lm on average was observed from the output side of the module. Further, it was confirmed that the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 7 A grating element and an illumination module similar to those in Example 2 were produced. Specifically, in Example 1, after the thickness 1.0 ⁇ m deposited the lower cladding layer 3 made of SiO 2 on the support substrate 2 were bonded by single crystal YAG phosphor plate and resin bonding. Next, the single crystal YAG phosphor was polished in the same manner as in Example 6 to obtain the slab type optical waveguide 4.
  • Example 8 A grating element and an illumination module similar to those in Example 3 were produced. Specifically, the lower clad layer 3 made of SiO 2 is formed on the support substrate 2 made of quartz by a sputtering apparatus with a thickness of 1.0 ⁇ m and directly bonded to the single crystal YAG phosphor plate, and then the phosphor The plate was polished to a thickness (T gr ) of 3 ⁇ m to form a phosphor layer 24. Next, an Al film was formed on the phosphor layer 24, and a grating pattern was produced by photolithography.
  • T gr thickness
  • a grating groove having a pitch interval of ⁇ 121 nm and a length of 300 ⁇ m was formed by reactive ion etching using the Al pattern as a mask, and a Bragg grating 25 was obtained.
  • Groove depth t d of the grating was set to 100 nm.
  • a ridge groove and a ridge type optical waveguide having a width W gr of 3 ⁇ m and a depth of T r of 2 ⁇ m were formed by reactive ion etching in the same manner as described above. Then, it cut
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • the module was fabricated by optically coupling the chipped grating element to a GaN blue laser light source 11 having a wavelength of 450 nm and 30 mW.
  • the output fluctuation was within 1%.
  • the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no wavelength variation.
  • white light with no fluctuation in output of 2.5 lm on average could be observed from the output side of the module.
  • the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 9 A grating element and an illumination module similar to those in Example 4 were produced.
  • a lower clad layer 3 made of SiO 2 was formed to a thickness of 1.0 ⁇ m on a support substrate 2 made of quartz, and then bonded to a single crystal YAG phosphor plate by resin bonding. Otherwise, a grating element was obtained in the same manner as in Example 8.
  • Example 10 A device similar to that of Example 8 was produced. However, after processing the phosphor plate to a thickness of 3 ⁇ m, ten ridge-type waveguides were formed at intervals of 80 ⁇ m by forming ridge grooves on the upper surface of the obtained slab type optical waveguide. Thereafter, a laser array in which the same laser light source as in Example 8 was arranged at intervals of 80 ⁇ m was opposed to manufacture a module.
  • Example 11 An illumination module as shown in FIG. 13 was produced. Specifically, Ti 50 nm, Pt 50 nm, and gold 500 nm were formed on a support substrate 2 made of aluminum nitride by a sputtering apparatus, and Pt 50 nm and Ti 50 nm were further formed to form a reflective layer. Next, a SiO 2 film having a thickness of 1 ⁇ m was formed on the reflective layer by a sputtering apparatus, and the lower cladding layer 3 was obtained. On the other hand, 1 ⁇ m of SiO 2 was formed on a YAG single crystal phosphor substrate by a sputtering apparatus. Thereafter, both substrates were directly bonded at room temperature with SiO 2 as an interface. Furthermore, the surface opposite to the bonding surface of the phosphor substrate was polished to a thickness of 3 ⁇ m to form a slab type optical waveguide 44 made of phosphor.
  • Ti was formed into a film by a sputtering apparatus, and a grating pattern was formed by etching with a reactive ion etching apparatus by electron beam exposure. Further, the phosphor was etched with the same apparatus using this Ti pattern as a mask to form a grating groove having a pitch interval of 340 nm and a length of 3000 ⁇ m, and a Bragg grating 5A was obtained. Groove depth t d of the grating was set to 100 nm.
  • the element size was set to a width of 10 mm and a length L wg of 10 mm.
  • a GaN-based blue laser light source with a wavelength of 450 nm and an output of 30 mW mounted on an aluminum nitride substrate was optically coupled to the chipped grating element and fixed with AuSn solder to produce an illumination module.
  • the module was 10 mm wide, 20 mm long, and 2 mm high.
  • the output fluctuation was within 1%.
  • the near-field spot shape on the radiation surface from the phosphor radiates with a width of 50 ⁇ m and a length of 100 ⁇ m.
  • white light with no output fluctuation of 3 lm on average could be observed from the output side of the module.
  • Example 12 Single crystal phosphor
  • a grating element and an illumination module as shown in FIGS. 1 and 2 were produced. Specifically, a lower clad layer 3 made of SiO 2 is formed on a support substrate 2 made of quartz by a sputtering apparatus to a thickness of 1.0 ⁇ m, and Ce-doped yttrium aluminum garnet (YAG) single crystal A phosphor plate having a thickness of 500 ⁇ m was directly joined. Next, this phosphor plate was polished to the thickness shown in Table 1 to form a slab type optical waveguide 4. Next, an Al film was formed on the optical waveguide 4, and a grating pattern 5 was produced by a photolithography technique.
  • YAG yttrium aluminum garnet
  • a grating groove having a pitch interval of ⁇ 123 nm and a length of 300 ⁇ m was formed by reactive ion etching using the Al pattern as a mask.
  • Groove depth t d of the grating was set to 100 nm.
  • the element was cut into a bar shape by a dicing apparatus, both end faces were optically polished, 0.1% AR coating was formed on both end faces, and finally chip cutting was performed to produce a grating element 1.
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • a module was fabricated by optically coupling the GaN-based blue laser light source 11 having a wavelength of 450 nm and an output of 30 mW to the chip grating element 1. At this time, as a result of measuring the output of the laser beam with a monitoring photodiode, the output fluctuation was within 1%. Moreover, as a result of measuring the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no variation in the peak wavelength.
  • each item was measured as follows.
  • the average output represents the time average of the total luminous flux.
  • an integrating sphere sinosphere
  • Color unevenness The light output from the end face 4b of the waveguide type phosphor element was observed using a luminance distribution measuring apparatus and evaluated by a chromaticity diagram.
  • the thickness of the optical waveguide is 80 ⁇ m or less, the color unevenness is not observed. Moreover, the average output is increased by setting the thickness of the optical waveguide to 3 ⁇ m or more. Furthermore, when the thickness of the optical waveguide is 50 ⁇ m or less, the coherence length is further shortened.
  • Example 13 As shown in FIGS. 1 and 2, a grating element and an illumination module were produced. Specifically, the support substrate 2 and a plate (thickness 500 ⁇ m) made of a single crystal phosphor made of YAG doped with Ce are bonded together by resin bonding, and then the phosphor plate is formed in the same manner as in Example 12. Polishing was performed to obtain a slab type optical waveguide 4 having a thickness of 50 ⁇ m. The obtained element was tested in the same manner as in Example 1. As a result, white light with no color unevenness was observed without an average output fluctuation of 3.2 lm from the output side of the module. Further, it was confirmed that the color unevenness was in the range of the median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005 in the chromaticity diagram.
  • Example 14 A grating element 21 as shown in FIGS. 5 and 6 was produced, and an illumination module was produced. Specifically, the support substrate 2 and a single crystal phosphor plate (thickness: 500 ⁇ m) made of YAG doped with Ce are directly bonded, then polished to a thickness of 50 ⁇ m to form a grating groove, and then reactive. A ridge groove 26 and a ridge type optical waveguide 25 having a width W gr of 3 ⁇ m and a depth of T r of 2 ⁇ m were formed by ion etching.
  • the element size was a width of 1 mm and a length L wg of 10 mm.
  • the module was fabricated by optically coupling the chipped grating element to a GaN blue laser light source 11 having a wavelength of 450 nm and 30 mW.
  • the output fluctuation was within 1%.
  • the wavelength variation of the laser beam with an optical spectrum analyzer, it was confirmed that there was no wavelength variation.
  • Example 15 A device similar to that of Example 14 was produced. However, after polishing the single crystal phosphor plate to a thickness of 50 ⁇ m, ten ridge-type waveguides were formed at intervals of 80 ⁇ m by forming ridge grooves on the upper surface of the obtained slab type optical waveguide. Thereafter, a laser array in which 10 laser light sources identical to those in Example 14 were arranged at intervals of 80 ⁇ m was opposed to prepare a module.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】レーザ光を蛍光体に照射して蛍光を発光させるのに際して、部品点数が少ないことから長期信頼性が高く、出射する蛍光の出力や波長の変動を抑制できるようにする。 【解決手段】グレーティング素子1は、支持基板2、支持基板2上に設けられた、蛍光体からなる光導波路4、および光導波路4に形成されたブラッググレーティング5を備えている。光導波路への入射光を白色光に変換し、光導波路外に白色光を放射する。

