WO2016167366A1 - 眼疾患治療剤 - Google Patents
眼疾患治療剤 Download PDFInfo
- Publication number
- WO2016167366A1 WO2016167366A1 PCT/JP2016/062183 JP2016062183W WO2016167366A1 WO 2016167366 A1 WO2016167366 A1 WO 2016167366A1 JP 2016062183 W JP2016062183 W JP 2016062183W WO 2016167366 A1 WO2016167366 A1 WO 2016167366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corneal
- nucleic acid
- acid molecule
- disease
- stranded nucleic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7125—Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
Definitions
- the present invention relates to a novel single-stranded nucleic acid molecule and use of the nucleic acid molecule for treating eye diseases. More specifically, the present invention relates to a nucleic acid molecule that is a miR-29b derivative and a therapeutic agent for corneal diseases including refractory ocular surface diseases, comprising the same.
- the cornea is conventionally an avascular transparent tissue, but scars and angiogenesis occur in the cornea due to various inflammations and edema, and its transparency is lost.
- Typical examples include Stevens-Johnson syndrome (SJS), ophthalmic decubitus (OCP), and thermochemical trauma (alkaline trauma, acid trauma, burn, etc.), with a wide range of corneal limbal regions including corneal epithelial stem cells Resulting in corneal neovascularization, corneal scarring, and marked visual impairment.
- SJS Stevens-Johnson syndrome
- OCP ophthalmic decubitus
- thermochemical trauma alkaline trauma, acid trauma, burn, etc.
- corneal limbal regions including corneal epithelial stem cells Resulting in corneal neovascularization, corneal scarring, and marked visual impairment.
- Such a disease that causes corneal epithelial stem cell exhaustion is called “refractory ocular surface disease”, and the conventional pharmacotherapy cannot be sufficiently treated.
- miRNA microRNA
- Primary miRNA Primary miRNA
- pre-miRNA precusor miRNA
- Double-stranded mature miRNAs have a single strand (guide strand) that forms a complex with a protein called RISC and acts on the mRNA of the target gene, thereby inhibiting the expression of the target gene. It is known (for example, refer nonpatent literature 1).
- More than 1000 types of miRNA are known in humans and mice, and each of them has been suggested to regulate the expression of a plurality of target genes and participate in various life phenomena such as cell proliferation and differentiation.
- miRNA involved in hematopoietic cell and neuronal cell differentiation for example, see Non-Patent Document 2.
- Control of the expression function of multiple target genes by miRNA is useful in reducing or treating disease symptoms caused by abnormal expression of a specific gene or group of genes, and miRNA is expected to be developed as a therapeutic agent Has been.
- An object of the present invention is to provide a medicine using a nucleic acid molecule effective for the treatment of eye diseases.
- the present inventors have focused on miR-29b, and have created a double-stranded miRNA (artificial match) consisting of a miR-29b guide strand and a completely complementary passenger strand. Constructs a single-stranded nucleic acid molecule (single-stranded artificial match-type miR-29b) in which one end of double-stranded RNA containing a miRNA) is linked with a proline derivative linker, and encapsulates the single-stranded nucleic acid molecule in a liposome Then, when instilled into a mouse alkaline trauma model, it was found that angiogenesis and scarring were remarkably suppressed.
- single-chain artificial match-type miR-29b eye drop replacement therapy is a treatment for corneal diseases such as ocular surface diseases accompanied by corneal neovascularization and scar turbidity.
- corneal diseases such as ocular surface diseases accompanied by corneal neovascularization and scar turbidity.
- a single-stranded nucleic acid molecule represented by [2] A therapeutic agent for corneal diseases comprising the single-stranded nucleic acid molecule according to [1] as an active ingredient. [3] The agent according to [2], wherein the corneal disease is associated with corneal neovascularization or scar turbidity. [4] The corneal disease is selected from the group consisting of an ocular surface disease, corneal inflammation, hypoxia due to contact lenses, infectious corneal disease, corneal opacity associated with corneal endothelial dysfunction, and colloidal corneal dystrophy. The agent according to [3].
- a method for treating a corneal disease comprising administering a therapeutically effective amount of the single-stranded nucleic acid molecule according to [1] to a subject in need of treatment.
- the present invention makes it possible to treat various corneal diseases including intractable ocular surface diseases.
- TGF- (beta) (A) and Col1A1 (B) in a cultured human cornea parenchymal cell by addition of miR29b-PshRNA.
- shaft shows the relative expression level which made the expression level in control (non-addition group) 1.
- Negative control indicates a non-specific PshRNA addition group
- miR-29b indicates a miR29b-PshRNA addition group.
- P ⁇ 0.01 It is a figure which shows the expression suppression of VEGF (A) and Angptl2 (B) in a cultured human corneal stromal cell by addition of miR29b-PshRNA.
- shaft shows the relative expression level which made the expression level in control (non-addition group) 1.
- Negative control indicates a non-specific PshRNA addition group
- miR-29b indicates a miR29b-PshRNA addition group.
- P ⁇ 0.01 It is a figure which shows the angiogenesis and scar suppression effect by a mir29b * liposome-PshRNA instillation with respect to a mouse
- the vertical axis represents the ratio of the vascular area to the constant corneal area.
- PBS is a PBS ophthalmic group
- control RNA is a non-specific PshRNA liposome ophthalmic group
- miR29b-PshRNA is a miR29b-PshRNA liposomal ophthalmic group. *: P ⁇ 0.01
- Single-stranded artificial match type miR-29b (nucleic acid of the present invention)
- the single-stranded artificial match-type miR-29b which is a therapeutic agent for ocular surface diseases of the present invention, has the following formula (I): 5'- UAGCACCAUUUGAAAUCAGUGUU CC-P-GGaacacugauuucaaauggugcuaUU-3 '(I) (SEQ ID NO: 1) (In the formula, -P- represents the following formula (Ia):
- proline derivative linker represented by these is shown.
- the guide strand sequence has an additional sequence (CC) of 2 nucleotides at the 3 ′ end, the 5 ′ end of the passenger strand has a sequence (GG) complementary to the additional sequence, the guide strand and the additional sequence, and the The passenger strand and the sequence complementary to the additional sequence form a fully complementary intramolecular duplex structure.
- the passenger strand also has a 2 nucleotide overhang (UU) at the 3 'end.
- the nucleic acid of the present invention can be administered to animals because it can suppress the innate immune response due to the Toll-like receptor (TLR) by making it single-stranded while maintaining the target specificity of natural miR-29b. Side effects can be reduced.
- TLR Toll-like receptor
- by taking a characteristic double-stranded structure via a non-nucleotide linker it is considered to act independent of Dicer.
- preferable pharmacokinetics can be exhibited without using a modified nucleotide, and a decrease in activity due to the modification can be prevented.
- the structure becomes more stable than natural miR-29b.
- the nucleic acid of the present invention may be RNA, RNA-DNA chimeric nucleic acid (hereinafter referred to as chimeric nucleic acid) or hybrid nucleic acid.
- a chimeric nucleic acid means that a single-stranded or double-stranded nucleic acid contains RNA and DNA in a single-stranded nucleic acid
- a hybrid nucleic acid means a double-stranded RNA in which one strand is RNA.
- the nucleic acid of the present invention may be a free form or a salt form.
- the nucleic acids of the present invention may be modified in part or all of the constituent nucleotides so that they are resistant to various degrading enzymes. , May be modified.
- the modified form of the present invention includes, for example, those in which the sugar chain part is modified (for example, 2′-O-methylation, 2′-fluorination), those in which the base part is modified, phosphate moieties, Examples thereof include, but are not limited to, those having a modified hydroxyl moiety (for example, biotin, amino group, lower alkylamine group, acetyl group, etc.).
- nucleic acid of the present invention has improved in vivo stability compared to normal double-stranded RNA due to its structural characteristics, those that do not use modified nucleotides are also preferred embodiments of the present invention. This is one aspect.
- the nucleic acid of the present invention first comprises a passenger strand sequence completely complementary to the guide strand sequence (and additional sequence (CC)) and a 3 ′ overhang (UU). After chemically synthesizing and linking a proline derivative linker to the 5 ′ end by the method described in WO 2012/017919, a guide strand sequence and an additional sequence are added to the 5 ′ end of the passenger sequence via the linker. It can be produced by chemical synthesis in the 3 ′ ⁇ 5 ′ direction.
- the drug miR-29b of the present invention targets mRNAs encoding factors involved in angiogenesis and extracellular matrix components and has a function of suppressing the expression of these factors.
- the drug described above suppresses corneal neovascularization and scarring, and is effective in the treatment of corneal diseases (eg, ocular surface diseases).
- Corneal diseases include Stevens-Johnson syndrome, ocular pemphigus, intractable ocular surface diseases such as thermochemical trauma, various corneal inflammations, hypoxia caused by contact lenses, infectious corneal diseases, decreased corneal endothelial function Examples include, but are not limited to, corneal turbidity, and colloidal drop corneal dystrophy.
- the medicament comprising the nucleic acid of the present invention as an active ingredient can be preferably used for the treatment of Stevens-Johnson syndrome, ophthalmic decubitus, thermochemical trauma, and colloidal keratodysodystrophy.
- the medicament of the present invention can contain any carrier such as a pharmaceutically acceptable carrier in addition to an effective amount of the nucleic acid of the present invention, and is applied as a medicament in the form of a pharmaceutical composition.
- Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Although diluents, such as physiological saline, base wax, etc. are mentioned, it is not limited to them.
- the medicament of the present invention can further contain a reagent for nucleic acid introduction.
- the nucleic acid introduction reagent include atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
- the medicament of the present invention is a pharmaceutical composition in which the nucleic acid of the present invention is encapsulated in liposomes.
- Liposomes are fine closed vesicles having an inner phase surrounded by one or more lipid bilayers, and can usually retain a water-soluble substance in the inner phase and a fat-soluble substance in the lipid bilayer.
- the nucleic acid of the present invention may be retained in the liposome internal phase or in the lipid bilayer.
- the liposome used in the present invention may be a monolayer membrane or a multilayer membrane, and the particle size can be appropriately selected, for example, in the range of 10 to 1000 nm, preferably 50 to 300 nm. In consideration of deliverability to corneal tissue, the particle size can be, for example, 200 nm or less, preferably 100 nm or less.
- Examples of methods for encapsulating water-soluble compounds such as nucleic acids in liposomes include the lipid film method (vortex method), reverse phase evaporation method, surfactant removal method, freeze-thaw method, remote loading method, etc. Without limitation, any known method can be appropriately selected.
- the medicament of the present invention can be administered locally to the eye to mammals, but it is particularly desirable to administer it by eye drops.
- Preparations suitable for topical ocular administration include eye drops (aqueous eye drops, non-aqueous eye drops, suspension eye drops, emulsion eye drops, etc.), ointments, lotions, creams and the like.
- eye drops aqueous eye drops, non-aqueous eye drops, suspension eye drops, emulsion eye drops, etc.
- ointments lotions, creams and the like.
- a substrate can be appropriately used.
- the base material used for the eye drops include phosphate buffer, Hanks buffer, physiological saline, perfusate, artificial tears and the like.
- the medicament of the present invention is a preparation for topical ophthalmic administration
- a buffer for example, a buffer, an isotonic agent, a solubilizing agent, an antiseptic, a viscous base, a chelating agent, a cooling agent, a pH adjuster, an antioxidant and the like are appropriately used.
- the buffer include a phosphate buffer, a borate buffer, a citrate buffer, a tartrate buffer, an acetate buffer, and an amino acid.
- the isotonic agent include saccharides such as sorbitol, glucose and mannitol, polyhydric alcohols such as glycerin and propylene glycol, salts such as sodium chloride, boric acid and the like.
- solubilizers include polyoxyethylene sorbitan monooleate (for example, polysorbate 80), polyoxyethylene hydrogenated castor oil, nonionic surfactants such as tyloxapol and pluronic, and polyhydric alcohols such as glycerin and macrogol. It is done.
- the preservative include quaternary ammonium salts such as benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, paraoxybenzoic acid such as methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, and butyl paraoxybenzoate.
- Examples include esters, benzyl alcohol, sorbic acid and salts thereof (sodium salt, potassium salt, etc.), thimerosal (trade name), chlorobutanol, sodium dehydroacetate and the like.
- Examples of the viscous base include water-soluble polymers such as polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol, and celluloses such as hydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, and sodium carboxymethyl cellulose.
- Examples of chelating agents include sodium edetate and citric acid.
- Examples of the refreshing agent include l-menthol, borneol, camphor, and eucalyptus oil.
- Examples of the pH adjuster include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, boric acid or a salt thereof (borax), hydrochloric acid, citric acid or a salt thereof (sodium citrate, sodium dihydrogen citrate). Etc.), phosphoric acid or a salt thereof (disodium hydrogen phosphate, potassium dihydrogen phosphate, etc.), acetic acid or a salt thereof (sodium acetate, ammonium acetate, etc.), tartaric acid or a salt thereof (sodium tartrate, etc.), and the like.
- Examples of the antioxidant include sodium bisulfite, dry sodium sulfite, sodium pyrosulfite, and concentrated mixed tocopherol.
- the content of the nucleic acid of the present invention in the pharmaceutical composition of the present invention is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
- the pharmaceutical composition of the present invention is a liposome preparation
- the molar ratio of the nucleic acid of the present invention to the liposome component is usually 1 / 100,000 to 1 / 10,000.
- the amount of the liposome encapsulating the nucleic acid of the present invention contained in the liposome preparation is not particularly limited as long as the liposome particles are not aggregated and can exhibit a sufficient medicinal effect, and usually 10 to 100 mM. It is.
- the dosage of the pharmaceutical agent of the present invention varies depending on the purpose of administration, administration method, type and size of ocular surface disease, and the situation of the administration subject (sex, age, weight, etc.).
- As a single dose of the nucleic acid of the present invention it is usually desirable to administer 0.01 to 1000 ⁇ g, preferably 0.05 to 100 ⁇ g, more preferably 0.1 to 50 ⁇ g, once to 10 times, preferably 5 to 10 times a day.
- Example 1 Preparation of single-stranded artificial match-type miR-29b Mature miRNA sequence (mmu-3) of pre-miRNA (mmu-mir-29-1; miRBase Accession No. MI0000143) of natural mouse miR-29b1 Based on the sequence information of mir-29b-3p; miRBase Accession No. MIMAT0000127), an oligo RNA (SEQ ID NO: 2) consisting of a guide strand sequence (underlined) and an additional sequence (CC) is designed and completely complementary to this.
- An oligo RNA (SEQ ID NO: 3) consisting of a typical sequence and a 3 ′ overhang (UU) was synthesized according to a conventional method and purified by HPLC.
- RNA of SEQ ID NO: 2 was synthesized on the 5 'side of the RNA via the linker.
- the RNA molecule thus obtained (hereinafter referred to as miR29b-PshRNA in the Examples) is self-annealed to have the following double-stranded structure.
- RNA as a negative control, a single-stranded RNA (SEQ ID NO: 4) in which a non-specific guide strand sequence and a completely complementary sequence were linked via the proline derivative linker was synthesized. 5'-uacuauucgacacgcgaaguucc-P-ggaacuucgcgugucgaauaguauu-3 '(SEQ ID NO: 4)
- Example 2 Effect of single-stranded artificial match type miR-29b on gene expression in cultured human keratocytes 10% of primary cultured human keratocytes in Dulbecco's modified Eagle medium (DMEM) / F12 medium (Sigma Aldrich, USA) Using a culture solution supplemented with fetal bovine serum (FBS), the cells were cultured in a 10 cm petri dish. Primary cultured human keratocytes from passage 3-5 were seeded in 24-well plates at 40,000 cells / well.
- DMEM Dulbecco's modified Eagle medium
- F12 medium Sigma Aldrich, USA
- the miR29b-PshRNA or negative control RNA prepared in Example 1 was introduced using Lipofectaimin RNAiMAx (registered trademark) (Invitrogen) according to the manufacturer's protocol (the final of each RNA). Concentration is 25 nM). After 48 hours, the cells were collected, total RNA was extracted, and the expression levels of TGF- ⁇ , Col1A1, VEGF and Angptl2 genes were quantified by real time RT-PCR. The results are shown in FIGS. 1-1 and 1-2.
- miR29b-PshRNA suppressed the expression of angiogenic factors (TGF- ⁇ , VEGF and Angptl2) and collagen (Col1A1) in cultured human keratocytes.
- Example 3 Therapeutic effect of miR29b-PshRNA liposome preparation on mouse alkaline trauma model by eye drops
- the therapeutic effect of miR29b-PshRNA was confirmed using a mouse alkaline trauma model.
- the RNA was encapsulated in liposomes and administered.
- MLV miR29b-PshRNA-encapsulated multilamellar liposomes
- the cornea was fixed with acetone at ⁇ 20 ° C. and then washed three times with PBS. After fixing with 1% bovine serum albumin (Sigma-Aldrich) and 0.5% Triton (Sigma-Aldrich) in PBS (fix solution) for 48 hours at room temperature, rat anti-mouse CD31 antibody (BD Biosciences, Franklin Lakes, NJ) The cornea pieces were immersed in a solution diluted 1: 500 with a fixative and stained overnight at 4 ° C.
- the secondary antibody Alexa Fluor 594-labeled donkey anti-rat IgG; Invitrogen, San Diego, Calif.
- Preparations were prepared with VECTASHIELD (registered trademark) mounting medium (Vector Laboratories, CA, USA) and photographed with a fluorescence microscope (BZ-9000; Keyence, Osaka, Japan).
- the vascular region was measured using NIH Image software (Image J; http://rsb.info.nih.gov/ij/), and the ratio of the vascular area to a certain corneal area was calculated and compared. The results are shown in FIG.
- the medicament containing the nucleic acid of the present invention as an active ingredient is useful for the treatment of corneal diseases such as ocular surface diseases, particularly ocular surface diseases associated with corneal neovascularization and scar opacity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Dispersion Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本発明は、下記式(I): 5'-uagcaccauuugaaaucaguguucc-P-ggaacacugauuucaaauggugcuauu-3' (I) (配列番号1) (式中、-P-は、下記式(Ia): で表されるプロリン誘導体リンカーを示す。) で表される一本鎖核酸分子、並びに、該一本鎖核酸分子を有効成分とする、眼表面疾患等の角膜疾患の治療剤を提供する。
Description
本発明は、新規な一本鎖核酸分子、及び該核酸分子の眼疾患治療用途に関する。より詳細には、本発明は、miR-29b誘導体である核酸分子、及びそれを含有してなる、難治性眼表面疾患をはじめとする角膜疾患の治療剤に関する。
角膜は従来無血管透明組織であるが、種々の炎症・浮腫などにより角膜には瘢痕や血管新生が生じ、その透明性を失う。スティーブンス・ジョンソン症候群(SJS)、眼類天庖瘡(OCP)、熱化学外傷(アルカリ外傷、酸外傷、熱傷等)などはその代表例であり、角膜上皮幹細胞を含む角膜輪部領域が広範囲に障害され、その結果角膜血管新生、角膜瘢痕性混濁を来たし、著しい視機能障害を来す。このような角膜上皮幹細胞疲弊を来す疾患は「難治性眼表面疾患」と呼ばれており、従来の薬物療法では十分な治療が行えていないのが現状である。また種々の角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮障害による角膜浮腫においても、瘢痕性混濁や血管新生を来し、角膜の透明性が低下することが臨床上の問題となっており、治療を可能にする薬剤の開発が望まれている。
近年のバイオテクノロジーの発展により、細胞内で生理活性機能を発揮する核酸が種々明らかにされている。例えば、ゲノム上にコードされた内在性の20~25塩基程度の非コード(non-coding)RNAであるマイクロRNA(miRNA)は、細胞に存在する標的遺伝子のmRNAの翻訳阻害や分解を惹起し、標的遺伝子の発現を制御することが知られている。miRNAは、ゲノムDNA上のmiRNA遺伝子から、まず数百~数千塩基程度の長さの一次転写物(Primary miRNA(Pri-miRNA))として転写され、次にプロセッシングを受けて約60~70塩基程度のヘアピン構造を有するprecusor miRNA(pre-miRNA)となる。その後、核から細胞質内へ移動し、さらにDicerと呼ばれるRNaseによるプロセッシングを受けて20~25塩基程度の二本鎖成熟miRNAとなる。二本鎖成熟miRNAは、そのうちの一本鎖(ガイド鎖)がRISCと呼ばれるタンパク質と複合体を形成し、標的遺伝子のmRNAに作用することで、標的遺伝子の発現を阻害する働きをすることが知られている(例えば、非特許文献1参照)。
miRNAは、ヒトやマウスなどで1000種類以上が知られており、それぞれが複数の標的遺伝子の発現を調節し、細胞の増殖や分化など、様々な生命現象に関与することが示唆されている。例えば、造血細胞や神経細胞の分化などに関与するmiRNAについての報告がある(例えば、非特許文献2参照)。miRNAによる複数の標的遺伝子の発現機能制御は、特定の遺伝子又は遺伝子群の異常な発現が原因となって生じる疾患症状を軽減乃至治療する上で有用であり、miRNAは治療薬としての開発が期待されている。
Elbashir SM et. al. Nature 411:494-498(2001)
Science 303: 654 83-86 (2004)
本発明の目的は、眼疾患の治療に有効な核酸分子を用いた医薬を提供することにある。
本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、miR-29bに着目し、miR-29bのガイド鎖と完全相補的なパッセンジャー鎖とからなる二重鎖miRNA(人工マッチ型miRNA)を含む二本鎖RNAの一端同士を、プロリン誘導体リンカーで連結した一本鎖核酸分子(一本鎖人工マッチ型miR-29b)を構築し、該一本鎖核酸分子をリポソームに封入してマウスアルカリ外傷モデルに点眼したところ、血管新生や瘢痕が顕著に抑制されることを見出した。
本発明者らは、これらの知見に基づいて、一本鎖人工マッチ型miR-29bの点眼補充療法は、角膜血管新生や瘢痕性混濁などを伴う、眼表面疾患をはじめとする角膜疾患の治療に有用であると結論し、本発明を完成するに至った。
本発明者らは、これらの知見に基づいて、一本鎖人工マッチ型miR-29bの点眼補充療法は、角膜血管新生や瘢痕性混濁などを伴う、眼表面疾患をはじめとする角膜疾患の治療に有用であると結論し、本発明を完成するに至った。
即ち、本発明は以下に関する。
[1]下記式(I):
5’-uagcaccauuugaaaucaguguucc-P-ggaacacugauuucaaauggugcuauu-3’ (I)
(配列番号1)
(式中、-P-は、下記式(Ia):
[1]下記式(I):
5’-uagcaccauuugaaaucaguguucc-P-ggaacacugauuucaaauggugcuauu-3’ (I)
(配列番号1)
(式中、-P-は、下記式(Ia):
で表されるプロリン誘導体リンカーを示す。)
で表される一本鎖核酸分子。
[2][1]に記載の一本鎖核酸分子を有効成分とする、角膜疾患の治療剤。
[3]角膜疾患が、角膜血管新生や瘢痕性混濁を伴うものである、[2]に記載の剤。
[4]前記角膜疾患が、眼表面疾患、角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮機能低下に伴う角膜混濁、及び膠様滴状角膜ジストロフィーからなる群より選択される、[3]に記載の剤。
[5]前記角膜疾患が、スティーブンス・ジョンソン症候群、眼類天庖瘡及び熱化学外傷から選択される難治性眼表面疾患である、[3]に記載の剤。
[6]前記一本鎖核酸分子がリポソームに封入されてなる、[2]~[5]のいずれかに記載の剤。
[7]点眼剤である、[2]~[6]のいずれかに記載の剤。
[8]角膜疾患の治療方法であって、治療の必要な対象に、治療上有効な量の[1]に記載の一本鎖核酸分子を投与することを含む、方法。
[9]角膜疾患の治療における使用のための、[1]に記載の一本鎖核酸分子。
[10]角膜疾患の治療剤の製造のための、[1]に記載の一本鎖核酸分子の使用。
で表される一本鎖核酸分子。
[2][1]に記載の一本鎖核酸分子を有効成分とする、角膜疾患の治療剤。
[3]角膜疾患が、角膜血管新生や瘢痕性混濁を伴うものである、[2]に記載の剤。
[4]前記角膜疾患が、眼表面疾患、角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮機能低下に伴う角膜混濁、及び膠様滴状角膜ジストロフィーからなる群より選択される、[3]に記載の剤。
[5]前記角膜疾患が、スティーブンス・ジョンソン症候群、眼類天庖瘡及び熱化学外傷から選択される難治性眼表面疾患である、[3]に記載の剤。
[6]前記一本鎖核酸分子がリポソームに封入されてなる、[2]~[5]のいずれかに記載の剤。
[7]点眼剤である、[2]~[6]のいずれかに記載の剤。
[8]角膜疾患の治療方法であって、治療の必要な対象に、治療上有効な量の[1]に記載の一本鎖核酸分子を投与することを含む、方法。
[9]角膜疾患の治療における使用のための、[1]に記載の一本鎖核酸分子。
[10]角膜疾患の治療剤の製造のための、[1]に記載の一本鎖核酸分子の使用。
本発明により、難治性眼表面疾患を含む各種角膜疾患の治療が可能となる。
以下、本発明を詳細に説明する。
1.一本鎖人工マッチ型miR-29b(本発明の核酸)
本発明の眼表面疾患治療剤である一本鎖人工マッチ型miR-29bは、下記式(I):
5’-UAGCACCAUUUGAAAUCAGUGUUCC-P-GGaacacugauuucaaauggugcuaUU-3’ (I)
(配列番号1)
(式中、-P-は、下記式(Ia):
本発明の眼表面疾患治療剤である一本鎖人工マッチ型miR-29bは、下記式(I):
5’-UAGCACCAUUUGAAAUCAGUGUUCC-P-GGaacacugauuucaaauggugcuaUU-3’ (I)
(配列番号1)
(式中、-P-は、下記式(Ia):
で表されるプロリン誘導体リンカーを示す。)
で表される一本鎖核酸分子である。式(I)中、下線部はガイド鎖配列(即ち、天然型マウスmiR-29b1 のpre-miRNA(mmu-mir-29-1;miRBase Accession No. MI0000143)(式(II)):
で表される一本鎖核酸分子である。式(I)中、下線部はガイド鎖配列(即ち、天然型マウスmiR-29b1 のpre-miRNA(mmu-mir-29-1;miRBase Accession No. MI0000143)(式(II)):
の3’側の成熟miRNA配列(mmu-mir-29b-3p;miRBase Accession No. MIMAT0000127)(式(II)の太字下線)を示し、小文字は、該ガイド鎖配列と完全相補的なパッセンジャー鎖配列を示す。ガイド鎖配列は3’端に2ヌクレオチドの付加配列(CC)を有し、パッセンジャー鎖の5’端は該付加配列と相補的な配列(GG)を有し、該ガイド鎖及び付加配列と該パッセンジャー鎖及び該付加配列に相補的な配列とは、完全相補的な分子内二重鎖構造を形成する。また、該パッセンジャー鎖は3’端に2ヌクレオチドのオーバーハング(UU)を有する。
本発明の核酸は、天然型miR-29bの標的特異性を維持しつつ、一本鎖とすることでToll様受容体(TLR)による自然免疫応答を抑制することができるので、動物に投与した際の副作用を軽減することができる。また、非ヌクレオチドリンカーを介した特徴的な二重鎖構造をとることにより、Dicer非依存的に作用すると考えられる。さらに当該二重鎖構造をとることで生体内安定性が増すので、修飾ヌクレオチドを用いずとも好ましい薬物動態を示し、修飾による活性低下などを防ぐことができる。また、ミスマッチをなくすことで、天然型のmiR-29bよりも安定な構造体となる。
本発明の核酸は、RNA、RNAとDNAのキメラ核酸(以下、キメラ核酸と称する)またはハイブリッド核酸であり得る。ここにおいて、キメラ核酸とは、1重鎖又は2重鎖の核酸において1つの鎖の核酸の中にRNAとDNAを含むことをいい、ハイブリッド核酸とは、2重鎖において、一方の鎖がRNAまたはキメラ核酸でもう一方の鎖がDNAまたはキメラ核酸である核酸をいう。
本発明の核酸は、フリー体であっても塩の形態であってもよい。
本発明の核酸は、フリー体であっても塩の形態であってもよい。
天然型の核酸は、細胞中に存在する核酸分解酵素によって容易に分解されるので、本発明の核酸は、各種分解酵素に対して抵抗性となるように構成ヌクレオチドの一部もしくは全部を修飾し、修飾体としてもよい。本発明の修飾体には、例えば、糖鎖部分が修飾されているもの(例えば、2’-O-メチル化、2’-フルオロ化)、塩基部分が修飾されているもの、リン酸部分やヒドロキシル部分が修飾されているもの(例えば、ビオチン、アミノ基、低級アルキルアミン基、アセチル基等)を挙げることができるが、これに限定されない。但し、上述のように、本発明の核酸は、その構造的特徴により通常の二本鎖RNAよりも生体内安定性が向上しているので、修飾ヌクレオチドを用いないものも、本発明の好ましい実施態様の1つである。
本発明の核酸は、天然型miR-29bのガイド鎖の配列情報に基づいて、ガイド鎖配列(及び付加配列(CC))に完全相補的なパッセンジャー鎖配列及び3’オーバーハング(UU)をまず化学合成し、その5’末端に、WO 2012/017919に記載の方法により、プロリン誘導体リンカーを連結した後、該リンカーを介して、該パッセンジャー配列の5’端に、ガイド鎖配列及び付加配列を3’→5’の方向に化学合成することにより製造することができる。
2.本発明の医薬
miR-29bは血管新生に関与する因子や細胞外マトリクス成分をコードするmRNAを標的とし、これらの因子の発現を抑制する機能を有しているので、本発明の核酸を有効成分とする医薬は、角膜血管新生や瘢痕を抑制し、角膜疾患(眼表面疾患等)の治療に有効である。角膜疾患としては、スティーブンス・ジョンソン症候群、眼類天庖瘡、熱化学外傷などの難治性眼表面疾患、種々の角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮機能低下に伴う角膜混濁、及び膠様滴状角膜ジストロフィー等が挙げられるが、これらに限定されない。一実施態様において、本発明の核酸を有効成分とする医薬は、スティーブンス・ジョンソン症候群、眼類天庖瘡、熱化学外傷及び膠様滴状角膜ジストロフィーの治療に好ましく用いることができる。
miR-29bは血管新生に関与する因子や細胞外マトリクス成分をコードするmRNAを標的とし、これらの因子の発現を抑制する機能を有しているので、本発明の核酸を有効成分とする医薬は、角膜血管新生や瘢痕を抑制し、角膜疾患(眼表面疾患等)の治療に有効である。角膜疾患としては、スティーブンス・ジョンソン症候群、眼類天庖瘡、熱化学外傷などの難治性眼表面疾患、種々の角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮機能低下に伴う角膜混濁、及び膠様滴状角膜ジストロフィー等が挙げられるが、これらに限定されない。一実施態様において、本発明の核酸を有効成分とする医薬は、スティーブンス・ジョンソン症候群、眼類天庖瘡、熱化学外傷及び膠様滴状角膜ジストロフィーの治療に好ましく用いることができる。
本発明の医薬は、有効量の本発明の核酸に加え、任意の担体、例えば医薬上許容される担体を含むことができ、医薬組成物の形態で医薬として適用される。
医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。
本発明の核酸の角膜細胞内への導入を促進するために、本発明の医薬は更に核酸導入用試薬を含むことができる。該核酸導入用試薬としては、アテロコラーゲン;リポソーム;ナノパーティクル;リポフェクチン、リプフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることが出来る。
好ましくは、本発明の医薬は、本発明の核酸がリポソームに封入されてなる医薬組成物である。リポソームは、1以上の脂質二重層により包囲された内相を有する微細閉鎖小胞であり、通常は水溶性物質を内相に、脂溶性物質を脂質二重層内に保持することができる。本明細書において「封入」という場合には、本発明の核酸はリポソーム内相に保持されてもよいし、脂質二重層内に保持されてもよい。本発明に用いられるリポソームは単層膜であっても多層膜であってもよく、また、粒子径は、例えば10~1000nm、好ましくは50~300nmの範囲で適宜選択できる。角膜組織への送達性を考慮すると、粒子径は、例えば200nm以下、好ましくは100nm以下であり得る。
核酸のような水溶性化合物のリポソームへの封入法としては、リピドフィルム法(ボルテックス法)、逆相蒸発法、界面活性剤除去法、凍結融解法、リモートローディング法等が挙げられるが、これらに限定されず、任意の公知の方法を適宜選択することができる。
本発明の医薬は、哺乳動物に対して眼局所投与することが可能であるが、特に点眼投与するのが望ましい。
眼局所投与に好適な製剤としては、点眼剤(水性点眼剤、非水性点眼剤、懸濁性点眼剤、乳濁性点眼剤等)、軟膏剤、ローション剤、クリーム剤等が挙げられる。本発明の剤が点眼剤である場合には、適宜基材を用いることができる。点眼剤に用いられる基材としては、リン酸緩衝液、ハンクス緩衝液、生理食塩水、灌流液、人工涙液などが挙げられる。
本発明の医薬が眼局所投与用製剤の場合、例えば緩衝剤、等張化剤、溶解補助剤、防腐剤、粘性基剤、キレート剤、清涼化剤、pH調整剤、抗酸化剤などを適宜選択して添加することができる。
緩衝剤としては、例えば、リン酸緩衝剤、ホウ酸緩衝剤、クエン酸緩衝剤、酒石酸緩衝剤、酢酸緩衝剤、アミノ酸などが挙げられる。
等張化剤としては、ソルビトール、グルコース、マンニトールなどの糖類、グリセリン、プロピレングリコールなどの多価アルコール類、塩化ナトリウムなどの塩類、ホウ酸などが挙げられる。
溶解補助剤としては、ポリオキシエチレンソルビタンモノオレート(例えば、ポリソルベート80)、ポリオキシエチレン硬化ヒマシ油、チロキサポール、プルロニックなどの非イオン性界面活性剤、グリセリン、マクロゴールなどの多価アルコールなどが挙げられる。
防腐剤としては、例えば、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウムなどの第四級アンモニウム塩類、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチルなどのパラオキシ安息香酸エステル類、ベンジルアルコール、ソルビン酸およびその塩(ナトリウム塩、カリウム塩など)、チメロサール(商品名)、クロロブタノール、デヒドロ酢酸ナトリウムなどが挙げられる。
粘性基剤としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどの水溶性高分子、ヒドロキシエチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウムなどのセルロース類などが挙げられる。
キレート剤としては、エデト酸ナトリウム、クエン酸などが挙げられる。
清涼化剤としては、l-メントール、ボルネオール、カンフル、ユーカリ油などが挙げられる。
pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ホウ酸またはその塩(ホウ砂)、塩酸、クエン酸またはその塩(クエン酸ナトリウム、クエン酸二水素ナトリウム等)、リン酸またはその塩(リン酸水素二ナトリウム、リン酸二水素カリウム等)、酢酸またはその塩(酢酸ナトリウム、酢酸アンモニウム等)、酒石酸またはその塩(酒石酸ナトリウム等)等が挙げられる。
抗酸化剤としては、例えば、亜硫酸水素ナトリウム、乾燥亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、濃縮混合トコフェロール等が挙げられる。
緩衝剤としては、例えば、リン酸緩衝剤、ホウ酸緩衝剤、クエン酸緩衝剤、酒石酸緩衝剤、酢酸緩衝剤、アミノ酸などが挙げられる。
等張化剤としては、ソルビトール、グルコース、マンニトールなどの糖類、グリセリン、プロピレングリコールなどの多価アルコール類、塩化ナトリウムなどの塩類、ホウ酸などが挙げられる。
溶解補助剤としては、ポリオキシエチレンソルビタンモノオレート(例えば、ポリソルベート80)、ポリオキシエチレン硬化ヒマシ油、チロキサポール、プルロニックなどの非イオン性界面活性剤、グリセリン、マクロゴールなどの多価アルコールなどが挙げられる。
防腐剤としては、例えば、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウムなどの第四級アンモニウム塩類、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチルなどのパラオキシ安息香酸エステル類、ベンジルアルコール、ソルビン酸およびその塩(ナトリウム塩、カリウム塩など)、チメロサール(商品名)、クロロブタノール、デヒドロ酢酸ナトリウムなどが挙げられる。
粘性基剤としては、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどの水溶性高分子、ヒドロキシエチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウムなどのセルロース類などが挙げられる。
キレート剤としては、エデト酸ナトリウム、クエン酸などが挙げられる。
清涼化剤としては、l-メントール、ボルネオール、カンフル、ユーカリ油などが挙げられる。
pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ホウ酸またはその塩(ホウ砂)、塩酸、クエン酸またはその塩(クエン酸ナトリウム、クエン酸二水素ナトリウム等)、リン酸またはその塩(リン酸水素二ナトリウム、リン酸二水素カリウム等)、酢酸またはその塩(酢酸ナトリウム、酢酸アンモニウム等)、酒石酸またはその塩(酒石酸ナトリウム等)等が挙げられる。
抗酸化剤としては、例えば、亜硫酸水素ナトリウム、乾燥亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、濃縮混合トコフェロール等が挙げられる。
本発明の医薬組成物中の本発明の核酸の含有量は、例えば、医薬組成物全体の約0.1ないし100重量%である。
本発明の医薬組成物がリポソーム製剤の場合、リポソーム構成成分に対する本発明の核酸のモル比は、通常1/100,000~1/10,000である。また、リポソーム製剤中に含有される本発明の核酸を封入したリポソームの量は、リポソーム粒子が凝集しない程度で、かつ十分な薬効を発揮し得る量であれば特に制限はなく、通常10~100mMである。
本発明の医薬組成物がリポソーム製剤の場合、リポソーム構成成分に対する本発明の核酸のモル比は、通常1/100,000~1/10,000である。また、リポソーム製剤中に含有される本発明の核酸を封入したリポソームの量は、リポソーム粒子が凝集しない程度で、かつ十分な薬効を発揮し得る量であれば特に制限はなく、通常10~100mMである。
本発明の医薬の投与量は、投与の目的、投与方法、眼表面疾患の種類、大きさ、投与対象者の状況(性別、年齢、体重など)によって異なるが、成人に点眼投与する場合、通常、本発明の核酸の1回投与量として通常0.01~1000μg、好ましくは0.05~100μg、より好ましくは0.1~50μgを、1日1回ないし10回、好ましくは5~10回投与することが望ましい。
以下に本発明の実施例を説明するが、本発明は、これらの実施例になんら限定されるものではない。
実施例1 一本鎖人工マッチ型miR-29bの調製
天然型マウスmiR-29b1 のpre-miRNA(mmu-mir-29-1;miRBase Accession No. MI0000143)の3’側の成熟miRNA配列(mmu-mir-29b-3p;miRBase Accession No. MIMAT0000127)の配列情報をもとに、ガイド鎖配列(下線部)及び付加配列(CC)からなるオリゴRNA(配列番号2)を設計し、これと完全相補的な配列と3’オーバーハング(UU)とからなるオリゴRNA(配列番号3)を、常法に従って合成し、HPLCにより精製した。
5’-UAGCACCAUUUGAAAUCAGUGUUCC-3’ (配列番号2)
5’-GGAACACUGAUUUCAAAUGGUGCUAUU-3’ (配列番号3)
次いで、WO 2012/017919に記載の方法に従って、下記式(Ia):
天然型マウスmiR-29b1 のpre-miRNA(mmu-mir-29-1;miRBase Accession No. MI0000143)の3’側の成熟miRNA配列(mmu-mir-29b-3p;miRBase Accession No. MIMAT0000127)の配列情報をもとに、ガイド鎖配列(下線部)及び付加配列(CC)からなるオリゴRNA(配列番号2)を設計し、これと完全相補的な配列と3’オーバーハング(UU)とからなるオリゴRNA(配列番号3)を、常法に従って合成し、HPLCにより精製した。
5’-UAGCACCAUUUGAAAUCAGUGUUCC-3’ (配列番号2)
5’-GGAACACUGAUUUCAAAUGGUGCUAUU-3’ (配列番号3)
次いで、WO 2012/017919に記載の方法に従って、下記式(Ia):
で表されるプロリン誘導体リンカーを、配列番号3のRNAの5’末端に連結した。さらに、該RNAの5’側に、該リンカーを介して配列番号2のRNAを合成した。このようにして得られたRNA分子(以下、実施例において、miR29b-PshRNAという)は、自己アニーリングして下記の二重鎖構造をとる。
(下線部はガイド鎖配列を示し、Pは上記プロリン誘導体リンカーを示す。)
同様にして、ネガティブコントロールとして、非特異的なガイド鎖配列とそれに完全相補的な配列とを、上記プロリン誘導体リンカーを介して連結した一本鎖RNA(配列番号4)を合成した。
5’-uacuauucgacacgcgaaguucc-P-ggaacuucgcgugucgaauaguauu-3’(配列番号4)
5’-uacuauucgacacgcgaaguucc-P-ggaacuucgcgugucgaauaguauu-3’(配列番号4)
実施例2 一本鎖人工マッチ型miR-29bの培養ヒト角膜実質細胞における遺伝子発現に及ぼす効果
初代培養ヒト角膜実質細胞をダルベッコ改変イーグル培地 (DMEM)/F12培地 (Sigma Aldrich, USA) に10%ウシ胎仔血清 (FBS) を添加した培養液を用いて、10cmシャーレで培養した。3-5継代目までの初代培養ヒト角膜実質細胞を24-wellプレートに40000細胞/wellで播種した。70-80%コンフルエントになったところで、Lipofectaimin RNAiMAx(登録商標)(Invitrogen) を用い、製造者のプロトコルどおりに、実施例1で調製したmiR29b-PshRNAまたはネガティブコントロールRNAを導入した(各RNAの最終濃度は25nM)。48時間後に細胞を回収し、total RNAを抽出し、real time RT-PCRでTGF-β、Col1A1、VEGF及びAngptl2遺伝子の発現量を定量した。結果を図1-1及び図1-2に示す。miR29b-PshRNAの添加により培養ヒト角膜実質細胞における血管新生促進因子(TGF-β、VEGF及びAngptl2)及びコラーゲン(Col1A1)の発現が抑制された。
これらの結果は、miR-29bの補充療法が角膜血管新生や瘢痕性混濁の治療に有用である可能性を示唆するものである。
初代培養ヒト角膜実質細胞をダルベッコ改変イーグル培地 (DMEM)/F12培地 (Sigma Aldrich, USA) に10%ウシ胎仔血清 (FBS) を添加した培養液を用いて、10cmシャーレで培養した。3-5継代目までの初代培養ヒト角膜実質細胞を24-wellプレートに40000細胞/wellで播種した。70-80%コンフルエントになったところで、Lipofectaimin RNAiMAx(登録商標)(Invitrogen) を用い、製造者のプロトコルどおりに、実施例1で調製したmiR29b-PshRNAまたはネガティブコントロールRNAを導入した(各RNAの最終濃度は25nM)。48時間後に細胞を回収し、total RNAを抽出し、real time RT-PCRでTGF-β、Col1A1、VEGF及びAngptl2遺伝子の発現量を定量した。結果を図1-1及び図1-2に示す。miR29b-PshRNAの添加により培養ヒト角膜実質細胞における血管新生促進因子(TGF-β、VEGF及びAngptl2)及びコラーゲン(Col1A1)の発現が抑制された。
これらの結果は、miR-29bの補充療法が角膜血管新生や瘢痕性混濁の治療に有用である可能性を示唆するものである。
実施例3 miR29b-PshRNAリポソーム製剤の点眼によるマウスアルカリ外傷モデルに対する治療効果
そこで、マウスアルカリ外傷モデルを用いて、miR29b-PshRNAの治療効果を確認した。miR29b-PshRNAの角膜細胞への導入効率を向上させるために、該RNAをリポソームに封入して投与した。
そこで、マウスアルカリ外傷モデルを用いて、miR29b-PshRNAの治療効果を確認した。miR29b-PshRNAの角膜細胞への導入効率を向上させるために、該RNAをリポソームに封入して投与した。
(1)リポソーム製剤の調製
miR29b-PshRNA封入リポソームの調製は、薄膜水和法により行った。ナスフラスコにジステアロイルホスファチジルコリン(DSPC)、コレステロール、ステアリルアミンを7:3:1のモル比となるように秤量し、適当量のクロロホルムに溶解した。ロータリーエバポレーターにより40℃の水浴上で溶媒を減圧留去して薄膜を調製した。これを一晩減圧乾燥した後、70℃水浴中で1μM miR29b-PshRNA溶液(1mM TE buffer; pH 7.4中) を用いて水和し、室温で15分間インキュベートし、miR29b-PshRNA封入多重膜リポソーム (MLV) を調製した。得られた MLV をエクストルーダー (LiposoFastTM-Pneumatic、AVESTIN) を用いて150-200KPaの圧力で細孔径100nmのフィルターに41回透過させることにより、サブミクロンサイズに微細化したリポソーム(mir29b liposome-PshRNA)を調製した(リポソーム製剤中のDSPC濃度は20mM)。Controlとして、非特異的PshRNAを封入したリポソーム(非特異的liposome-PshRNA)を同様の方法により調製した。
miR29b-PshRNA封入リポソームの調製は、薄膜水和法により行った。ナスフラスコにジステアロイルホスファチジルコリン(DSPC)、コレステロール、ステアリルアミンを7:3:1のモル比となるように秤量し、適当量のクロロホルムに溶解した。ロータリーエバポレーターにより40℃の水浴上で溶媒を減圧留去して薄膜を調製した。これを一晩減圧乾燥した後、70℃水浴中で1μM miR29b-PshRNA溶液(1mM TE buffer; pH 7.4中) を用いて水和し、室温で15分間インキュベートし、miR29b-PshRNA封入多重膜リポソーム (MLV) を調製した。得られた MLV をエクストルーダー (LiposoFastTM-Pneumatic、AVESTIN) を用いて150-200KPaの圧力で細孔径100nmのフィルターに41回透過させることにより、サブミクロンサイズに微細化したリポソーム(mir29b liposome-PshRNA)を調製した(リポソーム製剤中のDSPC濃度は20mM)。Controlとして、非特異的PshRNAを封入したリポソーム(非特異的liposome-PshRNA)を同様の方法により調製した。
(2)マウスアルカリ外傷モデルへの点眼投与
6-8週齢のC57BL/6マウスに0.5NのNaOHを5μl点眼し(day0)、30秒後に20mlのPBSで洗い流した。その後、(1)で調製したmir29b liposome-PshRNA又は非特異的liposome-PshRNAを5μl点眼し (ControlとしてPBSを点眼している)、5分後にKimWipeTM (Nikkei Products Co. Osaka, Japan) でふき取った後、Ofloxacin眼軟膏 (Talibit(登録商標), Santen, Japan) を点入した。点眼は24時間ごとに行われ、Day9まで続けた。
Day10にketamine hydrochloride (35mg/kg) 及びxylazinechloride (5mg/kg) を投与し、頸椎脱臼にてマウスの死亡を確認後、眼球を取り出し、角膜マウントを作製した。
6-8週齢のC57BL/6マウスに0.5NのNaOHを5μl点眼し(day0)、30秒後に20mlのPBSで洗い流した。その後、(1)で調製したmir29b liposome-PshRNA又は非特異的liposome-PshRNAを5μl点眼し (ControlとしてPBSを点眼している)、5分後にKimWipeTM (Nikkei Products Co. Osaka, Japan) でふき取った後、Ofloxacin眼軟膏 (Talibit(登録商標), Santen, Japan) を点入した。点眼は24時間ごとに行われ、Day9まで続けた。
Day10にketamine hydrochloride (35mg/kg) 及びxylazinechloride (5mg/kg) を投与し、頸椎脱臼にてマウスの死亡を確認後、眼球を取り出し、角膜マウントを作製した。
(血管定量)
角膜を-20℃のアセトンで固定した後、PBSで3回洗浄した。1% ウシ血清アルブミン (Sigma-Aldrich) と0.5% Triton (Sigma-Aldrich) を溶解したPBS(固定液)で48時間室温で固定した後、ラット抗マウスCD31抗体 (BD Biosciences, Franklin Lakes, NJ) を固定液で1:500で希釈した溶液に角膜片を浸漬し、4℃で一晩染色した。PBSで洗浄した後、2次抗体 (Alexa Fluor 594標識ロバ抗ラットIgG; Invitrogen, San Diego, CA)を固定液で1:1000で希釈した溶液に浸漬し、室温で5時間染色した。VECTASHIELD(登録商標)mounting medium (Vector Laboratories, CA, USA)でプレパラートを作製し、蛍光顕微鏡 (BZ-9000; Keyence, Osaka, Japan) で撮影した。血管領域はNIH Image software (Image J; http://rsb.info.nih. gov/ij/) を使って測定し、一定角膜面積に占める血管面積の割合を算出して、比較検討した。結果を図2に示す。mir29b liposome-PshRNAの点眼投与により、アルカリ外傷時の血管新生や瘢痕形成が抑制された。
本結果より、miR-29bの点眼補充療法は、角膜血管新生や瘢痕性混濁を伴う難治性眼表面疾患の新規治療法として有用であることが示された。
角膜を-20℃のアセトンで固定した後、PBSで3回洗浄した。1% ウシ血清アルブミン (Sigma-Aldrich) と0.5% Triton (Sigma-Aldrich) を溶解したPBS(固定液)で48時間室温で固定した後、ラット抗マウスCD31抗体 (BD Biosciences, Franklin Lakes, NJ) を固定液で1:500で希釈した溶液に角膜片を浸漬し、4℃で一晩染色した。PBSで洗浄した後、2次抗体 (Alexa Fluor 594標識ロバ抗ラットIgG; Invitrogen, San Diego, CA)を固定液で1:1000で希釈した溶液に浸漬し、室温で5時間染色した。VECTASHIELD(登録商標)mounting medium (Vector Laboratories, CA, USA)でプレパラートを作製し、蛍光顕微鏡 (BZ-9000; Keyence, Osaka, Japan) で撮影した。血管領域はNIH Image software (Image J; http://rsb.info.nih. gov/ij/) を使って測定し、一定角膜面積に占める血管面積の割合を算出して、比較検討した。結果を図2に示す。mir29b liposome-PshRNAの点眼投与により、アルカリ外傷時の血管新生や瘢痕形成が抑制された。
本結果より、miR-29bの点眼補充療法は、角膜血管新生や瘢痕性混濁を伴う難治性眼表面疾患の新規治療法として有用であることが示された。
本発明の核酸を有効成分とする医薬は、眼表面疾患等の角膜疾患、特に角膜血管新生や瘢痕性混濁を伴う眼表面疾患の治療に有用である。
本出願は、2015年4月17日付で日本国に出願された特願2015-085470を基礎としており、ここで言及することによりその内容は全て本明細書に包含される。
Claims (10)
- 請求項1に記載の一本鎖核酸分子を有効成分とする、角膜疾患の治療剤。
- 角膜疾患が、角膜血管新生や瘢痕性混濁を伴うものである、請求項2に記載の剤。
- 前記角膜疾患が、眼表面疾患、角膜炎症、コンタクトレンズによる低酸素、感染性角膜疾患、角膜内皮機能低下に伴う角膜混濁、及び膠様滴状角膜ジストロフィーからなる群より選択される、請求項3に記載の剤。
- 前記角膜疾患が、スティーブンス・ジョンソン症候群、眼類天庖瘡及び熱化学外傷からなる群より選択される難治性眼表面疾患である、請求項3に記載の剤。
- 前記一本鎖核酸分子がリポソームに封入されてなる、請求項2~5のいずれか1項に記載の剤。
- 点眼剤である、請求項2~6のいずれか1項に記載の剤。
- 角膜疾患の治療方法であって、治療の必要な対象に、治療上有効な量の請求項1に記載の一本鎖核酸分子を投与することを含む、方法。
- 角膜疾患の治療における使用のための、請求項1に記載の一本鎖核酸分子。
- 角膜疾患の治療剤の製造のための、請求項1に記載の一本鎖核酸分子の使用。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16780157.0A EP3284822A1 (en) | 2015-04-17 | 2016-04-15 | Therapeutic agent for eye disease |
US15/567,179 US20180099004A1 (en) | 2015-04-17 | 2016-04-15 | Therapeutic agent for eye disease |
JP2017512606A JPWO2016167366A1 (ja) | 2015-04-17 | 2016-04-15 | 眼疾患治療剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-085470 | 2015-04-17 | ||
JP2015085470 | 2015-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167366A1 true WO2016167366A1 (ja) | 2016-10-20 |
Family
ID=57127269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062183 WO2016167366A1 (ja) | 2015-04-17 | 2016-04-15 | 眼疾患治療剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180099004A1 (ja) |
EP (1) | EP3284822A1 (ja) |
JP (1) | JPWO2016167366A1 (ja) |
WO (1) | WO2016167366A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019109026A1 (en) * | 2017-11-30 | 2019-06-06 | MiRagen Therapeutics, Inc. | miR29 MIMICS FOR THE TREATMENT OF OCULAR FIBROSIS |
WO2021241040A1 (ja) * | 2020-05-27 | 2021-12-02 | 株式会社ボナック | SARS-CoV-2遺伝子発現抑制核酸分子及びその用途 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006137941A2 (en) * | 2004-11-12 | 2006-12-28 | Ambion, Inc. | Methods and compositions involving mirna and mirna inhibitor molecules |
WO2012017919A1 (ja) * | 2010-08-03 | 2012-02-09 | 株式会社ボナック | 含窒素脂環式骨格を有する一本鎖核酸分子 |
JP2013153736A (ja) * | 2012-01-07 | 2013-08-15 | Bonac Corp | ペプチド骨格を有する一本鎖核酸分子 |
WO2015099187A1 (ja) * | 2013-12-27 | 2015-07-02 | 株式会社ボナック | 遺伝子発現制御のための人工マッチ型miRNAおよびその用途 |
-
2016
- 2016-04-15 JP JP2017512606A patent/JPWO2016167366A1/ja active Pending
- 2016-04-15 WO PCT/JP2016/062183 patent/WO2016167366A1/ja active Application Filing
- 2016-04-15 US US15/567,179 patent/US20180099004A1/en not_active Abandoned
- 2016-04-15 EP EP16780157.0A patent/EP3284822A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006137941A2 (en) * | 2004-11-12 | 2006-12-28 | Ambion, Inc. | Methods and compositions involving mirna and mirna inhibitor molecules |
WO2012017919A1 (ja) * | 2010-08-03 | 2012-02-09 | 株式会社ボナック | 含窒素脂環式骨格を有する一本鎖核酸分子 |
JP2013153736A (ja) * | 2012-01-07 | 2013-08-15 | Bonac Corp | ペプチド骨格を有する一本鎖核酸分子 |
WO2015099187A1 (ja) * | 2013-12-27 | 2015-07-02 | 株式会社ボナック | 遺伝子発現制御のための人工マッチ型miRNAおよびその用途 |
Non-Patent Citations (2)
Title |
---|
LI N. ET AL.: "Suppression of Type I Collagen Expression by miR-29b via PI3K, Akt, and Sp1 Pathway in Human Tenon's Fibroblasts.", INVEST OPHTHALMOL VIS SCI, vol. 53, no. 3, March 2012 (2012-03-01), pages 1670 - 1678, XP055321380 * |
VILLARREAL G JR ET AL.: "Coordinated Regulation of Extracellular Matrix Synthesis by the MicroRNA-29 Family in the Trabecular Meshwork.", INVEST OPHTHALMOL VIS SCI, vol. 52, no. 6, May 2011 (2011-05-01), pages 3391 - 3397, XP055321384 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019109026A1 (en) * | 2017-11-30 | 2019-06-06 | MiRagen Therapeutics, Inc. | miR29 MIMICS FOR THE TREATMENT OF OCULAR FIBROSIS |
WO2021241040A1 (ja) * | 2020-05-27 | 2021-12-02 | 株式会社ボナック | SARS-CoV-2遺伝子発現抑制核酸分子及びその用途 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016167366A1 (ja) | 2018-04-05 |
EP3284822A1 (en) | 2018-02-21 |
US20180099004A1 (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7065914B2 (ja) | 低分子干渉核酸(siNA)を用いたカテニン(カドヘリン結合型タンパク質)β1(CTNNB1)遺伝子発現のRNA干渉媒介性阻害 | |
Mead et al. | Mesenchymal stem cell–derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma | |
JP6529481B2 (ja) | 低分子干渉核酸(siNA)を用いたB型肝炎ウイルス(HBV)遺伝子発現のRNA干渉媒介性阻害 | |
Li et al. | Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression | |
US8686052B2 (en) | Targeting agent for cancer cell or cancer-associated fibroblast | |
JP5873168B2 (ja) | Hsp47発現の調節を増強するレチノイド−リポソーム | |
JP2023075258A (ja) | 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム | |
CN114010788A (zh) | 通道调节剂 | |
JP6882741B2 (ja) | プロレニン遺伝子またはプロレニン受容体遺伝子の発現を抑制する一本鎖核酸分子およびその用途 | |
KR102156324B1 (ko) | 핵산 복합체를 유효성분으로 함유하는 혈관신생관련 질환 치료용 약학 조성물 | |
Wang et al. | miRNA involvement in angiogenesis in age-related macular degeneration | |
WO2016167366A1 (ja) | 眼疾患治療剤 | |
Supe et al. | Liposome-polyethylenimine complexes for the effective delivery of HuR siRNA in the treatment of diabetic retinopathy | |
EP3713644B1 (en) | Compositions and methods for modulating hif-2a to improve muscle generation and repair | |
EP2271334B1 (en) | Methods of treating fibrotic disorders | |
Wang et al. | Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration | |
RU2653766C2 (ru) | КиРНК И ИХ ИСПОЛЬЗОВАНИЕ В СПОСОБАХ И КОМПОЗИЦИЯХ ДЛЯ ЛЕЧЕНИЯ И/ИЛИ ПРОФИЛАКТИКИ ГЛАЗНЫХ ЗАБОЛЕВАНИЙ | |
Huang et al. | Sustained release of brimonidine from polydimethylsiloxane-coating silicone rubber implant to reduce intraocular pressure in glaucoma | |
JP7459298B2 (ja) | 細胞透過性核酸複合体を有効成分として含有する黄斑変性の予防又は治療用組成物 | |
CN114917183B (zh) | 由外泌体负载的针对转化生长因子βⅡ型受体的核酸适配子的纳米制剂及其制备方法 | |
JP5952197B2 (ja) | 標的遺伝子の発現を抑制する組成物 | |
JP5872898B2 (ja) | 標的遺伝子の発現を抑制する組成物 | |
WO2006137377A1 (ja) | 神経再生促進剤 | |
EP4074319A1 (en) | Ophthalmic topical composition with ceria nanoparticles for treating diseases of posterior segment of the eye | |
KR20240067021A (ko) | 모야모야 병 예방 또는 치료용 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16780157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017512606 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15567179 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |