WO2016167299A1 - リニア振動モータ - Google Patents

リニア振動モータ Download PDF

Info

Publication number
WO2016167299A1
WO2016167299A1 PCT/JP2016/061947 JP2016061947W WO2016167299A1 WO 2016167299 A1 WO2016167299 A1 WO 2016167299A1 JP 2016061947 W JP2016061947 W JP 2016061947W WO 2016167299 A1 WO2016167299 A1 WO 2016167299A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
frame
vibration motor
linear vibration
guide shaft
Prior art date
Application number
PCT/JP2016/061947
Other languages
English (en)
French (fr)
Inventor
慎 小田島
片田 好紀
昇 生川
栞 石井
Original Assignee
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015085460A external-priority patent/JP6378127B2/ja
Priority claimed from JP2015090929A external-priority patent/JP6479557B2/ja
Priority claimed from JP2015132762A external-priority patent/JP2017017875A/ja
Application filed by 日本電産コパル株式会社 filed Critical 日本電産コパル株式会社
Priority to CN201680022182.XA priority Critical patent/CN107534376B/zh
Publication of WO2016167299A1 publication Critical patent/WO2016167299A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems

Definitions

  • the present invention relates to a linear vibration motor that generates reciprocal vibration by an input signal.
  • Vibration motors are widely used as devices that are built into portable electronic devices and transmit signal generations such as incoming calls and alarms to vibration carriers by vibrations. , Has become an indispensable device.
  • a vibration motor has attracted attention as a device that realizes haptics (skin sensation feedback) in a human interface such as a touch panel.
  • a linear vibration motor that can generate a relatively large vibration by linear reciprocating vibration of the mover is known.
  • a conventional linear vibration motor is provided with a weight and a magnet on the mover side, and a Lorentz force acting on the magnet by energizing a coil provided on the stator side serves as a driving force, which is elastically supported along the vibration direction.
  • the child is reciprocally vibrated (see Patent Document 1 below).
  • vibration motors equipped with them are required to be further reduced in size and thickness.
  • an electronic device equipped with a flat panel display unit such as a smartphone
  • the space in the device in the thickness direction orthogonal to the display surface is limited. is there.
  • the magnet and the weight are The mover provided is made flat, and the thickness is reduced while securing the volume of the magnet and the mass of the weight.
  • the flat mover has a shape in which the side part easily collides with the surrounding frame body due to the rotation. Occurring and operating noise occurs, and there is a problem that stable operation cannot be obtained due to rattling due to rotation.
  • the present invention is an example of a problem to deal with such a problem.
  • it is possible to reduce the thickness of the linear vibration motor, and even when the mover is made flat, it prevents the mover from rotating around the vibration axis and generating abnormal noise.
  • the linear vibration motor of the present invention has the following configuration.
  • a mover including a magnetic pole part and a weight part, a frame body that supports the mover in a freely reciprocating manner, a coil that is fixed to the frame body and applies a driving force to the magnetic pole part, and a vibration of the mover
  • a guide shaft that regulates in a single axial direction, and an elastic member that is provided between the frame and the movable element and elastically deforms by reciprocating vibration of the movable element, and the movable element is an axis of the guide shaft.
  • the width in the direction intersecting the direction is a rectangular shape that is equal to or greater than the thickness in the direction intersecting the axial direction of the guide shaft, and at a position away from the guide shaft in the width direction of the mover,
  • a linear vibration motor characterized in that a contact portion where the mover and the frame body are in partial contact is provided, and at the contact portion, the mover is biased toward the frame body by the magnetic force of the magnetic pole portion.
  • a movable element a frame that supports the movable element so as to freely reciprocate, a drive member that is fixed to the frame and drives the movable element, and is provided between the frame and the movable element,
  • a linear vibration motor comprising: an elastic member that is elastically deformed by reciprocating vibration of the mover; and a pressurizing member that applies a pressure to the mover in a direction intersecting a vibration direction of the mover.
  • a mover including a magnet part and a weight part, a frame that supports the mover slidably along a uniaxial direction, and a coil that is fixed to the frame and drives the magnet part along the uniaxial direction.
  • An elastic member that imparts an elastic force repelling the driving force applied to the magnet portion to the mover, and a guide shaft that is arranged coaxially with the center of gravity axis of the mover and guides the vibration of the mover.
  • the frame includes a magnetic force attracting part for attracting the movable element in one direction around the guide shaft, and a sliding support part for slidingly supporting a part of the movable element. Vibration motor.
  • the mover vibrates along the guide shaft.
  • the mover is urged by the magnetic force to the frame body side and always contacts the frame body side at the contact portion. Vibrates in a state. Accordingly, the mover can be prevented from rotating around the vibration axis, and stable vibration along the guide shaft and the contact portion can be obtained.
  • Such a linear vibration motor can prevent the mover from colliding with the frame body and generating abnormal noise even when the mover is rectangular, and it is not necessary to use two guide shafts. Stable vibration can be obtained without using high-precision parts. In addition, since high-precision assembly is not required, high productivity can be obtained.
  • the linear vibration motor of the present invention includes a pressurizing member that applies a pressure to the mover in a direction crossing the vibration direction, the mover is made flat to cope with a reduction in thickness.
  • the mover can be prevented from rotating around the vibration axis and generating abnormal noise.
  • stable vibration can be obtained without using high-precision parts, and high productivity can be obtained.
  • the linear vibration motor of the present invention can be thinned by the shape of the mover, and even when the mover has a flat cross-sectional shape, a part of the mover vibrates while sliding on the sliding support portion.
  • the moving element from rotating around the vibration axis to generate an operating noise (abnormal noise), and to obtain a stable vibration without rattling.
  • the parallel adjustment of the shaft can be made unnecessary by the single shaft, the high assembly accuracy can be eliminated and the productivity can be improved.
  • a uniaxial guide shaft it is possible to achieve compactness in the thickness direction and the width direction.
  • FIG. 1 is an explanatory diagram showing an overall configuration of a linear vibration motor according to a first embodiment of the present invention (FIG. It is explanatory drawing (plan view of the state except a cover frame) which shows the internal structure of the linear vibration motor (example which provided one rolling element) which concerns on 1st Embodiment of this invention. It is explanatory drawing (plan view of the state except a cover frame) which shows the internal structure of the linear vibration motor (example which provided the some rolling element) which concerns on 1st Embodiment of this invention.
  • FIG. 6 is an explanatory diagram ((a) is a plan view and (b) is an AA cross-sectional view) illustrating an overall configuration of a linear vibration motor according to a second embodiment of the present invention.
  • It is explanatory drawing (plan view of the state except a cover frame) which shows the internal structure of the linear vibration motor which concerns on 2nd Embodiment of this invention.
  • It is explanatory drawing ((a) is a top view, (b) is AA sectional drawing) which shows the whole structure of the linear vibration motor which concerns on 3rd Embodiment of this invention.
  • It is explanatory drawing (plan view of the state except a cover frame) which shows the internal structure of the linear vibration motor which concerns on 3rd Embodiment of this invention.
  • FIG. 9 is an explanatory diagram ((a) is a plan view and (b) is an AA cross-sectional view) showing an overall configuration of a linear vibration motor according to a fourth embodiment of the present invention. It is explanatory drawing (plan view of the state except a cover frame) which shows the internal structure of the linear vibration motor which concerns on 4th Embodiment of this invention. It is a disassembled perspective view of the linear vibration motor which concerns on embodiment of this invention.
  • FIG. 2 is an assembly state diagram ((a) is a plan view and (b) is a cross-sectional view taken along line AA in (a)) of the linear vibration motor according to the embodiment of the present invention. It is a perspective view which shows an example of a pressurizing member.
  • the X direction indicates the vibration direction of the mover
  • the Y direction indicates the width direction of the mover perpendicular to the X direction
  • the Z direction indicates the thickness direction of the mover perpendicular to the X direction.
  • the linear vibration motor 1 includes a movable element 10 including a magnetic pole part 2 and a weight part 3 as a common part in the following embodiments, a frame body 4 that supports the movable element 10 so as to freely reciprocate, and a frame body 4. Is provided between the frame 4 and the movable element 10. The movable element is provided between the frame 5 and the movable element 10. The coil 5 is fixed to the magnetic pole part 2 and applies a driving force to the magnetic pole part 2. And an elastic member 8 that is elastically deformed by 10 reciprocating vibrations.
  • the mover 10 includes a movable frame 11 that also serves as the weight portion 3, and a pair of magnets 2 ⁇ / b> A and 2 ⁇ / b> B are fixed to the movable frame 11.
  • the mover 10 has a rectangular shape whose width in the Y direction in the figure is greater than or equal to the thickness in the X direction in the figure. Specifically, it has a flat shape in which the width in the Y direction in the figure is larger than the thickness in the Z direction in the figure.
  • the magnetic pole portion 2 includes a pair of magnets 2A, 2B and a back yoke 2S, and the pair of magnets 2A, 2B are magnetized in opposite directions along the Z direction (thickness direction of the mover 10).
  • the rear surface is connected to the rear yoke 2S.
  • the frame body 4 includes a case frame 40 in which the mover 10 is accommodated and a lid frame 41 that covers the case frame 40. Both ends of one guide shaft 6 are supported in the case frame 40, and the mover 10 has an insertion portion 10 ⁇ / b> A through which the guide shaft 6 is inserted and a bearing 13. It is slidably supported along.
  • the coil 5 is fixed to the cover frame 41 of the frame body 4 via a flexible substrate 50 on the surface facing the case frame 40.
  • the coil 5 is wound along the support surface 4A of the cover frame 41 (the surface defined by the axial direction of the guide shaft 6 and the width direction of the mover 10), and is a cover made of a magnetic material along the support surface 4A. It is fixed to the frame 41.
  • the linear vibration motor 1 is provided with a contact portion 20 where the mover 10 and the frame 4 are in partial contact at a position away from the guide shaft 6 in the width direction (Y direction in the drawing) of the mover 10.
  • the mover 10 is biased toward the lid frame 41 (frame body 4), which is a magnetic body, by the magnetic force of the magnetic pole part 2.
  • the partial contact of the contact portion 20 is preferably a point contact with a small contact resistance.
  • the contact portion 20 is configured by a rolling surface 7 that is rotatably held by the support surface 4 ⁇ / b> A of the lid frame 41 and the mover 10.
  • the support surface 4A is provided on the lid frame 41 (frame body 4) side and the rolling element 7 is held on the movable element 10 side.
  • the support surface 4A is provided on the movable element 10 side and the lid frame is provided.
  • the rolling element 7 may be held on the 41 (frame 4) side.
  • the contact portion 20 is not limited to this, and may be a convex portion provided on the movable element 10 side or the frame body 4 side. Can be formed.
  • the mover 10 includes a rolling element holding portion 12.
  • the rolling element holding portion 12 includes a groove 12A along the guide shaft 6 (parallel to the guide shaft 6), and a rolling element (bearing) 7 is held in the groove 12A.
  • the rolling element 7 is rotatably held by the rolling element holding part 12 on the movable element 10 side, and is arranged between the support surface 4 ⁇ / b> A of the frame body 4 (lid frame 41) and the movable element 10.
  • a sliding plate (metal plate) 12B on which the rolling element 7 slides is provided as necessary.
  • the elastic member 8 disposed between the mover 10 and the frame 4 is a coil spring in the example of FIGS. 1 to 3, and a pair of coil springs 8A and 8B are arranged coaxially with the guide shaft 6, and a pair of coil springs. 8C and 8D are arranged between the movable frame 11 and the frame body 4 (case frame 40).
  • Such a linear vibration motor 1 supplies the coil 5 with a drive current having a resonance frequency determined by the weight of the mover 10 and the spring constant of the elastic member 8, so that the mover 10 moves along the guide shaft 6 and the groove 12A. Reciprocates in a single axis direction.
  • the mover 10 is urged toward the support surface 4A by a magnetic force (magnetic attraction force) acting between the magnetic pole part 2 (magnets 2A and 2B) and the lid frame 41 that is a magnetic body, so that the guide shaft 6 is one, but always vibrates along the support surface 4A on the lid frame 41.
  • the magnetic pole portion 2 provided on the mover 10 that vibrates slidably along the guide shaft 6 is maintained at a constant distance from the coil 5 by the rolling elements 7, so that stable reciprocating vibration is obtained. be able to.
  • the guide shaft 6 is disposed at a position shifted from the center of gravity of the mover 10 to one side, and the contact portion 20 is disposed at a position shifted from the center of gravity to the other side. Yes. Thereby, rotation around the center of gravity of the mover 10 is suppressed by the guide shaft 6 and the contact portion 20, and stable planar reciprocating vibration can be realized.
  • FIG. 2 uses one rolling element 7 in the contact portion 20, but a plurality of rolling elements 7 may be arranged as shown in FIG.
  • a plurality of rolling elements 7 may be arranged as shown in FIG.
  • a linear vibration motor 1A shown in FIGS. 4 and 5 is a modification of the linear vibration motor 1 described above.
  • the frame body 4 is elongated in the X direction (vibration direction), and the mover 10 is flattened with a width in the Y direction larger than the thickness in the Z direction.
  • the guide shaft 6 has one end fixed to the end of the mover 10 and is disposed so as to protrude in opposite directions from the both ends of the mover 10.
  • the frame 4 is provided with a bearing 13 that slidably supports the guide shaft 6, and coil springs 8 ⁇ / b> A and 8 ⁇ / b> B that are arranged coaxially with the guide shaft 6 are arranged between the movable frame 11 and the bearing 13. ing.
  • the magnets 2A and 2B can be arranged in the entire width direction (Y direction) of the mover 10, and the narrow width Even when the movable element 10 is used, a sufficient driving force can be obtained.
  • the linear vibration motor 1B shown in FIGS. 6 and 7 is another modification of the linear vibration motor 1 described above.
  • the linear vibration motor 1B includes a pair of magnets 2C and 2D in which the magnetic pole portion 2 is magnetized in the opposite directions along the guide shaft 6, and a spacer yoke 2P disposed therebetween.
  • the coil 5 is wound around the spacer yoke 2P and is fixed to the frame 4 around it.
  • the cover frame 41 is provided with a counter yoke 43 at a position facing the magnetic pole part 2 of the mover 10.
  • the opposing yoke 43 is disposed between the guide shaft 6 and the rolling element 7, but is disposed closer to the rolling element 7.
  • the mover 10 of the linear vibration motor 1B is urged toward the support surface 4A by the magnetic force (magnetic attraction force) acting between the magnetic pole portion 2 (magnets 2C, 2D) and the opposing yoke 43, so that the guide shaft 6 Is one, but always vibrates along the support surface 4A on the lid frame 41, and avoids the problem that the mover 10 collides with the frame 4 or the coil 5 to generate abnormal noise. Can do.
  • the magnetic pole portion 2 in the coil 5 vibrates without contacting the inner surface of the coil 5 by appropriately setting the support position of the end portion of the guide shaft 6 and the size of the rolling element 7.
  • the frame 4 is elongated in the X direction (vibration direction), and two rolling elements 7 are provided on the left and right sides of the magnetic pole part 2.
  • the mover 10 of the linear vibration motors 1 to 1C described above is slidably supported along the uniaxial guide shaft 6, it has a degree of freedom to rotate around the guide shaft 6. Since the magnetic force of the magnetic pole portion 2 included in the mover 10 is biased toward the support surface 4A side of the frame body 4, the mover 10 is prevented from rotating around the guide shaft 6 and the mover 10 is uniaxially moved. It can be reciprocated along. At this time, since the mover 10 is biased toward the support surface 4A via the rolling element 7 at a position away from the guide shaft 6, the support surface 4A has low friction utilizing the rolling friction of the rolling element 7. Stable vibration on top.
  • the linear vibration motor 1D includes a movable element 102, a frame 103, a driving member 104, an elastic member 105, and a pressurizing member 106.
  • the X direction indicates the vibration direction of the mover 102
  • the Y direction indicates the width direction that intersects the vibration direction of the mover 102
  • the Z direction indicates the thickness direction that intersects the vibration direction of the mover 102.
  • the mover 102 includes a magnetic pole member 120 having a magnet and a yoke as necessary, and a weight 121.
  • the mover 102 is supported by the frame 103 so as to freely reciprocate along the X direction in the figure.
  • the mover 102 is provided with a magnetic pole member 120 having a square cross section extending in the X direction at the center in the X direction, and weights 121 having a square cross section are connected to both ends of the X direction. .
  • the mover 102 has a shape in which both the magnetic pole member 120 and the weight 121 have a width in a direction intersecting the X direction (Y direction shown in the figure) greater than a thickness in a direction intersecting the X direction (Z direction shown).
  • a rectangular shape specifically, a flat shape in which the width in the Y direction is larger than the thickness in the Z direction, and by providing such a shape, the linear vibration motor 1D is thinned.
  • the magnetic pole member 120 for example, a plurality of magnets magnetized along the X direction may be arranged so that the same magnetic poles face each other, and a yoke may be arranged between the magnets.
  • the frame 103 only needs to support the movable element 102 so as to be able to reciprocate freely.
  • the width direction (Y direction) is formed in a rectangular shape with a thickness direction (Z direction) or more, and the bottom surface
  • a case frame 130 including 130A, a pair of side walls 130B, and a pair of front walls 130C, and a lid frame 131 covering the case frame 130 are provided.
  • the lid frame 131 is provided with an input terminal portion 131A for energizing a drive member 104 (coil 140) described later.
  • An elastic member 105 is provided between the mover 102 and the frame body 103 along the X direction.
  • the elastic member 105 is elastically deformed by reciprocating vibration along the X direction of the mover 102.
  • a total of four compression coil springs 150 each having an axis along the X direction are provided. ing.
  • One end of the compression coil spring 150 is held by a spring holding portion 133 provided inside the front wall 130 ⁇ / b> C of the frame body 103, and the other end is held by an end portion of the weight 121 in the movable element 102.
  • a pair of guide shafts 107 extending along the X direction are attached to the movable element 102.
  • a bearing 132 that slidably supports the guide shaft 107 is attached to the bottom surface 130A of the frame body 103 (case frame 130).
  • both ends of the guide shaft are supported by the front wall 130 ⁇ / b> C of the frame body 103 and the movable element 102 is slid along the guide shaft. What moves a needle
  • the driving member 104 is a member that generates a driving force that reciprocally vibrates the movable element 102 along the X direction in the drawing in cooperation with the driven member (the magnetic pole member 120) included in the movable element 102.
  • the movable element 102 includes a coil 140 that is wound around the magnetic pole member 120 and fixed to the frame 103.
  • a coil 140 fixed to the frame 103 is disposed around the yoke of the magnetic pole member 120.
  • the driving member 104 fixed to the frame body 103 and the driven member mounted on the movable element 102 should be appropriately selected so as to cause the movable element 102 to reciprocate in the X direction using a coil and a magnet. Can do.
  • the pressurizing member 106 is a member that applies a pressurizing force in a direction intersecting the vibration direction to the mover 102 that is supported by the frame 103 so as to freely reciprocate.
  • the pressurizing member 106 can be configured by a leaf spring 160 disposed between a surface along the width of the movable element 102 and the frame body 103.
  • the pressurizing member 106 is not limited to this, and can be configured by a torsion coil spring or the like.
  • the leaf spring 160 which is one form of the pressurizing member 106 is a plate-like member arranged along the bottom surface 130 ⁇ / b> A of the frame body 103, and is installed with the plate-like installation portion 161. And a pressurizing part 162 that refracts from the part 161 and rises in a cantilevered manner.
  • a pair of pressurizing portions 162 are provided along the vibration direction (X direction) of the mover 102, and the installation portion 161 is provided in a portion excluding the pressurizing portion 162.
  • the pressurizing portion 162 is a portion that is partially cut out and refracted from a highly elastic plate-like member that forms a leaf spring, and has an arm portion 162A and a pair of arm portions 162A extending in a direction crossing the X direction in the figure.
  • the arm portion 162A is refracted so as to be inclined at a predetermined angle with respect to the installation portion 161 installed along the bottom surface 130A of the frame body 103.
  • the leaf spring 160 serving as the pressurizing member 106 is disposed between the bottom surface 130 ⁇ / b> A of the frame body 103 (case frame 130) and the movable element 102, and the pressurizing portion 162. Holds the weight 121 of the mover 102 elastically.
  • the connecting portion (tip portion) 162B of the pressurizing portion 162 comes into contact with the end portion in the width direction of the weight 121 of the mover 102, and the mover 102 is guided by the guide shaft 107 due to the inclination of the pressurizing portion 162. It is elastically held in a state rotated around a predetermined angle, and a pressure is applied in a direction crossing the vibration direction.
  • the mover 102 includes convex portions that serve as sliding portions 121 ⁇ / b> A at both ends in the width direction of the weight 121.
  • the sliding portion 121A is in contact with the sliding portion 160A on the pressurizing member 106 with a small contact area so that the contact resistance is low.
  • the sliding portion 160A is a flat portion formed along the X direction in the drawing, and the slider 102 can vibrate with a small contact resistance by sliding on the sliding portion 160A.
  • the sliding portions 121A are provided at both ends in the width direction of the weight 121.
  • the present invention is not limited to this, and the sliding portions 121A may be provided at both ends in the thickness direction of the weight 121. In that case, it is good to provide a to-be-slidable part corresponding to it.
  • the movable element 102 of such a linear vibration motor 1D is guided in a state where a pressure is applied in a direction crossing the vibration direction of the movable element 102 (in the illustrated example, around one axis along the guide shaft 107). It reciprocates along the shaft 107. Accordingly, the movable element 102 can vibrate in a state where the rotation around the guide shaft 107 is suppressed by the applied pressure, and even if a force that causes the movable element 102 to rotate during the vibration operation is applied.
  • the movable element 102 can maintain a stable vibration state by the pressurizing force applied by the pressurizing member 106, and the movable element 102 rotates and generates abnormal noise, or is unstable due to the rattling of the movable element 102. Vibration can be prevented from occurring.
  • the X direction in each figure indicates the vibration direction (uniaxial direction), the Y direction indicates the width direction, and the Z direction indicates the thickness (height) direction.
  • the linear vibration motor 1E includes a mover 210 including a magnet part 204 and a weight part 207, a frame body 202 that supports the mover 210 slidably along one axial direction, and a magnet part 204 fixed to the frame body 202.
  • a coil 203 that is driven along a uniaxial direction and an elastic member 206 that applies an elastic force repelling the driving force applied to the magnet unit 204 to the mover 210 are provided.
  • the frame body 202 only needs to have a frame configuration capable of accommodating each part, but in the illustrated example, the frame body 202 includes side walls 202B, 202C, 202D, and 202E that are erected around the rectangular bottom surface 202A. ing. In addition, the frame body 202 includes a cover plate 202Q that covers the contents in the frame body 202.
  • the cover plate 202Q is formed in a rectangular plate shape attached to the upper end surfaces of the side walls 202B to 202E.
  • the frame body 202 can be formed by processing (pressing or the like) a metal plate.
  • the frame body 202 has a thin thickness in which the dimension in the thickness direction (Z direction in the figure) is smaller and the dimension in the vibration direction (X direction in the figure) is larger than the dimension in the width direction (Y direction in the figure). It has a substantially rectangular parallelepiped shape (box shape).
  • a drive unit is configured by a coil 203 fixed to the frame body 202 and a magnet unit 204 which is a part of the mover 210.
  • a Lorentz force (driving force) along one axis direction (X direction in the drawing) is applied to the magnet unit 204 by inputting a vibration generating current from a signal input unit 202A1 provided in the frame body 202 to the coil 203 fixed to the frame body 202. ) Acts.
  • the magnet unit 204 includes a plurality of flat rectangular magnet pieces 204A, 204B, and 204C having a polarity along a uniaxial direction (X direction in the drawing) so that the same poles face each other, and the spacer yokes 204D and 204E are interposed therebetween. It is something that is sandwiched and joined.
  • a reinforcing plate 205 is fixed to the side surface of the magnet unit 204 as necessary, thereby increasing the rigidity of the magnet unit 204.
  • the coil 203 is formed by winding an electric wire along the Y and Z directions around the magnet portion 204 with the magnetic pole direction in the X direction, and one or both of the upper surface and the lower surface, and further if necessary.
  • the side surface is fixed to the inner surface of the frame body 202.
  • the coil 203 may be fixed to the frame body 202 directly, or the coil 203 may be wound around a coil bobbin and the coil bobbin may be fixed to the frame body 202.
  • the mover 210 has a weight portion 207 connected to both end portions in one axial direction (X direction in the drawing) of the magnet portion 204.
  • the weight portion 207 can be made of a metal material having a high specific gravity (for example, tungsten).
  • the weight portion 207 has a height in the Z direction larger than the thickness of the magnet portion 204 and is larger than the width of the magnet portion 204. It has a rectangular cross-sectional shape having a width in the Y direction.
  • the weight portion 207 is connected to the magnet portion 204 via the connecting member 211.
  • a pair of guide shafts 208 are pivotally supported on the frame body 202.
  • the pair of guide shafts 208 are divided and arranged along a uniaxial direction (X direction in the drawing), one end side thereof is fixed to the weight portion 207, and the other end side protrudes in the opposite direction to form a free end.
  • the guide shaft 208 is disposed coaxially with the center of gravity axis of the mover 210 and guides the vibration of the mover 210 along one axis.
  • the guide shaft 208 is divided and arranged, but the guide shaft 208 may be fixed while penetrating through the magnet portion 204 or slidably supported through the magnet portion 204.
  • the weight portion 207 includes a guide shaft support portion 207B for supporting the guide shaft 208.
  • the guide shaft support portion 207B is a portion that is recessed along the uniaxial direction from the end portion 207A of the weight portion 207, and the guide shaft 208 supported at one end side by the guide shaft support portion 207B is on the bottom surface 202A of the frame body 202.
  • the bearing 209 attached via the support portion 202S is supported so as to be slidable along a uniaxial direction (X direction in the drawing).
  • the guide shaft support portion 207B of the weight portion 207 has a width sufficient to accommodate the bearing 209, and the bearing 209 enters the guide shaft support portion 207B to ensure a large amplitude of the mover 210. is doing.
  • the frame body 202 includes a magnetic attraction portion (magnetic plate 212) that magnetically attracts the mover 210 in one direction around the guide shaft 208, and a slide support portion (non-magnetic slide) that slides and supports a part of the mover 210. Plate 213). That is, the frame 202 itself is made of a non-magnetic material, and a magnetic attraction portion is formed by disposing a magnetic plate 212 extending in the X direction in the drawing at the end in the Y direction in the inner surface of the lid plate 202Q.
  • the non-magnetic sliding plate 213 is disposed on the bottom surface (inner surface) 202A of the frame body 202, thereby forming a sliding support portion.
  • the magnetic plate 212 is formed of an iron plate or the like, and is attached at a position away from the center of gravity axis G of the mover 210.
  • the non-magnetic sliding plate 213 uses a non-magnetic and high-strength base material such as titanium or copper, which is coated with a high hardness and high sliding (low friction) surface coating such as chrome plating. Can do.
  • the magnetic plate 212 forms a magnetic attraction portion and the non-magnetic sliding plate 213 forms a sliding support portion.
  • the present invention is not limited thereto, and a magnetic film is partially formed on the inner surface of the lid plate 202Q.
  • a magnetic attraction portion may be formed by attaching a magnetic film, or a low friction / high strength coating may be applied to a part of the bottom plate 202A to form a sliding support portion.
  • the mover 210 has a long side in a cross-sectional shape that intersects in a uniaxial direction (X direction in the drawing). Specifically, the mover 210 has a rectangular cross section having a long side and a short side.
  • the frame body 202 includes a pair of inner surfaces (the inner surface and the bottom surface 202A of the cover plate 202Q) facing each other along the long side thereof, and one side of the inner surface (in the illustrated example, the inner surface side of the cover plate 202Q).
  • a magnetic force attracting part (magnetic plate 212) for attracting the magnet part 204 is provided, and a sliding support part (nonmagnetic sliding plate 213) is provided on the other side (bottom face 202A side) of the inner surface.
  • the connecting member 211 that connects the magnet portion 204 and the weight portion 207 has a shape that protrudes toward the bottom surface 202 ⁇ / b> A with respect to the magnet portion 204 and the weight portion 207.
  • the cross-sectional shape that intersects the uniaxial direction (X direction in the drawing) of the magnet part 204 and the weight part 207 has a long side (and a short side), and the connecting member 211 is a part (
  • the long sides of the magnet portion 204 and the weight portion 207 are the inner surfaces of the frame body 202 (the inner surface and the bottom surface 202A of the cover plate 202Q).
  • the magnet portion 204 and the weight portion 207 are connected so as to be substantially parallel to the head.
  • the elastic member 206 is arranged non-coaxially with the pair of guide shafts 208 along the uniaxial direction, and gives the movable element 210 an elastic force repelling a driving force generated by the coil 203 and the magnet unit 204.
  • a coil spring that extends and contracts along one axis direction (X direction) is used as the elastic member 206, and 202 elastic members 206 on one side are placed between the weight portion 207 and the side walls 202 ⁇ / b> B and 202 ⁇ / b> C of the frame body 202. Intervene.
  • the elastic member 206 is disposed in parallel with the pair of guide shafts 208.
  • One end of the elastic member 206 is locked to a support protrusion 202P provided on the side walls 202B and 202C of the frame 202, and the other end of the elastic member 206 is engaged with a support protrusion provided on the end 207A of the weight portion 207. It has been stopped.
  • the mover 210 is moved around the guide shaft 208 coaxial with the center of gravity axis G by the magnetic attraction between the magnetic plate 212 and the magnet unit 204 disposed at a position away from the center of gravity G of the mover 210.
  • Directional rotational force is applied, and the end of the long side in the cross-sectional shape of the mover 210 is drawn toward the cover plate 202Q side.
  • the mover 210 has, for example, a square shape in cross section perpendicular to the guide shaft 208.
  • the connecting member 211 that connects the magnet portion 204 and the weight portion 207 of the mover 210 includes a contact portion 211A that protrudes downward, the contact portion 211A is caused to rotate by the rotational force around the guide shaft 208. It will contact
  • the mover 210 when the reciprocating vibration along the guide shaft 208 occurs, the mover 210 is urged to rotate in one direction around the guide shaft 208 by the magnetic attraction between the magnetic plate 212 and the magnet unit 204, and a part of the mover 210. That is, the abutting portion 211A slides on the nonmagnetic sliding plate 213 in a constantly abutting state. As a result, the mover 210 can operate stably without rattling, and a linear vibration motor 1E with reduced operation noise (abnormal noise) during vibration can be obtained.
  • the non-magnetic sliding plate 213 on which the abutting portion 211A slides is reduced in sliding wear, so that the life of the linear vibration motor 1E can be extended.
  • the mover 210 rotates around the guide shaft 208, the abutting portion 211A always comes into contact with the nonmagnetic sliding plate 213, and the mover 210 comes into contact with the other part of the frame 202. Since this can be avoided, deformation at the time of impact can be suppressed, and a linear vibration motor 1E having an impact resistant structure can be obtained.
  • the nonmagnetic sliding plate 213 has a surface coating (surface treatment) that is harder than the frame body 202 and has a higher hardness, the impact resistant structure is not affected by the material of the frame body 202. Can be improved.
  • the linear vibration motor 1E that axially supports the mover 210 with a pair of coaxially arranged guide shafts 208 has a magnet as compared with a conventional technique in which a pair of fixed shafts along the vibration direction are provided on the left and right sides of the magnet. Since the space for the shaft arrangement is not required on the left and right of the part 204, the left and right widths can be made compact.
  • the diameter of the elastic member 206 can be reduced regardless of the diameter of the pair of guide shafts 208.
  • the setting of the elastic force when the diameter of the elastic member 206 is reduced can be set as appropriate by selecting the material of the elastic member 206 or arranging a large number of elastic members 206 in parallel. This also makes it possible to reduce the thickness of the linear vibration motor 1E that axially supports the mover 210.
  • FIG. 17 shows another example of the linear vibration motor 1E according to the embodiment of the present invention.
  • one end side of the pair of guide shafts 208 is fixed to the frame body 202 and the other end side is slidably supported on the movable element 210 side, but the other configuration is the same as the above-described example.
  • One end side of the pair of guide shafts 208 is supported by the frame body 202 at two points in the illustrated example. Specifically, the end portion of the guide shaft 208 is fixed to the side walls 202 ⁇ / b> B and 202 ⁇ / b> C of the frame body 202, and is further supported by the support portion 202 ⁇ / b> S away from the end portion of the guide shaft 208.
  • the mover 210 is provided with a hole 207C into which the free end side (the other end side) of the guide shaft 208 is inserted along a uniaxial direction (the X direction in the drawing).
  • a bearing 209 in which the guide shaft 208 is slidable in the X direction is provided in the hole 207C, whereby the other end of the guide shaft 208 is slidably supported by the bearing 209 of the mover 210.
  • the hole 207 ⁇ / b> C provided in the mover 210 is provided in the weight part 207 of the mover 210, and no hole is provided in the magnet part 204 of the mover 210.
  • the weight portion 207 of such a linear vibration motor 1E can be formed in a rectangular parallelepiped shape, and the hole 207B only needs to be formed inside the guide shaft 208 so that the volume of the weight portion 207 is sufficiently increased. Can be bigger. Thereby, it is possible to sufficiently secure the mass of the mover 210 that becomes the inertial force of vibration.
  • the linear vibration motor 1E can make the linear vibration motor thinner by making the thickness dimension of the mover 210 smaller than the width dimension. As described above, even when the mover 210 is flattened, it is possible to prevent the mover 210 from rotating around the guide shaft 208 and generating operating noise (abnormal noise). As a result, stable vibration without rattling can be obtained, and productivity can be improved as compared with the case of providing a biaxial parallel fixed shaft.
  • FIG. 18 shows a portable information terminal 100 as an example of an electronic device equipped with the linear vibration motor 1 (1A to 1E) according to the embodiment of the present invention.
  • the portable information terminal 100 including the linear vibration motor 1 (1A to 1E) that can obtain a stable vibration and can be thinned and compact in the width direction is different at the start and end of operations such as an incoming call and an alarm function in a communication function. It can be transmitted to the user with stable vibration that is less likely to generate sound.
  • the portable information terminal 100 pursuing high portability or design can be obtained by making the linear vibration motor 1 (1A to 1E) thin and compact in the width direction.
  • the linear vibration motor 1 (1A to 1E) has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the space-efficient mobile information terminal 100 can be efficiently installed in the space. Can be equipped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

可動子を扁平形状にした場合にも、可動子が振動軸周りに回転して異音が発生するのを抑止する。リニア振動モータ1は、磁極部2と錘部3を備える可動子10と、可動子10を往復振動自在に支持する枠体4と、枠体4に対して固定され磁極部2に駆動力を付与するコイル5と、可動子10の振動を一軸方向に規制するガイドシャフト6と、可動子10の往復振動によって弾性変形する弾性部材8とを備え、扁平形状の可動子10は、ガイドシャフト6から可動子10の幅方向に離れた位置で、可動子10と枠体4とが部分接触する接触部20が設けられ、接触部20では、可動子10が磁極部2の磁力によって枠体4側に付勢されている。

Description

リニア振動モータ
 本発明は、入力信号によって往復振動を発生するリニア振動モータに関する。
 振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生を振動によって携帯者に伝える装置として広く普及しており、携帯者が身につけて持ち運ぶウエアラブル電子機器においては、不可欠な装置になっている。また、振動モータは、タッチパネルなどのヒューマン・インターフェイスにおけるハプティクス(皮膚感覚フィードバック)を実現する装置として、近年注目されている。
 振動モータは、各種の形態が開発されている中で、可動子の直線的な往復振動によって比較的大きな振動を発生させることができるリニア振動モータが知られている。従来のリニア振動モータは、可動子側に錘とマグネットを設け、固定子側に設けたコイルに通電することでマグネットに作用するローレンツ力が駆動力となり、振動方向に沿って弾性支持される可動子を往復振動させるものである(下記特許文献1参照)。
特開2011-97747号公報
 携帯電子機器の小型化・薄型化に伴い、それに装備される振動モータには一層の小型化・薄型化の要求がなされている。特に、スマートフォンなどのフラットパネル表示部を備える電子機器においては、表示面と直交する厚さ方向の機器内スペースが限られているので、そこに配備される振動モータには薄型化の高い要求がある。
 リニア振動モータの薄型化を実現する際に、マグネット体積を十分に確保して所望の駆動力を得ると共に錘の質量を十分に確保して所望の慣性力を得ようとすると、マグネットと錘を備える可動子を扁平状にして、マグネットの体積と錘の質量を確保しながら薄厚化を図ることになる。この場合、仮に、直線的な振動軸周りに可動子が回転すると、扁平状の可動子は、回転によって側部が周囲の枠体に衝突しやすい形状になっているので、衝突による異音が発生して作動音になり、また、回転によるがたつきで安定した動作が得られない問題が生じる。
 このため、従来技術は、2本の固定シャフトを設けて可動子の振動軸周りの回転を抑え、安定した直線振動を実現している。しかしながら、2本の固定シャフトを設けると、マグネットの両サイドに2本の固定シャフトが配置されるので、リニア振動モータの幅が大きくなる問題が生じる。近年の小型化した電子機器に装備するリニア振動モータとしては、厚さ方向だけで無く幅方向に関してもよりコンパクトなものが求められている。更に、2本のガイドシャフトの平行を確保する必要があり、組み付けに高い精度が求められるので、生産性の向上が困難になる問題があった。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、リニア振動モータの薄型化を可能にすること、可動子を扁平形状にした場合にも、可動子が振動軸周りに回転して異音が発生するのを抑止すること、高精度の部品を用いること無く安定した振動を得ること、がたつきの無い安定した振動を得ること、厚さ及び幅のコンパクト化を可能とすること、高い生産性を得ること、などが本発明の目的である。
 このような目的を達成するために、本発明のリニア振動モータは、以下の構成を具備するものである。
 磁極部と錘部を備える可動子と、前記可動子を往復振動自在に支持する枠体と、前記枠体に対して固定され前記磁極部に駆動力を付与するコイルと、前記可動子の振動を一軸方向に規制するガイドシャフトと、前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材とを備え、前記可動子は、前記ガイドシャフトの軸方向に対して交差する方向の幅が、前記ガイドシャフトの軸方向に対して交差する方向の厚さ以上の方形状であり、前記ガイドシャフトから前記可動子の幅方向に離れた位置で、前記可動子と前記枠体とが部分接触する接触部が設けられ、前記接触部では、前記可動子が前記磁極部の磁力によって前記枠体側に付勢されることを特徴とするリニア振動モータ。
 可動子と、前記可動子を往復振動自在に支持する枠体と、前記枠体に対して固定され前記可動子を駆動する駆動部材と、前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材と、前記可動子に対して、前記可動子の振動方向に交差する方向に与圧を加える与圧部材とを備えることを特徴とするリニア振動モータ。
 マグネット部と錘部を備える可動子と、前記可動子を一軸方向に沿って摺動自在に支持する枠体と、前記枠体に固定され前記マグネット部を前記一軸方向に沿って駆動するコイルと、前記マグネット部に付与される駆動力に反発する弾性力を前記可動子に付与する弾性部材と、前記可動子の重心軸と同軸に配置され、前記可動子の振動を案内するガイドシャフトとを備え、前記枠体は、前記可動子を前記ガイドシャフト回りの一方向に磁力吸引する磁力吸引部と、前記可動子の一部を摺動支持する摺動支持部を備えることを特徴とするリニア振動モータ。
 このような特徴を有する本発明のリニア振動モータは、可動子がガイドシャフトに沿って振動するが、その際、可動子は枠体側に磁力で付勢されて常時接触部で枠体側に接触した状態で振動する。これによって、可動子が振動軸周りに回転するのを抑止することができ、ガイドシャフトと接触部に沿った安定振動を得ることができる。
 このようなリニア振動モータは、可動子を方形状にした場合にも、可動子が枠体に衝突して異音が発生するのを抑止でき、また、ガイドシャフトを2本用いる必要が無いので、高精度の部品を用いること無く安定した振動を得ることができる。また、高精度の組み付けを必要としないので、高い生産性を得ることができる。
 また、本発明のリニア振動モータは、可動子に対して振動方向に交差する方向に与圧を加える与圧部材を備えているので、薄型化に対応するために可動子を扁平状にした場合にも、可動子が振動軸周りに回転して異音を発するのを抑止することができる。また、可動子を2軸で支持する必要が無いので、高精度の部品を用いること無く安定した振動を得ることができ、高い生産性を得ることができる。
 また、本発明のリニア振動モータは、可動子の形状によって薄型化を可能にし、扁平な断面形状の可動子にした場合にも、可動子の一部が摺動支持部を摺動しながら振動するので、可動子が振動軸周りに回転して作動音(異音)が発生するのを抑止することができ、がたつきの無い安定した振動を得ることができる。この際、一軸のガイドシャフトによって軸の平行調整を不要にできるので、高い組み付け精度を排除でき、生産性の向上を図ることができる。また、一軸のガイドシャフトにすることで、厚さ方向と幅方向のコンパクト化を実現することができる。
本発明の第1実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。 本発明の第1実施形態に係るリニア振動モータ(一つの転動体を設けた例)の内部構造を示す説明図(蓋枠を除いた状態の平面図)である。 本発明の第1実施形態に係るリニア振動モータ(複数の転動体を設けた例)の内部構造を示す説明図(蓋枠を除いた状態の平面図)である。 本発明の第2実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。 本発明の第2実施形態に係るリニア振動モータの内部構造を示す説明図(蓋枠を除いた状態の平面図)である。 本発明の第3実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。 本発明の第3実施形態に係るリニア振動モータの内部構造を示す説明図(蓋枠を除いた状態の平面図)である。 本発明の第4実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。 本発明の第4実施形態に係るリニア振動モータの内部構造を示す説明図(蓋枠を除いた状態の平面図)である。 本発明の実施形態に係るリニア振動モータの分解斜視図である。 本発明の実施形態に係るリニア振動モータの組み立て状態図((a)が平面図、(b)が(a)におけるA-A断面図)である。 与圧部材の一例を示す斜視図である。 与圧部材の一例を示す説明図((a)が平面図、(b)が正面図、(c)が側面図)である。 本発明の実施形態に係るリニア振動モータを示した説明図(分解斜視図)である。 本発明の実施形態に係るリニア振動モータを示した説明図(断面図)である。 本発明の実施形態に係るリニア振動モータを示した説明図(断面図)である。 本発明の実施形態に係るリニア振動モータの他の形態例を示した説明図(分解斜視図)である。 本発明の実施形態に係るリニア振動モータを装備した携帯電子機器(携帯情報端末)を示した説明図である。
 以下、図面を参照して本発明の実施形態を説明する。各図において、X方向が可動子の振動方向を示し、Y方向がX方向に垂直な可動子の幅方向を示し、Z方向がX方向に垂直な可動子の厚さ方向を示している。各図における共通部位には同一符号を付して重複説明を省略する。
 図1~図3は、本発明の第1実施形態に係るリニア振動モータ1を示している。リニア振動モータ1は、以下に示す各実施形態における共通の部位として、磁極部2と錘部3を備える可動子10と、可動子10を往復振動自在に支持する枠体4と、枠体4に対して固定され磁極部2に駆動力を付与するコイル5と、可動子10の振動を一軸方向に規制するガイドシャフト6と、枠体4と可動子10との間に設けられ、可動子10の往復振動によって弾性変形する弾性部材8とを備える。
 可動子10は、錘部3を兼ねる可動枠11を備えており、その可動枠11に一対のマグネット2A,2Bが固定されている。可動子10は、図示Y方向の幅が図示X方向の厚さ以上の方形状を有している。具体的には、図示Y方向の幅が図示Z方向の厚さより大きい扁平形状を有している。磁極部2は、一対のマグネット2A,2Bと背面ヨーク2Sを備え、一対のマグネット2A,2Bは、Z方向(可動子10の厚さ方向)に沿って互いに逆向きに着磁されており、その背面にて背面ヨーク2Sに接続されている。
 枠体4は、可動子10が収容されるケース枠40とケース枠40を被う蓋枠41とを備えている。ケース枠40内には、一本のガイドシャフト6の両端が支持され、可動子10は、ガイドシャフト6が挿通する挿通部10Aと軸受13を有し、ケース枠40内で、ガイドシャフト6に沿って摺動自在に支持されている。
 枠体4の蓋枠41には、ケース枠40に向いた面にフレキシブル基板50を介してコイル5が固定されている。コイル5は、蓋枠41の支持面4A(ガイドシャフト6の軸方向と可動子10の幅方向で規定される面)に沿って巻き回れており、支持面4Aに沿った磁性体からなる蓋枠41に固定されている。
 リニア振動モータ1は、ガイドシャフト6から可動子10の幅方向(図示Y方向)に離れた位置で、可動子10と枠体4とが部分接触する接触部20が設けられており、接触部20では、可動子10が磁極部2の磁力によって磁性体である蓋枠41(枠体4)側に付勢されている。接触部20の部分接触は、接触抵抗が小さい点接触であることが好ましい。
 図1に示した例では、接触部20は、蓋枠41の支持面4Aと可動子10に転動自在に保持される転動体7によって構成されている。この例では、支持面4Aを蓋枠41(枠体4)側に設けて、転動体7を可動子10側で保持しているが、可動子10側に支持面4Aを設けて、蓋枠41(枠体4)側で転動体7を保持してもよい。以下の説明では、接触部20として転動体7を設けることを例にして説明するが、接触部20としては、これに限らず、可動子10側又は枠体4側に設けた凸部などで形成することができる。
 図1に示した例では、可動子10は、転動体保持部12を備えている。転動体保持部12は、ガイドシャフト6に沿った(ガイドシャフト6と平行な)溝12Aを備えており、この溝12Aに転動体(ベアリング)7が保持されている。転動体7は、可動子10側の転動体保持部12に転動自在に保持され、枠体4(蓋枠41)の支持面4Aと可動子10との間に配置されている。転動体保持部12内には、必要に応じて、転動体7が摺動する摺動板(金属板)12Bが配備されている。
 可動子10と枠体4との間に配置される弾性部材8は、図1~図3の例はコイルバネであり、一対のコイルバネ8A,8Bがガイドシャフト6と同軸に配備され、一対のコイルバネ8C,8Dが可動枠11と枠体4(ケース枠40)との間に配置されている。
 このようなリニア振動モータ1は、コイル5に、可動子10の重量と弾性部材8のバネ定数で決まる共振周波数の駆動電流を供給することで、可動子10がガイドシャフト6と溝12Aに沿った一軸方向に往復振動する。この際、可動子10は、磁極部2(マグネット2A,2B)と磁性体である蓋枠41との間に働く磁力(磁気吸着力)によって支持面4A側に付勢されるので、ガイドシャフト6は一本であるが、常に蓋枠41上の支持面4Aに沿って振動する。これによって、可動子10が枠体4やコイル5などに衝突して異音を発生する不具合を回避することができる。また、ガイドシャフト6に沿って摺動自在に振動する可動子10に設けた磁極部2は、転動体7によって、コイル5との間隔が一定に保持されているので、安定した往復振動を得ることができる。
 図1~図3に示したリニア振動モータ1は、ガイドシャフト6が可動子10の重心から一方側にシフトした位置に配置され、接触部20が重心から他方側にシフトした位置に配置されている。これによって、可動子10の重心周りの回転が、ガイドシャフト6と接触部20で抑えられることになり、安定した平面往復振動を実現することができる。
 図2に示した例は、接触部20における転動体7を一つにしているが、図3に示すように、転動体7は複数個配置してもよい。転動体7を複数個配置する場合には、図3に示すように、複数の転動体保持部12を可動子10に設けて、その溝12Aを直線的に並べるように配備することが好ましい。
 図4及び図5に示したリニア振動モータ1Aは、前述したリニア振動モータ1の変形例である。このリニア振動モータ1Aは、枠体4をX方向(振動方向)に細長形状にし、且つ、可動子10を、Z方向の厚さに対してY方向の幅を大きくした扁平形状にしている。
 また、リニア振動モータ1Aは、ガイドシャフト6が、可動子10の端部に一端側が固定され、可動子10の両端部から互いに逆向きに突出して配置されている。そして、枠体4には、ガイドシャフト6を摺動自在に支持する軸受13が設けられ、ガイドシャフト6と同軸に配置されるコイルバネ8A,8Bが可動枠11と軸受13との間に配置されている。このようなリニア振動モータ1Aによると、ガイドシャフト6が可動子10を貫通しなくてよいので、可動子10の幅方向(Y方向)全体にマグネット2A,2Bを配備することでき、細幅の可動子10にした場合であっても十分な駆動力を得ることができる。
 図6及び図7に示したリニア振動モータ1Bは、前述したリニア振動モータ1の他の変形例である。このリニア振動モータ1Bは、磁極部2が、ガイドシャフト6に沿って互いに逆向きに着磁された一対のマグネット2C,2Dと、その間に配置されたスペーサヨーク2Pとを備えている。また、コイル5は、スペーサヨーク2Pの周囲に巻き回されて、その周囲の枠体4に固定されている。また、蓋枠41には、可動子10の磁極部2に対向する位置に対向ヨーク43が設けられている。この対向ヨーク43は、ガイドシャフト6と転動体7の間に配置されるが、転動体7寄りに配置されている。
 このリニア振動モータ1Bの可動子10は、磁極部2(マグネット2C,2D)と対向ヨーク43との間に働く磁力(磁気吸着力)によって支持面4A側に付勢されるので、ガイドシャフト6は一本であるが、常に蓋枠41上の支持面4Aに沿って振動することになり、可動子10が枠体4やコイル5などに衝突して異音を発生する不具合を回避することができる。この際、ガイドシャフト6の端部の支持位置と転動体7の大きさを適宜設定することで、コイル5内の磁極部2は、コイル5の内面に接触することなく振動する。
 図8及び図9に示したリニア振動モータ1Cは、前述したリニア振動モータ1Bの変形例である。この例では、枠体4をX方向(振動方向)に細長形状にし、転動体7を磁極部2の左右に2個設けている。
 以上説明したリニア振動モータ1~1Cの可動子10は、一軸のガイドシャフト6に沿って摺動自在に支持されているので、ガイドシャフト6の回りに回転する自由度を有しているが、可動子10が備える磁極部2の磁力によって枠体4の支持面4A側に付勢されているので、可動子10がガイドシャフト6回りに回転するのを抑えて、可動子10を一軸方向に沿って往復振動させることができる。この際、可動子10は、ガイドシャフト6とは離れた位置で転動体7を介して支持面4A側に付勢されているので、転動体7の転がり摩擦を利用した低摩擦で支持面4A上を安定振動する。
 このようなリニア振動モータ1~1Cの組み立ては、従来技術のように2本の軸の平行度を高精度に調整する必要が無いので、比較的簡単な組み付けが可能になる。そのため、高精度の部品を使用しなくても、機械的な雑音の少ない高効率な扁平型リニア振動モータを実現することができる。
 図10及び図11に示すように、本発明の実施形態に係るリニア振動モータ1Dは、可動子102、枠体103、駆動部材104、弾性部材105、与圧部材106を備えている。図において、X方向が可動子102の振動方向、Y方向が可動子102の振動方向に交差する幅方向、Z方向が可動子102の振動方向に交差する厚さ方向を示している。
 可動子102は、マグネットを備え必要に応じてヨークを備えた磁極部材120と、錘121を備えている。可動子102は、図示X方向に沿って往復振動自在に枠体103に支持されている。可動子102は、図示の例では、X方向の中央にX方向に延設された断面方形状の磁極部材120が配置され、そのX方向両端に断面方形状の錘121がそれぞれ接続されている。
 可動子102は、磁極部材120と錘121の両方の形状が、図示X方向に交差する方向(図示Y方向)の幅が、図示X方向に交差する方向(図示Z方向)の厚さ以上の方形状、具体的には、Y方向の幅がZ方向の厚さより大きい扁平形状になっており、このような形状を備えることで、リニア振動モータ1Dの薄型化を実現している。
 磁極部材120としては、例えば、X方向に沿って着磁されたマグネットを互いに同磁極が向かい合うように複数配列し、そのマグネットの配列の間にヨークを配置したものなどで構成することができる。
 枠体103は、可動子102を往復振動自在に支持するものであればよいが、図示の例では、幅方向(Y方向)が厚さ方向(Z方向)以上の方形状に構成され、底面130Aと一対の側壁130Bと一対の正面壁130Cを備えるケース枠130と、ケース枠130を被う蓋枠131を備えている。蓋枠131には、後述する駆動部材104(コイル140)への通電を行うための入力端子部131Aが設けられている。
 X方向に沿った可動子102と枠体103との間には、弾性部材105が設けられている。弾性部材105は、可動子102のX方向に沿った往復振動によって弾性変形するものであり、図示の例では、X方向に沿った軸を有する圧縮コイルバネ150が片側2個ずつ計4個配備されている。圧縮コイルバネ150は、枠体103の正面壁130Cの内側に設けられるバネ保持部133に一端が保持され、他端が可動子102における錘121の端部に保持されている。
 可動子102を往復振動自在に支持する構成としては、各種の構成が実施可能であるが、図示の例では、可動子102に、X方向に沿って延びるガイドシャフト107が一対取り付けられており、このガイドシャフト107を摺動自在に支持する軸受132が、枠体103(ケース枠130)の底面130Aに取り付けられている。これに限らず、ガイドシャフトの両端を枠体103の正面壁130Cで支持して、そのガイドシャフトに沿って可動子102を摺動させる構造や、ガイドシャフトを設けること無く、枠体103の摺動面に沿って可動子を摺動させるものなどであってもよい。
 駆動部材104は、可動子102が備える被駆動部材(磁極部材120)と協働して可動子102を図示X方向に沿って往復振動させる駆動力を発生させる部材であり、図示の例では、可動子102における磁極部材120の周囲に巻き回され、枠体103に対して固定されるコイル140によって構成されている。図示の例では、磁極部材120におけるヨークの周囲に枠体103に固定されたコイル140が配備されている。コイル140に、錘121の重量と弾性部材105の弾性係数で決まる共振周波数の交流駆動信号を通電することで、可動子102を往復振動させることができる。枠体103に固定される駆動部材104と可動子102に装備される被駆動部材は、コイルとマグネットを用いて、可動子102をX方向に往復振動させるように、適宜の構成を選択することができる。
 与圧部材106は、枠体103において往復振動自在に支持された可動子102に対して、振動方向に交差する方向に与圧を加える部材である。与圧部材106は、可動子102の幅に沿った面と枠体103との間に配置された板バネ160によって構成することができる。与圧部材106は、これに限らず、捻りコイルバネなどで構成することもできる。
 図12及び図13に示すように、与圧部材106の一形態である板バネ160は、枠体103の底面130Aに沿って配置される板状部材であり、平板状の設置部161と設置部161から屈折して、片持ち状に傾斜して立ち上がる与圧部162とを備えている。図示の例では、与圧部162が可動子102の振動方向(X方向)に沿って一対設けられ、与圧部162を除いた部分に設置部161が設けられている。
 与圧部162は、板バネを形成する高弾性の板状部材から部分的に切り出されて屈折加工された部分であり、図示X方向に交差する方向に延びるアーム部分162Aと一対のアーム部分162Aの先端を連結する連結部分162Bとを備えており、アーム部分162Aが枠体103の底面130Aに沿って設置される設置部161に対して所定の角度で傾斜するように屈折加工されている。
 与圧部材106となる板バネ160は、図10及び図11(b)に示すように、枠体103(ケース枠130)の底面130Aと可動子102との間に配置され、与圧部162が可動子102の錘121を弾性的に保持している。これにより、与圧部162における連結部分(先端部分)162Bが可動子102の錘121における幅方向端部に当接することになり、可動子102は、与圧部162の傾斜によって、ガイドシャフト107周りに所定角度回転した状態で弾性的に保持されて、振動方向に交差する方向に与圧が加えられた状態になる。
 可動子102は、錘121における幅方向両端部に摺動部121Aとなる凸部を備えている。摺動部121Aは、接触抵抗が低くなるように少ない接触面積で与圧部材106上の被摺動部160Aに接触している。被摺動部160Aは、図示X方向に沿って形成された平坦部分であり、この被摺動部160A上を摺動することで、可動子102は少ない接触抵抗で振動することができる。図示の例では、摺動部121Aを錘121における幅方向両端部に設けているが、これに限らず、摺動部121Aを錘121の厚さ方向両端部に設けても良い。その場合には、それに対応して被摺動部を設けると良い。
 このようなリニア振動モータ1Dの可動子102は、可動子102の振動方向に交差する方向に(図示の例では、ガイドシャフト107に沿った一軸周りに)与圧が加えられた状態で、ガイドシャフト107に沿って往復振動する。これにより、可動子102は、加えられる与圧によって、ガイドシャフト107周りの回転が抑止された状態で振動することができ、振動動作中に可動子102に回転を起こさせる力が加わったとしても、可動子102は与圧部材106が加える与圧によって安定した振動状態を維持することができ、可動子102が回転して異音を発生したり、可動子102のがたつきにより不安定な振動が生じることを抑止できる。
 図14~図16は、本発明の他の実施形態に係るリニア振動モータの全体構成を示している。各図におけるX方向が振動方向(一軸方向)を示しており、Y方向が幅方向、Z方向が厚さ(高さ)方向を示している。
 リニア振動モータ1Eは、マグネット部204と錘部207を備える可動子210と、可動子210を一軸方向に沿って摺動自在に支持する枠体202と、枠体202に固定されマグネット部204を一軸方向に沿って駆動するコイル203と、マグネット部204に付与される駆動力に反発する弾性力を可動子210に付与する弾性部材206とを備えている。
 枠体202は、各部を収容することができる枠構成を有していればよいが、図示の例では、矩形状の底面202Aの周辺に立設される側壁202B,202C,202D,202Eを備えている。また、枠体202は、枠体202内の収容物を覆う蓋板202Qを備えている。蓋板202Qは側壁202B~202Eの上端面に取り付けられる矩形板状に形成される。枠体202は、金属板を加工(プレス加工など)することで形成することができる。図示の例では、枠体202は、幅方向(図示Y方向)の寸法に対して、厚さ方向(図示Z方向)の寸法を小さく、振動方向(図示X方向)の寸法を大きくした薄厚状の略直方体形状(箱形形状)になっている。
 リニア振動モータ1Eは、枠体202に固定されたコイル203と可動子210の一部であるマグネット部204によって駆動部が構成されている。枠体202に固定されたコイル203に、枠体202に設けた信号入力部202A1から振動発生電流を入力することで、マグネット部204に一軸方向(図示X方向)に沿ったローレンツ力(駆動力)が作用する。
 マグネット部204は、一軸方向(図示X方向)に沿った極性を有する偏平矩形状のマグネット片204A,204B,204Cを互いに同極が向き合うように複数配置して、スペーサヨーク204D,204Eを間に挟んで結合したものである。マグネット部204の側面には必要に応じて補強板205が固着されており、これによってマグネット部204の剛性を高めている。
 コイル203は、磁極の向きをX方向に向けたマグネット部204の回りに、Y,Z方向に沿って電線を巻いたものであり、その上面と下面の一方又は両方、更には必要に応じて側面を、枠体202の内面に固定している。コイル203の枠体202への固定は、枠体202に直接固定してもよいし、コイル203をコイルボビンに巻いてコイルボビンを枠体202に固定してもよい。
 可動子210は、図示の例では、錘部207がマグネット部204の一軸方向(図示X方向)両端部に連結されている。錘部207は、比重の高い金属材料(例えば、タングステン)などによって構成することができ、図示の例では、マグネット部204の厚さよりも大きいZ方向高さを有すると共にマグネット部204の幅より大きいY方向の幅を有する矩形断面形状を有している。錘部207は、連結部材211を介してマグネット部204に連結されている。
 枠体202には、一対のガイドシャフト208が軸支されている。一対のガイドシャフト208は、一軸方向(図示X方向)に沿って分割配置されており、その一端側が錘部207に固定され、他端側が互いに逆向きに突出して自由端を形成している。このガイドシャフト208は、可動子210の重心軸と同軸に配置されており、可動子210の振動を一軸方向に沿って案内している。ここでは、ガイドシャフト208を分割配置しているが、ガイドシャフト208がマグネット部204を貫通して固定されたり、マグネット部204を貫通して摺動自在に支持されたものであってもよい。
 錘部207は、ガイドシャフト208を支持するためのガイドシャフト支持部207Bを備えている。ガイドシャフト支持部207Bは、錘部207の端部207Aから一軸方向に沿って凹んだ部分であり、このガイドシャフト支持部207Bに一端側が支持されたガイドシャフト208は、枠体202の底面202Aに支持部202Sを介して取り付けられた軸受209に、一軸方向(図示X方向)に沿って摺動自在に支持されている。この際、錘部207のガイドシャフト支持部207Bは、軸受209を収容するだけの幅を備えており、このガイドシャフト支持部207B内に軸受209が入り込むことで、可動子210の大きな振幅を確保している。
 枠体202は、可動子210をガイドシャフト208回りの一方向に磁力吸引する磁力吸引部(磁性板212)と、可動子210の一部を摺動支持する摺動支持部(非磁性摺動板213)を備えている。すなわち、枠体202自体は、非磁性体で形成されており、蓋板202Qの内面における図示Y方向の端に図示X方向に延びる磁性板212を配置することで磁力吸引部を形成しており、枠体202の底面(内面)202A上に、非磁性摺動板213を配置することで、摺動支持部を形成している。
 磁性板212は、鉄板などで形成され、可動子210の重心軸Gから離れた位置に取り付けられている。また、非磁性摺動板213は、チタン,銅などの非磁性且つ高強度の母材に、クロムメッキなどの高硬度且つ高摺動(低摩擦)の表面被覆を施したものなどを用いることができる。
 図示の例では、磁性板212によって磁力吸引部を形成し、非磁性摺動板213によって摺動支持部を形成しているが、それに限らず、蓋板202Qの内面に部分的に磁性体膜や磁性体フィルムを被着して磁力吸引部を形成してもよいし、底板202Aの一部に低摩擦・高強度被覆を施して摺動支持部にしてもよい。
 図16に示すように、可動子210は、一軸方向(図示X方向)に交差する断面形状が長辺を備えている。具体的には、可動子210は、長辺と短辺を有する長方形の断面を有している。そして、枠体202は、その長辺に沿って対面する一対の内面(蓋板202Qの内面と底面202A)を備え、その内面の一方側(図示の例では、蓋板202Qの内面側)にマグネット部204を吸引する磁力吸引部(磁性板212)が設けられ、内面の他方側(底面202A側)に摺動支持部(非磁性摺動板213)が設けられている。
 マグネット部204と錘部207を連結している連結部材211は、マグネット部204及び錘部207に対して底面202A側に突出した形状を備えている。これによって、可動子210が重心軸Gと同軸上のガイドシャフト208回りに回転すると、連結部材211の一部が底面202A上の摺動支持部(非磁性摺動板213)に当接することになる。
 また、図示の例では、マグネット部204と錘部207の一軸方向(図示X方向)に交差する断面形状が、長辺(及び短辺)を備えており、連結部材211は、その一部(当接部211A)が摺動支持部(非磁性摺動板213)に当接した状態で、マグネット部204と錘部207の長辺が枠体202の内面(蓋板202Qの内面と底面202A)と略平行になるように、マグネット部204と錘部207とを連結している。
 弾性部材206は、一軸方向に沿った一対のガイドシャフト208とは非同軸に配置され、コイル203とマグネット部204とによって生じる駆動力に反発する弾性力を、可動子210に付与している。図示の例では、弾性部材206として一軸方向(X方向)に沿って延び縮みするコイルバネを用いており、片側202個の弾性部材206を錘部207と枠体202の側壁202B,202Cの間に介在させている。図示の例では、弾性部材206は一対のガイドシャフト208と平行に配置されている。そして、弾性部材206の一端は枠体202の側壁202B,202Cに設けた支持突起202Pに係止されており、弾性部材206の他端は錘部207の端部207Aに設けた支持突起に係止されている。
 このようなリニア振動モータ1Eの動作を説明する。非駆動時には、可動子210は弾性部材206の弾性力が釣り合う振動中心位置で静止している。そして、コイル203に、可動子210の質量と弾性部材206の弾性係数で決まる共振周波数の振動発生電流を入力すると、マグネット部204にX方向の駆動力が付与され、この駆動力と弾性部材206の弾性反発力によって可動子210が一軸方向(図示X方向)に沿って往復振動する。
 この際、可動子210の重心軸Gから離れた位置に配置されている磁性板212とマグネット部204との磁力吸引によって、可動子210には、重心軸Gと同軸のガイドシャフト208回りに一方向の回転力が付与され、可動子210の断面形状における長辺の端が蓋板202Q側に引き寄せられる。可動子210は、例えば、ガイドシャフト208に直交する断面形状が方形状になっている。
 また、可動子210のマグネット部204と錘部207とを連結する連結部材211が、下方に突出する当接部211Aを備えているので、ガイドシャフト208回りの回転力によって、当接部211Aが底面202A上に設けた非磁性摺動板213上に当接することになり、非磁性摺動板213上に低摩擦で接触してその上を摺動することになる。この際、可動子210の上方は、蓋板202Qの内面とは非接触の状態になっている。
 これによると、可動子210は、ガイドシャフト208に沿った往復振動時に、磁性板212とマグネット部204との磁力吸引でガイドシャフト208回りの一方向に回転付勢され、可動子210の一部である当接部211Aが非磁性摺動板213上に常時当接した状態で摺動することになる。これによって、可動子210はがたつきが無く安定した動作をすることができ、振動時の動作音(異音)を低減したリニア振動モータ1Eを得ることができる。
 このようなリニア振動モータ1Eによると、当接部211Aが摺動する非磁性摺動板213は、摺動摩耗の低減化がなされているので、リニア振動モータ1Eの高寿命化が可能になる。また、ガイドシャフト208回りに可動子210が回転した場合には、必ず当接部211Aが非磁性摺動板213上に当たることになり、可動子210が枠体202の他部分に接触するのを避けることができるので、衝撃時の変形抑制が可能になり、耐衝撃構造を有したリニア振動モータ1Eを得ることができる。また、非磁性摺動板213は、枠体202よりも高強度の母材で高硬度の表面被覆(表面処理)を施しているので、枠体202の材質に影響されること無く耐衝撃構造を向上させることができる。
 また、このリニア振動モータ1Eは、一対のガイドシャフト208が分割されていてマグネット部204を貫通しないので、一対のガイドシャフト208の直径とは無関係にY方向に幅広でZ方向には薄いマグネット部204によって、十分な駆動力が得られるマグネット体積を確保することができる。これによって十分な駆動力が得られる薄型のリニア振動モータ1Eを得ることができる。
 更に、同軸上に配置した一対のガイドシャフト208で可動子210を軸支持するリニア振動モータ1Eは、マグネットの左右両サイドに振動方向に沿った一対の固定シャフトを設ける従来技術と比較すると、マグネット部204の左右には軸配置のスペースが不要になるので左右の幅をコンパクト化することが可能になる。
 更には、弾性部材206を一対のガイドシャフト208に対して非同軸に配置しているので、弾性部材206の直径を一対のガイドシャフト208の直径とは無関係に細径化することができる。弾性部材206を細径化した場合の弾性力の設定は、弾性部材206の材料選択や弾性部材206を多数並列させることなどで適宜設定することができる。これによっても、可動子210を軸支持したリニア振動モータ1Eの薄型化が可能になる。
 図17は、本発明の実施形態に係るリニア振動モータ1Eの他の形態例を示している。この例は、一対のガイドシャフト208の一端側が枠体202に固定され、他端側が可動子210側に摺動自在に軸支されているが、その他の構成は前述した例と同様である。
 一対のガイドシャフト208の一端側は、図示の例では、2点で枠体202に支持されている。具体的には、ガイドシャフト208の端部が枠体202の側壁202B,202Cに固定されており、更に、ガイドシャフト208の端部から離れたところで支持部202Sによって支持されている。
 可動子210には、ガイドシャフト208の自由端側(他端側)が挿入される孔207Cが一軸方向(図示X方向)に沿って設けられている。孔207C内には、ガイドシャフト208がX方向に摺動自在な軸受209を設けており、これによって、ガイドシャフト208の他端側は可動子210の軸受209に摺動自在に支持されている。可動子210に設けられる孔207Cは、可動子210の錘部207に設けており、可動子210のマグネット部204には孔を設けていない。
 このようなリニア振動モータ1Eの錘部207は、直方体形状に形成することができ、その内部にガイドシャフト208が通る分だけの孔207Bを形成すればよいので、錘部207の体積を十分に大きくすることができる。これによって、振動の慣性力となる可動子210の質量を十分に確保することができる。
 以上説明したように、本発明の実施形態に係るリニア振動モータ1Eは、可動子210の厚さ寸法を幅寸法より小さくすることで、リニア振動モータの薄型化を可能にすることができ、このように可動子210を扁平状にした場合にも、可動子210がガイドシャフト208周りに無闇に回転して作動音(異音)が発生するのを抑止することができる。これによって、がたつきの無い安定した振動を得ることができ、2軸の平行固定シャフトを設ける場合と比較して、生産性の向上を図ることができる。
 また、一対のガイドシャフト208によって可動子210を軸支持して振動させることで、固定シャフトを設ける場合と同様に安定した振動を得ることができると共に落下衝撃時の耐損傷性を得ることができる。そして、このようなリニア振動モータ1Eにおいて、マグネット部204や錘部207の体積減少を抑えた上で薄型化や幅方向のコンパクト化を達成することができる。
 図18は、本発明の実施形態に係るリニア振動モータ1(1A~1E)を装備した電子機器の一例として、携帯情報端末100を示している。安定した振動が得られ薄型化や幅方向のコンパクト化が可能なリニア振動モータ1(1A~1E)を備える携帯情報端末100は、通信機能における着信やアラーム機能などの動作開始・終了時を異音が発生しにくい安定した振動で使用者に伝えることができる。また、リニア振動モータ1(1A~1E)の薄型化・幅方向のコンパクト化によって高い携帯性或いはデザイン性を追求した携帯情報端末100を得ることができる。更に、リニア振動モータ1(1A~1E)は、厚さを抑えた直方体形状の枠体4内に各部を収容したコンパクト形状であるから、薄型化された携帯情報端末100の内部にスペース効率よく装備することができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。前述した説明におけるコイルとマグネットの個数や配列は、リニア往復振動が可能な形態であれば、適宜の形態を選択することができる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1,1A,1B,1C,1D,1E:リニア振動モータ,
2:磁極部,2A,2B,2C,2D:マグネット,
2S:背面ヨーク,2P:スペーサヨーク,
3:錘部,4:枠体,40:ケース枠,41:蓋枠,43:対向ヨーク,
4A:支持面,5:コイル,50:フレキシブル基板,
6:ガイドシャフト,7:転動体,
8:弾性部材,8A,8B,8C,8D:コイルバネ,
10:可動子,10A:挿通部,
11:可動枠,12:転動体保持部,12A:溝,12B:摺動板(金属板),
13:軸受,20:接触部,
100:携帯電子機器(携帯情報端末),
102:可動子,120:磁極部材(マグネットとヨーク),
121:錘,121A:摺動部,
103:枠体,130:ケース枠,
130A:底面,130B:側壁,130C:正面壁,
131:蓋枠,131A:入力端子部,132:軸受,133:バネ保持部,
104:駆動部材,140:コイル,
105:弾性部材,150:圧縮コイルバネ,
106:与圧部材,160:板バネ,160A:被摺動部,
161:設置部,162:与圧部,
162A:アーム部分,162B:連結部分,
107:ガイドシャフト
202:枠体,202A:底面,202A1:信号入力部,
202B,202C,202D,202E:側壁,202S:支持部,
202P:支持突起,202Q:蓋板,
203:コイル,204:マグネット部,
204A,204B,204C:マグネット片,
204D,204E:スペーサヨーク,
205:補強板,206:弾性部材,
207:錘部,207A:端部,207B:ガイドシャフト支持部,
207C:孔,
208:ガイドシャフト,209:軸受,210:可動子,
211:連結部材,211A:当接部,212:磁性板,
213:非磁性摺動板

Claims (18)

  1.  磁極部と錘部を備える可動子と、
     前記可動子を往復振動自在に支持する枠体と、
     前記枠体に対して固定され前記磁極部に駆動力を付与するコイルと、
     前記可動子の振動を一軸方向に規制するガイドシャフトと、
     前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材とを備え、
     前記可動子は、前記ガイドシャフトの軸方向に対して交差する方向の幅が、前記ガイドシャフトの軸方向に対して交差する方向の厚さ以上の方形状であり、
     前記ガイドシャフトから前記可動子の幅方向に離れた位置で、前記可動子と前記枠体とが部分接触する接触部が設けられ、
     前記接触部では、前記可動子が前記磁極部の磁力によって前記枠体側に付勢されることを特徴とするリニア振動モータ。
  2.  前記接触部は、前記枠体と前記可動子の一方側に設けられる支持面と、前記枠体と前記可動子の他方側に転動自在に保持される転動体とを備え、前記支持面に前記転動体が接触することを特徴とする請求項1記載のリニア振動モータ。
  3.  前記ガイドシャフトは、前記可動子の重心から一方側にシフトした位置に配置され、前記接触部は、前記重心から他方側にシフトした位置に配置されることを特徴とする請求項1又は2記載のリニア振動モータ。
  4.  前記磁極部は、前記可動子の厚さ方向に沿って互いに逆向きに着磁された一対のマグネットを備え、
     前記コイルは、前記ガイドシャフトの軸方向と前記可動子の幅方向で規定される面に沿って巻き回され、磁性体の前記枠体に固定されていることを特徴とする請求項1~3のいずれか1項に記載のリニア振動モータ。
  5.  前記磁極部は、前記ガイドシャフトに沿って着磁されたマグネットを備え、
     前記コイルは、前記磁極部の周囲に巻き回されていることを特徴とする請求項1~3のいずれか1項に記載のリニア振動モータ。
  6.  前記ガイドシャフトは、その両端が前記枠体に支持されており、
     前記ガイドシャフトに沿って前記可動子が摺動自在に支持されることを特徴とする請求項1~5のいずれか1項に記載のリニア振動モータ。
  7.  前記ガイドシャフトは、前記可動子の端部に一端側が固定され、前記可動子の両端部から互いに逆向きに突出して配置され、
     前記枠体には、前記ガイドシャフトを摺動自在に支持する軸受が設けられることを特徴とする請求項1~5のいずれか1項に記載のリニア振動モータ。
  8.  可動子と、
     前記可動子を往復振動自在に支持する枠体と、
     前記枠体に対して固定され前記可動子を駆動する駆動部材と、
     前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材と、
     前記可動子に対して、前記可動子の振動方向に交差する方向に与圧を加える与圧部材とを備えることを特徴とするリニア振動モータ。
  9.  前記可動子は、前記振動方向に交差する方向の幅が前記振動方向に交差する方向の厚さ以上の方形状であり、
     前記与圧部材は、前記可動子の幅に沿った面と前記枠体との間に配置された板バネであることを特徴とする請求項8記載のリニア振動モータ。
  10.  前記可動子には、前記幅方向の両端部に前記板バネ上を摺動する摺動部が設けられ、前記板バネ上には、前記摺動部が摺動する平面状の被摺動部が設けられることを特徴とする請求項8記載のリニア振動モータ。
  11.  前記板バネは、前記枠体の底面に設置される平板状の設置部と、該設置部から屈折して前記可動子を弾性的に保持する与圧部とを備えることを特徴とする請求項9又は10記載のリニア振動モータ。
  12.  マグネット部と錘部を備える可動子と、
     前記可動子を一軸方向に沿って摺動自在に支持する枠体と、
     前記枠体に固定され前記マグネット部を前記一軸方向に沿って駆動するコイルと、
     前記マグネット部に付与される駆動力に反発する弾性力を前記可動子に付与する弾性部材と、
     前記可動子の重心軸と同軸に配置され、前記可動子の振動を案内するガイドシャフトとを備え、
     前記枠体は、前記可動子を前記ガイドシャフト回りの一方向に磁力吸引する磁力吸引部と、前記可動子の一部を摺動支持する摺動支持部を備えることを特徴とするリニア振動モータ。
  13.  前記可動子は、前記一軸方向に交差する断面形状が長辺を備え、
     前記枠体は、前記長辺に沿って対面する一対の内面を備え、
     前記内面の一方側に前記マグネット部を吸引する前記磁力吸引部が設けられ、前記内面の他方側に前記摺動支持部が設けられることを特徴とする請求項12記載のリニア振動モータ。
  14.  前記枠体は、非磁性体であり、
     前記磁力吸引部は、前記重心軸から離れた位置に取り付けられる磁性板であることを特徴とする請求項12又は13記載のリニア振動モータ。
  15.  前記摺動支持部には、低摩擦被覆が施された非磁性摺動板が配備されることを特徴とする請求項12~14のいずれか1項記載のリニア振動モータ。
  16.  前記マグネット部と前記錘部は、連結部材を介して連結され、前記連結部材の一部が前記摺動支持部に当接することを特徴とする請求項1~4のいずれか12項に記載のリニア振動モータ。
  17.  前記マグネット部と前記錘部は、前記一軸方向に交差する断面形状が長辺を備え、
     前記当接部が前記摺動支持部に当接した状態で、前記長辺が前記枠体の内面と略平行になることを特徴とする請求項16記載のリニア振動モータ。
  18.  請求項1~17のいずれか1項に記載のリニア振動モータを備えた携帯電子機器。
PCT/JP2016/061947 2015-04-17 2016-04-13 リニア振動モータ WO2016167299A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680022182.XA CN107534376B (zh) 2015-04-17 2016-04-13 线性振动马达

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015085460A JP6378127B2 (ja) 2015-04-17 2015-04-17 リニア振動モータ
JP2015-085460 2015-04-17
JP2015090929A JP6479557B2 (ja) 2015-04-28 2015-04-28 リニア振動モータ
JP2015-090929 2015-04-28
JP2015-132762 2015-07-01
JP2015132762A JP2017017875A (ja) 2015-07-01 2015-07-01 リニア振動モータ

Publications (1)

Publication Number Publication Date
WO2016167299A1 true WO2016167299A1 (ja) 2016-10-20

Family

ID=57126663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061947 WO2016167299A1 (ja) 2015-04-17 2016-04-13 リニア振動モータ

Country Status (2)

Country Link
CN (1) CN107534376B (ja)
WO (1) WO2016167299A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079251A1 (ja) * 2016-10-31 2018-05-03 日本電産コパル株式会社 リニア振動モータ
JP2020527105A (ja) * 2017-07-07 2020-09-03 アクトロニカ・エス・ア・エス 振動触覚アクチュエータ
US20230086204A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Haptic Engine Based on an Angular Resonant Actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117472A (ja) * 1996-10-14 1998-05-06 Matsushita Electric Ind Co Ltd 携帯機器用振動発生装置
JP2011030370A (ja) * 2009-07-27 2011-02-10 Sanyo Electric Co Ltd 振動モータ
JP2011078150A (ja) * 2009-09-29 2011-04-14 Nidec Sankyo Corp 直線駆動装置および光学素子駆動装置
JP2011097747A (ja) * 2009-10-29 2011-05-12 Nidec Copal Corp 振動アクチュエータ
US20130099600A1 (en) * 2011-10-24 2013-04-25 Lg Innotek Co., Ltd. Linear vibrator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980032013A (ko) * 1995-12-15 1998-07-25 모리시타요오이찌 진동 발생장치
US9590463B2 (en) * 2011-09-22 2017-03-07 Minebea Co., Ltd. Vibration generator moving vibrator by magnetic field generated by coil and holder used in vibration-generator
CN204068635U (zh) * 2014-07-18 2014-12-31 瑞声光电科技(常州)有限公司 振动电机
CN204271871U (zh) * 2014-07-22 2015-04-15 瑞声光电科技(常州)有限公司 振动电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117472A (ja) * 1996-10-14 1998-05-06 Matsushita Electric Ind Co Ltd 携帯機器用振動発生装置
JP2011030370A (ja) * 2009-07-27 2011-02-10 Sanyo Electric Co Ltd 振動モータ
JP2011078150A (ja) * 2009-09-29 2011-04-14 Nidec Sankyo Corp 直線駆動装置および光学素子駆動装置
JP2011097747A (ja) * 2009-10-29 2011-05-12 Nidec Copal Corp 振動アクチュエータ
US20130099600A1 (en) * 2011-10-24 2013-04-25 Lg Innotek Co., Ltd. Linear vibrator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079251A1 (ja) * 2016-10-31 2018-05-03 日本電産コパル株式会社 リニア振動モータ
JP2018074781A (ja) * 2016-10-31 2018-05-10 日本電産コパル株式会社 リニア振動モータ
CN109891727A (zh) * 2016-10-31 2019-06-14 日本电产科宝株式会社 直线振动电机
JP2020527105A (ja) * 2017-07-07 2020-09-03 アクトロニカ・エス・ア・エス 振動触覚アクチュエータ
US11289988B2 (en) 2017-07-07 2022-03-29 Actronika Sas Vibrotactile actuator
US20230086204A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Haptic Engine Based on an Angular Resonant Actuator
US11936269B2 (en) * 2021-09-22 2024-03-19 Apple Inc. Haptic engine based on angular resonant actuator with pivot axis and mass center that differ

Also Published As

Publication number Publication date
CN107534376A (zh) 2018-01-02
CN107534376B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN108028590B (zh) 线性振动马达
JP6421089B2 (ja) リニア振動モータ及び該リニア振動モータを備える携帯電子機器
WO2016017584A1 (ja) リニア振動モータ
CN107534375B (zh) 线性振动马达
WO2018117066A1 (ja) 振動アクチュエータ、ウェアラブル端末及び着信通知機能デバイス
JP6591248B2 (ja) リニア振動モータ
WO2016017586A1 (ja) リニア振動モータ
WO2017002950A1 (ja) リニア振動モータ
CN107107112B (zh) 线性振动马达
WO2016167299A1 (ja) リニア振動モータ
CN107847976B (zh) 线性振动马达以及包括该线性振动马达的移动电子设备
JP2017175761A (ja) リニア振動モータ
WO2017051843A1 (ja) リニア振動モータ
WO2017002949A1 (ja) リニア振動モータ
WO2018008280A1 (ja) リニア振動モータ
JP6378127B2 (ja) リニア振動モータ
WO2017057193A1 (ja) リニア振動モータ
WO2016163446A1 (ja) リニア振動モータ
JP2017175838A (ja) リニア振動モータ
JP6479595B2 (ja) リニア振動モータ
JP6479557B2 (ja) リニア振動モータ
JP2017017875A (ja) リニア振動モータ
JP2016131916A (ja) リニア振動モータ
JP2019063693A (ja) リニア振動モータ
JP2017029887A (ja) リニア振動モータ及び該リニア振動モータを備える携帯電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780090

Country of ref document: EP

Kind code of ref document: A1