Description

グレーティング素子および照明装置
 本発明は、グレーティング素子および白色光を発光する照明装置に関するものである。
 最近、レーザ光源を用いた自動車用ヘッドライトの研究が盛んに行われており、その内の一つに、青色レーザあるいは紫外レーザと蛍光体を組み合わせた白色光源がある。レーザ光を集光することにより、励起光の光密度を高めることができる上に、複数のレーザ光を蛍光体上に重ねて集光することで、励起光の光強度も高めることができる。これによって、発光面積を変えずに光束と輝度とを同時に大きくすることができる。このため、半導体レーザと蛍光体とを組み合わせた白色光源が、LEDに替わる光源として注目されている。例えば、自動車用ヘッドライトに使用する蛍光体ガラスは、日本電気硝子株式会社の蛍光体ガラス「ルミファス」や国立研究開発法人物質・材料研究機構と株式会社タムラ製作所、株式会社光波のYAG単結晶蛍光体が考えられている。
 例えば自動車用ヘッドライトでは、図15に模式的に示すような構成が考えられる。すなわち、複数の青色半導体レーザ光源31からレーザ光を発光させ、集光光学系32によって蛍光体ガラス板33に集光する。これによって、蛍光体ガラス板33から白色光が矢印Dのように発光する。この白色光Dをパラボラリフレクタ34によって投光し、フィルタ35を通して外部に白色光を投射する。フィルタ35は、青色レーザ光の外部への投射を防止するものである。
 また、非特許文献1には、蛍光体ガラスからなる光ファイバーにレーザ光を照射し、白色光を発生させることが提案されている。
 レーザ光源とグレーティング素子を使用した照明装置として、特許文献1では、レーザ光源の出力側にグレーティング素子からなる反射体を配置している構造が開示されている。この装置では、蛍光体は装置の外側に配置されており、集光させるためのレンズ等の光部品が必要になることから、小型化という観点で問題となる。
 特許文献2によると、YAGを単結晶化することにより、温度が上昇しても変換効率が劣化せず高効率の蛍光特性を示し、ハイパワー分野での応用が可能となった。この材料は、450nm青色励起光によって補色である黄色光を発することによって白色光を得ることができ、プロジェクターやヘッドライトへ適用するための開発が進められている。
 照明用蛍光体については、イットリウム・アルミニウム・ガーネット(YAl12:YAG)にCeをドープしたCe :YAG単結晶蛍光体も開発されている。従来、Ce :YAG蛍光体は、焼結合成したり、ガラスに分散させるなどして実現されてきたが、励起光のパワー密度が上がると放熱が困難になり、効率が低下するという問題があった。
特許5231990 特許第5620562号 特許3864943 WO 2013/073701 A1
「Materials Integration」  Vol.17, No3, 2004,51~56頁 「蛍光ガラスの開発」 沢登成人 古河電工時報 平成12年1月 第105号 p24-29 「次世代車載ヘッドランプ用光源デバイス」  ‘’Panasonic Technical Journal‘’ Vol. 61, No.1, May 2015, 41 to 46頁
 しかし、図15のような構造では、集光するために必要な光学系の部品点数が多く、コストが高くなる。また、自動車の振動によって軸ずれが生じやすく、発光効率が下がる。更に、発熱や吸湿により蛍光体が劣化し、発光効率が下がる。
 蛍光体ガラスからなる光ファイバーにレーザ光を照射し、白色光を発生させることも考えられる。しかし、この場合には、蛍光体ガラスからなる光ファイバーからの出力光の出力や波長に変動が見られる。
 本発明の課題は、レーザ光を蛍光体ガラスに照射して蛍光を発光させるのに際して、部品点数が少ないことから長期信頼性が高く、また出射する蛍光の出力や波長の変動を抑制できるような構造を提供することである。
 本発明に係るグレーティング素子は、
 支持基板、
 支持基板上に設けられた、蛍光体からなる光導波路、および
 光導波路に形成されたブラッググレーティングを備えていることを特徴とする。
 また、本発明は、レーザ光を発振する光源および前記グレーティング素子を備えており、光導波路から白色光が発生することを特徴とする。
 レーザ光を蛍光体からなる光導波路に照射して白色光を発光させる場合、光導波路を伝搬するレーザ光の波長に変動があると、レーザ光の白色光への変換効率が低下し、白色光の波長だけでなく、出力が変動する。
 本発明によれば、蛍光体からなる光導波路が支持基板上に一体化された構造であることから、部品点数が少なく、信頼性が高い。その上で、蛍光体からなる光導波路にブラッググレーティングを設けることで、レーザ光の波長を安定化し、これによって光導波路から発振する白色光の波長と出力とを安定化させることに成功し、本発明に到達した。
本発明のグレーティング素子1を模式的に示す斜視図である。 グレーティング素子1と光源11とからなる照明装置を示す側面図である。 グレーティング素子1Aと光源11とからなる照明装置を示す側面図である。 グレーティング素子1Bと光源11Aとからなる照明装置を示す側面図である。 リッジ型光導波路を利用したグレーティング素子21を模式的に示す斜視図である。 リッジ型光導波路を利用したグレーティング素子21を模式的に示す断面図である。 リッジ型光導波路を利用したグレーティング素子21Aを模式的に示す断面図である。 リッジ型光導波路を利用したグレーティング素子21Bを模式的に示す断面図である。 (a)、(b)、(c)は、それぞれ、各グレーティング素子を模式的に示す横断面図である。 (a)、(b)は、それぞれ、各グレーティング素子を模式的に示す横断面図である。 他の実施形態に係る照明装置を示す。 更に他の実施形態に係る照明装置を示す。 本発明の他の実施形態に係る照明装置を示し、ブラッググレーティングによって光導波路の外側へと白色光を放射する例である。 ブラッググレーティングカプラにおける入射光と放射光との関係を示す模式図である。 自動車用ヘッドランプ用途に蛍光体ガラスを利用した参考例を示す模式図である。 チャネル型光導波路の好適な平面的パターンを示す模式図である。
 以下、本発明の実施形態を詳細に説明する。
 図1、図2に示すように、グレーティング素子1には、支持基板2、支持基板2上に設けられた下側クラッド層3、下側クラッド層3上に設けられたスラブ型光導波路4および光導波路4の上面を被覆する上側クラッド層6を備えている(図1では上側クラッド層6は図示省略している)。スラブ型光導波路4は薄板状であり、レーザ光が入射する入射面4aと白色光を出射する出射面4bを有する。
 本例では、スラブ型光導波路4の上面4fに、凹凸からなるブラッググレーティング5が形成されており、グレーティング部4dを構成している。入射面4aとグレーティング部4dとの間に、ブラッググレーティングのない入射側伝搬部4cが設けられており、出射面4bとグレーティング部4dとの間に、回折格子のない出射側伝搬部4eが設けられている。なお、ブラッググレーティング5は、スラブ型光導波路4の底面4g側に形成してもよい。
 図2に示すように、グレーティング素子1に対向して光源11を設置する。光源11は、基板12と活性層13とを有しており、活性層13がスラブ型光導波路4の入射面4aに対向している。図1に示すように、活性層13から出射したレーザ光は、矢印Aのようにスラブ型光導波路4に入射し、光導波路4を伝搬する。このときブラッググレーティングによって回折を受け、矢印Cのように反射し、レーザ光の波長が安定する。また、光導波路4の出射面4bから矢印Bのように白色光が出射する。
 図3のグレーティング素子1Aには、支持基板2、支持基板2上に設けられた下側クラッド層3、下側クラッド層3下に設けられた接着層7、下側クラッド層3上に設けられたスラブ型光導波路4および光導波路4の上面にある上側クラッド層6を備えている。
 図4のグレーティング素子1Bには、支持基板9、支持基板9上に設けられた下側クラッド層3、下側クラッド層3上に設けられたスラブ型光導波路4および光導波路4の上面にある上側クラッド層6を備えている。更に、グレーティング素子1Bの支持基板9上には、例えばはんだ層14を介して光源11Aが実装されており、光源11Aの活性層13がスラブ型光導波路4に対向している。
 本発明によれば、蛍光体からなる光導波路4が支持基板2、9上に一体化された構造であることから、部品点数が少なく、信頼性が高い。その上で、蛍光体からなる光導波路4にブラッググレーティング5を設けることで、レーザ光の波長を安定化し、これによって蛍光体から発振する白色光の波長と出力とを安定化させることができる。
