WO2016167327A1 - ナノ機能性粒子 - Google Patents

ナノ機能性粒子 Download PDF

Info

Publication number
WO2016167327A1
WO2016167327A1 PCT/JP2016/062036 JP2016062036W WO2016167327A1 WO 2016167327 A1 WO2016167327 A1 WO 2016167327A1 JP 2016062036 W JP2016062036 W JP 2016062036W WO 2016167327 A1 WO2016167327 A1 WO 2016167327A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
active substance
solvent
liquid
particles
Prior art date
Application number
PCT/JP2016/062036
Other languages
English (en)
French (fr)
Inventor
鷹行 井本
畑中 大輔
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2017512582A priority Critical patent/JP6801646B2/ja
Publication of WO2016167327A1 publication Critical patent/WO2016167327A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to nano-functional particles having functions such as transdermal absorbability, solvent dispersibility, and water dispersibility obtained by a simple production method.
  • fullerene which is a kind of carbon allotrope along with diamond, graphene, graphite, and carbon nanotube, is a compound having a hollow structure in which a large number of carbon atoms are bonded in a cage shape.
  • fullerene (Cn, n: number of carbon atoms) is a molecular chemical species having a molecular weight.
  • C60 as a representative, C70, C74, C76, C78, etc. due to the difference in the number of carbon atoms.
  • Higher order fullerenes have been reported so far. Fullerenes are attracting attention in the fields of electronic materials, medicine, cosmetics, and food because of their unique chemical structure and electronic properties. In particular, in the medical / cosmetic field, fullerene has the ability to remove active oxygen and the ability to generate active oxygen by ultraviolet irradiation, and its application to the prevention or treatment of various tissue diseases has also been reported.
  • the solubility of fullerene in a medium is very low, and it is difficult to say that the solubility is high even in a limited organic solvent that is regarded as a good solvent (for example, toluene; 2.9 mg / mL, benzene; 1.5 mg) / ML, carbon tetrachloride; 0.32 mg / mL, N-methyl-2-pyrrolidone; 0.89 mg / mL, polyethylene glycol; 0.004 mg / mL, dimethyl sulfoxide; 0.001 mg / mL, ethanol; (001 mg / mL) and the solubility in water is extremely low ( ⁇ 0.00001 mg / mL) (Patent Document 2, Non-Patent Document 1).
  • the low solubility of this fullerene in the medium is a major issue in application development.
  • fullerene is applied as a new functional compound in a wide range of fields.
  • various methods for dissolving or stably dispersing fullerene in water have been studied.
  • Patent Documents 3 to 5 many techniques for chemically modifying functional groups that impart solubility to water have been reported.
  • Patent Document 6 examples of techniques for dispersing fullerene in water without chemically modifying include Patent Document 6 and Non-Patent Document 2. In these documents, it has been reported that fullerene subjected to mechanical pulverization with friction can be made into nanoparticles and dispersed in water.
  • Patent Document 7 is a method for preparing an aqueous dispersion of cyclodextrin and fullerene, and an aqueous dispersion prepared by substitution with an aqueous calixarene solution.
  • Patent Document 1 Even if a preparation that improves the transdermal absorbability of the active ingredient is obtained, the production method is very complicated, such as requiring two or more steps. there were. Therefore, there has been a demand for a preparation that can be easily obtained and improves the transdermal absorbability of the active ingredient.
  • the methods of Patent Documents 3 to 5 are difficult to say because they reduce electronic physical properties derived from ⁇ -conjugate unique to fullerene.
  • Patent Document 6 and Non-Patent Document 2 in the dispersion process of the pulverized fullerene in water, ultrasonic treatment and stirring process for several hours, and further, filtering and centrifugation of particles having a large size and specific gravity are performed.
  • Patent Document 7 It involves a complicated purification step of using and removing, and is not a preferable method.
  • the technique of Patent Document 7 also includes complicated purification steps such as the above-described filtering and centrifugation, and is not a preferable technique.
  • the conventionally reported methods have problems such as including a complicated purification step in order to obtain an aqueous dispersion of fullerene. Therefore, there has been a demand for an aqueous dispersion of fullerene that can be easily obtained.
  • distributed in the microparticle and the nozzle for nanoparticle manufacture were known (patent document 8), this nanoparticle has functions, such as permeability to the skin of an active ingredient, and solvent dispersibility. It was not known that it could improve sex.
  • the present inventor has found that the manufactured nanoparticles improve the skin penetration and solvent dispersibility of the active ingredient by using a specific spray drying method, particularly using a specific nozzle, and completed the present invention. did. That is, the present invention (1) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying, and then the liquid fine particles are separated by pressurized gas.
  • Nano-functional particles containing the active substance dispersed in microparticles containing the good water-soluble solute which can be obtained by spraying in a state and evaporating and removing the water and the solvent; (2) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying, and then the liquid fine particles are separated by pressurized gas.
  • Nano-functional particles containing the active substance (2) The nanofunctional particles according to (1) or (2) above, wherein the solvent in which the active substance is dissolved is a good water miscible solvent; (4) The nanofunctional particles according to (1) or (2) above, wherein the solvent in which the active substance is dissolved is a mixed solvent of a poorly water miscible solvent and a good water miscible solvent; (5) Nano-functional particles containing an active substance dispersed in the microparticles and / or present on the surface of the microparticles.
  • a method for producing nanofunctional particles containing the active substance dispersed in microparticles containing the good water-soluble solute comprising spraying in a state and vaporizing and removing the water and the solvent; (19) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying. Spraying in a state, vaporizing and removing the water and the solvent, dispersing in the microparticles containing the good water-soluble solute, and / or existing on the surface of the microparticles.
  • a method for producing nano-functional particles comprising: (20) The method for producing nanofunctional particles according to (18) or (19) above, wherein the solvent in which the active substance is dissolved is a good water miscible solvent; (21) The method for producing nanofunctional particles according to the above (18) or (19), wherein the solvent in which the active substance is dissolved is a mixed solvent of a poorly water miscible solvent and a good water miscible solvent; (22) The method for producing nanofunctional particles according to any one of (18) to (21), wherein the active substance comprises at least one selected from cosmetic ingredients, pharmaceutical ingredients, and fullerenes; (23) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying.
  • nano-functional particles containing the active substance dispersed in the microparticles containing the good water-soluble solute which can be obtained by spraying in a state and vaporizing and removing the water and the solvent, A method for increasing the transdermal absorbability of the active substance; (24) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying.
  • Spraying in a state, obtained by vaporizing and removing the water and the solvent, dispersed in the microparticles containing the good water-soluble solute, and / or present on the surface of the microparticles A method for enhancing transdermal absorbability of an active substance using nano-functional particles containing the active substance; (25) A method for enhancing the transdermal absorbability of an active substance using the nanofunctional particles according to any one of (1) to (11) above; (26) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying.
  • nano-functional particles containing the active substance dispersed in the microparticles containing the good water-soluble solute which can be obtained by spraying in a state and vaporizing and removing the water and the solvent, A method for increasing the solvent dispersibility of the active substance; (27) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are mixed through a separate flow path immediately before spraying.
  • Spraying in a state, obtained by vaporizing and removing the water and the solvent, dispersed in the microparticles containing the good water-soluble solute, and / or present on the surface of the microparticles A method for enhancing the solvent dispersibility of an active substance using nano-functional particles containing the active substance; (28) A method for enhancing the transdermal absorbability of an active substance using the nano-functional particles according to any one of (1) to (11) above (29) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path immediately before spraying, and then pressurized gas is used.
  • the active substance dispersed in microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent.
  • a liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path and immediately before spraying.
  • Transdermal absorption containing the active substance dispersed in microparticles containing the good water-soluble solute comprising spraying in the form of liquid fine particles and vaporizing and removing the water and the good water miscible solvent
  • a method for producing conductive particles (38) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path immediately before spraying, and then pressurized with a gas.
  • the active substance dispersed in microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent.
  • a method for enhancing the transdermal absorbability of the active substance using skin-absorbing particles (39) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path immediately before spraying.
  • the solvent containing the active substance dispersed in the microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent Dispersible particles; (40) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed with each other through a separate flow path and immediately before spraying.
  • the solvent dispersibility containing the active substance dispersed in the microparticles containing the good water-soluble solute comprising spraying in the form of liquid fine particles and vaporizing and removing the water and the good water miscible solvent
  • a method for producing particles (49) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path immediately before spraying.
  • the solvent containing the active substance dispersed in the microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent
  • a method of increasing the transdermal absorbability of the active substance using dispersible particles (50) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path and immediately before spraying.
  • Water containing the active substance dispersed in microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent Dispersible particles;
  • a liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed through a separate flow path immediately before spraying, Sprayed in the form of liquid fine particles, obtained by vaporizing and removing the water and the good water-miscible solvent, dispersed in the microparticles containing the good water-soluble solute, and / or the Water-dispersible particles containing the active substance present on the surface of the microparticles;
  • the water-dispersible particles according to any one of the above (50) to (52), wherein
  • Water dispersibility containing the active substance dispersed in microparticles containing the good water-soluble solute comprising spraying in the form of liquid fine particles and vaporizing and removing the water and the good water miscible solvent A method for producing particles; (59) A liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a good water-miscible solvent are mixed with each other through a separate flow channel and immediately before spraying.
  • Water containing the active substance dispersed in microparticles containing the good water-soluble solute which can be obtained by spraying in the form of liquid fine particles and evaporating and removing the water and the good water miscible solvent
  • a method of increasing the transdermal absorbability of the active substance using dispersible particles about.
  • the nano-functional particles of the present invention can improve functionality such as transdermal absorbability and solvent dispersibility of the active substance, and can be easily manufactured.
  • the nano-functional particles of the present invention can improve the penetration of the active substance into the skin and increase the content of the active substance in the skin as good transdermally absorbable particles. Can be used to easily produce an external preparation for skin with improved transdermal absorbability of the active substance.
  • the nano-functional particles of the present invention can improve the dispersibility of an active substance, particularly fullerene in a solvent, particularly in water, as a good solvent-dispersible particle.
  • a solvent dispersion of an active substance such as fullerene, particularly an aqueous dispersion, which has been conventionally complicated, can be easily produced.
  • Example 7 is a photograph of the cut surface of the test piece of Example 8 taken with a scanning electron microscope (magnification: 50,000,000 times) (white portions A to C surrounded by a white line are active substances (fullerene) and interface) Nanofunctional particles containing active agent (O-1570)).
  • the nano-functional particles of the present invention are prepared by mixing a liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a solvent through separate channels, respectively, and mixing them immediately before spraying. Nanofunctionality containing the active substance dispersed in microparticles containing the good water-soluble solute, which can be obtained by spraying in the form of liquid fine particles with gas and evaporating and removing the water and the solvent Particles.
  • the nano-functional particles of the present invention are prepared by mixing a liquid in which a good water-soluble solute is dissolved in water and a liquid in which an active substance is dissolved in a solvent, respectively, through separate channels, and immediately before spraying.
  • the nanofunctional particles of the present invention are nanofunctional particles containing an active substance dispersed in microparticles and / or present on the surface of the microparticles. Specifically, the nanofunctional particles of the present invention can be produced using the method for producing nanoparticles disclosed in Patent Document 8.
  • the above-mentioned “mixed immediately before spraying” means that a good water-soluble solute that was not mixed until immediately before spraying and dissolved in water and an active substance were dissolved in water. It means that the liquid was mixed just before spraying.
  • the liquid in which the water-soluble solute is dissolved in water and the liquid in which the active substance is dissolved in the solvent enter the nozzle independently, and both liquids are mixed immediately before the nozzle spray port.
  • the mixed liquid is sprayed from the nozzle nozzle.
  • the nozzle used in the present invention can realize such mixing and spraying. Specifically, the nanoparticle production nozzle disclosed in Patent Document 8 can be used.
  • the time from mixing the liquid to spraying is usually within a few seconds, for example, within 1 second, within 0.5 seconds, or even within 0.2 seconds.
  • the pressure of the pressurized gas is preferably from 0.01 to 0.5 MPa, more preferably from 0.03 to 0.3 MPa, and particularly preferably from 0.05 to 0.2 MPa.
  • a liquid in which an active substance is dissolved in a solvent is composed of a plurality of liquids having different active substances, and three or more liquids are mixed just before spraying through another flow path, and contain a good water-soluble solute. It is also possible to obtain nanofunctional particles containing two or more active substances dispersed in microparticles.
  • the nano functional particles of the present invention have a particle size in the nano size order (1 to 999 nm), and the micro particles have a particle size in the micro size order (1 to 999 ⁇ m).
  • the nano-functional particles of the present invention are dispersed inside the microparticles and / or are present on the surface of the microparticles, for example, are dispersed and are dispersed in the microparticles and / or Microparticles containing nanofunctional particles present on the surface of the microparticles are also referred to as composite powders.
  • the nano functional particles of the present invention have a particle size of 10 to 500 nm, preferably 20 to 450 nm, more preferably 30 to 400 nm, and 0.1 to 15% by weight, preferably 0.2 It is preferable that it accounts for ⁇ 13% by weight, more preferably 0.3 to 10% by weight. Most preferably, the nano functional particles of the present invention have a particle diameter of 30 to 400 nm and occupy 0.3 to 10% by weight with respect to the microparticles.
  • the microparticles of the present invention preferably have a particle size of 1 to 10 ⁇ m.
  • the particle diameters of the nanofunctional particles and microparticles of the present invention are determined by DLS measurement according to the method described in the examples.
  • the flow rate of the liquid obtained by dissolving the water-soluble solute in water until mixing is higher than the flow rate of the liquid obtained by dissolving the active substance in the solvent until mixing. It is preferably relatively large (fast).
  • a liquid in which a good water-soluble solute is dissolved in water is mixed by flowing in a flow path of a liquid in which an active substance is dissolved in a solvent. Can be taken.
  • the liquid in which the active substance is dissolved in the solvent flows so as to swirl and mix with respect to the flow path of the liquid in which the good water-soluble solute is dissolved in water.
  • a liquid in which an active substance is dissolved in a solvent and a liquid in which a good water-soluble solute is dissolved in water are provided in the flow path on the side of the spray port where spraying is performed.
  • a mode in which mixing flows by swirling with each other it is possible to adopt a mode in which mixing flows by swirling with each other.
  • nanofunctional particles of the present invention it is possible to obtain nanofunctional particles that improve the penetration of the active substance into the skin or improve the dispersibility of the active substance in a solvent. It is preferable to adopt a mode in which a liquid in which a substance is dissolved in a solvent flows and mixes so as to swirl into a flow path of a liquid in which a good water-soluble solute is dissolved in water.
  • the microparticles obtained by the production method of the present invention may contain nano-functional particles dispersed in the microparticles and / or existing on the surface of the microparticles. Good. In particular, a state where nano-functional particles are dispersed and present on the surface of the microparticles is preferable.
  • the particle size of the nano functional particles is usually 10 to 500 nm. When the particle size of the microparticle is 1 to 10 ⁇ m, the particle size of the nano functional particle is usually in the range of 10 to 500 nm.
  • the good water-soluble solute used in the present invention is a substance that is soluble in water as long as it dissolves in water relatively quickly as compared with the active substance used in the present invention. Not limited.
  • a good water-soluble solute dissolves in water to form a liquid, and is solidified and solidified by evaporation of the solvent to form microparticles.
  • the concentration of the good water-soluble solute (substance) in the liquid obtained by dissolving the good water-soluble solute in water is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and 2 to 4%. It is particularly preferable that the content is% by mass.
  • water-soluble solutes examples include water-soluble compounds. Specifically, mannitol, dextran, lactose, starch, xylitol, sorbitol, dextrin, sucrose, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, pullulan, gelatin, collagen, agar, sodium alginate Xanthan gum, polyethylene glycol, gum arabic and the like. These good water-soluble solutes may be used alone or in combination of two or more.
  • the good water-soluble solute may be a medicinal effect or a cosmetic ingredient, or may be a pharmaceutical or cosmetic additive.
  • mannitol or dextran is preferable as the good water-soluble solute, and mannitol is most preferable because the cyclonic recovery of the nano-functional particles dispersed in the microparticles can be easily performed.
  • the active substance used in the present invention may be either hydrophobic or hydrophilic, but is good for the solvent used in the present invention, for example, a good water miscible solvent or a hardly water miscible solvent.
  • a hydrophobic active substance is preferred.
  • a hydrophobic active substance for example, when water is used as a solvent, a drug corresponding to “dissoluble”, “extremely insoluble”, or “almost insoluble” in the solubility in the properties section of the 14th revised Japanese Pharmacopoeia The substance corresponding to is mentioned.
  • the amount of water required to dissolve within 30 minutes is 100 ml or more.
  • the hydrophobic active substance can be dissolved in a solvent to become a liquid, further solidify to become a solid, and become nano-functional particles.
  • a hydrophilic active substance such as hyaluronic acid may be dissolved in a solvent mixed with an appropriate amount of water.
  • the nano functional particle of the present invention containing a hydrophobic surfactant dispersible in water and a hydrophilic active substance can be obtained.
  • the active substance can be selected from, for example, cosmetic ingredients and / or pharmaceutical ingredients.
  • Cosmetic ingredients include, for example, moisturizers, whitening agents, hair growth agents, hair nourishing agents, hair growth agents, anti-whitening agents, anti-aging agents, antioxidants, collagen synthesis accelerators, anti-wrinkle agents, anti-acne agents, vitamin agents UV absorbers, fragrances, coloring agents, antiperspirants, cooling sensations, warming sensations, melanin production inhibitors, melanocyte activators, cleansing agents, slimming agents and the like.
  • functional food ingredients include vitamins, minerals, antioxidants, anti-stress agents, nutritional supplements, amino acids, carotenoids, fruits and plant extracts.
  • Examples of pharmaceutical components include hair restorers, hair nourishing agents, hair growth agents, antibiotics, anticancer agents, anti-inflammatory agents, antiallergic agents, hormone agents, antithrombotic agents, immunosuppressive agents, skin disease therapeutic agents, antifungal agents , Nucleic acid medicine, anesthetic, antipyretic, analgesic, antipruritic, antiedema, antitussive, antiepileptic, antiparkinsonian, hypnotic sedative, anxiolytic, stimulant, neuropsychiatric, muscle relaxation Agent, antidepressant, general cold drug, autonomic nervous system agent, antispasmodic agent, sweating agent, antiperspirant, cardiotonic agent, arrhythmia agent, antiarrhythmic agent, vasoconstrictor, vasodilator, antiarrhythmic agent, antihypertensive agent , Antidiabetic agent, high fat plasma agent, respiratory stimulant, antitussive agent, vitamin agent, parasitic skin disease agent, homeostatic agent, polypeptide,
  • humectant used in the present invention examples include, but are not limited to, hyaluronic acid, ceramide, lipid, isoflavone, amino acid, collagen and the like. These humectants may be used alone or in combination of two or more.
  • whitening agent used in the present invention examples include, but are not limited to, vitamin C and its derivatives, hydroquinones, arbutin, lucinol, ellagic acid and the like. These whitening components may be used alone or in combination of two or more.
  • anti-aging agent / antioxidant used in the present invention examples include carotenes, retinoic acid, retinol, vitamin C and derivatives thereof, kinetin, astaxanthin, tretinoin, vitamin E and derivatives thereof, sesamin, ⁇ -lipoic acid, Examples include, but are not limited to, coenzyme Q10 and flavonoids. These anti-aging agents and antioxidants may be used alone or in combination of two or more.
  • anti-acne agent used in the present invention examples include, but are not limited to, salicylic acid, resorcin, retinoic acid, nadifloxacin, aminoglycoside antibiotics, tetracycline antibiotics, lincomycin antibiotics, and the like. It is not a thing. These anti-acne agents may be used alone or in combination of two or more.
  • Anticancer agents used in the present invention include, for example, fluoropyrimidine antimetabolites (5-fluorouracil (5FU), tegafur, doxyfluridine, capecitabine, etc.); antibiotics (mitomycin (MMC), adriacin (DXR), etc.); purines Antimetabolites (anthofolate antimetabolites such as methotrexate, mercaptopurine, etc.); active metabolites of vitamin A (antimetabolites such as hydroxycarbamide, tretinoin, tamibarotene, etc.); molecular targeting drugs (herceptin, imatinib mesylate, etc.); Platinum preparations (such as briplatin, landa (CDDP), paraplatin (CBDC), elprat (Oxa), akpra); plant alkaloid drugs (topotecin, campto (CPT), taxol (PTX), taxotere (DTX), etoposide, etc.); Alkylating agents
  • Antiallergic agents used in the present invention include, for example, mediator release inhibitors such as sodium cromoglycate and tranilast, histamine H1-antagonists such as ketotifen fumarate and azelastine hydrochloride, thromboxane inhibitors such as ozagrel hydrochloride, plan Examples include, but are not limited to, leukotriene antagonists such as Lucast and suplatast tosylate. These antiallergic agents may be used alone or in combination of two or more.
  • immunosuppressant used in the present invention examples include, but are not limited to, rapamycin, tacrolimus, cyclosporine, prednisolone, methylprednisolone, mycophenolate mofetil, azathioprine, and mizoribine. These immunosuppressive agents may be used alone or in combination of two or more.
  • the type of hair-restoring ingredient used in the present invention is not particularly limited, but can be selected from, for example, cosmetic ingredients or pharmaceutical ingredients.
  • specific examples of the hair-growth component include glycyrrhetinic acid or a derivative thereof, glycyrrhizic acid or a derivative thereof, hinokitiol, vitamin E or a derivative thereof, vitamin C and a derivative thereof, 6-benzylaminopurine, nicotinamide, nicotinic acid Benzyl, tocopherol nicotinate, ⁇ -butoxy ester of nicotinic acid, isopropylmethylphenol, pentadecanoic acid or its derivatives, cephalatin, finasteride, t-flavanone, carotenoids and anti-oxidants such as kinetin, ethinyl estradiol, pantothenyl alcohol, pantothenyl ethyl Examples include ether, minoxidil or an analog thereof,
  • those externally applied to the skin such as anti-inflammatory agents, particularly indomethacin; whitening agents, anti-aging agents / antioxidants, and hair-growth ingredients, particularly vitamin C and its derivatives;
  • anti-inflammatory agents particularly indomethacin
  • whitening agents particularly anti-aging agents / antioxidants
  • hair-growth ingredients particularly vitamin C and its derivatives
  • hyaluronic acid and the like are preferably used. Indomethacin and hyaluronic acid are particularly preferable.
  • fullerene may be used as the active substance of the present invention.
  • fullerenes include C60, C70, C74, C76, C78, C82, C84, C90, C94, C96, and higher carbon clusters composed of 60 or more carbon atoms, and nanotube fullerenes.
  • the fullerene of the present invention has, for example, various functional groups such as a nitro group, a carboxyl group, a cyano group, and an amino group, and an organic group such as a hydrocarbon group that may have these functional groups. Also good.
  • these fullerenes may be used alone or in combination of two or more.
  • fullerene is used as the active substance of the present invention, it is preferably composed of two or more fullerenes, and more preferably composed of a single fullerene.
  • one or more fullerenes may be used in combination with one or more cosmetic ingredients and / or one or more pharmaceutical ingredients.
  • the method for producing nano-functional particles of the present invention is a method for obtaining nano-functional particles containing an active substance dispersed in micro-particles containing a good water-soluble solute.
  • the mass ratio between the solute and the active substance is preferably 2000 or less, more preferably 200 or less, even more preferably 20 or less, and preferably 10 or less, in the case of a good water-soluble solute / active substance. Is particularly preferred.
  • Examples of the solvent used for dissolving the active substance in the present invention include a good water miscible solvent, a hardly water miscible solvent, or a mixed solvent thereof.
  • the good water miscible solvent is not particularly limited as long as it is a solvent that dissolves the active substance used in the present invention and is a substance that is miscible with water.
  • Examples of good water miscible solvents include alcohols such as methanol and ethanol; acetone; and mixed solvents thereof such as methanol / acetone mixtures.
  • As a good water miscible solvent, 2-propanol, ethanol, and a mixed solvent thereof are preferable in that nanofunctional particles having good transdermal absorbability can be obtained.
  • the hardly water-miscible solvent is not particularly limited as long as it is a solvent that dissolves the active substance used in the present invention and is a substance that is not miscible or hardly miscible with water.
  • the hardly water miscible solvent include toluene, benzene, carbon tetrachloride, and mixed solvents thereof.
  • toluene is preferable in that nanofunctional particles having good solvent dispersibility can be obtained.
  • a mixed solvent in which the good water miscible solvent and the hardly water miscible solvent are appropriately combined may be used as a solvent for dissolving the active substance.
  • a mixed solvent include toluene and ethanol, a mixed solvent of 2-propanol and toluene, and the like.
  • a mixed solvent of toluene and ethanol is preferable in that nanofunctional particles having good solvent dispersibility, particularly nanofunctional particles containing fullerene can be obtained.
  • the nanofunctional particles of the present invention preferably contain a surfactant from the viewpoint that they can be dispersed well in a solvent and improve the permeability of the active substance to the skin.
  • the nano functional particles of the present invention preferably further contain a surfactant in addition to the active substance.
  • such nano-functional particles can be produced by adding a surfactant to a liquid obtained by dissolving an active substance in a solvent.
  • a surfactant for example, as a liquid in which an active substance is dissolved in a solvent, either a poorly water miscible solvent or a good water miscible solvent is a liquid in which the active substance is dissolved in one solvent, and the surfactant is dissolved in the remaining one solvent.
  • the nano functional particles of the present invention can be produced.
  • a liquid in which an active substance such as fullerene is dissolved in a poorly water-miscible solvent and a surfactant are mixed with good water. It is preferable to use a liquid mixture with a liquid dissolved in an organic solvent.
  • surfactant of the present invention examples include a hydrophobic surfactant and a hydrophilic surfactant.
  • hydrophobic surfactant those having an HLB of 0 to less than 8 can be used.
  • hydrophobic surfactant include sucrose stearate, sucrose palmitate, sucrose oleate, Sucrose fatty acid esters such as sucrose lauric acid ester, sucrose behenic acid ester, sucrose erucic acid ester, sorbitan fatty acid such as sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan sesquioleate Esters, glycerol fatty acid esters such as glycerol monostearate and glycerol monooleate, polyglycerol fats such as diglyceryl tetraisostearate, diglyceryl diisostearate, diglyceryl monoisostearate And esters are exemplified. These hydrophobic surfactants may be used alone or in combination of two or more.
  • hydrophilic surfactant those having an HLB of 8 or more can be used, and examples thereof include anionic, cationic, amphoteric, and nonionic surfactants. These hydrophilic surfactants may be used alone or in combination of two or more.
  • anionic surfactant examples include fatty acid soap, naphthenic acid soap, long chain alcohol sulfate, polyoxyethylene alkylphenyl ether sulfate, fatty acid monoglyceride sulfate, fatty acid monoalkanolamide sulfate, alkali sulfonate, ⁇ -sulfo fatty acid salt, dialkyl sulfosuccinate, polyoxyethylene octyl phenyl ether sulfonate, alkyl benzene sulfonate, polyoxyethylene alkylphenol ether phosphate, polyoxyethylene alkyl ether phosphate, sodium lauryl sulfate, etc. Is exemplified. These anionic surfactants may be used alone or in combination of two or more.
  • cationic surfactant examples include long-chain primary amine salts, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkylpyridinium salts, polyoxyethylene alkylamines, alkylimidazolines, and the like. These cationic surfactants may be used alone or in combination of two or more.
  • amphoteric surfactant examples include N-alkyl ⁇ -aminopropionate and N-alkyl ⁇ -iminodipropionate. These amphoteric surfactants may be used alone or in combination of two or more.
  • nonionic surfactant examples include higher alcohol ethylene oxide adduct, alkylphenol ethylene oxide adduct, fatty acid ethylene oxide adduct, polyhydric alcohol fatty acid ester ethylene oxide adduct, higher alkylamine ethylene oxide adduct, fatty acid amide ethylene.
  • examples include oxide adducts, oil and fat ethylene oxide adducts, glycerin fatty acid esters, pentaerythritol fatty acid esters, polyhydric alcohol alkyl ethers, and alkanolamine fatty acid amides.
  • nonionic surfactants for example, sorbitol and sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyethylene glycol fatty acid esters, sucrose fatty acid esters, polyoxyethylene castor oil, polyoxyethylene hardened Castor oil (polyethoxylated hydrogenated castor oil), polyoxyethylene polypropylene glycol copolymer, glycerin fatty acid ester, polyglycerin fatty acid ester and the like are preferably used.
  • polyoxyethylene sorbitan fatty acid ester polysorbate 20, 40, 60, 80 and the like are particularly suitable.
  • polyethylene glycol fatty acid ester polyethylene glycol monolaurate is particularly suitable.
  • sucrose fatty acid esters examples include sucrose palmitate esters (for example, trade name: P-1670, Mitsubishi Chemical Foods), sucrose stearate esters (for example, trade name: S-1670, Mitsubishi Chemical Foods). Co., Ltd.), sucrose laurate (eg, trade name: L-1695, Mitsubishi Chemical Foods), sucrose erucate, and sucrose oleate (eg, trade name: O-1570, Mitsubishi Chemical) Foods Co., Ltd.) is preferable.
  • polyoxyethylene castor oil polyoxyethylene glycerol triricinoleate 35 (Polyoxy35 Castor Oil, trade name Cremophor EL or EL-P, BSF Japan Ltd.) is particularly suitable.
  • polyoxyethylene hydrogenated castor oil polyoxyethylene hydrogenated castor oil 50, polyoxyethylene hydrogenated castor oil 60, and the like are particularly suitable.
  • polyoxyethylene polyoxypropylene glycol copolymer polyoxyethylene (160) polyoxypropylene (30) glycol (trade name: Adeka Pluronic F-68, Asahi Denka Kogyo Co., Ltd.) is particularly suitable.
  • polyglycerol fatty acid ester decaglycerol monolauric acid (Decaglyn1-L, Nikko Chemicals Co., Ltd.) and the like are suitable. These nonionic surfactants may be used alone or in combination of two or more.
  • a phospholipid can be used as a surfactant.
  • a phospholipid is generally an amphiphilic substance having a hydrophobic group composed of a long-chain alkyl group and a hydrophilic group composed of a phosphate group in the molecule.
  • SM sphingomyelin
  • HSPC hydrogenated soybean phosphatidylcholine
  • the above surfactants may be used alone or in combination of two or more.
  • Two or more kinds selected from the hydrophobic surfactant, the hydrophilic surfactant, and the phospholipid may be used in combination.
  • a hydrophilic surfactant in an amount of not more than half, preferably not more than 10% of the hydrophobic surfactant may be added.
  • Sucrose fatty acid esters or phospholipids or combinations thereof are preferred in that the nanofunctional particles of the present invention can be dispersed well in a solvent, but a combination of sucrose fatty acid esters and phospholipids is more preferred. A combination of one sucrose fatty acid ester and one phospholipid is more preferable.
  • sucrose fatty acid esters particularly sucrose erucate and sucrose oleate, phospholipids, particularly phosphatidylcholine
  • sucrose fatty acid esters and phospholipids particularly a combination of sucrose erucic acid ester and phosphatidylcholine
  • the surfactant can be improved in terms of the penetration of the active substance into the skin.
  • a combination of sugar erucic acid ester and sucrose oleic acid ester or sucrose fatty acid ester and phospholipid, particularly a combination of sucrose erucic acid ester and phosphatidylcholine is preferable.
  • distributed and contained in the microparticle containing a good water-soluble solute can be provided.
  • This composite powder can be manufactured using the nanoparticle manufacturing nozzle or the nanoparticle manufacturing apparatus disclosed in Patent Document 8 by the above-described method for manufacturing nanofunctional particles.
  • a preferred composite powder is obtained by dispersing nano-functional particles containing an active substance having a particle size of 10 to 500 nm, preferably 20 to 450 nm, more preferably 30 to 400 nm in microparticles containing a good water-soluble substance, The content is 0.1 to 15% by weight, preferably 0.2 to 13% by weight, and more preferably 0.3 to 10% by weight.
  • the most preferable composite powder is one in which nanofunctional particles containing an active substance having a particle size of 30 to 400 nm are dispersed in microparticles containing a good water-soluble substance and contained in an amount of 0.3 to 10% by weight. .
  • the good water-soluble solute contained in the microparticles is one or more medicinal ingredients, one or more cosmetic ingredients, one or more pharmaceutical additives, or one or more cosmetic additives.
  • the active substance comprised and contained in the nano-functional particles is composed of one or more medicinal ingredients, one or more cosmetic ingredients, one or more pharmaceutical additives, or one or more cosmetic additives preferable.
  • the composite powder according to the present invention (whether or not the good water-soluble solute contained in the microparticle is composed of a medicinal effect or a cosmetic ingredient or a pharmaceutical product or a cosmetic additive)
  • the active substance contained is preferably composed of two or more medicinal ingredients, two or more cosmetic ingredients, two or more pharmaceutical additives, or two or more cosmetic additives. In these cases, the composite powder may be a pharmaceutical product or a cosmetic product itself.
  • Nanofunctional particles of the present invention are (a) A nozzle body provided with two or more liquid introduction ports, a pressurized gas introduction port, and a spraying port, and two or more introduction liquids provided in the nozzle body through the two or more liquid introduction ports, respectively.
  • a liquid in which the good water-soluble solute is dissolved in water and a liquid in which the active substance is dissolved in a solvent are respectively supplied from different liquid inlets through an introduction liquid flow path, and sprayed liquid. After mixing just before spraying in the flow path, it can be sprayed in the form of liquid fine particles from the spray port by the pressurized gas from the pressurized gas inlet.
  • the nanoparticle production nozzle disclosed in Patent Document 8 can be used.
  • the nanoparticle production nozzle disclosed in Patent Document 8 is commercially available, and the nanofunctional particles of the present invention can be obtained according to the production method described above using a commercially available spray drying apparatus equipped with the nozzle. it can.
  • a twin jet nozzle RJ-10-TLM
  • EHN-B11SH9R manufactured by Iwaki Co. as a liquid feed pump to the nozzle
  • a model L-8 manufactured by Okawahara Kako Co. It can be used to produce the nanofunctional particles of the present invention.
  • the external preparation for skin of the present invention contains the nanofunctional particles of the present invention and can be produced by a conventional method.
  • the nanofunctional particles and the external preparation for skin of the present invention may be added with a substance that improves the penetration of the active substance into the skin as long as the effects of the present invention are not impaired.
  • the skin external preparation of this invention can contain the component which can be normally mix
  • Such components include polyhydric alcohols such as glycerin and propylene glycol, oils such as liquid paraffin, squalane, higher fatty acids and higher alcohols, organic acids such as citric acid and lactic acid, alkalis such as caustic soda and triethanolamine, Cationic surfactant, amphoteric surfactant, nonionic surfactant, powder, pigment, dye, antiseptic / antifungal agent, resin, pH adjuster, antioxidant, ultraviolet absorber, chelating agent, thickener, Examples are humectants, alcohol, water, fragrances and the like.
  • polyhydric alcohols such as glycerin and propylene glycol
  • oils such as liquid paraffin, squalane, higher fatty acids and higher alcohols
  • organic acids such as citric acid and lactic acid
  • alkalis such as caustic soda and triethanolamine
  • Cationic surfactant amphoteric surfactant, nonionic surfactant
  • powder pigment, dye, antiseptic / antifungal
  • the dispersion of the present invention can be produced by dispersing the nanofunctional particles of the present invention in a solvent by a conventional method.
  • the solvent used in the production of the dispersion of the present invention is not particularly limited as long as it can disperse the nanofunctional particles of the present invention.
  • water, alcohols such as ethanol, and mixed solvents thereof are used. Can be mentioned. Preferably it is water.
  • the dispersion of the present invention can be used as pharmaceuticals and cosmetics, in particular as the above-mentioned skin external preparations, especially aqueous skin external preparations.
  • Spray Dry Nozzle Okawara Chemical Industries, Ltd.
  • Twin Jet Nozzle RJ-10-TLM Liquid feed pump to spray dry nozzle EHN-B11SH9R made by Iwaki Spray-dried body: Model L-8, manufactured by Okawara Chemical Company
  • Example 1 Preparation of Indomethacin Particles
  • the organic phase was prepared by mixing ethanol, 2-propanol and indomethacin in a ratio of 97: 97: 2 w / w / w.
  • the aqueous phase was prepared by dissolving 25 g mannitol in 975 g water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 5 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray dry body was 170 ° C., and the cyclone differential pressure was 0.40 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 2 Preparation of NC-50 / Indomethacin Particles
  • the organic phase was prepared by mixing ethanol, 2-propanol, NC-50 and indomethacin in a ratio of 90: 98: 10: 2 w / w / w / w.
  • the aqueous phase was prepared by dissolving 25 g mannitol in 975 g water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 5 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray dry body was 170 ° C., and the cyclone differential pressure was 0.375 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 3 Preparation of ER-290 / Indomethacin Particles
  • the organic phase was prepared by mixing 2-propanol, ER-290 and indomethacin in a ratio of 188: 10: 2 w / w / w / w.
  • the aqueous phase was prepared by dissolving 25 g mannitol in 975 g water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 5 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray-dried body was 170 ° C., and the cyclone differential pressure was 0.50 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 4 Preparation of NC-50 / ER-290 / Indomethacin Particles
  • the organic phase comprises 2-propanol, ER-290, NC-50 and indomethacin in a ratio of 188: 5: 5: 2 w / w / w / w.
  • the aqueous phase was prepared by dissolving 25 g mannitol in 975 g water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 5 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray-dried body was 170 ° C., and the cyclone differential pressure was 0.50 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 5 Preparation of NC-50 / Indomethacin Particles of Outer Dextran
  • the organic phase was prepared by mixing ethanol, NC-50 and indomethacin in a ratio of 188: 10: 2 w / w / w / w.
  • the aqueous phase was prepared by dissolving 20 g of dextran (molecular weight 70,000) in 980 g of water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 4 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray dry body was 170 ° C., and the cyclone differential pressure was 0.375 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 6 Preparation of NC-50 / fluorescently labeled hyaluronic acid particles 0.45 g of fluorescently labeled hyaluronic acid was dissolved in 29.55 g of water, and 30 g of 2-propanol was added thereto. An organic phase was obtained by adding 1.35 g of NC-50 dissolved in 28.65 g of ethanol to this hyaluronic acid solution. The other aqueous phase was prepared by dissolving 25 g of mannitol in 975 g of water. The organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 4 w / w to obtain the title particles (composite powder). The spray dry body inlet temperature was 170 ° C., and the cyclone differential pressure was 0.5 kPa. The compressed air supplied to the nozzle was 0.15 MPa.
  • Example 7 Preparation of O-1570 / fluorescently labeled hyaluronic acid particles 0.3 g of fluorescently labeled hyaluronic acid was dissolved in 19.7 g of water, and 20 g of 2-propanol was added thereto. A solution obtained by dissolving 0.9 g of O-1570 in 19.1 g of ethanol was added to the hyaluronic acid solution to obtain an organic phase. The other aqueous phase was prepared by dissolving 25 g of mannitol in 975 g of water. The organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 4 w / w to obtain the title particles (composite powder). The spray dry body inlet temperature was 170 ° C., and the cyclone differential pressure was 0.5 kPa. The compressed air supplied to the nozzle was 0.15 MPa.
  • Example 8 Preparation of O-1570 / fullerene particles
  • the organic phase was prepared in a 1: 1 w / w solution of toluene and ethanol so that fullerene C60 was 0.1 mg / g and O-1570 was 100 mg / g. Each was prepared by dissolving.
  • the aqueous phase was prepared by dissolving 25 g of mannitol in 975 g of water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 4 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray dry body was 170 ° C.
  • the cyclone differential pressure was 0.40 kPa.
  • the compressed air supplied to the nozzle was 0.15 MPa.
  • Example 9 Preparation of O-1570 / fullerene particles
  • the organic phase is 1 mg / g of fullerene C60 and 10 mg / mL of O-1570 in a 3: 1 w / w solution of toluene and ethanol.
  • the aqueous phase was prepared by dissolving 25 g of mannitol in 975 g of water.
  • the organic phase and the aqueous phase were fed to a spray dry nozzle using a feed pump so that the ratio was about 1: 4 w / w to obtain the title particles (composite powder).
  • the inlet temperature of the spray dry body was 170 ° C., and the cyclone differential pressure was 0.40 kPa.
  • nano functional particles obtained in Examples 1 to 5 were nanoparticles having a particle size of the nano size order.
  • LS55 Luminescence Specrometer Measurement temperature: 20 ° C, excitation light: 490 nm, detection fluorescence wavelength: 500 nm to 600 nm, Excitation and fluorescence slit: 10 nm, running speed: 150 nm / min, Cell: Starna quartz cell Q / 10 / M-dode ⁇ UV measurement> Equipment: JASCO V-670 Spectrophotometer, Measurement temperature: 25 °C Cell: Starna quartz cell Q / 10 / M-dode
  • the fluorescence-labeled hyaluronic acid in the powder was quantified from the fluorescence intensity of the composite powder of Example 6 and found to be 2.4 wt%. Further, from the fluorescence intensity of the composite powder of Example 7, the fluorescence-labeled hyaluronic acid in the powder was quantified and found to be 2.50 wt%. Further, from the UV measurement of the powder of Example 7, the amount of sucrose oleate in the powder was 8.7 wt%.
  • FIG. 5 shows that the particles of Examples 2 and 5 using the surfactant had better dispersion stability in water than the particles of Example 1 that did not use the surfactant.
  • a sample was prepared by dispersing commercially available indomethacin powder and fluorescently labeled hyaluronic acid in water so as to be 1 mg / mL, respectively. 2 mL of these samples were applied on a Strat-M® membrane. At 24 hours after application, the sample was removed, and then the Strat-M® membrane was washed with 2 mL of water. After washing, the Strat-M (registered trademark) membrane was cut into small pieces, and for Examples 1 to 4, indomethacin in the Strat-M (registered trademark) membrane was extracted with 2 mL of ethanol.
  • Comparative Example 3 a sample in which fluorescently labeled hyaluronic acid was dispersed in water so as to be 1 mg / mL
  • Comparative Example 4 a sample in which the composition contained in Example 7 was simply mixed (fluorescently labeled) Hyaluronic acid 1 mg / mL, sucrose oleate 3.5 mg / mL, and mannitol 35.5 mg / mL) were prepared. 200 ⁇ L of these samples were applied to the skin of Yucatan micropig. At 24 hours after application, the sample was removed, and then the Yucatan micropig skin was dipped and washed twice with 30 mL of water.
  • Example 7 showed a higher content than Comparative Example 4 in which the composition was simply the same and it was not in the form of particles, the increase in transdermal absorbability was related to particle formation. I can ask you.
  • a test piece was prepared by immobilizing the microparticles (composite powder) of Example 8 with Bond Epoch Clear (registered trademark) (manufactured by Konishi Co., Ltd.). Using a retotome REM-710 (YAMATO), a cross section of the test piece was cut out and observed with a scanning electron microscope (FIGS. 9 and 10).
  • particles composed of nano-sized fullerene and surfactant were dispersed in the outermost layer of microparticles having a particle diameter of about 4 ⁇ m.
  • nano-functional particles composed of fullerene and surfactant on the outermost surface are also observed in a bead shape due to the dispersed state (B in FIG. 10), but they form an aggregate.
  • the primary particles were 30 nm to 120 nm.
  • the particle size consisting of this fullerene and surfactant is consistent with the particle size distribution (30 nm to 120 nm) obtained by DLS measurement ( Figure 1) when nanofunctional particle powder is dissolved in water. It is considered to be particles composed of fullerene and a surfactant present therein.
  • the nano-functional particles of the present invention have good transdermal absorbability, improve the permeability of the active substance to the skin, and increase the content of the active substance in the skin. It can be used for medicines and cosmetics used in therapy.
  • the nanofunctional particles of the present invention in particular the nanofunctional particles of the present invention containing a surfactant, exhibit excellent dispersion stability in a solvent such as water, and therefore can be used for aqueous skin external preparations. it can.

Abstract

本発明は、簡便に得られる活性成分の経皮吸収性や溶媒分散性などの機能性に優れている製剤を提供することを目的とする。 本発明は、良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子に関する。

Description

ナノ機能性粒子
 本発明は、簡便な製法で得られる経皮吸収性、溶媒分散性及び水分散性などの機能性を有するナノ機能性粒子に関するものである。
 近年、皮膚から活性成分を吸収させて皮膚に直接的に作用するように誘導する経皮吸収技術に関する研究が進んでいる。
 例えば、BCSでClass2及びClass4に分類される水難溶性薬物を含む難溶性薬物を、S/W、あるいはS/O、更にS/O/W製剤に製造することで、溶解度を高め、吸収性の向上を図った難溶性薬物-界面活性剤複合体製剤が報告がされている(特許文献1)。
 ところで、ダイヤモンド、グラフェン、黒鉛、カーボンナノチューブと並ぶ炭素の同素体の一種であるフラーレンは、多数の炭素原子がカゴ状に結合した中空構造を有する化合物である。また、フラーレン(Cn、n;炭素原子数)は、分子量を持つ分子性の化学種であり、代表とされるC60の他にも、炭素原子の数の違いからC70、C74、C76、C78等の高次フラーレンがこれまでに報告されている。
 フラーレンはそのユニークな化学的構造及び電子的物性により電子材料、医療、化粧品、食品分野において注目を集めている。中でも医療・化粧品分野において、フラーレンは活性酸素除去能力、さらに紫外線照射による活性酸素発生能力を有しており、各種組織疾患の予防もしくは、治療への応用も報告されている。
 しかしながら、フラーレンの媒体に対する溶解度は非常に低く、良溶媒とされる限られた有機溶媒に対してもその溶解度は高いとは言い難く(例えば、トルエン;2.9mg/mL、ベンゼン;1.5mg/mL、四塩化炭素;0.32mg/mL、N-メチル-2-ピロリドン;0.89mg/mL、ポリエチレングリコール;0.004mg/mL、ジメチルスルホオキシド;0.001mg/mL、エタノール;0.001mg/mL)、水に対する溶解度は極めて低い(<0.00001mg/mL)(特許文献2、非特許文献1)。このフラーレンの媒体に対する溶解度の低さは用途開発において大きな課題となっているのが現状である。
 このように、フラーレンは新しい機能性化合物として幅広い分野での応用が図られているが、フラーレン自体は水に不溶であるため、フラーレンを水に溶解又は安定に分散させる方法が種々検討されている。
 例えば、これまでに、有機溶剤ではなく水中にフラーレンを分散する技術としては、水に対して溶解性を付与する官能基を化学的に修飾させる手法が数多く報告されている(特許文献3~5)。
 フラーレンを化学修飾することなく、水中に分散させる技術としては特許文献6や非特許文献2などが挙げられる。これらの文献では、摩擦を伴う機械的な粉砕処理を施したフラーレンがナノ粒子化し、水分散できることが報告されている。
 また、フラーレンの粉末と分散剤の粉末を混合し、機械的な粉砕処理を施し水分散液を調製する方法が開示されている。特許文献7は、シクロデキストリンとフラーレンの水分散液、そしてカリックスアレーン水溶液と置換調製される水分散液の調製法である。
国際公開番号WO2009/057808号公報 特開2005-60380号公報 特開2000-290278号公報 特開2005-263795号公報 特開2005-270804号公報 特許第5646505号号公報 特開2006-69812号公報 特開2009-113169号公報
フロンティアカーボン株式会社ホームページ、http://www.f-carbon.com/product_purple04.html Advanced Materials, 18, 729 (2006)
 しかしながら、特許文献1などの従来の方法では、活性成分の経皮吸収性を向上させる製剤が得られるにしても、その製造方法は、二つ以上の工程が必要であるなど、非常に煩雑であった。そのため、簡便に得られる、活性成分の経皮吸収性を向上させる製剤が求められてきた。
 また、特許文献3~5の手法ではフラーレン特有のπ‐共役に由来する電子的物性を下げるため、好ましい手法とは言い難い。特許文献6や非特許文献2などの手法では、その粉砕したフラーレンの水への分散工程において、数時間の超音波処理や撹拌工程、さらにはサイズや比重の大きな粒子をフィルター処理や遠心分離を用いて除去するという煩雑な精製工程が含まれており、好ましい手法とは言い難い。特許文献7の手法もまた、前述したフィルター処理や遠心分離など煩雑な精製工程が含まれており、好ましい手法とは言い難い。このように、従来報告されている方法では、フラーレンの水分散液を得るためには煩雑な精製工程を含むなどの問題があった。そのため、簡便に得られるフラーレンの水分散液が求められてきた。
 ところで、マイクロ粒子中に分散したナノ粒子の製造方法及びナノ粒子製造用ノズルは知られていたが(特許文献8)、このナノ粒子が活性成分の皮膚への浸透性や溶媒分散性などの機能性を向上させ得ることは知られていなかった。
 本発明者は、特定の噴霧乾燥法により、特に特定のノズルを使用して、製造されたナノ粒子が活性成分の皮膚への浸透性や溶媒分散性を向上させることを見出し、本発明を完成した。
 すなわち、本発明は、
(1) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含むナノ機能性粒子;
(2) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子;
(3) 前記活性物質を溶解した溶媒が良水混和性溶媒である、上記(1)又は(2)記載のナノ機能性粒子;
(4) 前記活性物質を溶解した溶媒が難水混和性溶媒と良水混和性溶媒との混合溶媒である、上記(1)又は(2)記載のナノ機能性粒子;
(5) マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含むナノ機能性粒子。
(6) 前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、上記(1)~(5)のいずれか一つ記載のナノ機能性粒子;
(7) さらに界面活性剤を含む、上記(1)~(6)のいずれか一つ記載のナノ機能性粒子;
(8) 前記活性物質を溶媒に溶解した液体が界面活性剤を含有する、上記(1)~(7)のいずれか一つ記載のナノ機能性粒子;
(9) 前記界面活性剤がショ糖脂肪酸エステル類若しくはリン脂質又はそれらの組み合わせである、上記(7)又は(8)記載のナノ機能性粒子;
(10) 2以上の液体導入口、加圧気体導入口、及び噴霧口を備えたノズル本体と、そのノズル本体の中で前記2以上の液体導入口にそれぞれ通じて設けられる2以上の導入液体流路と、前記ノズル本体の中で前記噴霧口に通じて設けられる1の噴霧液体流路と、を備え、
 前記噴霧口の上流側において、前記2以上の導入液体流路が、前記1の噴霧液体流路に接続をされてなるノズル
を使用することにより得られうる、上記(1)~(9)のいずれか一つ記載のナノ機能性粒子;
(11) 前記2以上の導入液体流路の全てが、前記1の噴霧液体流路に、当該噴霧液体流路に比して相対的に小さな流路で前記接続をされてなる上記(10)に記載されたノズル
を使用することにより得られうる、上記(1)~(9)のいずれか一つ記載のナノ機能性粒子;
(12) 上記(1)~(11)のいずれか一つ記載のナノ機能性粒子を含有する皮膚外用剤;
(13) 化粧品である上記(12)記載の皮膚外用剤;
(14) 医薬品である上記(12)記載の皮膚外用剤;
(15) 上記(1)~(11)のいずれか一つ記載のナノ機能性粒子が溶媒中に分散している分散液;
(16) 化粧品である上記(15)記載の分散液;
(17) 医薬品である上記(15)記載の分散液;
(18) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含むナノ機能性粒子の製造方法;
(19) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び又は前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子の製造方法;
(20) 前記活性物質を溶解した溶媒が良水混和性溶媒である、上記(18)又は(19)記載のナノ機能性粒子の製造方法;
(21) 前記活性物質を溶解した溶媒が難水混和性溶媒と良水混和性溶媒との混合溶媒である、上記(18)又は(19)記載のナノ機能性粒子の製造方法;
(22) 前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、上記(18)~(21)のいずれか一つ記載のナノ機能性粒子の製造方法;
(23) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含むナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法;
(24) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法;
(25) 上記(1)~(11)のいずれか一つ記載のナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法;
(26) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含むナノ機能性粒子を使用して、活性物質の溶媒分散性を高める方法;
(27) 良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子を使用して、活性物質の溶媒分散性を高める方法;
(28) 上記(1)~(11)のいずれか一つ記載のナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法
(29) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む経皮吸収性粒子;
(30) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含む経皮吸収性粒子;
(31) マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含む経皮吸収性粒子。
(32) 前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、上記(29)~(31)のいずれか一つ記載の経皮吸収性粒子;
(33) 前記活性物質が化粧品用成分又は医薬品成分から選択される少なくとも一つを含む、上記(29)~(31)のいずれか一つ記載の経皮吸収性粒子;
(34) 前記活性物質が、インドメタシン又はヒアルロン酸である、上記(29)~(31)のいずれか一つ記載の経皮吸収性粒子;
(35) さらに界面活性剤を含む、上記(29)~(34)のいずれか一つ記載の経皮吸収性粒子;
(36) 上記(29)~(35)のいずれか一つの経皮吸収性粒子が溶媒中に分散している分散液;
(37) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む経皮吸収性粒子の製造方法;
(38) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む経皮吸収性粒子を使用して、活性物質の経皮吸収性を高める方法;
(39) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む溶媒分散性粒子;
(40) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含む溶媒分散性粒子;
(41) マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含む溶媒分散性粒子;
(42) 前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、上記(39)~(41)のいずれか一つ記載の溶媒分散性粒子;
(43) 前記活性物質がフラーレンである、上記(39)~(41)のいずれか一つ記載の溶媒分散性粒子;
(44) 前記活性物質が、フラーレンC60、フラーレンC70、フラーレンC74、フラーレンC76、フラーレンC78、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC94、フラーレンC96から選択される少なくとも一つを含む、上記(39)~(41)のいずれか一つ記載の溶媒分散性粒子;
(45) さらに界面活性剤を含む、上記(39)~(44)のいずれか一つ記載の溶媒分散性粒子;
(46) 上記(39)~(45)のいずれか一つの溶媒分散性粒子が溶媒中に分散している分散液;
(47) 上記(39)~(45)のいずれか一つの溶媒分散性粒子が水中に分散している分散液;
(48) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む溶媒分散性粒子の製造方法;
(49) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む溶媒分散性粒子を使用して、活性物質の経皮吸収性を高める方法;
(50) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む水分散性粒子;
(51) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含む水分散性粒子;
(52) マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含む水分散性粒子;
(53) 前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、上記(50)~(52)のいずれか一つ記載の水分散性粒子;
(54) 前記活性物質がフラーレンである、上記(50)~(52)のいずれか一つ記載の水分散性粒子;
(55) 前記活性物質が、フラーレンC60、フラーレンC70、フラーレンC74、フラーレンC76、フラーレンC78、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC94、フラーレンC96から選択される少なくとも一つを含む、上記(50)~(52)のいずれか一つ記載の水分散性粒子;
(56) さらに界面活性剤を含む、上記(50)~(55)のいずれか一つ記載の水分散性粒子;
(57) 上記(50)~(56)のいずれか一つの水分散性粒子が水中に分散している分散液;
(58) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む水分散性粒子の製造方法;
(59) 良水溶性溶質を水に溶解した液体と、活性物質を良水混和性溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記良水混和性溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含む水分散性粒子を使用して、活性物質の経皮吸収性を高める方法;
に関する。
 本発明のナノ機能性粒子は、活性物質の経皮吸収性や溶媒分散性などの機能性を向上させることができ、その上、簡便に製造することもできる。例えば、本発明のナノ機能性粒子は、良好な経皮吸収性粒子として、活性物質の皮膚への浸透性を向上させ、活性物質の皮膚中の含量を増大させることができ、このような粒子を用いることで、活性物質の経皮吸収性を向上させた皮膚外用剤を簡便に製造することもできる。また、本発明のナノ機能性粒子は、良好な溶媒分散性粒子として、活性物質、特にフラーレンの溶媒中での、とりわけ水中での分散性を向上させることができ、このような粒子を用いることで、従来煩雑であった、フラーレンなどの活性物質の溶媒分散液、特に水分散液を簡便に製造することもできる。
実施例8のフラーレン粒子の個数別粒度分布を示す図である。 実施例9のフラーレン粒子の個数別粒度分布を示す図である。 実施例8のフラーレン粒子を走査型電子顕微鏡で撮影した写真である。 実施例8のフラーレン粒子を透過型電子顕微鏡で撮影した写真である。 実施例1、2、及び5の粉末を水に懸濁させて、一晩放置後の外観を示す写真である。 Strat-M(登録商標)中のインドメタシン含量を示す図である。縦軸の「成分量」はインドメタシン含量(μg/cm)を意味する。 Strat-M(登録商標)中のヒアルロン酸浸透量を示す図である。 ブタ皮膚中のヒアルロン酸浸透量を示す図である。 実施例8の試験片の切断面を、走査型電子顕微鏡観察(倍率:10000倍)で撮影した写真である(白点線で囲った部分の白い物質が、活性物質(フラーレン)及び界面活性剤(O-1570)を含むナノ機能性粒子であり、矢印が、図10のBで示している部分を示す)。 実施例8の試験片の切断面を、走査型電子顕微鏡観察(倍率:50000万倍)で撮影した写真である(白線で囲った部分の白い部分A~Cが、活性物質(フラーレン)及び界面活性剤(O-1570)を含むナノ機能性粒子である)。
 本発明のナノ機能性粒子は、良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散した前記活性物質を含むナノ機能性粒子である。
 特に、本発明のナノ機能性粒子は、良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子である。
 また、本発明のナノ機能性粒子は、マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含むナノ機能性粒子である。
 具体的には、本発明のナノ機能性粒子は、特許文献8に開示されたナノ粒子の製造方法を用いて製造することができる。
 前記の「噴霧直前に混合をした」とは、噴霧する直前までは混合しておらず、それぞれ別の流路を流れていた良水溶性溶質を水に溶解した液体と活性物質を溶媒に溶解した液体とを、噴霧する直前に混合したことを意味する。ノズルを用いる場合、良水溶性溶質を水に溶解した液体と活性物質を溶媒に溶解した液体とは、それぞれ独立して、ノズルに入り、ノズルの噴霧口の直前で、両液体は混合し、混合した液体がノズルの噴霧口から噴霧される。本発明で使用されるノズルは、このような混合、噴霧を実現し得るものである。具体的には、特許文献8に開示されたナノ粒子製造用ノズルを使用することができる。
 また、液体の混合をしてから噴霧をされるまでの時間は、通常、数秒以内であり、例えば1秒以内、又は0.5秒以内、更には0.2秒以内とすることができる。
 また、加圧気体の圧力は、0.01~0.5MPaであることが好ましく、0.03~0.3MPaであることがより好ましく、0.05~0.2MPaであることが特に好ましい。
 本発明では、活性物質を溶媒に溶解した液体が、活性物質が異なる複数の液体で構成され、3以上の液体を別の流路を経て噴霧直前に混合をして、良水溶性溶質を含むマイクロ粒子の中で分散した2種以上の活性物質を含むナノ機能性粒子を得ることも可能である。
 本発明のナノ機能性粒子は、粒子径がナノサイズオーダー(1~999nm)であり、またマイクロ粒子は、粒子径がマイクロサイズオーダー(1~999μm)である。本発明のナノ機能性粒子は、マイクロ粒子の内部に分散している、及び/又は、前記マイクロ粒子の表面に存在、例えば、分散して存在しており、マイクロ粒子中に分散する及び/又は前記マイクロ粒子の表面に存在するナノ機能性粒子を含んだマイクロ粒子を複合粉末ともいう。
 本発明のナノ機能性粒子は、その粒子径が10~500nm、好ましくは20~450nm、さらに好ましくは30~400nmのものが、マイクロ粒子に対し0.1~15重量%、好ましくは0.2~13重量%、さらに好ましくは0.3~10重量%を占めるものであることが好ましい。
 本発明のナノ機能性粒子は、その粒子径が30~400nmのものが、マイクロ粒子に対し0.3~10重量%を占めるものであることが最も好ましい。
 本発明のマイクロ粒子は、その粒子径が1~10μmであることが好ましい。
 本発明のナノ機能性粒子及びマイクロ粒子の粒子径は、実施例に記載の方法に準じたDLS測定により求められる。
 本発明のナノ機能性粒子の製造方法では、混合をするまでの良水溶性溶質を水に溶解した液体の流速が、混合をするまでの活性物質を溶媒に溶解した液体の流速に比して、相対的に大きい(速い)ことが好ましい。
 本発明のナノ機能性粒子の製造方法では、良水溶性溶質を水に溶解した液体が、活性物質を溶媒に溶解した液体の流路に対して、旋回するように流入して混合をする態様を採ることができる。また、本発明のナノ機能性粒子の製造方法では、活性物質を溶媒に溶解した液体が、良水溶性溶質を水に溶解した液体の流路に対して、旋回するように流入して混合をする態様を採ることができる。そして、本発明に係るナノ機能性粒子の製造方法では、活性物質を溶媒に溶解した液体と、良水溶性溶質を水に溶解した液体とが、噴霧がなされる噴霧口の側の流路に対して、互いに旋回するように流入して、混合をする態様を採ることが可能である。
 本発明のナノ機能性粒子の製造方法では、良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とが、(旋回するように流入するのではなく)対向衝突をして混合をする態様を採ることもできる。
 本発明のナノ機能性粒子の製造方法では、活性物質の皮膚への浸透性を向上させたり、活性物質の溶媒中での分散性を向上させたりするナノ機能性粒子が得られる点から、活性物質を溶媒に溶解した液体が、良水溶性溶質を水に溶解した液体の流路に対して、旋回するように流入して混合をする態様を採るのが好ましい。
 本発明の製造方法で得られたマイクロ粒子は、ナノ機能性粒子を、当該マイクロ粒子の内部に分散している状態で、及び/又は、当該マイクロ粒子の表面に存在している状態で含んでもよい。特にマイクロ粒子の表面で、ナノ機能性粒子が分散して存在している状態が好ましい。ナノ機能性粒子の粒子径は、通常10~500nmである。
 マイクロ粒子の粒子径が、1~10μmの場合、ナノ機能性粒子の粒子径は、通常10~500nmの範囲である。
 本発明で使用される良水溶性溶質は、水に可溶な物質であり、本発明で使用される活性物質に比して、相対的に、速やかに水に溶けるものであればよく、特に制限されない。良水溶性溶質は、水に溶解して液体を構成し、溶媒が蒸発することによって凝固して固体となり、マイクロ粒子となり得る。良水溶性溶質を水に溶解した液体における良水溶性溶質(物質)の濃度は、0.5~10質量%であることが好ましく、1~5質量%であることがより好ましく、2~4質量%であることが特に好ましい。
 良水溶性溶質として、例えば、水に可溶な化合物を挙げることができる。具体的には、マンニトール、デキストラン、乳糖、デンプン、キシリトール、ソルビトール、デキストリン、白糖、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、プルラン、ゼラチン、コラーゲン、カンテン、アルギン酸ナトリウム、キサンタンガム、ポリエチレングリコール、アラビアゴムなどである。これら良水溶性溶質は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明のナノ機能性粒子の製造方法においては、良水溶性溶質が、薬効若しくは化粧品成分であってもよく、又は医薬品若しくは化粧品添加物であってもよい。また、マイクロ粒子の中で分散したナノ機能性粒子のサイクロン回収が容易に行える点で、良水溶性溶質としてマンニトール又はデキストランが好ましく、マンニトールが最も好ましい。
 本発明で使用される活性物質は、疎水性及び親水性のいずれであってもよいが、本発明で使用される溶媒、例えば、良水混和性溶媒や難水混和性溶媒などへの良好な溶解性を示す点で、疎水性活性物質が好ましい。
 疎水性活性物質として、例えば、溶媒を水とした場合に、第14改正日本薬局方通則の性状の項の溶解性において、「溶け難い」「極めて溶け難い」「殆ど溶けない」に相当する薬物に相当する物質が挙げられる。具体的には、固形の粉末1gを水中に入れ、20±0.5℃で5分毎に強く30秒間振り混ぜるとき、30分以内に溶かすのに必要な水の量が100ミリリットル以上のものをいう。疎水性活性物質は、溶媒に溶解されて液体となり、更に凝固して固体となり、ナノ機能性粒子となり得る。
 親水性活性物質、例えばヒアルロン酸は、水を適当量混合させた溶媒に溶解させてもよい。あるいは、後述の疎水性界面活性剤を使用すると、水中で分散可能な疎水性界面活性剤と親水性活性物質を含む本発明のナノ機能性粒子が得られうる。
 前記の活性物質は、例えば、化粧品用成分及び/又は医薬品成分から選ぶことができる。化粧品用成分としては、例えば、保湿剤、美白剤、育毛剤、養毛剤、発毛剤、抗白髪剤、アンチエイジング剤、抗酸化剤、コラーゲン合成促進剤、抗しわ剤、抗にきび剤、ビタミン剤、紫外線吸収剤、香料、色素剤、制汗剤、冷感剤、温感剤、メラニン生成抑制剤、メラノサイト活性化剤、クレンジング剤、痩身剤などを挙げることができる。機能性食品用成分としては、例えば、ビタミン、ミネラル、抗酸化剤、抗ストレス剤、栄養補助剤、アミノ酸類、カロテノイド、果実及び植物の抽出物を挙げることができる。また、医薬品成分としては、例えば、育毛剤、養毛剤、発毛剤、抗生剤、制癌剤、抗炎症剤、抗アレルギー剤、ホルモン剤、抗血栓剤、免疫抑制剤、皮膚疾患治療薬、抗真菌薬、核酸医薬、麻酔薬、解熱剤、鎮痛剤、鎮痒剤、抗浮腫剤、鎮咳裾痰剤、抗てんかん剤、抗パーキンソン剤、催眠鎮静剤、抗不安剤、興奮剤、精神神経用剤、筋弛緩剤、抗鬱剤、総合感冒薬剤、自律神経系剤、鎮けい剤、発汗剤、止汗剤、強心剤、不整脈用剤、抗不整脈剤、血管収縮剤、血管拡張剤、抗不整脈剤、血圧降下剤、糖尿治療剤、高脂血漿剤、呼吸促進剤、鎮咳剤、ビタミン剤、寄生性皮膚疾患用剤、恒常性剤、ポリペプチド、ホルモン、不全角化抑制剤、ワクチン、又は皮膚軟化剤などを挙げることができる。これら活性物質は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される保湿剤として、例えば、ヒアルロン酸、セラミド、リピジュア、イソフラボン、アミノ酸、コラーゲンなどが挙げられるが、これらに限定されるものではない。これらの保湿剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される美白剤として、例えば、ビタミンC及びその誘導体、ハイドロキノン類、アルブチン、ルシノール、エラグ酸などが挙げられるが、これらに限定されるものではない。これらの美白成分は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用されるアンチエイジング剤・抗酸化剤として、例えば、カロテン類、レチノイン酸、レチノール、ビタミンC及びその誘導体、カイネチン、アスタキサンチン、トレチノイン、ビタミンE及びその誘導体、セサミン、α-リポ酸、コエンザイムQ10、フラボノイド類などが挙げられるが、これらに限定されるものではない。これらのアンチエイジング剤・抗酸化剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明に用いられる抗にきび剤として、例えば、サリチル酸、レゾルシン、レチノイン酸、ナジフロキサシン、アミノグリコシド系の抗生物質、テトラサイクリン系の抗生物質、リンコマイシン系の抗生物質などが挙げられるが、これらに限定されるものではない。これらの抗にきび剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される制癌剤として、例えば、フッ化ピリミジン系代謝拮抗薬(5-フルオロウラシル(5FU)やテガフール、ドキシフルリジン、カペシタビンなど);抗生物質(マイトマイシン(MMC)やアドリアシン(DXR)など);プリン代謝拮抗薬(メソトレキサートなどの葉酸代謝拮抗薬、メルカプトプリンなど);ビタミンAの活性代謝物(ヒドロキシカルバミドなどの代謝拮抗薬、トレチノインやタミバロテンなど);分子標的薬(ハーセプチンやメシル酸イマチニブなど);白金製剤(ブリプラチンやランダ(CDDP)、パラプラチン(CBDC)、エルプラット(Oxa)、アクプラなど);植物アルカロイド薬(トポテシンやカンプト(CPT)、タキソール(PTX)、タキソテール(DTX)、エトポシドなど);アルキル化剤(ブスルファンやシクロホスファミド、イホマイドなど);抗男性ホルモン薬(ビカルタミドやフルタミドなど);女性ホルモン薬(ホスフェストロールや酢酸クロルマジノン、リン酸エストラムスチンなど);LH-RH薬(リュープリンやゾラデックスなど);抗エストロゲン薬(クエン酸タモキシフェンやクエン酸トレミフェンなど);アロマターゼ阻害薬(塩酸ファドロゾールやアナストロゾール、エキセメスタンなど);黄体ホルモン薬(酢酸メドロキシプロゲステロンなど);BCGなどが挙げられるが、これらに限定されるものではない。これらの制癌剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される抗アレルギー剤として、例えば、クロモグリク酸ナトリウムやトラニラストなどのメディエーター遊離抑制薬、フマル酸ケトチフェンや塩酸アゼラスチンなどのヒスタミンH1-措抗薬、塩酸オザグレルなどのトロンボキサン阻害薬、プランルカストなどのロイコトリエン拮抗薬、トシル酸スプラタストなどが挙げられるが、これらに限定されるものではない。これらの抗アレルギー剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される免疫抑制剤として、例えば、ラパマイシン、タクロリムス、シクロスポリン、プレドニゾロン、メチルプレドニゾロン、ミコフェノール酸モフェチル、アザチオプリン、ミゾリビンなどが挙げられるが、これらに限定されるものではない。これらの免疫抑制剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明で使用される育毛成分の種類は、特に限定されないが、例えば、化粧品用成分又は医薬品成分から選ぶことができる。本発明において、育毛成分の具体例としては、グリチルレチン酸又はその誘導体、グリチルリチン酸又はその誘導体、ヒノキチオール、ビタミンE又はその誘導体、ビタミンC及びその誘導体、6-ベンジルアミノプリン、ニコチン酸アミド、ニコチン酸ベンジル、ニコチン酸トコフェロール、ニコチン酸β-ブトキシエステル、イソプロピルメチルフェノール、ペンタデカン酸又はその誘導体、セファラチン、フィナステリド、t-フラバノン、カロテノイドやキネチンなどの抗酸化剤、エチニルエストラジオール、パントテニルアルコール、パントテニルエチルエーテル、ミノキシジル又はその類縁体、塩化カルプロニウム、アデノシンなどを挙げることができる。これらの育毛成分は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明では、活性物質として、皮膚に外用されるもの、例えば、抗炎症剤、特にインドメタシン;美白剤、アンチエイジング剤・抗酸化剤、及び育毛成分、特にビタミンC及びその誘導体;ならびに保湿剤、特にヒアルロン酸などが好適に使用されるが、特にインドメタシン、ヒアルロン酸が好ましい。
 また、本発明の活性物質として、フラーレンを使用してもよい。フラーレンとして、例えば、60以上の炭素数により構成されているC60、C70、C74、C76、C78、C82、C84、C90、C94、C96、及びより高次の炭素クラスター、ならびにナノチューブフラーレンなどが挙げられる。本発明のフラーレンは、例えば、ニトロ基、カルボキシル基、シアノ基、アミノ基などの各種の官能基や、これらの官能基を有していてもよい炭化水素基などの有機基を有していてもよい。
 本発明では、これらフラーレンは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の活性物質として、フラーレンを使用する場合、2種以上のフラーレンのみから成ることが好ましく、単独のフラーレンのみから成ることがより好ましい。
 また、本発明の活性物質として、1種以上のフラーレンと、上記1種以上の化粧品用成分及び/又は1種以上の医薬品成分とを組み合わせて使用してもよい。
 本発明のナノ機能性粒子の製造方法は、良水溶性溶質を含むマイクロ粒子の中で分散した、活性物質を含むナノ機能性粒子を得る方法であることから、液体の混合時における良水溶性溶質と活性物質との質量比は、良水溶性溶質/活性物質とした場合に、2000以下であることが好ましく、200以下であればより好ましく、20以下であればさらに好ましく、10以下であれば特に好ましい。
 本発明で活性物質の溶解に使用される溶媒として、例えば、良水混和性溶媒、難水混和性溶媒、またはこれらの混合溶媒が挙げられる。
 前記良水混和性溶媒は、本発明で使用される活性物質との関係において、それを溶かす溶媒であり、且つ、水に混和する物質であれば、特に制限されない。良水混和性溶媒として、例えば、メタノール及びエタノールなどのアルコール;アセトン;ならびにこれらの混合溶媒、例えば、メタノール・アセトン混液などを挙げることができる。良水混和性溶媒として、良好な経皮吸収性を有するナノ機能性粒子が得られる点で、2-プロパノール、エタノール、及びこれらの混合溶媒が好ましい。
 前記難水混和性溶媒は、本発明で使用される活性物質との関係において、それを溶かす溶媒であり、且つ、水に混和しないか又はほとんど混和しない物質であれば、特に制限されない。難水混和性溶媒として、例えば、トルエン、ベンゼン及び四塩化炭素ならびにこれらの混合溶媒などを挙げることができる。難水混和性溶媒として、良好な溶媒分散性を有するナノ機能性粒子が得られる点で、トルエンが好ましい。
 本発明では、活性物質を溶解するための溶媒として、前記良水混和性溶媒と前記難水混和性溶媒を適宜組み合わせた混合溶媒を使用してもよい。このような混合溶媒として、例えば、トルエンとエタノール、2-プロパノールとトルエンとの混合溶媒などを挙げることができる。良好な溶媒分散性を有するナノ機能性粒子、特にフラーレンを含むナノ機能性粒子が得られる点で、トルエンとエタノールの混合溶媒が好ましい。
 溶媒中で良好に分散できる点や活性物質の皮膚への浸透性を向上させる点で、本発明のナノ機能性粒子は界面活性剤を含有するのが好ましい。本発明のナノ機能性粒子は、活性物質に加え、さらに界面活性剤を含むことが好ましい。
 このようなナノ機能性粒子は、本発明において、活性物質を溶媒に溶解した液体に界面活性剤を加えることなどによって製造することができる。例えば、活性物質を溶媒に溶解した液体として、難水混和性溶媒又は良水混和性溶媒のいずれが一方の溶媒に活性物質を溶解した液体と、残りの一方の溶媒に界面活性剤を溶解した液体との混合液体を使用することによって、本発明のナノ機能性粒子を製造することができる。良好な溶媒分散性を有するナノ機能性粒子、特にフラーレンを含むナノ機能性粒子が得られる点から、フラーレンなどの活性物質を難水混和性溶媒に溶解した液体と、界面活性剤を良水混和性溶媒に溶解した液体との混合液体を使用するのが好ましい。
 本発明の界面活性剤として、疎水性界面活性剤及び親水性界面活性剤が例示される。
 前記の疎水性界面活性剤として、HLBが0から8未満のものを使用することができ、疎水性界面活性剤としては、ショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリン酸エステル、ショ糖ベヘニン酸エステル、ショ糖エルカ酸エステルなどのショ糖脂肪酸エステル類、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノオレート、ソルビタントリオレート、ソルビタンセスキオレートなどのソルビタン脂肪酸エステル類、グリセロールモノステアレート、グリセロールモノオレートなどのグリセリン脂肪酸エステル類、テトライソステアリン酸ジグリセリル、ジイソステアリン酸ジグリセリル、モノイソステアリン酸ジグリセリルなどのポリグリセリン脂肪酸エステル類などが例示される。これらの疎水性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 前記の親水性界面活性剤として、HLBが8以上のものを使用することができ、例えば、アニオン性、カチオン性、両性、及び非イオン性の界面活性剤が挙げられる。これらの親水性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 前記のアニオン性界面活性剤としては、脂肪酸石けん、ナフテン酸石けん、長鎖アルコール硫酸エステル、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、脂肪酸モノグリセリド硫酸エステル、脂肪酸モノアルカノールアミド硫酸エステル、アルカリスルホン酸塩、α―スルホ脂肪酸塩、ジアルキルスルホコハク酸塩、ポリオキシエチレンオクチルフェニルエーテルスルホン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェノールエーテルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、ラウリル硫酸ナトリウムなどが例示される。これらのアニオン性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 前記のカチオン性界面活性剤としては、長鎖第1級アミン塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルピリジニウム塩、ポリオキシエチレンアルキルアミン、アルキルイミダゾリンなどが例示される。これらのカチオン性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 前記の両性界面活性剤としては、N-アルキル β-アミノプロピオン酸塩、N-アルキル β-イミノジプロピオン酸塩などが例示される。これらの両性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 前記の非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、グリセリン脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどが例示される。
 非イオン性界面活性剤の中でも、例えば、ソルビトール及びソルビタンの脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンヒマシ油(polyethoxylated castor oil)、ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenated castor oil)、ポリオキシエチレンポリプロピレングリコール共重合体、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルなどが好ましく使用される。
 ポリオキシエチレンソルビタン脂肪酸エステルとしては、特に、ポリソルベート20、40、60、80などが好適である。ポリエチレングリコール脂肪酸エステルとしては、特に、モノラウリン酸ポリエチレングリコールなどが好適である。ショ糖脂肪酸エステルとしては、特に、ショ糖パルミチン酸エステル類(例えば商品名:P-1670、三菱化学フーズ(株))、ショ糖ステアリン酸エステル類(例えば商品名:S-1670、三菱化学フーズ(株))、ショ糖ラウリン酸エステル類(例えば商品名:L-1695、三菱化学フーズ(株))、ショ糖エルカ酸エステル及びショ糖オレイン酸エステル(例えば商品名:O-1570、三菱化学フーズ(株))などが好適である。ポリオキシエチレンヒマシ油(polyethoxylated castor oil)としては、特に、ポリオキシエチレングリセロールトリリシノレート35(Polyoxy35 Castor Oil、商品名クレモホールELもしくはEL-P、ビーエーエスエフジャパン(株))などが好適である。ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenatd castor oil)としては、特に、ポリオキシエチレン硬化ヒマシ油50(Polyoxyethylene Hydrogenated Castor Oil50)、ポリオキシエチレン硬化ヒマシ油60(Polyoxyethylene Hydrogenated Castor Oil60)などが好適である。ポリオキシエチレンポリオキシプロピレングリコール共重合体としては、特に、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(商品名:アデカプルロニックF-68、旭電化工業(株))などが好適である。ポリグリセリン脂肪酸エステルとしては、デカグリセリンモノラウリン酸(Decaglyn1-L、日光ケミカルズ(株))などが好適である。
 これらの非イオン性界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明では、界面活性剤としてリン脂質を使用することができる。リン脂質は、一般的に、分子内に長鎖アルキル基より構成される疎水性基と、リン酸基より構成される親水性基とをもつ両親媒性物質である。本発明で使用されるリン脂質としては、ホスファチジルコリン(=レシチン)、ホスファチジルグリセロール、ホスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール;スフィンゴミエリン(SM)などのスフィンゴリン脂質;カルジオリピンなどの天然又は合成のジホスファチジルリン脂質及びこれらの誘導体;これらの水素添加物、例えば、水素添加大豆ホスファチジルコリン(HSPC)などを挙げることができるが、これらに限定されない。これらのリン脂質は、単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 本発明においては、前記の界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。前記疎水性界面活性剤、前記親水性界面活性剤、及び前記リン脂質から選択される2種以上を組み合わせて使用してもよい。例えば、疎水性界面活性剤の半量以下、好ましくは10%以下の親水性界面活性剤を添加してもよい。また、親水性界面活性剤の半量以下、好ましくは10%以下の疎水性界面活性剤を添加してもよい。
 本発明のナノ機能性粒子が溶媒中で良好に分散し得る点で、ショ糖脂肪酸エステル類若しくはリン脂質又はそれらの組み合わせが好ましいが、ショ糖脂肪酸エステル類とリン脂質の組み合わせがさらに好ましい。1種のショ糖脂肪酸エステル類と1種のリン脂質の組み合わせがさらに好ましい。
 本発明のナノ機能性粒子が溶媒中で良好に分散し得る点で、界面活性剤として、ショ糖脂肪酸エステル類、特にショ糖エルカ酸エステル及びショ糖オレイン酸エステル、リン脂質、特にホスファチジルコリン、ショ糖脂肪酸エステル類とリン脂質との組み合わせ、特にショ糖エルカ酸エステルとホスファチジルコリンとの組み合わせが、好ましい。活性物質がフラーレンの場合、本発明のナノ機能性粒子が溶媒中で良好に分散し得る点で、界面活性剤として、ショ糖脂肪酸エステル類、特にショ糖オレイン酸エステルが好ましい。
 また、本発明のナノ機能性粒子が溶媒中で良好に分散し得る点に加えて、活性物質の皮膚への浸透性を向上させる点で、界面活性剤として、ショ糖脂肪酸エステル類、特にショ糖エルカ酸エステル及びショ糖オレイン酸エステル、又はショ糖脂肪酸エステル類とリン脂質との組み合わせ、特にショ糖エルカ酸エステルとホスファチジルコリンとの組み合わせが好ましい。
 本発明によれば、活性物質を含むナノ機能性粒子が良水溶性溶質を含むマイクロ粒子の中で分散して含まれる、複合粉末が提供され得る。この複合粉末は、前述のナノ機能性粒子の製造方法により、特許文献8に開示されるナノ粒子製造用ノズル又はナノ粒子製造装置を用いて製造可能である。好ましい複合粉末は、粒子径が10~500nm、好ましくは20~450nm、さらに好ましくは30~400nmの活性物質を含むナノ機能性粒子が、良水溶性物質を含むマイクロ粒子の中で分散して、0.1~15重量%、好ましくは0.2~13重量%、さらに好ましくは0.3~10重量%含まれるものである。
 最も好ましい複合粉末は、粒子径が30~400nmの活性物質を含むナノ機能性粒子が、良水溶性物質を含むマイクロ粒子の中で分散して、0.3~10重量%含まれるものである。
 本発明の複合粉末においては、マイクロ粒子に含まれる良水溶性溶質が、1種以上の薬効成分、1種以上の化粧品成分、1種以上の医薬品添加物、又は1種以上の化粧品添加物で構成され、ナノ機能性粒子に含まれる活性物質が、1種以上の薬効成分、1種以上の化粧品成分、1種以上の医薬品添加物、又は1種以上の化粧品添加物で構成されることが好ましい。また、本発明に係る複合粉末においては、(マイクロ粒子に含まれる良水溶性溶質が、薬効若しくは化粧品成分又は医薬品若しくは化粧品添加物で構成されるか否かによらず)、ナノ機能性粒子に含まれる活性物質が、2種以上の薬効成分、2種以上の化粧品成分、2種以上の医薬品添加物、又は2種以上の化粧品添加物で構成されることが好ましい。これらの場合、複合粉末は、医薬品又は化粧品そのものであってもよい。
 本発明のナノ機能性粒子は、
(a) 2以上の液体導入口、加圧気体導入口、及び噴霧口を備えたノズル本体と、そのノズル本体の中で前記2以上の液体導入口にそれぞれ通じて設けられる2以上の導入液体流路と、前記ノズル本体の中で前記噴霧口に通じて設けられる1の噴霧液体流路と、を備え、
 前記噴霧口の上流側において、前記2以上の導入液体流路が、前記1の噴霧液体流路に接続をされてなるノズル;又は
(b) 前記2以上の導入液体流路の全てが、前記1の噴霧液体流路に、当該噴霧液体流路に比して相対的に小さな流路で前記接続をされてなる上記(a)のノズル
を使用することにより得ることができる。
 例えば、上記ノズルを使用して、前記良水溶性溶質を水に溶解した液体と、前記活性物質を溶媒に溶解した液体とを、それぞれ別の液体導入口から導入液体流路を経て、噴霧液体流路にて噴霧直前に混合をした後に、加圧気体導入口からの加圧気体によって、噴霧口から液状微粒子の状態で噴霧させることができる。具体的には、特許文献8に開示されたナノ粒子製造用ノズルを使用することができる。
 特許文献8に開示されたナノ粒子製造用ノズルは市販されており、当該ノズルを備えた市販のスプレードライ装置を使用して、前述の製造方法に従って、本発明のナノ機能性粒子を得ることができる。例えば、当該ノズルとして大川原化工機社製ツインジェットノズル(RJ-10-TLM)、当該ノズルへの送液ポンプとしてイワキ社製EHN-B11SH9R、スプレードライ本体として大川原化工機社製モデルL-8を使用して、本発明のナノ機能性粒子を製造することができる。
 本発明の皮膚外用剤は、本発明のナノ機能性粒子を含有し、慣用の方法で製造することができる。
 本発明のナノ機能性粒子や皮膚外用剤は、本発明の効果を損なわない限り、活性物質の皮膚への浸透性を向上させる物質を添加してもよい。
 また、本発明の皮膚外用剤は、本発明の効果を損なわない限り、皮膚外用剤に通常配合され得る成分を含有することができる。そのような成分としては、グリセリン、プロピレングリコールなどの多価アルコール、流動パラフィン、スクワラン、高級脂肪酸、高級アルコールなどの油分、クエン酸、乳酸などの有機酸類、苛性ソーダ、トリエタノールアミンなどのアルカリ類、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、粉末、顔料、染料、防腐防黴剤、樹脂、pH調整剤、酸化防止剤、紫外線吸収剤、キレート剤、増粘剤、保湿剤、アルコール、水、香料などが例示される。
 本発明の分散液は、慣用の方法で、本発明のナノ機能性粒子を溶媒中に分散させることで製造することができる。本発明の分散液の製造に使用される溶媒は、本発明のナノ機能性粒子を分散させ得るものであれば、特に制限されず、例えば、水、エタノールなどのアルコール、及びこれらの混合溶媒が挙げられる。好ましくは水である。本発明の分散液は、医薬品や化粧品、特に前記の皮膚外用剤、とりわけ水性皮膚外用剤として使用することができる。
 以下、実施例を挙げて本発明をさらに詳しく具体的に説明するが、本発明はこれらに限定されるものではない。
1.蛍光標識したヒアルロン酸の合成
 1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド28mgを水10mLに溶解させ、加水分解ヒアルロン酸(キューピー株式会社、ヒアロオリゴ)4gを水180mLに溶解させた水溶液へと添加した。この水溶液を氷浴に浸した後、ジメチルホルムアミド10mLに5-アミノフルオレセイン40mgを溶かした溶液を添加し、得られた混合液を、氷浴中で1時間撹拌し、次いで室温にて1晩撹拌してから、3kの限外ろ過(Thermo Science社製)を用いて精製して、表題の蛍光標識したヒアルロン酸を得た。
2.粒子の調製
 実施例で粒子の調製に使用した試薬及び装置を以下に示す。
  インドメタシン:東京化成社製
  フラーレンC60:シグマアルドリッチ社製
  ホスファチジルコリン(以下NC-50と略す):日油社製 製品名NC-50
  ショ糖エルカ酸エステル(以下ER-290と略す):三菱化学フーズ社製 製品名ER-290
  デキストラン 分子量7万:東京化成社製
  ショ糖オレイン酸エステル(以下「O-1570」と略す):三菱化学フーズ社製 製品名O-1570
  マンニトール:東京化成社製品
  スプレードライノズル:大川原化工機社製 ツインジェットノズル RJ-10-TLM
  スプレードライノズルへの送液ポンプ:イワキ社製 EHN-B11SH9R
  スプレードライ本体:大川原化工機社製 モデル L-8
実施例1 インドメタシン粒子の調製
 有機相は、エタノール、2-プロパノール及びインドメタシンを97:97:2 w/w/wの比率で混合して調製した。水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:5 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.40kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例2 NC-50/インドメタシン粒子の調製
 有機相は、エタノール、2-プロパノール、NC-50及びインドメタシンを90:98:10:2 w/w/w/wの比率で混合して調製した。水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:5 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.375kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例3 ER-290/インドメタシン粒子の調製
 有機相は、2-プロパノール、ER-290及びインドメタシンを188:10:2 w/w/w/wの比率で混合して調製した。水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:5 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.50kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例4 NC-50/ER-290/インドメタシン粒子の調製
 有機相は、2-プロパノール、ER-290、NC-50及びインドメタシンを188:5:5:2 w/w/w/wの比率で混合して調製した。水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:5 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.50kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例5 外層デキストランのNC-50/インドメタシン粒子の調製
 有機相は、エタノール、NC-50及びインドメタシンを188:10:2 w/w/w/wの比率で混合して調製した。水相は、デキストラン(分子量7万)20gを水980gに溶解させることで調製した。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.375kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例6 NC-50/蛍光標識したヒアルロン酸粒子の調製
 蛍光標識したヒアルロン酸0.45gを水29.55gに溶解させ、そこへ2-プロパノール30gを加えた。このヒアルロン酸溶液にNC-50 1.35gをエタノール28.65gに溶解させたものを加えることで有機相を得た。他方の水相は、マンニトール25gを水975gに溶解し、調製した。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.5kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例7 O-1570/蛍光標識したヒアルロン酸粒子の調製
 蛍光標識したヒアルロン酸0.3gを水19.7gに溶解させ、そこへ2-プロパノール 20gを加えた。O-1570 0.9gをエタノール19.1gへと溶解させたものを、ヒアルロン酸溶液に加えることで有機相とした。他方の水相はマンニトール25gを水975gに溶解し、調製した。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.5kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例8 O-1570/フラーレン粒子の調製
 有機相は、トルエン及びエタノールの1:1 w/wの溶液に、フラーレンC60を0.1mg/gになるように、またO-1570を100mg/gとなるように、それぞれ溶解させて調製した。一方、水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.40kPaとした。また、ノズルに供給する圧縮空気は0.15MPaとした。
実施例9 O-1570/フラーレン粒子の調製
 有機相は、トルエン及びエタノールの3:1 w/wの溶液に、フラーレンC60を1mg/gとなるように、またO-1570を10mg/mLとなるように、それぞれ溶解させて調製した。一方、水相は、マンニトール25gを水975gに溶解させることで調製した。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度170℃、サイクロン差圧は0.40kPaとした。
3.インドメタシン量の定量及び粒子径測定
 前記実施例1~5にて得られた粉末中のインドメタシン濃度及び水中での粒子径を、HPLC及びDLS測定により評価した。使用した装置及び条件は以下のとおりである。
(1) HPLC測定
 実施例1~4の粉末0.10gを水10mLに加えた後、メタノールにて100mLへとメスアップして、試料を作製した。実施例5の粉末0.10gを水20mLに加えた後、メタノールにて100mLへとメスアップして、試料を作製した。得られた試料を以下の条件のHPLCにかけ、分析した。
 <HPLC条件>
  カラム:ZORBAX Eclipse XDB-C18(5μm, 4.6×150mm)
  温度:25℃
  検出:UV 300nm
  流速 1.0mL/min
  注入量 10μL
  溶離液:アセトニトリル/水/酢酸 500/500/1 v/v/v(プレミックス)
(2) DLS測定
 実施例1~5で得られた複合粉末を水に溶解させて試料を作製した。その試料中のインドメタシンの粒子径をマルバーン社製ZETASIZER Nano series Nano-ZSを用いて測定した。得られた結果を表1に示す。表1には、個数分布のメインピークを記載した。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~5で得られたナノ機能性粒子は、粒子径がナノサイズオーダーのナノ粒子であることが認められた。
4.ヒアルロン酸及びショ糖オレイン酸エステル量の定量
 実施例6で得られた粉末を水に溶解させて試料を作製した。また、実施例7で得られた粉末をリン酸緩衝液(pH=7.4):アセトニトリル:メタノール 2:1:1の混合溶液に溶解させて試料を作製した。得られた試料を以下の条件の蛍光分析又はUV測定にかけ、分析した。
 <蛍光分析>
  装置:Perkin Elmer  instrument. LS55 Luminescence Specrometer、
  測定温度:20℃、励起光:490nm、検出蛍光波長500nmから600nm、
  励起および蛍光のスリット:10nm、走引速度:150nm/min、
  セル:スタルナ石英セル Q/10/M-dode
 <UV測定>
  装置:JASCO V-670 Spectrophotometer、
  測定温度:25℃、
  セル:スタルナ石英セル Q/10/M-dode
 その結果、実施例6の複合粉末の蛍光強度から、当該粉末中の蛍光標識したヒアルロン酸を定量したところ、2.4wt%であった。
 また、実施例7の複合粉末の蛍光強度から、当該粉末中の蛍光標識したヒアルロン酸を定量したところ、2.50wt%であった。また、実施例7の粉末のUV測定から、当該粉末中のショ糖オレイン酸エステル量は8.7wt%であった。
5.フラーレン粒子の粒子径測定、及びその粉末の顕微鏡観察
 実施例8及び9で得られた粉末を水に10mg/mLとなるように溶解させて試料を作製した。その試料中のフラーレンの粒子径を前述と同様にDLS測定に付した。その結果得られた個数別粒度分布を図1及び2に示す。実施例8及び9のナノ機能性粒子の粒子径は60nm程度であることが分かった。
 また、実施例8の複合粉末の走査型電子顕微鏡(SEM)観察を行ったところ、マイクロサイズの粒子が観察された(図3)。また、実施例8の粉末の10mg/mL水溶液をTEMグリッド上で乾燥させ、透過型電子顕微鏡(TEM)観察も行ったところ、60nm程度の粒子が観察された(図4)。
 これらの結果から、実施例8及び9で得られたナノ機能性粒子は、粒子径がナノサイズオーダーのナノ粒子であることが認められた。
6.水に対する分散性の比較
 実施例1、2、及び5の複合粉末をインドメタシン濃度が1mg/mLになるように水に溶解させて、懸濁液を作製した。得られた懸濁液を1晩放置した後、その外観を撮影した。撮影した写真を図5に示す。
 図5から、界面活性剤を使用していない実施例1の粒子と比較して、界面活性剤を使用した実施例2及び5の粒子は、水中でより良好な分散安定性が認められた。
7.人工皮膚を用いた粒子浸透試験
 コスメディ製薬社製TransView C12付属のセルに、人工皮膚のStrat-M(登録商標)メンブレン(メルクミリポワ社)を取り付けた。セルリザーバー液には、リン酸緩衝液(和光社)を用いた。実施例1~4、6、及び7の粉末を水に溶解させて試料を作製した。このとき、試料中のインドメタシン濃度又は蛍光標識したヒアルロン酸濃度が1mg/mLとなるように、各粉末量を調整した。また、比較例1及び2として、市販のインドメタシン粉末及び蛍光標識したヒアルロン酸をそれぞれ1mg/mLとなるように水に分散させて試料を作製した。これらの試料2mLをStrat-M(登録商標)メンブレン上に塗布した。塗布後24時間経過した所で、試料を取り除き、次いで水2mLでStrat-M(登録商標)メンブレンを洗浄した。洗浄した後、Strat-M(登録商標)メンブレンを細かく裁断し、実施例1~4についてはエタノール2mLにてStrat-M(登録商標)メンブレン中のインドメタシンを抽出し、実施例6及び7についてはリン酸緩衝液(pH=7.4):アセトニトリル:メタノール 2:1:1の混合溶液にてStrat-M(登録商標)メンブレン中の蛍光標識したヒアルロン酸を抽出して、その含量を測定した。各試料はN=3で測定した。得られた結果を図6及び7に示す。
 図6及び7から、実施例1~4、6、及び7のナノ機能性粒子では、活性物質のStrat-M(登録商標)メンブレン中の含量が増加していることが認められた。特に、界面活性剤を使用していない実施例1と比較して、界面活性剤を使用した実施例2ではそれほど含量の増加は認められなかったものの、界面活性剤を使用した実施例3及び4では含量の増加が認められた。人工皮膚であるStrat-M(登録商標)メンブレンは、実際の皮膚と高い相関性あり、図6及び7の結果は、本発明のナノ機能性粒子は、活性物質の皮膚浸透性が優れ、良好な経皮吸収性を有していることを示すものといえる。
8.ブタ皮膚を用いた蛍光標識したヒアルロン酸の浸透試験
 フランツセル(キーストンサイエンティフィック社製)にユカタンマイクロピッグの皮膚を取り付けた。セルリザーバー液には、リン酸緩衝液(和光社)を用いた。実施例7の粉末を水に溶解させて試料を作製した。このとき、試料中の蛍光標識したヒアルロン酸濃度が1mg/mLとなるように、各粉末量を調整した。また、比較例3として、蛍光標識したヒアルロン酸を1mg/mLとなるように水に分散させた試料、比較例4として、実施例7に含まれる組成物を単純に混合した試料(蛍光標識したヒアルロン酸1mg/mL、ショ糖オレイン酸エステル3.5mg/mL、マンニトール35.5mg/mLの混合溶液)を、それぞれ作製した。
 これらの試料200μLをユカタンマイクロピッグの皮膚に塗布した。塗布後24時間経過した所で、試料を取り除き、次いで水30mLでユカタンマイクロピッグの皮膚を2回浸漬洗浄した。洗浄した後、ユカタンマイクロピッグの皮膚を細かく裁断し、リン酸緩衝液(pH=7.4):アセトニトリル:メタノール 2:1:1の混合溶液にてユカタンマイクロピッグの皮膚の蛍光標識したヒアルロン酸を抽出して、その含量を蛍光強度より測定した。各試料はN=3で測定した。得られた結果を図8に示す。
 図8から、実施例7のナノ機能性粒子では活性物質のブタ皮膚中の含量が増加しており、実際の皮膚に対する浸透性にも優れていることが確認することができた。
 また、実施例7の方が、単に組成が同一であるだけで、粒子となっていない比較例4よりも高い含量を示したことから、経皮吸収性の増加には粒子化が係わっていることが伺える。
9.マイクロ粒子の表面に存在するナノ機能性粒子の確認
 実施例8のマイクロ粒子(複合粉末)をボンドエポクリヤー(登録商標)(コニシ株式会社製)で固定化することで試験片を作製した。リトラトームREM-710(YAMATO)を用いて、試験片の断面を切り出し、走査型電子顕微鏡観察を実施した(図9及び10)。リトラトームにて処理した際に、処理の衝撃にて最表層のフラーレンおよび界面活性剤からなる粒子以外のマイクロ粒子部分は剥離し、固定化されたフラーレンおよび界面活性剤からなる粒子が残ったため、その結果として図9の様なマイクロ粒子が存在していた、ボンドエポクリヤー(エポキシ樹脂)中の一部分が凹んだ観察結果が得られた。ボンドエポクリヤーの、マイクロ粒子が存在していた部分(凹みの表面)を観察すると、ナノサイズのフラーレンおよび界面活性剤からなる粒子(ナノ機能性粒子)の存在が確認できた(図10、白線の丸で囲まれた部分A~C)。結果として、粒子径が約4μmのマイクロ粒子の最表層に、ナノサイズのフラーレンおよび界面活性剤からなる粒子が分散していることを確認した。本観察条件下では、最表面のフラーレンおよび界面活性剤からなるナノ機能性粒子は分散状態により数珠状につながっている粒子も観察されるが(図10のB)、その凝集を形成している一次粒子は30nm~120nmであった。このフラーレンおよび界面活性剤からなる粒子径は、ナノ機能性粒子粉末を水に溶かした際のDLS測定(図1)で得られる粒度分布(30nm~120nm)と一致する事から、ナノ機能性粒子中に存在するフラーレンおよび界面活性剤からなる粒子と考えられる。
 本発明のナノ機能性粒子は、良好な経皮吸収性を有し、活性物質の皮膚に対する浸透性を向上させ、活性物質の皮膚中の含量を増大させるので、皮膚外用剤、例えば、皮膚外用療法に使用される医薬品や化粧品などに利用することができる。また、本発明のナノ機能性粒子、特に界面活性剤を含有する本発明のナノ機能性粒子は、水などの溶媒中で優れた分散安定性を示すので、水性皮膚外用剤に利用することができる。

Claims (16)

  1.  良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子。
  2.  マイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、活性物質を含むナノ機能性粒子。
  3.  前記活性物質が化粧品用成分、医薬品成分、及びフラーレンから選択される少なくとも一つを含む、請求項1又は2記載のナノ機能性粒子。
  4.  さらに界面活性剤を含む、請求項1~3のいずれか1項記載のナノ機能性粒子。
  5.  前記界面活性剤がショ糖脂肪酸エステル類若しくはリン脂質又はそれらの組み合わせである、請求項4記載のナノ機能性粒子。
  6.  請求項1~5のいずれか1項記載のナノ機能性粒子を含有する皮膚外用剤。
  7.  化粧品である請求項6記載の皮膚外用剤。
  8.  医薬品である請求項6記載の皮膚外用剤。
  9.  請求項1~5のいずれか1項記載のナノ機能性粒子が溶媒中に分散している分散液。
  10.  化粧品である請求項9記載の分散液。
  11.  医薬品である請求項9記載の分散液。
  12.  良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することを含む、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子表面に存在する、前記活性物質を含むナノ機能性粒子の製造方法。
  13.  良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法。
  14.  請求項2~5のいずれか一項記載のナノ機能性粒子を使用して、活性物質の経皮吸収性を高める方法。
  15.  良水溶性溶質を水に溶解した液体と、活性物質を溶媒に溶解した液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記活性物質を含むナノ機能性粒子を使用して、活性物質の溶媒分散性を高める方法。
  16.  請求項2~5のいずれか一項記載のナノ機能性粒子を使用して、活性物質の溶媒分散性を高める方法。
PCT/JP2016/062036 2015-04-14 2016-04-14 ナノ機能性粒子 WO2016167327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017512582A JP6801646B2 (ja) 2015-04-14 2016-04-14 ナノ機能性粒子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015082853 2015-04-14
JP2015-082853 2015-04-14
JP2015239684 2015-12-08
JP2015-239684 2015-12-08

Publications (1)

Publication Number Publication Date
WO2016167327A1 true WO2016167327A1 (ja) 2016-10-20

Family

ID=57126729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062036 WO2016167327A1 (ja) 2015-04-14 2016-04-14 ナノ機能性粒子

Country Status (3)

Country Link
JP (1) JP6801646B2 (ja)
TW (1) TW201709909A (ja)
WO (1) WO2016167327A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212264A1 (ja) * 2017-05-19 2018-11-22 日産化学株式会社 親水性物質を含むナノ機能性粒子及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107411983B (zh) * 2017-09-12 2020-10-20 北京福纳康生物技术有限公司 一种水溶性富勒烯外用组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308728A (ja) * 2001-04-13 2002-10-23 Pacific Corp 高分子ナノ粒子を用いた経皮吸収剤及びこれを含有する外用剤
JP2004292398A (ja) * 2003-03-27 2004-10-21 Fujisaki Denki Kk 複合微細粉末の製造方法と製造装置
JP2006524238A (ja) * 2003-03-17 2006-10-26 バクスター・インターナショナル・インコーポレイテッド 小粒子を調製するための方法
JP2009113169A (ja) * 2007-11-08 2009-05-28 Ohkawara Kakohki Co Ltd マイクロ粒子中に分散したナノ粒子の製造方法及びナノ粒子製造用ノズル
JP2010116358A (ja) * 2008-11-13 2010-05-27 Mitsubishi Corp C60含有ナノ粒子の分散液とその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025583A1 (ja) * 2004-08-31 2006-03-09 Aspion Co., Ltd. S/o型外用剤
AU2006316501A1 (en) * 2005-11-22 2007-05-31 Nestec S.A. Easily dispersible lipidic phase
JP4349639B2 (ja) * 2008-11-14 2009-10-21 宮崎県 S/oサスペンション及びその製造方法
JP2016117681A (ja) * 2014-12-19 2016-06-30 積水化学工業株式会社 コアシェル構造体を含有する製剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308728A (ja) * 2001-04-13 2002-10-23 Pacific Corp 高分子ナノ粒子を用いた経皮吸収剤及びこれを含有する外用剤
JP2006524238A (ja) * 2003-03-17 2006-10-26 バクスター・インターナショナル・インコーポレイテッド 小粒子を調製するための方法
JP2004292398A (ja) * 2003-03-27 2004-10-21 Fujisaki Denki Kk 複合微細粉末の製造方法と製造装置
JP2009113169A (ja) * 2007-11-08 2009-05-28 Ohkawara Kakohki Co Ltd マイクロ粒子中に分散したナノ粒子の製造方法及びナノ粒子製造用ノズル
JP2010116358A (ja) * 2008-11-13 2010-05-27 Mitsubishi Corp C60含有ナノ粒子の分散液とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMI OMATA ET AL.: "Hyaluronic acid Nano Ryushi no Chosei to Hifu Shintosei", JAPANESE SOCIETY FOR BIOMATERIALS SYMPOSIUM 2012 YOKOSHU, 26 November 2012 (2012-11-26), pages PI33 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212264A1 (ja) * 2017-05-19 2018-11-22 日産化学株式会社 親水性物質を含むナノ機能性粒子及びその製造方法

Also Published As

Publication number Publication date
TW201709909A (zh) 2017-03-16
JPWO2016167327A1 (ja) 2018-02-08
JP6801646B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
JP7075377B2 (ja) 脂質及び界面活性剤の高分子集合体を含む組成物
JP5118019B2 (ja) カゼインナノ粒子
Recharla et al. Novel technologies to enhance solubility of food-derived bioactive compounds: A review
KR101779910B1 (ko) 플라보노이드를 함유하는 조성물을 제조하는 방법 및 그의 사용 방법
Ruckmani et al. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma
JP6026785B2 (ja) 水性組成物
JP2007224012A (ja) 酵素架橋したタンパク質ナノ粒子
WO2009092291A1 (zh) 一种给药系统及其制备方法和应用
JP2010132609A (ja) カゼインナノ粒子
CN103877021B (zh) 水飞蓟宾纳米晶自稳定Pickering乳液及其制备方法
JP4228230B2 (ja) リポソーム懸濁液の製造方法及びリポソームを用いた用途
JP2014156456A (ja) 皮膚外用剤
Deng et al. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion
WO2016167327A1 (ja) ナノ機能性粒子
Nguyen et al. Solid lipid nanoparticles
Goel et al. Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems
JP5989139B2 (ja) 油性組成物、並びにそれを含むエマルション組成物及び皮膚外用組成物
JP5649074B2 (ja) ナノサイズの一次乳化物を利用する二段階乳化によるリポソーム製造方法
Sinha Emerging potential of nanosuspension-enabled drug delivery: An overview
KR101827611B1 (ko) 피코시아닌을 포함하는 유중수 마이크로 또는 나노에멀젼
WO2011062255A1 (ja) 混合有機溶媒を油相として用いる二段階乳化によるリポソームの製造方法
Aung et al. Impact of Polymers as Precipitation Inhibitors on Physicochemical Properties of Spray-Dried Astaxanthin-Loaded Self-Microemulsifying Delivery Systems
Kaushik et al. Nanostructured Lipids as a Bioactive Compound Carrier
WO2018212264A1 (ja) 親水性物質を含むナノ機能性粒子及びその製造方法
Borah Development and Evaluation of Paclitaxel Proliposome loaded Dry Powder Inhaler for Lung Cancer in Mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780118

Country of ref document: EP

Kind code of ref document: A1