 特に、蛍光体からなる光導波路に設けられたブラッググレーティングと光源との間で外部共振器を構成することによって、光導波路から発振する白色光の波長がより一層安定するので好ましい。
 図5~図8は、リッジ型光導波路を用いたグレーティング素子を示す例である。
 図5、図6のグレーティング素子21には、支持基板2、支持基板2上に設けられた下側クラッド層3、下側クラッド層3上に設けられた蛍光体層24、および蛍光体層24の上面24aにある上側クラッド層6を備えている(図5では上側クラッド層6は図示省略している)。
 蛍光体層24の例えば上面24aにリッジ溝26が形成されており、リッジ型光導波路25が形成されている。リッジ溝26は、底面24b側に形成することもできる。光導波路25は、入射面25a、出射面25b、ブラッググレーティング5Aが形成されたグレーティング部25d、グレーティング部25dと入射面25aとの間の入射側伝搬部25cおよびグレーティング部25dと出射面25bとの間の出射側伝搬部25eを備えている。
 図7に示すグレーティング素子21Aは、図6のグレーティング素子21と同様のものであるが、下側クラッド層3と支持基板2との間に接着層7が設けられている。
 また、図8に示すグレーティング素子21Bにおいては、蛍光体層24の底面24b側にリッジ溝26が形成されており、これによってリッジ型光導波路25が形成されている。
 他の好適な実施形態においては、光導波路が、光学材料からなるコアからなり、コアの周りをクラッドが包囲している。このコアの横断面(光の伝搬方向と垂直な方向の断面)形状は凸図形となるようにする。
 凸図形とは、コアの横断面の外側輪郭線の任意の二点を結ぶ線分が、コアの横断面の外側輪郭線の内側に位置することを意味する。凸図形は、一般的な幾何学用語である。このような図形としては、三角形、四角形、六角形、八角形などの多角形、円形、楕円形などを例示できる。四角形としては、特に、上辺と下辺と一対の側面を有する四角形が好ましく、台形が特に好ましい。
 たとえば図9(a)に示すように、支持基板36上に下側クラッド層43を介して、蛍光体よりなるリッジ型(チャネル型)光導波路41が形成されている。光導波路41の横断面形状は台形であり、上面41aが下面41bよりも狭い。なお、クラッド層43と支持基板36との間に接着層を形成することもできる。
 図9(b)に示す素子では、支持基板36上にクラッド層42が設けられており、クラッド層42内に、蛍光体よりなる光導波路41が埋設されている。クラッド層42は、光導波路の上面を被覆する上面被覆部42b、光導波路の側面を被覆する側面被覆部42cおよび光導波路と支持基板との間に位置する底面被覆部42aを有する。
 図9(c)に示す素子では、支持基板36上にクラッド層42が設けられており、クラッド層42内に、蛍光体よりなる光導波路41Aが埋設されている。クラッド層42は、光導波路の上面を被覆する上面被覆部42b、光導波路の側面を被覆する側面被覆部42cおよび光導波路と支持基板との間にある底面被覆部42aを有する。
 また、図10(a)に示す素子では、支持基板36上に下側クラッド層43を介して、蛍光体よりなる光導波路41が形成されている。光導波路41の側面および上面41aには、上側クラッド層40が形成され、光導波路41を被覆している。上側クラッド層40は、光導波路41の側面を被覆する側面被覆部40bおよび上面を被覆する上面被覆部40aを有する。
 また、図10(b)に示す素子では、蛍光体よりなる光導波路41Aが形成されている。光導波路41Aの横断面形状は台形であり、下面が上面よりも狭い。上側クラッド層40は、光導波路41Aの側面を被覆する側面被覆部40bおよび上面を被覆する上面被覆部40aを有する。
 図11に示す発光装置は、光源モジュール55とグレーティング素子1Dとを備えている。光源モジュール55において、支持基板51上に一つまたは複数の光源11が実装されている。図11では光源11を一つ図示してあるが、光源の個数は限定されない。光源11は、基板12とその上の活性層13とを備えている。活性層13は、ワイヤー49を通してパッド50に接続されている。
 グレーティング素子1Dは、支持基板2、支持基板2上に設けられた下側クラッド層3、下側クラッド層3上に設けられた蛍光体層54を備えている。蛍光体層54は、スラブ型光導波路として機能するものであり、この蛍光体層の入射面54aは、光源11の出射面に対向している。
 本例では、蛍光体からなるスラブ型光導波路54の上面54fに、凹凸からなるブラッググレーティング5が形成されている。しかし、ブラッググレーティングをスラブ型光導波路54の下面54gに設けることもできる。また、光導波路54は、ブラッググレーティング5が設けられたグレーティング部54d、グレーティング部54dと入射面54aとの間に設けられた、ブラッググレーティングのない入射側伝搬部54c、およびグレーティング部54dと出射側端面54bとの間に設けられた、ブラッググレーティングのない伝搬部54eを備えている。
 本例では、光源11の活性層13から出射した光は、蛍光体からなるスラブ型光導波路54の入射面54aに入射し、光導波路を矢印Dのように伝搬する。そして、蛍光体を通過した光は、出射側端面54bから矢印Bのように白色光として出射する。
 図12に示す発光装置は、図11のものと類似のものである。しかし、図12の例では、蛍光体からなる光導波路層54中に一対のリッジ溝26が形成されており、一対のリッジ溝26の間にリッジ型光導波路25が設けられている。光導波路25は、入射面25a、出射面25b、ブラッググレーティング5が形成されたグレーティング部25d、グレーティング部25dと入射面25aとの間の入射側伝搬部25cおよびグレーティング部25dと出射面25bとの間の出射側伝搬部25eを備えている。
 本例では、光源11の活性層13から出射した光は、蛍光体からなるリッジ型光導波路25の入射面25aに入射し、光導波路を伝搬する。そして、蛍光体を通過した光は、出射側端面25bから矢印Bのように白色光として出射する。
 好適な実施形態においては、光導波路に入射する入射光の伝搬方向をブラッググレーティングによって変更して光導波路から放射させることができる。
 図13は、この実施形態に係るものである。
 図13に示す発光装置は、光源モジュール53とグレーティング素子1Cとを備えている。光源モジュール53は、支持基板51上に複数の光源11が実装されている。各光源11は、基板12とその上の活性層13とを備えている。各活性層13は、ワイヤー49を通してパッド50に接続されている。
 グレーティング素子1Cは、支持基板2、支持基板2上に設けられた下側クラッド層3、下側クラッド層3上に設けられた蛍光体層44を備えている。蛍光体層44は、スラブ型光導波路として機能するものであり、この蛍光体層の入射面44aは、各光源11の出射面に対向している。
 本例では、蛍光体からなるスラブ型光導波路44の上面44fに、凹凸からなるブラッググレーティング5Aが形成されている。しかし、ブラッググレーティングをスラブ型光導波路44の下面44gに設けることもできる。また、光導波路44は、ブラッググレーティング5Aが設けられたグレーティング部44d、グレーティング部44dと入射面44aとの間に設けられた、ブラッググレーティングのない入射側伝搬部44c、およびグレーティング部44dと端面44bとの間に設けられた、ブラッググレーティングのない伝搬部44eを備えている。
 本例では、各光源11の各活性層13から出射した光は、蛍光体からなるスラブ型光導波路44の入射面44aに入射し、光導波路を矢印Dのように伝搬する。このときブラッググレーティング5Aによって回折を受け、矢印Eのように、光導波路44の上面から外側へと向かって放射される。これとともに、光導波路44を伝搬する光は波長変換を受け、白色光となるので、白色光Eが外部へと放射されることになる。
 本例では、ブラッググレーティングによって、光導波路を伝搬する光の進行方向を変更し、光導波路から外部へと放射する。このグレーティングカプラの原理について説明する。
 図14に示すように、光導波路44に入射した入射光は、矢印Dのように例えばz方向に伝搬定数βoで伝搬する。ブラッググレーティングにおいて、周期構造のピッチをΛとした場合、下式(1)の位相条件を満足する伝搬定数の光が伝搬する。
 
βq=βo+qK (q=0、±1、±2、・・・)・・・・・・(1)
 
 ここで、βoはグレーティングがない場合の導波路中の導波モードの伝搬定数である。K=2π/Λである。
 |βq|<na・k、または
 |βq|<ns・k
を満たす次数qがある場合、導波路の上側と支持基板側との両方に放射する。
 ここで、na、nsはそれぞれ光導波路コアの上側クラッド、下側クラッドの屈折率を示す。またkは波数を示す。
 このときの放射角θa、θsは、下式(2)で決められる。
 
na・k・sinθa=ns・k・sinθs=βq ・・・・(2)
 光導波路コア内における伝搬方向Dと、放射光の方向とのなす角度(90-θa)、(90-θs)は特に制限されないが、通常は30~90°が好ましく、45~90°が更に好ましい。
 上記から放射角は波長により異なることがわかり、特に、蛍光体にグレーティングを形成する場合には、励起光と蛍光のそれぞれについて放射角の条件を満足する必要がある。
 好適な実施形態においては、光導波路下のクラッドと支持基板との間に、光導波路からの放射光を反射する反射膜を設ける。これによって、素子外に放射する放射光の光量を高くすることができる。こうした反射膜としては、金、アルミニウム、銅、銀、等の金属膜、あるいは、誘電体多層膜であってよい。
 反射膜として金属膜を使用する場合には、その上に形成するクラッド層がはがれないようにするために、Cr、Ni、Ti、等の金属層を金属膜のバッファ層として形成することができる。
 また、上側クラッド層と蛍光体層との間には、反射防止(AR)コートを設けたり、あるいは、モスアイ構造を設けたりすることにより、上側クラッド層と蛍光体層との間での反射を低減できる。
 下側クラッド層、上側クラッド層の材質は、蛍光体層よりも屈折率の小さい材料であればよく、接着層であってもよい。上側クラッド層は、空気であってもよく、この場合は、上側クラッド層がない場合と等しい。
 支持基板が、光導波路を構成する蛍光体よりも屈折率が大きい場合には、下側クラッド層は必須であり、これにより光導波路に光が閉じこもることになり、導波路の伝搬損失を低減するという観点で好ましい。
 光源のグレーティング素子とは反対側の外側端面には、図示しない反射膜を設けることができる。活性層のグレーティング素子側の端面には、光源が単独でレーザ発振するために低反射膜を設けることができるが、無反射膜を形成することもできる。更に、グレーティング素子の光導波路の入射面、出射面には、それぞれ、図示しない無反射層を設けることができる。
 これら無反射層の反射率は、グレーティング反射率よりも小さい値であればよく、さらに0.1%以下が好ましい。しかし、端面における反射率がグレーティング反射率よりも小さい値であれば、無反射層はなくてもよく、無反射層の代わりに反射膜を設けることもできる。
 無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタル、フッ化マグネシウムなどの酸化物で積層した膜が例示できる。
 この場合、レーザ光の発振波長は、ブラッググレーティングにより反射される波長で決定される。ブラッググレーティングによる反射光と活性層のグレーティング素子側の端面からの反射光がレーザのゲイン閾値を上回れば、発振条件を満足する。これにより波長安定性の高いレーザ光を得ることができる。
 波長安定性をより高くするには、グレーティングからの帰還量を大きくすればよく、この観点からグレーティングの反射率は活性層の端面における反射率よりも大きくする方が好ましい。
 光源としては、照明用蛍光体の励起用として高い信頼性を有するGaN材料による半導体レーザが好適である。また、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオードや半導体光アンプ(SOA)であってもよい。
 なお、半導体レーザとグレーティング素子との組み合わせでパワー安定化を行う方法は、下記に開示されている。
(非特許文献2: 古河電工時報 平成12年1月 第105号 p24-29)
 ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
 具体例として、Ni、Ti、Cr、Alなどの金属膜を蛍光体ガラス層上に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝をクラッド層に形成する。次いで、金属マスクを除去する。
 リッジ型光導波路は、例えば外周刃による切削加工やレーザアブレーション加工することによって物理的に加工し、成形することによって得られる。あるいは、リッジ型光導波路も、クラッド層上のグレーティング溝と同じように、ドライエッチングによって形成することができる。
 半導体レーザと蛍光体から白色光を発生する方法は、特には限定されないが、以下の方法が考えられる。
 青色レーザと蛍光体により黄色の蛍光を発生し、白色光を得る方法
 青色レーザと蛍光体により赤色と緑色の蛍光を発生し白色光を得る方法
 また青色レーザや紫外レーザから蛍光体により赤色、青色、緑色の蛍光を発生し白色光を得る方法
 青色レーザや紫外レーザから蛍光体により青色と黄色の蛍光を発生し白色光を得る方法
 蛍光体としては、蛍光体ガラスや単結晶が好ましい。
 蛍光体ガラスは、ベースとなるガラス中に希土類元素イオンを分散したものである。
 ベースとなるガラスとしては、シリカ、酸化ホウ素、酸化カルシウム、酸化ランタン、酸化バリウム、酸化亜鉛、酸化リン、フッ化アルミニウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、塩化バリウムを含む酸化ガラスが例示でき、YAG(イットリウム・アルミニウム・ガーネット)であってもよい。
 蛍光体ガラス中に分散される希土類元素イオンとしては、Tb、Eu、Ce、Nd、が好ましいが、La、Pr、Sc、Sm、Er、Tm、Dy、Gd、Luであってもよい。
 蛍光体として、TAG(テルビウム・アルミニウム・ガーネット)系、サイアロン系、BOS(バリウム・オルソシリケート)系、
YAG(イットリウム・アルミニウム・ガーネット)が例示できる。
 蛍光体単結晶としてはYAl12、BaSi11Al25、TbAl12が好ましい。また、蛍光体単結晶中にドープするドープ成分としては、Tb、Eu、Ce、Nd等の希土類元素イオンとする。
 支持基体の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶であってよい。しかし、光源の熱が蛍光体に伝導すること、あるいは、波長変換や外部から蛍光体自体が加熱することを抑制するために、放熱特性のよい支持基板を使用することができる。この場合には、アルミナ、窒化アルミニウム、炭化珪素、Siなどを例示することができる。
 また、光源素子、グレーティング素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、グレーティング素子と支持基板の接合は、接着固定でもよく、直接接合でもよい。支持基板にスパッタ、CVD等の成膜法によりグレーティング素子を形成してもよい。
 好適な実施形態においては、光導波路の入射面と出射面との少なくとも一方に誘電体多層膜からなるARコートが形成されている。
 他の好適な実施形態においては、蛍光体層を構成する材質の屈折率よりも低い屈折率を有する材質からなる単層膜が形成されている。こうした単層膜の厚さは、ARコートのように厳密に決定する必要はなく、単に単層膜を形成することによって端面反射を低減することができる。ここで、多層膜にすると、多層膜間の屈折率と厚さの関係によっては、反射抑制の度合いが低下したり、無くなったりする可能性があり、多層膜の各層の厚さを制御する必要があるので、単層膜の方が優れている。これによりグレーティング素子の端面反射率は単層膜がない場合よりも確実に低減することができる。単層膜の厚みは、好適には1μm以下である。
 好適な実施形態においては、光導波路が、リッジ型光導波路のようにチャネル型光導波路であり、光学素子の入射面における光導波路幅よりも出射面における光導波路幅のほうが大きい。これによって、蛍光体層に入射する光ビームを大きくし、蛍光体層の加熱を抑制することが可能である。この場合、特に好ましくは、光導波路の入射面と出射面の間にテーパ部を設け、テーパ部の幅を入射面側から出射面側へと向かって大きくする。これによって、光の伝搬損失を最小限とし、発光強度を高くできる。
 図16は、この実施形態に係るものであり、光学素子50に形成されたチャネル型光導波路51の平面的パターンを示す。光導波路51は、入射部51a、グレーティングが設けられたグレーティング部51b、テーパ部51cおよび出射部51dを備えている。入射部51aにおける光導波路幅Winよりも、出射部51dにおける光導波路幅Woutのほうが大きい。この場合、蛍光体層の発熱を抑制するという観点からは、Wout/Winは、2以上が好ましく、5以上が特に好ましい。また、上限値の制限は特にないが、大きくしても光が十分に広がらなくなることからは、Wout/Winは、1000以下が好ましく、500以下が特に好ましい。
 グレーティング部の幅Wgrは、横モードがマルチモードにしてスペックルノイズを抑制するという観点からは、3μm以上が好ましく、5μm以上が更に好ましい。また、グレーティング部の幅Wgrは、レーザ発振を安定にするという観点から10μm以下が好ましく、更に7μm以下が好ましい。なお、Wgrは、図7~図10に図示するように、グレーティング部の幅(グレーティング部における光導波路の幅)である。
 Wgrが光源のスポットサイズ(ニアフィールド径)よりも大きい場合には、入力部にもテーパ部を設けて、WinをWgrよりも小さくすることができる。
 本例では、グレーティング部51bの幅Wgrが入射部の幅Winと同じになっている。また、テーパ部51cの幅は、入射側ではWinであり、出射面側ではWoutになっており、その間では入射面51e側から出射面51f側へと向かって徐々に増大している。
 なお、チャネル型光導波路がリッジ型光導波路である場合には、チャネル型光導波路の幅Win、Wout、Wgrは、光導波路の長手方向に対して垂直な横断面における光導波路幅である。また、光導波路の幅は、光導波路の前記横断面における幅のうち最も狭い部分の幅とする。
 光学素子の全長Lwgは、特に限定されないが、通常は1mm~30mmが好ましい。また、グレーティング部51bの長さLは、外部共振器としての機能という観点からは、10μm以上が好ましい。テーパ部51cの長さLtpは、伝搬損失低減という観点からは、50μm~5000μmが好ましい。
 光源素子は複数個アレイ上に並列に配置し、蛍光体に入力することにより、小型化、かつ高出力の照明装置を実現することができる。さらに、光源素子は1個で蛍光体ガラスの端面を折り返すことにより蛍光体ガラス内全域は励起光を伝搬させ、全域から白色光を発生する照明装置を実現することもできる。
 好適な実施形態においては、蛍光体が、希土類元素イオンがドープされた単結晶からなり、光導波路の厚さが3μm以上、80μm以下である。希土類元素イオンがドープされた単結晶からなる蛍光体は、前述したものである。
 本実施形態では、支持基板上に光導波路を設け、その光導波路の厚さを80μm以下とする。ここで、光導波路の厚さとは、支持基板の表面に垂直な方向に見た光導波路の寸法であり、図2~図12に示すTにあたる。
 本発明者は、特に希土類元素をドープした単結晶からなる蛍光体から白色光を発生させる技術を検討した。しかし、こうしたいわゆる単結晶蛍光体は脆いため、小型化すると取り扱いが困難である。このため、こうした単結晶蛍光体を支持基板上に固定し、青色光等を入射させて出射光を観測してみた。しかし、実際に単結晶蛍光体から出射される白色光には、いわゆる色ムラが生ずることがわかった。
 すなわち、単結晶蛍光体からの出射光を観察すると、場所によって色調が異なり、目的とする白色光が得られていない場所が多かった。
 本発明者は、この理由について検討し、以下の知見を得た。すなわち、単結晶蛍光体中での希土類元素イオンの濃度には不可避的にバラツキがあり、場所によってイオン濃度に濃淡がある。ここで、従来のように、単結晶蛍光体板に対して垂直に青色光を当てると、光は直進し、単結晶蛍光体板を透過して出射する。すると、出射光のスペクトルは、単結晶蛍光体板における希土類イオン濃度の濃淡を反映することになる。
 ここで、本発明者は、単結晶蛍光体を支持基板上に固定して光導波路を形成することを試みたが、その場合にも、光導波路が厚い場合には、出射光のスペクトルが、単結晶蛍光体中での希土類イオンの濃淡を反映し、色ムラが生ずることを見いだした。
 本発明者は、こうした知見に立ち、単結晶蛍光体を支持基板上に設けた場合については、その厚さを80μm以下とすることで、出射光の色ムラを抑制できることを見いだした。この理由であるが、支持基板上に設ける単結晶蛍光体を薄くすると、支持基板との界面と、その反対側の表面との間で伝搬光が反射を繰り返し、この結果として単結晶蛍光体内における希土類イオンの濃淡の影響が平均化されるものと考えられる。
 こうした観点からは、光導波路の厚さを80μm以下とするが、50μm以下とすることが好ましく、30μm以下とすることが一層好ましい。これによって色ムラが一層低減され、出射光のコヒーレンス長も長くなる。
 一方、光導波路の厚さを3μm以上、更には10μm以上とすることによって、出射光の平均出力が向上し、かつコヒーレンス長さも改善される。
(実施例1)
 図1、図2に示すようなグレーティング素子1を作製した。
 具体的には、石英からなる支持基板2上にスパッタ装置にてSiOからなる下側クラッド層3を厚さ1.0μm成膜し、赤、青、緑の3原色の蛍光体を分散させた蛍光ガラス板と直接接合した後、蛍光ガラス板を3μmの厚みまで研磨してスラブ型光導波路4を形成した。次に、スラブ型光導波路4上にNiを成膜して、フォトリソグラフィー技術によりグレーティングパターンを作製した。その後、Niパターンをマスクにして反応性イオンエッチングにより、ピッチ間隔Λ118nm、長さ3000μmのグレーティング溝を形成した。グレーティングの溝深さtは100nmとした。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子に、出力30mWのGaN系青色レーザ光源11を光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、ピーク波長に変動がないことが確認できた。
 この結果、モジュールの出力側から平均3lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例2)
 図1、図3に示すようなグレーティング素子1Aを作製した。
 具体的には、蛍光体ガラス板上にSiOからなる下側クラッド層3を厚さ1.0μm成膜した後、蛍光体ガラス板の成膜面と支持基板2とを樹脂接合によって貼りあわせた。次いで、実施例1と同様にして蛍光体ガラス板を研磨し、厚さ3μmのスラブ型光導波路4を得た。得られた素子について、実施例1と同様にして試験したところ、モジュールの出力側から平均3lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例3)
 図5、図6に示すようなグレーティング素子21を作製した。
 具体的には、石英からなる支持基板2にスパッタ装置にてSiOからなる下側クラッド層3を厚さ1.0μm成膜し、赤、青、緑の3原色の蛍光体を分散させた蛍光ガラス板と直接接合した後、蛍光ガラス板を3μmの厚み(Tgr)まで研磨して蛍光体ガラス層を形成した。次に、光導波路層上にNiを成膜して、フォトリソグラフィー技術によりグレーティングパターンを作製した。その後、Niパターンをマスクにして反応性イオンエッチングにより、ピッチ間隔Λ116nm、長さ3000μmのグレーティング溝を形成した。グレーティングの溝深さtは100nmとした。次に上記と同様な方法で反応性イオンエッチングにより、幅Wgr3μm、深さT2μmのリッジ溝26およびリッジ型光導波路25を形成した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子を30mWのGaN系青色レーザ光源11に光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、波長変動がないことが確認できた。この結果、モジュールの出力側から平均2.4lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例4)
 実施例3において、石英からなる支持基板2にSiOからなる下側クラッド層3を厚さ1.0μm成膜した後、蛍光ガラス板と樹脂接合にて貼りあわせた。その他は実施例3と同様にしてグレーティング素子を得た。得られた素子について、実施例3と同様に試験したところ、モジュールの出力側から平均2.4lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例5)
 実施例3と同様な素子を作製した。ただし、蛍光ガラス板を厚さ3μmに加工した後に、得られたスラブ型光導波路の上面にリッジ溝を形成することによって、80μm間隔で10個のリッジ型導波路25を形成した。その後、実施例3と同じレーザ光源を80μm間隔に配置したレーザアレイを対向させ、モジュールを作製した。
 そして、実施例1と同様にして各レーザ光源からレーザ光を発振させたところ、モジュールの出力側から平均24lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(比較例1)
 実施例1において、スラブ型光導波路にブラッググレーティングを設けなかった。それ以外は実施例1と同様にしてグレーティング素子を作製した。そして、実施例1と同様にGaNレーザ光源を結合したモジュールを組立て、光学特性を評価した。
 この結果、レーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は5%以上であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、ピーク波長変動が±5nmであった。この結果、モジュールの出力側から平均2.7lmの出力変動のある白色光が観測できた。
(実施例6)
 実施例1と同様なグレーティング素子および照明モジュールを作製した。
 具体的には、石英からなる支持基板2上にスパッタ装置にてSiOからなる下側クラッド層3を厚さ1.0μm成膜し、その上に単結晶YAG蛍光体プレートを直接接合した後、この蛍光体プレートを3μmの厚みまで研磨することによって、YAG単結晶からなるスラブ型光導波路4を形成した。次に、スラブ型光導波路4上にAlを成膜して、フォトリソグラフィー技術によりグレーティングパターンを作製した。その後、Alパターンをマスクにして反応性イオンエッチングにより、ピッチ間隔Λ123nm、長さ300μmのグレーティング溝を形成し、ブラッググレーティング5を得た。グレーティングの溝深さtは100nmとした。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子1に、波長450nm、 出力30mWのGaN系青色レーザ光源11を光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、ピーク波長に変動がないことが確認できた。
 この結果、モジュールの出力側から平均3.2lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例7)
 実施例2と同様なグレーティング素子および照明モジュールを作製した。
 具体的には、実施例1において、支持基板2にSiOからなる下側クラッド層3を厚さ1.0μm成膜した後、単結晶YAG蛍光体プレートと樹脂接合によって貼りあわせた。次いで、実施例6と同様にして単結晶YAG蛍光体を研磨し、スラブ型光導波路4を得た。
 得られた素子について、実施例1と同様にして試験したところ、モジュールの出力側から平均3.2lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例8)
 実施例3と同様なグレーティング素子および照明モジュールを作製した。
 具体的には、石英からなる支持基板2にスパッタ装置にてSiOからなる下側クラッド層3を厚さ1.0μm成膜し、単結晶YAG蛍光体プレートと直接接合した後、この蛍光体プレートを3μmの厚み(Tgr)まで研磨して蛍光体層24を形成した。次に、蛍光体層24上にAlを成膜して、フォトリソグラフィー技術によりグレーティングパターンを作製した。その後、Alパターンをマスクにして反応性イオンエッチングにより、ピッチ間隔Λ121nm、長さ300μmのグレーティング溝を形成し、ブラッググレーティング25を得た。グレーティングの溝深さtは100nmとした。
 次に上記と同様な方法で反応性イオンエッチングにより、幅Wgr3μm、深さT2μmのリッジ溝 およびリッジ型光導波路を形成した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子を波長450nm、30mWのGaN系青色レーザ光源11に光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、波長変動がないことが確認できた。この結果、モジュールの出力側から平均2.5lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例9)
 実施例4と同様なグレーティング素子および照明モジュールを作製した。
 実施例8において、石英からなる支持基板2にSiOからなる下側クラッド層3を厚さ1.0μm成膜した後、単結晶YAG蛍光体プレートと樹脂接合にて貼りあわせた。その他は実施例8と同様にしてグレーティング素子を得た。
 得られた素子について、実施例8と同様に試験したところ、モジュールの出力側から平均2.5lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例10)
 実施例8と同様な素子を作製した。ただし、蛍光体プレートを厚さ3μmに加工した後に、得られたスラブ型光導波路の上面にリッジ溝を形成することによって、80μm間隔で10個のリッジ型導波路 を形成した。その後、実施例8と同じレーザ光源を80μm間隔に配置したレーザアレイを対向させ、モジュールを作製した。
 そして、実施例6と同様にして各レーザ光源からレーザ光を発振させたところ、モジュールの出力側から平均25lmの出力変動のない白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例11)
 図13に示すような照明モジュールを作製した。
 具体的には、窒化アルミニウムからなる支持基板2上にスパッタ装置にてTi50nm、Pt50nm、金500nm成膜し、さらにPt50nm、Ti50nm成膜し、反射層を形成した。次に、反射層の上にスパッタ装置にてSiOを1μm成膜し、下側クラッド層3を得た。一方、YAG単結晶蛍光体基板上にスパッタ装置にてSiOを1μm成膜した。その後、両基板をSiOを界面にして常温直接接合した。さらに蛍光体基板の接合面と反対側の面を研磨して3μmまで薄くし、蛍光体からなるスラブ型光導波路44を形成した。
 次に、スパッタ装置にてTiを成膜して電子ビーム露光にてグレーティングパターンを反応性イオンエッチング装置にてエッチングして形成した。さらに、このTiパターンをマスクに同じ装置にて蛍光体をエッチングすることにより、ピッチ間隔Λ340nm、長さ3000μmのグレーティング溝を形成し、ブラッググレーティング5Aを得た。グレーティングの溝深さtは100nmとした。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、片側端面に0.1%のARコートを形成し、最後にチップ切断を行い、スラブ型導波路グレーティング素子を作製した。素子サイズは幅10mm、長さLwg10mmとした。
 チップ化したグレーティング素子に、窒化アルミニウム基板に実装された波長450nm、出力30mWのGaN系青色レーザ光源を光学的に結合し、AuSn半田にて固定し、照明モジュールを作製した。モジュールの大きさは、幅10mm、長さ20mm、高さ2mmであった。
 このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光はグレーティング素子の蛍光体面の法線方向に対して66°(θa=24°)の方向に、蛍光により発せられた黄色光は88°(θa=2°)の方向に放射し、蛍光体からの放射面でのニアフィールドのスポット形状は幅50μm、長さ100μmの大きさで放射していることを確認できた。
 この結果、モジュールの出力側から平均3lmの出力変動のない白色光が観測できた。このとき1000時間連続動作させても出力の変動が±1%以内であることが確認できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例12:単結晶蛍光体の場合)
 図1、図2に示すようなグレーティング素子および照明モジュールを作製した。
 具体的には、石英からなる支持基板2上にスパッタ装置にてSiOからなる下側クラッド層3を厚さ1.0μm成膜し、Ceをドープしたイットリウム・アルミニウム・ガーネット(YAG)単結晶からなる厚さ500μmの蛍光体プレートを直接接合した。ついで、この蛍光体プレートを、表1に示す厚みになるまで研磨し、スラブ型光導波路4を形成した。次に、光導波路4上にAlを成膜して、フォトリソグラフィー技術によりグレーティングパターン5を作製した。その後、Alパターンをマスクにして、反応性イオンエッチングにより、ピッチ間隔Λ123nm、長さ300μmのグレーティング溝を形成した。グレーティングの溝深さtは100nmとした。
 その後、ダイシング装置にて素子をバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子1を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子1に、波長450nm、 出力30mWのGaN系青色レーザ光源11を光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、ピーク波長に変動がないことが確認できた。
 この各例の評価を表1に示す。ただし、各項目は以下のようにして測定した。
(平均出力)
 平均出力は、全光束の時間平均を表す。全光束測定は,積分球(球形光束計)を使用して,被測定光源と全光束が値付けられた標準光源とを同じ位置で点灯し,その比較によって行う。詳細にはJIS C 7801にて規定されている方法を用いて測定を行った。
(色ムラ)
 導波路型蛍光体素子端面4bより出力した光を、輝度分布測定装置を用いて観測し、色度図で評価を行った。色度図において、中央値x:0.3447±0.005、y:0.3553±0.005の範囲にある場合には、「色ムラなし」と評価し、この範囲外にある場合には「色ムラあり」と評価した。
(コヒーレンス長)
 マイケルソン干渉計を用いた光スペクトルアナライザーによりスペクトル線幅を測定して、下記計算式より求めた。
 
コヒーレンス長(Lc)=C/ΔV
 
C:光の速さ=2.9979258×108m/sec
ΔV:線幅(Hz)
 
Figure JPOXMLDOC01-appb-T000001
 このように、光導波路の厚さを80μm以下とすることによって、色ムラがみられなくなった。また、光導波路の厚さを3μm以上とすることによって、平均出力が増大している。更に、光導波路の厚さを50μm以下とした場合には、コヒーレンス長が一層短くなる。
(実施例13)
 図1、図2に示すように、グレーティング素子および照明モジュールを作製した。
 具体的には、支持基板2と、CeをドープしたYAGからなる単結晶蛍光体からなるプレート(厚さ500μm)とを樹脂接合によって貼りあわせた後、実施例12と同様にして蛍光体プレートを研磨し、厚さ50μmのスラブ型光導波路4を得た。得られた素子について、実施例1と同様にして試験したところ、モジュールの出力側から平均3.2lmの出力変動がなく、色ムラの無い白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例14)
 図5、図6に示すようなグレーティング素子21を作製し、照明モジュールを作製した。
 具体的には、支持基板2と、CeをドープしたYAGからなる単結晶蛍光体プレート(厚さ500μm)とを直接接合した後、厚さ50μmまで研磨してグレーティング溝を形成した後、反応性イオンエッチングにより、幅Wgr3μm、深さT2μmのリッジ溝26およびリッジ型光導波路25を形成した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面に0.1%のARコートを形成し、最後にチップ切断を行い、グレーティング素子を作製した。素子サイズは幅1mm、長さLwg10mmとした。
 チップ化したグレーティング素子を波長450nm、30mWのGaN系青色レーザ光源11に光学的に結合してモジュールを作製した。このときレーザ光の出力をモニター用フォトダイオードで測定した結果、出力変動は1%以内であった。また、レーザ光の波長変動を光スペクトルアナライザーで測定した結果、波長変動がないことが確認できた。この結果、モジュールの出力側から平均2.5lmの出力変動がなく、色ムラの無い白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。
(実施例15)
 実施例14と同様な素子を作製した。ただし、単結晶蛍光体プレートを厚さ50μmまで研磨加工した後に、得られたスラブ型光導波路の上面にリッジ溝を形成することによって、80μm間隔で10個のリッジ型導波路を形成した。その後、実施例14と同じレーザ光源を80μm間隔に10個配置したレーザアレイを対向させ、モジュールを作製した。
 そして、各レーザ光源からレーザ光を発振させたところ、モジュールの出力側から平均25lmの出力変動がなく、色ムラの無い白色光が観測できた。また、色ムラについては、色度図で中央値x:0.3447±0.005、y:0.3553±0.005の範囲にあることを確認した。

Claims (11)

  1.  支持基板、
     前記支持基板上に設けられた、蛍光体からなる光導波路、および
     前記光導波路に形成されたブラッググレーティングを備えていることを特徴とする、グレーティング素子。
  2.  前記光導波路がスラブ型光導波路であることを特徴とする、請求項1記載の素子。
  3.  前記光導波路がリッジ型光導波路であることを特徴とする、請求項1記載の素子。
  4.  前記リッジ型光導波路が複数設けられていることを特徴とする、請求項3記載の素子。
  5.  前記蛍光体が、蛍光体ガラスまたは単結晶からなることを特徴とする、請求項1~4のいずれか一つの請求項に記載の素子。
  6.  前記光導波路に入射する入射光の伝搬方向を前記ブラッググレーティングによって変更して前記光導波路から放射させることを特徴とする、請求項1~5のいずれか一つの請求項に記載の素子。
  7.  前記蛍光体が、希土類元素イオンがドープされた単結晶からなり、前記光導波路の厚さが3μm以上、80μm以下であることを特徴とする、請求項5記載の素子。
  8.  レーザ光を発振する光源およびグレーティング素子を備える照明装置であって、
     前記グレーティング素子が、請求項1~7のいずれか一つの請求項に記載のグレーティング素子であり、前記光導波路から白色光が放射することを特徴とする、照明装置。
  9.  前記光源と前記ブラッググレーティングとが外部共振器を構成していることを特徴とする、請求項8記載の装置。
  10.  前記光導波路に入射する前記入射光の伝搬方向を前記ブラッググレーティングによって変更し、前記光導波路から前記白色光を放射させることを特徴とする、請求項8記載の装置。
  11.  前記光源が複数設けられていることを特徴とする、請求項8~10のいずれか一つの請求項に記載の装置。
PCT/JP2016/050471 2015-04-21 2016-01-08 グレーティング素子および照明装置 WO2016170803A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017514121A JPWO2016171115A1 (ja) 2015-04-21 2016-04-19 グレーティング素子および照明装置
PCT/JP2016/062329 WO2016171115A1 (ja) 2015-04-21 2016-04-19 グレーティング素子および照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015086736 2015-04-21
JP2015-086736 2015-04-21
JP2015134566 2015-07-03
JP2015-134566 2015-07-03

Publications (1)

Publication Number Publication Date
WO2016170803A1 true WO2016170803A1 (ja) 2016-10-27

Family

ID=57144560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050471 WO2016170803A1 (ja) 2015-04-21 2016-01-08 グレーティング素子および照明装置

Country Status (2)

Country Link
JP (1) JPWO2016171115A1 (ja)
WO (1) WO2016170803A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399228A4 (en) * 2016-12-19 2019-02-27 NGK Insulators, Ltd. LUMINOPHORE ELEMENT AND LIGHTING DEVICE
WO2019159313A1 (ja) * 2018-02-16 2019-08-22 日本碍子株式会社 白色光発生素子および照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275444A (ja) * 1999-03-25 2000-10-06 Toshiba Corp 発光装置
JP2007219030A (ja) * 2006-02-15 2007-08-30 Harison Toshiba Lighting Corp 発光デバイス
JP2007240641A (ja) * 2006-03-06 2007-09-20 Harison Toshiba Lighting Corp 面状発光デバイス
WO2014087468A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 平面導波路型レーザ励起モジュールおよび平面導波路型波長変換レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275444A (ja) * 1999-03-25 2000-10-06 Toshiba Corp 発光装置
JP2007219030A (ja) * 2006-02-15 2007-08-30 Harison Toshiba Lighting Corp 発光デバイス
JP2007240641A (ja) * 2006-03-06 2007-09-20 Harison Toshiba Lighting Corp 面状発光デバイス
WO2014087468A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 平面導波路型レーザ励起モジュールおよび平面導波路型波長変換レーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399228A4 (en) * 2016-12-19 2019-02-27 NGK Insulators, Ltd. LUMINOPHORE ELEMENT AND LIGHTING DEVICE
US10859747B2 (en) 2016-12-19 2020-12-08 Ngk Insulators, Ltd. Phosphor element and illumination device
WO2019159313A1 (ja) * 2018-02-16 2019-08-22 日本碍子株式会社 白色光発生素子および照明装置
US11561333B2 (en) 2018-02-16 2023-01-24 Ngk Insulators, Ltd. White-light generating device with fluorescent body with inclined side surface

Also Published As

Publication number Publication date
JPWO2016171115A1 (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5214193B2 (ja) ファイバー光源
US20200012022A1 (en) Ceramic Wavelength Converter Having a High Reflectivity Reflector
WO2017056470A1 (ja) 波長変換素子及び発光装置
WO2019097817A1 (ja) 蛍光光源装置
JP6424336B2 (ja) 投光装置
US11868023B2 (en) Light-emitting device and optical fiber
JP6457099B2 (ja) 波長変換部材および発光装置
US10488566B2 (en) Ceramic wavelength converter having a high reflectivity reflector
CN110418917B (zh) 光源装置以及投光装置
WO2017119313A1 (ja) 蛍光体素子および照明装置
JP2007157764A (ja) 蛍光ファイバを用いた多波長レーザ光源
WO2016171115A1 (ja) グレーティング素子および照明装置
WO2016170803A1 (ja) グレーティング素子および照明装置
WO2017006797A1 (ja) 光学素子および発光装置
JP2015065142A (ja) 固体照明装置および波長変換部材
WO2017183606A1 (ja) 蛍光体素子および照明装置
JP2007258466A (ja) 照明装置及び発光装置
JP6367515B1 (ja) 蛍光体素子および照明装置
WO2017006796A1 (ja) グレーティング素子および発光装置
US20030086446A1 (en) Fiber laser apparatus as well as optical multi/demultiplexer and image display apparatus therefor
JP7384050B2 (ja) 光源装置
JP2013093268A (ja) 波長変換型光源装置
US7817700B2 (en) Laser light source device and manufacturing method for manufacturing laser light source device
JP4086260B2 (ja) 発光素子モジュール
WO2010052654A1 (en) Lighting element comprising a light guiding structure with a surface guided mode and a phospor material, and a method of lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP