WO2016166997A1 - 熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置 - Google Patents

熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置 Download PDF

Info

Publication number
WO2016166997A1
WO2016166997A1 PCT/JP2016/051215 JP2016051215W WO2016166997A1 WO 2016166997 A1 WO2016166997 A1 WO 2016166997A1 JP 2016051215 W JP2016051215 W JP 2016051215W WO 2016166997 A1 WO2016166997 A1 WO 2016166997A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
layer
thermoelectric conversion
conversion element
electrode
Prior art date
Application number
PCT/JP2016/051215
Other languages
English (en)
French (fr)
Inventor
和也 長瀬
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2016166997A1 publication Critical patent/WO2016166997A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present embodiment relates to a thermoelectric conversion element, a manufacturing method thereof, a thermoelectric power generation device, and a Peltier device.
  • thermoelectric power generation that can recycle energy that has been discarded as heat is the ultimate energy recycling. For this reason, technological development and research for improving the performance of thermoelectric conversion are being promoted.
  • thermoelectric conversion elements using BiTe-based materials have been industrialized (for example, see Patent Document 1).
  • Patent Document 1 As an example of improving the performance in the BiTe system, a technique for reducing the thermal conductivity ⁇ of a material is often used (see, for example, Non-Patent Document 1).
  • a technique has been reported in which the transmission of heat is reduced by increasing the phonon scattering by reducing the polycrystalline grain size in the material.
  • Non-Patent Document 2 material development using a skutterudite compound (for example, see Non-Patent Document 2) and a layered material (for example, Non-Patent Document 3 and Non-Patent Document 4) has been carried out. It is difficult to produce even if it is good, and it has not yet been industrialized due to reports at the basic research stage.
  • a general BiTe-based thermoelectric conversion element contains Te, which is a rare metal, and Te is known to be toxic by itself. Moreover, the general use temperature at which BiTe can operate is as low as about 200 ° C., and is not suitable for use at a high temperature. In addition, since it is difficult to form a large-size crystal, there is a problem that the temperature difference between the high temperature side and the low temperature side is short and it is difficult to make a temperature difference. Moreover, since the thermoelectric conversion element is made by combining two types of n-type material and p-type material, the thermal expansion coefficients of the respective materials need to be approximately the same.
  • Non-Patent Document 5 discloses a report proposed by Hicks and Dresselhaus that aims to improve the dimensionless figure of merit ZT by reducing the dimension of the structure. This is a technique of increasing the phonon scattering by reducing the structure and reducing the thermal conductivity.
  • nanowires having a one-dimensional structure are disclosed (for example, see Non-Patent Document 6).
  • the characteristics of nanowires are drastically improved due to the effect of reducing thermal conductivity due to increased phonon scattering, the nanowires are difficult to handle and are not suitable for devices.
  • the approach from a low-dimensional structure that is easy to industrialize includes an approach from a two-dimensional structure that is easy to control.
  • the approaches for reducing the thermal conductivity ⁇ in the two-dimensional structure are PbTe / PbEuTe (non-patent document 5) having a quantum well structure, Bi 2 Te 3 / Sb 2 Te 3 (non-patent document 7) having a superlattice structure, PbSeTe / PbTe (Non-Patent Document 8), GaN / AlN / AlGaN (Non-Patent Document 9), and the like are disclosed.
  • the Seebeck coefficient of bulk GaN is disclosed in Non-Patent Document 10.
  • non-patent document 5 discloses an increase in the Seebeck coefficient S as another phenomenon that occurs when the dimension of the structure proposed by Hicks and Dresselhaus is reduced. This is a phenomenon in which, by confining electrons in the quantum well potential, the density of states of the electrons becomes discrete, and the Seebeck coefficient S becomes larger than that in the bulk state.
  • the Seebeck coefficient S in this quantum well is increased as compared with the Seebeck coefficient S at the same carrier concentration in the bulk, the trade-off relationship in which the Seebeck coefficient S decreases as the carrier concentration increases does not change.
  • Patent Document 2 discloses a thermoelectric conversion element using SrTiO 3 . This is because an insulating film made of 12CaO ⁇ 7Al 2 O 3 or the like is formed on SrTiO 3 , a gate bias is applied like a metal-insulator-semiconductor field effect transistor (MISFET), and the carrier Is induced to form a two-dimensional electron gas (2DEG) layer.
  • MISFET metal-insulator-semiconductor field effect transistor
  • 2DEG of SrTiO 3 by applying a high electric field of 100 MV ⁇ cm ⁇ 1 or more and confining very high density electrons of 10 14 cm ⁇ 2 in the film thickness of about 2 nm, the V of Seebeck coefficient S It is disclosed that character recovery occurs.
  • Non-patent documents 5.7, 8, and 9 do not disclose V-shaped recovery of the Seebeck coefficient S.
  • the Seebeck coefficient S and the electrical conductivity ⁇ are in a trade-off relationship with the carrier concentration. Therefore, when the carrier concentration n is increased to increase the electrical conductivity ⁇ , the Seebeck coefficient S is decreased. Conversely, if the Seebeck coefficient S is to be increased, the carrier concentration n must be lowered, resulting in a problem that the electrical conductivity ⁇ is lowered.
  • Patent Document 2 discloses that the Seebeck coefficient S recovers to a V-shape as the carrier concentration increases (increases the applied bias) in 2DEG formed by applying a gate bias to SrTiO 3. It is disclosed. However, in the SrTiO 3 material system having this gate structure, since it is very difficult to stack, the electrical conductivity ⁇ cannot be increased, and the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ cannot be solved. There are challenges.
  • the present embodiment improves the trade-off between Seebeck coefficient and carrier concentration, and the trade-off between Seebeck coefficient and electric conductivity, and can be stacked with high electric conductivity, a method for manufacturing the thermoelectric conversion element, and the thermoelectric conversion.
  • a thermoelectric generator and a Peltier device using the element are provided.
  • the first material layer, the second material layer disposed in contact with the first material layer, the first material layer, and the second material layer are electrically connected A first electrode connected; and a second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode.
  • an electric conduction layer mainly responsible for electric conduction is generated due to discontinuous electric polarization between the first material layer and the second material layer.
  • the first electrode and the second electrode are electrically connected to the electric conductive layer when the electric conductive layer is generated, and the electric polarization at the interface between the first material layer and the second material layer
  • the difference is that the Seebeck coefficient of the electrically conductive layer increases as the reduced Fermi energy increases
  • Thermoelectric conversion elements are provided that are configured to so that relationship.
  • An electric conductive layer mainly responsible for electric conduction is generated at the interface between the layer and the second material layer due to discontinuous electric polarization between the first material layer and the second material layer,
  • the first electrode and the second electrode are electrically connected to the electric conductive layer when the electric conductive layer is generated, and the electric polarization at the interface between the first material layer and the second material layer
  • This difference is that the Seebeck coefficient of the electrically conductive layer corresponds to an increase in the carrier concentration of the electrically conductive layer.
  • Thermoelectric conversion elements are set to satisfy the relationship as increasing Te is provided.
  • An electric conductive layer mainly responsible for electric conduction is generated at the interface between the layer and the second material layer due to discontinuous electric polarization between the first material layer and the second material layer,
  • the first electrode and the second electrode are electrically connected to the electric conductive layer when the electric conductive layer is generated, and the electric polarization at the interface between the first material layer and the second material layer
  • the difference in dimension is that the dimensionless figure of merit of the electrically conductive layer corresponds to an increase in the carrier concentration of the electrically conductive layer.
  • Thermoelectric conversion elements are set to satisfy the relationship as increasing Te is provided.
  • thermoelectric power generation device including the above-described thermoelectric conversion element is provided.
  • thermoelectric conversion element including the above-described thermoelectric conversion element
  • Ga b In 1-a-b N (0 ⁇ a ⁇ 1,0 ⁇ b ⁇ 1,0 ⁇ a + b ⁇ 1) forming a layer, the Al a Ga b In 1-a -b N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1) layer on the Al c Ga d In 1-cd N (0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ c + d ⁇ 1) layer Forming the Al a Ga b In 1 -abN (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1) layer and the Al c Ga d In 1-cd
  • a step of etching a N (0 ⁇ a ⁇ 1,0
  • Ga b In 1-a-b N (0 ⁇ a ⁇ 1,0 ⁇ b ⁇ 1,0 ⁇ a + b ⁇ 1) forming a layer, the Al a Ga b In 1-a -b N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1) layer on the Al c Ga d In 1-cd N (0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ c + d ⁇ 1) layer Forming the Al a Ga b In 1 -abN (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1) layer and the Al c Ga d In 1-cd
  • a method of manufacturing a thermoelectric conversion element is provided that includes
  • thermoelectric conversion element that can be stacked with high electric conductivity, and a method for manufacturing the thermoelectric conversion element, and this A thermoelectric generator and a Peltier device using a thermoelectric conversion element can be provided.
  • thermoelectric conversion element which concerns on 1st Embodiment, and the energy band figure calculated in 2DEG vicinity.
  • thermoelectric conversion element according to the first embodiment a Hall effect measurement device configuration for evaluating sheet electron concentration n (cm ⁇ 2 ) and electron mobility ⁇ (cm 2 V ⁇ 1 s ⁇ 1 ) FIG.
  • the thermoelectric conversion element according to the first embodiment the measured sheet carrier concentration n (cm ⁇ 2 ), the calculated 2DEG layer thickness t 2D , and the calculation for the sample in which the Al molar fraction X was changed The figure which shows the carrier density n (cm ⁇ -3 >) done.
  • FIG. 3 is a schematic bird's-eye view structure diagram illustrating a measurement system for the Seebeck coefficient S by disposing the thermoelectric conversion element according to the first embodiment between a heat sink and a heater.
  • thermoelectric conversion element which concerns on 1st Embodiment.
  • the typical cross-section figure of the thermoelectric conversion element which concerns on 3rd Embodiment.
  • thermoelectric conversion element which concerns on 6th Embodiment.
  • the typical cross-section figure of the thermoelectric conversion element which concerns on 7th Embodiment. It is a manufacturing method of the thermoelectric conversion element which concerns on 7th Embodiment, Comprising: (a) The typical cross-section figure which shows the process of preparing a sapphire substrate, (b) The process of forming a GaN layer on a sapphire substrate is shown.
  • FIG. 2 is a schematic cross-sectional structure diagram, (c) a schematic cross-sectional structure diagram illustrating a process of etching a GaN layer, and (d) a schematic cross-sectional structure diagram illustrating a process of forming an AlGaN layer on a sapphire substrate.
  • thermoelectric power generating apparatus which concerns on basic technology (example provided with a heat sink in the low temperature side, and a heat exchanger in the high temperature side).
  • the typical block diagram of the thermoelectric generator which concerns on basic technology (The example which has arrange
  • thermoelectric power generation apparatus which concerns on 9th Embodiment, Comprising: (a) Typical top view, (b) Typical bird's-eye view block diagram. It is a thermoelectric power generation apparatus which concerns on 10th Embodiment, Comprising: (a) Typical top view, (b) Typical bird's-eye view block diagram.
  • thermoelectric conversion element 10 A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the first embodiment and a calculated energy band diagram in the vicinity of the 2DEG layer are expressed as shown in FIG.
  • thermoelectric conversion element 10 for the Hall effect measurement for evaluating the sheet electron concentration n (cm ⁇ 2 ) and the electron mobility ⁇ (cm 2 V ⁇ 1 s ⁇ 1 ).
  • n cm ⁇ 2
  • cm 2 V ⁇ 1 s ⁇ 1
  • the thermoelectric conversion element 10 includes a first material layer 12, a second material layer 14 disposed in contact with the first material layer 12, First electrodes 16 1 and 16 2 electrically connected to the first material layer 12 and the second material layer 14, and electrically connected to the first material layer 12 and the second material layer 14, and the first electrode 16 1 and 16 2 and second electrodes 18 1 and 18 2 formed apart from each other.
  • the electric polarization mainly between the first material layer 12 and the second material layer 14 is caused by the discontinuity of the electric polarization between the first material layer 12 and the second material layer 14.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 are electrically connected to the electrical conductive layer when the electrical conductive layer is generated.
  • the difference in electric polarization at the interface between the first material layer 12 and the second material layer 14 is set so that the Seebeck coefficient S of the electric conductive layer increases as the reduced Fermi energy ⁇ increases.
  • thermoelectric conversion element 10 is capable of converting thermal energy associated with a temperature difference between the first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 into electrical energy, It is possible to convert electric energy by applying a current between the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 into a temperature difference.
  • thermoelectric conversion element 10 is disposed between the heat sink 200 and the heater 300 as shown in FIG. Can be obtained by:
  • the second material layer 14 may include a semiconductor.
  • the first material layer 12 may include a GaN layer
  • the second material layer 14 may include an AlGaN layer.
  • the first material layer 12 includes Al a Ga b In 1 -abN (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1), and the second material layer 14 includes the first material layer 14.
  • Al c Ga d In 1-cd N (0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ c + d ⁇ 1) having a composition different from that of the material layer 12 may be provided.
  • the second material layer 14 may be formed of a material not containing N.
  • the first material layer 12 may include a ferroelectric material.
  • a substrate on which a unit structure formed by the first material layer 12 and the second material layer 14 is formed is provided.
  • the unit structure of the first material layer 12 and the second material layer 14 includes the first material layer 12 and the first material layer 12.
  • a plurality of layers may be laminated so that the interface between the two material layers 14 and the surface of the substrate are parallel to each other.
  • a substrate on which a unit structure formed by the first material layer 12 and the second material layer 14 is formed is provided.
  • the unit structure of the first material layer 12 and the second material layer 14 includes the first material layer 12 and the first material layer 12. It may be formed over a plurality of layers so that the interface between the two material layers 14 and the surface of the substrate are perpendicular to each other.
  • a layer that is not necessarily the same layer structure and mainly responsible for electrical conduction is sandwiched between the first material layer 12 and the second material layer 14.
  • the unit structure may be repeatedly laminated.
  • the substrate on which the first material layer 12 and the second material layer 14 are formed may contain silicon.
  • the substrate on which the first material layer 12 and the second material layer 14 are formed may contain sapphire.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be formed in contact with the electrically conductive layer.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be in ohmic contact with the electrically conductive layer.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be connected to the second material layer 14.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be made of the same material.
  • the thermoelectric conversion element 10 includes a first material layer 12, a second material layer 14 disposed in contact with the first material layer 12, the first material layer 12, and the second material layer 12.
  • the first electrodes 16 1 , 16 2 electrically connected to the material layer 14 and the first electrodes 16 1 , 16 2 electrically connected to the first material layer 12 and the second material layer 14 are spaced apart from the first electrodes 16 1 , 16 2.
  • the second electrode 18 1 , 18 2 formed at the interface, the electric polarization between the first material layer 12 and the second material layer 14 at the interface between the first material layer 12 and the second material layer 14.
  • the first electrode 16 1 , 16 2 and the second electrode 18 1 , 18 2 are formed in the electric conduction layer when the electric conduction layer is generated.
  • the first material layer 12, the second material layer 14 disposed in contact with the first material layer 12, the first material layer 12 and the second material layer 14,
  • the first electrodes 16 1 and 16 2 that are electrically connected, and the first material layer 12 and the second material layer 14 are electrically connected and are spaced apart from the first electrodes 16 1 and 16 2 .
  • the second electrodes 18 1 and 18 2 are provided, and the electric polarization between the first material layer 12 and the second material layer 14 is discontinuous at the interface between the first material layer 12 and the second material layer 14.
  • Index ZT may be set in relation to increase with an increase in the carrier concentration n of the electrically conductive layer.
  • the electrical conductive layer mainly responsible for electrical conduction is a 2DEG layer, a two-dimensional hole gas (2DHG) layer, or a 2DEG layer and a 2DHG layer. You may have both.
  • the first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 are electrodes of the same material configuration and are layers mainly responsible for electrical conduction. Is in ohmic contact.
  • the first material layer 12 and the second material layer 14 have different electric polarizations, and at the interface between the first material layer 12 and the second material layer 14.
  • the electric polarization may be discontinuous.
  • the electric polarization in the second material layer 14 is the sum of the spontaneous polarization P SP and the piezo polarization P PE accompanying the piezo electric field. It is represented by (P SP + P PE ), and the electric polarization in the first material layer 12 is represented by spontaneous polarization P SP and has an electric polarization discontinuity.
  • the Seebeck coefficient S of the thermoelectric conversion element 10 may be provided with the performance which increases in response to the increase in the carrier concentration which the thermoelectric conversion element 10 hold
  • the Seebeck coefficient S of the thermoelectric conversion element 10 increases in response to an increase in the carrier concentration n of a layer responsible for electrical conduction such as a 2DEG layer or a 2DHG layer. It may have performance.
  • thermoelectric conversion element 10 in the thermoelectric conversion element 10 according to the first embodiment, the first material layer 12 and the second material layer 14 may not be doped for the purpose of conductivity modulation of the 2DEG layer or the 2DHG layer. good.
  • thermoelectric conversion element 10 in the thermoelectric conversion element 10 according to the first embodiment, a layer that is not necessarily the same layer configuration and mainly responsible for electrical conduction is provided in the direction perpendicular to the interface between the first material layer 12 and the second material layer 14.
  • the unit structure sandwiched between the first material layer 12 and the second material layer 14 may be repeatedly laminated.
  • thermoelectric conversion element 10 as a method of overcoming the trade-off between the Seebeck coefficient S and the carrier concentration n and the trade-off between the Seebeck coefficient S and the electric conductivity ⁇ , an unprecedented new concept is used.
  • a two-dimensional electrically conductive layer is formed by polarization discontinuity in a polarization material that can be laminated.
  • the carrier concentration of the two-dimensional electrically conductive layer can be increased, thereby causing the V-shaped recovery phenomenon of the Seebeck coefficient S.
  • the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ can be eliminated.
  • ⁇ B is the Boltzmann constant
  • T is the absolute temperature
  • e is the elementary charge of electrons
  • h is the Planck constant
  • m * is the effective mass of electrons
  • n is the carrier concentration.
  • thermoelectric conversion element has the best performance at a carrier concentration of 10 18 to 10 19 (cm ⁇ 3 ).
  • thermoelectric conversion element not only the Seebeck coefficient S increases at a relatively large carrier concentration n due to the electron confinement effect induced by the polarization effect, but also the Seebeck coefficient S and the carrier concentration n.
  • the trade-off relationship is broken, and the V-shaped recovery characteristic can be obtained.
  • the increase in carriers is not induced by a gate bias, but is realized by a change in polarization effect.
  • the V-shaped recovery characteristic between the Seebeck coefficient S and the carrier concentration n is a typical feature due to the electric polarization discontinuity configuration in the thermoelectric conversion element according to the first embodiment.
  • thermoelectric conversion element In the thermoelectric conversion element according to the first embodiment, a polarization discontinuous structure is adopted, and as a result, a 2DEG structure (or 2DHG structure) appearing at the heterojunction interface is adopted as the polarization discontinuous structure.
  • the polarization discontinuous configuration based on the 2DEG structure (or 2DHG structure) does not require impurity doping or inducement of a clear by gate bias.
  • Such intentional undoped multilayer structure can not only reduce ionized impurity scattering, but also increase carrier mobility ⁇ and increase electrical conductivity ⁇ . Furthermore, except for the relatively very thin 2DEG layer (or 2DHG layer), most of the device region can be a heat conduction blocking region with a relatively low thermal conductivity ⁇ .
  • thermoelectric conversion element according to the first embodiment can easily extend the unit structure of the 2DEG heterojunction (or 2DHG heterojunction), and can be stacked in a multilayer structure, with a relatively very thin 2DEG layer. Can compensate for the low electrical conduction characteristics.
  • thermoelectric conversion element according to the present embodiment having the polarization discontinuous configuration can increase the dimensionless figure of merit ZT and at the same time achieve high electrical conductivity ⁇ and low thermal conductivity ⁇ performance.
  • thermoelectric conversion element according to the first embodiment can have both excellent thermoelectric conversion performance and ease of manufacture.
  • MOCVD Metal Organic Vapor
  • the growth pressure is, for example, about 76 Torr
  • the growth temperature is, for example, about 1333K.
  • Trimethylgallium (TMG) was used as a forming material for Ga
  • trimethylaluminum (TMAl) was used as a forming material for Al
  • ammonia (NH 3 ) was used as a forming material for N.
  • the GaN template 11 is formed to a thickness of about 2 ⁇ m.
  • crystal growth is carried out in a hydrogen atmosphere with a fixed ammonia flow of 0.23 ⁇ mol / min.
  • the flow rate of TMG for GaN growth is 32.7 ⁇ mol / min.
  • the Al mole fraction X of the Al x Ga 1-x N / GaN epitaxial growth layer reduces the TMG flow rate from 11.3 ⁇ mol / min to 5.78 ⁇ mol / min with a fixed TMAl flow of 1.62 ⁇ mol / min. This is applicable.
  • the thicknesses of the Al x Ga 1-x N layer 14 and the GaN layer 12 are, for example, about 30 nm and about 1 ⁇ m, respectively.
  • the Al mole fraction X was determined by reciprocal space mapping of X-ray scattering.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 are formed on the Al x Ga 1-x N layer 14 by electron beam evaporation.
  • annealing is performed at about 823 K for about 10 minutes.
  • the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 have an Al / Ti structure (a two-layer structure of Al formed on Ti and Ti).
  • the thickness of the Ti layer is about 20 nm
  • the thickness of the Al layer is about 400 nm.
  • the circular first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 arranged in a square pattern are formed on the Al x Ga 1-x N layer 14. It is formed.
  • Al x Ga 1 is formed into an approximately 3 mm ⁇ 3 mm shape by lithography and an inductively coupled plasma (ICP) etching method using a mixed gas of Cl 2 and SiCl 4 .
  • ICP inductively coupled plasma
  • a mesa shape made of -X N / GaN heterojunction is formed on the GaN template 11.
  • the flow rates of Cl 2 and SiCl 4 are 15 sccm (standard cubic centimeter) and 5 sccm, respectively.
  • a 13.56 MHz AC power of 50 W is supplied to the sample, and a power of 50 W is supplied to the ICP etching apparatus.
  • the etching depth was, for example, about 300 nm.
  • thermoelectric conversion element 10 (Electron mobility ⁇ (cm 2 V ⁇ 1 s ⁇ 1 ), sheet carrier concentration n (cm ⁇ 2 ), carrier concentration n (cm ⁇ 3 ), electrical conductivity ⁇ )
  • the measured sheet carrier concentration n (cm ⁇ 2 ) the calculated 2DEG layer thickness t 2D
  • the calculated carrier concentration n (cm ⁇ 3 ) is expressed as shown in FIG.
  • the calculated carrier concentration n (cm ⁇ 3 ) is equal to the value obtained by dividing the measured sheet carrier concentration n (cm ⁇ 2 ) by the calculated 2DEG layer thickness t 2D .
  • the energy of the Al X Ga 1-X N / GaN system is obtained for a sample having a specific Al mole fraction X under the conditions of 300 K and an external bias voltage of 0 V.
  • the band diagram was obtained by simulation.
  • TCAD Technology Computer Aided Design
  • the sample used for the simulation includes an Al x Ga 1-x N layer 14 having a thickness of 30 nm and a GaN layer 12 having a thickness of 1 ⁇ m, and the carrier concentration of each layer of the Al x Ga 1-x N layer 14 and the GaN layer 12.
  • n was set to 1.0 ⁇ 10 16 (cm ⁇ 3 ).
  • the electron trap level is not considered for the sake of simplicity. This is because the simplest case should be considered and the physical phenomenon of defects in the Al x Ga 1-x N / GaN system is still complicated.
  • the electrical conductivity ⁇ (Scm ⁇ 1 ) was determined using the formula (2).
  • thermoelectric conversion element 10 (Relationship between carrier mobility ⁇ , electrical conductivity ⁇ , and carrier concentration n)
  • carrier mobility ⁇ (cm 2 V ⁇ 1 s ⁇ 1 ) and electric conductivity ⁇ (Scm ⁇ 1 ) in the 2DEG layer, and carrier concentration n (cm ⁇ 3). ) Is expressed as shown in FIG.
  • thermoelectric conversion element 10 After the Hall effect measurement, the in-plane Seebeck coefficient S of the thermoelectric conversion element 10 according to the first embodiment was measured at room temperature for the sample shown in FIG.
  • thermoelectric conversion element 10 according to the first embodiment is arranged between the heat sink 200 and the heater 300 and the measurement system of the Seebeck coefficient S is expressed as shown in FIG.
  • thermoelectric conversion element 10 As shown in FIG. 5, the thermoelectric conversion element 10 according to the first embodiment is disposed between the heat sink 200 and the heater 300 so as to generate a specific temperature difference.
  • thermoelectric conversion element 10 Thermoelectric characteristics of the thermoelectric conversion element 10 according to the first embodiment were measured using voltage probes 22A and 22B and type K thermocouples 24A and 24B having a diameter of about 150 ⁇ m.
  • thermocouples 24A and 24B The sample temperature on the heat sink 200 side / heater 300 side was measured with type K thermocouples 24A and 24B.
  • the temperature of the heater 300 can be controlled by a DC voltage source.
  • the output voltage of the DC voltage source can be increased stepwise from 0V to 30V in 5V steps.
  • the low temperature side of the thermoelectric conversion element 10 according to the first embodiment may be naturally air-cooled.
  • the measurement of the Seebeck coefficient S was carried out after a sufficient time interval for temperature stabilization.
  • thermoelectric conversion characteristics for sample D5 In the thermoelectric conversion element 10 according to the first embodiment, the thermoelectric conversion characteristics of the sample D5 shown in FIG. 3 are expressed as shown in FIG. FIG. 6 shows the measurement result of the Seebeck coefficient S.
  • Applied voltage (current) indicates the output voltage (current) of the DC voltage source.
  • T high (K) and T low (K) indicate measured temperatures on the heater 300 side and the heat sink 200 side, respectively.
  • ⁇ T (K) is equal to T high (K) ⁇ T low (K).
  • ⁇ V ( ⁇ V) indicates a difference voltage between the measured voltages detected by the type K thermocouples 24A and 24B.
  • the Seebeck coefficient S ( ⁇ V ⁇ K ⁇ 1 ) is equal to ⁇ V / ⁇ T.
  • thermoelectric conversion element 10 In the thermoelectric conversion element 10 according to the first embodiment, the parameters for calculating the absolute value
  • the carrier concentration n can be uniquely determined by the specific Al molar fraction X.
  • the value of the carrier concentration n obtained experimentally includes a non-negligible displacement. This means that the experiment includes various factors such as dislocations and surface states. Therefore, it is impractical to calculate the carrier concentration directly.
  • thermoelectric conversion element 10 (Relationship between Seebeck coefficient S and carrier concentration n)
  • the relationship between the Seebeck coefficient S and the carrier concentration n is expressed as shown in FIG.
  • FIG. 8 shows the relationship between the absolute value
  • 2DEG represents the absolute value of the Seebeck coefficient S for the AlGaN / GaN-based sample used in the experiment.
  • film-GaN represents the absolute value of Seebeck coefficient S of bulk GaN published in Non-Patent Document 10 as a comparative example.
  • 2DEG of the Seebeck coefficient S is substantially larger than the value of
  • increasing tendency of the 2DEG, level density of the physical theory Fermi level E F electrons in the vicinity (DOS: density of states) is described as increased by the quantum size effect of the energy differential value of The That is, S ⁇ [dDOS (E) / dE] E-EF is established.
  • the quantum size effect of the thin film GaN is assumed to occur at a thickness of about 20 nm to about 30 nm or less.
  • the thickness t 2D Is well within this range.
  • the Seebeck coefficient S is such that the carrier concentration n is greater than about 3.5 ⁇ 10 19 cm ⁇ 3 and the carrier concentration n Despite the increase, the V-shaped recovery characteristic of increasing from 170 ( ⁇ V ⁇ K ⁇ 1 ) to 300 ( ⁇ V ⁇ K ⁇ 1 ) is shown.
  • thermoelectric conversion element 10 In the thermoelectric conversion element 10 according to the first embodiment, the 2DEG confined in the triangular potential as shown in FIG. 1 increases the carrier concentration n of the absolute value
  • the second assumption includes the assumption of simplification of the electron scattering mechanism.
  • Polar optical (PO) phonon scattering and acoustic (AC) acoustic phonon scattering are the main electron scattering mechanisms in GaN.
  • Equation (5) The inverse relaxation time 1 / ⁇ of PO phonon scattering is expressed as a function of perturbation intensity instead of electron energy.
  • x j appearing in the equation (5) is expressed as a j-th power term of a series developed as a function of the energy of the electron having the inverse relaxation time 1 / ⁇ . This means that equation (5) does not deal with the effects of PO phonons, and the Seebeck coefficient S theoretical calculation only deals with AC phonon scattering.
  • the reduced Fermi energy ⁇ i * in the equation (4) is a factor related to the carrier concentration n and is not affected by the scattering mechanism.
  • “E F -E i ” of each Al X Ga 1-X N / GaN sample is calculated by TCAD simulation.
  • 2DEG is represented by a broken line in a circle plot in FIG. On the horizontal axis in FIG. 8, the averaged carrier concentration n bar is used as the carrier concentration n.
  • 2DEG and the carrier concentration n can be qualitatively reproduced for a carrier concentration n of about 2 ⁇ 10 19 cm ⁇ 3 or more.
  • the value of the carrier concentration n of about 2 ⁇ 10 19 cm ⁇ 3 corresponds to the averaged carrier concentration bar n of the Al 0.2 Ga 0.8 N / GaN sample.
  • Equation (5) The function F j ( ⁇ i * ) in equation (5) can be approximated by exp ( ⁇ i * ) using an asymptotic extension to the Fermi-Dirac integral in a non-degenerate semiconductor, “F 1 ( ⁇ 1 * ) / F 0 ( ⁇ 1 * )” can be fixed to 1. Further, “E F ⁇ E 0 ” can be calculated by TCAD simulation under the same condition as that for calculating the above t 2D . As a result, the absolute value
  • thermoelectric conversion elements are limited by material selection. That is, the thermoelectric properties of the bulk material are theoretically determined by a factor depending on the material, that is, the electric conductivity ⁇ and the Seebeck coefficient S. As shown in the equations (2) and (3), when the carrier concentration n is increased, there is a common trade-off relationship depending on the material that the Seebeck coefficient S decreases although the electrical conductivity ⁇ increases.
  • thermoelectric conversion element 10 in the region where the carrier concentration n of the 2DEG layer at the AlGaN / GaN heterostructure interface is relatively high, the carrier concentration When n is increased, the electrical conductivity ⁇ increases, but the characteristic that the Seebeck coefficient S decreases disappears, and a characteristic of V-shaped recovery is obtained.
  • the Seebeck coefficient S is a carrier concentration n when the carrier concentration n is about 3.5 ⁇ 10 19 cm ⁇ 3 or more.
  • the characteristic that the Seebeck coefficient S decreases disappears, and a characteristic of V-shaped recovery is obtained.
  • thermoelectric conversion element 10 (Relationship between dimensionless figure of merit ZT and carrier concentration n)
  • the relationship between the dimensionless figure of merit ZT at 300K and the carrier concentration n is expressed as shown in FIG.
  • the thermal conductivity ⁇ of GaN is maintained at 120 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the AlGaN / GaN heterostructure is intentionally undoped, and most regions of the device excluding the 2DEG layer having a thickness of 10 nm or less are substantially free from electrons. This is because it is equivalent to a bulk material.
  • the 2DEG layer thickness t 2D can be obtained by calculation.
  • the dimensionless figure of merit ZT of bulk GaN is 0.002. Therefore, in the thermoelectric conversion element 10 according to the first embodiment, the dimensionless figure of merit ZT at 300K has an improvement effect of 70 times.
  • V-shaped recovery characteristics If it is described in terms of the amount of polarization and the carrier concentration n, it will be a value only for the GaN-based material, so the theoretical characteristics will be described in consideration of application in other material systems.
  • the quantum effect occurs, so that the Fermi energy becomes higher than the ground level of the quantum level in the energy band, and represents the Seebeck coefficient S i (6) )
  • the reduced Fermi energy ⁇ i * is calculated from the Fermi-Dirac distribution function (A + 5/2) F A + 3/2 ( ⁇ i * ) / (A + 3/2) F A + 1/2 ( ⁇ i * ), that is, (A + 5/2) F A + 3/2 ( ⁇ i * ) / (A + 3/2) F A + 1/2 ( ⁇ i * ) becomes a negative value. Then V-shape recovery of the Seebeck coefficient occurs.
  • S i k B / e ⁇ [(A + 5/2) F A + 3/2 ( ⁇ i *) / (A + 3/2) F A + 1/2 ( ⁇ i *) - ⁇ i *] (6)
  • the relationship between the equations (4) and (5) is established similarly.
  • the quantum effect is said to occur at about twice the exciton Bohr radius determined by the effective mass.
  • the quantum effect occurs at 20 nm-30 nm or less.
  • the Al molar fraction X needs to be 0.2 or more and the carrier concentration needs to be 2 ⁇ 10 19 cm ⁇ 3 or more.
  • thermoelectric conversion element 10 can be easily formed by a film laminated structure, and a superlattice structure or a phonon crystal having a low thermal conductivity ⁇ can be applied.
  • the electrical polarization discontinuity structure showing the V-shaped recovery performance and the superlattice structure or phonon crystal having a low thermal conductivity ⁇ are fused to obtain a relatively high dimensionless performance.
  • a thermoelectric conversion element having an index ZT can be provided.
  • thermoelectric conversion element that can be stacked with a high electric conductivity is provided. it can.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but also can be stacked.
  • the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ is solved, and a thermoelectric conversion element that achieves a high dimensionless figure of merit ZT is provided. it can.
  • thermoelectric conversion element that further improves electric conductivity ⁇ by forming both n-type and p-type in one element Can be provided.
  • thermoelectric conversion element 10 (Structure with one electrically conductive layer)
  • FIG. 10A The schematic cross-sectional structure of the thermoelectric conversion element 10 according to the second embodiment is expressed as shown in FIG. 10A, and the schematic cross-section of the thermoelectric conversion element 10 according to the modification of the second embodiment.
  • the structure is represented as shown in FIG. 10A
  • the thermoelectric conversion element 10 includes a substrate 100, a GaN layer 12 disposed on the substrate 100, a GaN layer 12, and a GaN layer. 12, an AlGaN layer 14 having polarization discontinuity, a 2DEG layer formed at the interface between the GaN layer 12 and the AlGaN layer 14, and a first electrode 16 and a second electrode 18 that are in contact with the 2DEG layer from the side.
  • the substrate 100 may be a sapphire substrate.
  • the GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.
  • the thermoelectric conversion element 10 is disposed on the substrate 100, the GaN layer 12 disposed on the substrate 100, and the GaN layer 12.
  • the substrate 100 may be a sapphire substrate.
  • the GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.
  • a structure composed of an AlGaN layer 14 / GaN layer 12 is fabricated on a sapphire substrate 100, a first electrode 16 and a second electrode 18 such as Ti / Al / Ni / Au are formed, and ohmic is obtained by sintering. Form.
  • AlGaN layer 14 instead of the AlGaN layer 14, an AlN layer or an AlInN layer may be used.
  • a ferroelectric material such as PZT, BiFeO 3, or BaTiO 3 may be used as the polarization material. If the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ⁇ y).
  • thermoelectric conversion element can be provided.
  • thermoelectric conversion element can be provided.
  • thermoelectric conversion element that can be improved can be provided.
  • thermoelectric conversion element 10 (Structure with one electrically conductive layer with continuous polarization material) A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the third embodiment is expressed as shown in FIG.
  • the thermoelectric conversion element 10 includes a silicon substrate 8, an AlN layer 13 disposed on the silicon substrate 8, and an interface between the silicon substrate 8 and the AlN layer 13.
  • a 2DEG layer to be formed and an AlGaN layer 14 disposed on the AlN layer 13 are provided.
  • the first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided.
  • the first electrode 16 and the second electrode 8 disposed on the AlGaN layer 14 may be provided.
  • a layer mainly responsible for electrical conduction cannot be formed at the interface of the AlGaN layer 14 / GaN layer 12, A 2DEG layer is formed at the AlN layer 13 / Si interface.
  • first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A).
  • the first electrode 16 and the second electrode 18 disposed on the AlGaN layer 14 may be provided.
  • a structure composed of an AlGaN layer 14 / AlN layer 13 is formed on a silicon substrate 8, a first electrode 16 and a second electrode 18 such as Ti / Al / Ni / Au are formed, and ohmic is obtained by sintering. Form.
  • AlInN layer or the like may be used instead of the AlGaN layer 14.
  • a ferroelectric material such as PZT, BiFeO 3, or BaTiO 3 may be used as the polarization material. If that is the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ⁇ y).
  • thermoelectric conversion element can be provided.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S.
  • the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ is solved, and a high dimensionless figure of merit ZT is achieved.
  • a thermoelectric conversion element can be provided.
  • thermoelectric conversion element that can be improved can be provided.
  • thermoelectric conversion element 10 (Laminated structure with two or more electrically conductive layers) A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the fourth embodiment is expressed as shown in FIG.
  • thermoelectric conversion element 10 As shown in FIG. 12, a pair of a GaN layer and an AlGaN layer is multilayered.
  • a GaN layer 12 1, and the AlGaN layer 14 1 disposed on the GaN layer 12 1 is disposed on the AlGaN layer 14 1 that the GaN layer 12 2, the AlGaN layer 14 2 disposed on the GaN layer 12 2, the GaN layer 12 3 is disposed on the AlGaN layer 14 2, AlGaN layer 14 3 is disposed on the GaN layer 12 3
  • AlGaN layer 14 3 is disposed on the GaN layer 12 3
  • 2DEG layer is formed at the interface between the GaN layer 12 1 ⁇ AlGaN layer 14 1, AlGaN layer 14 1 and the two-dimensional hole gas at the interface between the GaN layer 12 2 (2DHG: Two Dimensional Hole Gas) layer It is formed.
  • a 2DEG layer is formed at the interface between the GaN layer 12 2 and the AlGaN layer 14 2 , the interface between the GaN layer 12 3 and the AlGaN layer 14 3, and the interface between the GaN layer 12 4 and the AlGaN layer 14 4 .
  • GaN layer 12 1 is formed on a substrate such as a sapphire substrate.
  • first electrode 16E and the second electrode 18E that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A). Moreover, you may provide the 1st electrode 16H and the 2nd electrode 18H which contact a 2DHG layer from a side surface.
  • the electrical conductivity ⁇ can be increased.
  • both 2DEG layers and 2DHG layers can be formed, so that both p-type and n-type thermoelectric conversion elements can be formed with one element.
  • thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN.
  • thermoelectric conversion element having a laminated structure in which they are combined such as AlGaN / GaN / AlInN / GaN /.../ substrate.
  • a laminated structure can be formed by spin coating or sol-gel method.
  • thermoelectric conversion element that can be stacked with high electric conductivity can be provided.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked.
  • a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ and realizes a high dimensionless figure of merit ZT. .
  • thermoelectric conversion element that further improves electric conductivity ⁇ is provided by forming both n-type and p-type in one element. Can do.
  • thermoelectric conversion element 10 A schematic cross-sectional structure of a thermoelectric conversion element 10 according to the fifth embodiment is expressed as shown in FIG.
  • a GaN layer 12 1, and the AlGaN layer 14 1 disposed on the GaN layer 12 1 is disposed on the AlGaN layer 14 1 that the GaN layer 12 2, the AlGaN layer 14 2 disposed on the GaN layer 12 2, the GaN layer 12 3 is disposed on the AlGaN layer 14 2, AlGaN layer 14 3 is disposed on the GaN layer 12 3
  • AlGaN layer 14 3 is disposed on the GaN layer 12 3
  • a 2DEG layer is formed at the interface between the GaN layer 12 1 and the AlGaN layer 14 1 .
  • a 2DEG layer is formed at the interface between the GaN layer 12 2 and the AlGaN layer 14 2 , the interface between the GaN layer 12 3 and the AlGaN layer 14 3, and the interface between the GaN layer 12 4 and the AlGaN layer 14 4 .
  • first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A).
  • GaN layer 12 1 is formed on a substrate such as a sapphire substrate.
  • thermoelectric conversion element that can be stacked with high electric conductivity can be provided.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked.
  • a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ and realizes a high dimensionless figure of merit ZT. .
  • thermoelectric conversion element that further improves the electrical conductivity ⁇ is provided by forming both n-type and p-type in one element. Can do.
  • thermoelectric conversion element 10 A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the sixth embodiment is expressed as shown in FIG.
  • the thermoelectric conversion element 10 includes a first polarization material P1 layer 20 1 and a second material B layer 20B disposed on the first polarization material P1 layer 20 1.
  • the first polarization material P1 layer disposed on the second material B layer 20B layer 20B comprising 20 1 and the 2DHG layer formed at the interface between the second material B layers 20B, and the third materials a layer 20A and the 2DEG layer formed at the interface between the second polarization material P2 layer 20 2.
  • the first polarization material P1 layer 20 1 and the second polarization material P2 layer 20 2 may use a ferroelectric material such as PZT, BiFeO 3 or BaTiO 3 . Further, if the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ⁇ y).
  • the second material B layer 20B and the third material A layer 20A may be an AlGaN layer or a GaN layer.
  • the first polarization material P1 layer 20 1, the second material B layer 20B is, if the polarization discontinuity occurs, as Al x Ga 1-x N / Al y Ga 1-y N (x ⁇ y) Also, a combination of materials having different compositions may be used.
  • the third material A layer 20A ⁇ second polarization material P2 layer 20 2 if the polarization discontinuity occurs, Al x Ga 1-x N / Al y Ga 1-y N in (x ⁇ y)
  • a combination of materials having different compositions may be used.
  • thermoelectric conversion element that can be stacked with high electrical conductivity can be provided.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked.
  • a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ and realizes a high dimensionless figure of merit ZT. .
  • thermoelectric conversion element that further improves the electrical conductivity ⁇ is provided by forming both n-type and p-type in one element. Can do.
  • thermoelectric conversion elements according to the first to sixth embodiments mainly have a structure in which they are stacked on a substrate in a direction perpendicular to the substrate.
  • the structure is not necessarily limited to a structure in which the substrate is stacked in the vertical direction.
  • thermoelectric conversion element according to the seventh embodiment is expressed as shown in FIG.
  • thermoelectric conversion element As shown in FIG. 15, the thermoelectric conversion element according to the seventh embodiment is disposed on the substrate 100, the GaN layer 12 patterned on the substrate 100, and the substrate 100 between the GaN layers 12. It comprises a layer 12 and a material layer (14) where polarization discontinuities occur.
  • the substrate 100 may be a sapphire substrate.
  • the material layer (14) in which polarization discontinuity occurs with the GaN layer 12 may be the AlGaN layer 14.
  • a 2DEG layer may be formed at the interface between the GaN layer 12 and the AlGaN layer 14.
  • the GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.
  • thermoelectric conversion element a schematic cross-sectional structure showing a step of preparing the sapphire substrate 100 is expressed as shown in FIG.
  • a schematic cross-sectional structure showing the process of forming the GaN layer 12 is represented as shown in FIG. 16B, and a schematic cross-sectional structure showing the process of etching the GaN layer 12 is shown in FIG. 16C.
  • a schematic cross-sectional structure showing the step of forming the AlGaN layer 14 on the sapphire substrate sandwiched between the GaN layers 12 is expressed as shown in FIG.
  • the manufacturing method of the thermoelectric conversion element according to the seventh embodiment includes a step of preparing the substrate 100 on which the first material layer 12 and the second material layer 14 are formed, and the first material layer 12 and the second material layer 14.
  • the manufacturing method of the thermoelectric conversion element which concerns on 7th Embodiment prepares the board
  • thermoelectric conversion element according to the seventh embodiment will be described with reference to FIGS. 16 (a) to 16 (d).
  • the GaN layer is etched using a resist, SiO 2 or the like as a mask.
  • a material having polarization discontinuity with the GaN layer 12 is formed in an etched region perpendicular to the formed stripe pattern and horizontal to the sapphire substrate 100.
  • an AlGaN layer 14 may be formed on the m-plane GaN layer 12 as shown in FIG.
  • a plurality of 2DEG layers can be formed at the interface between the m-plane GaN layer 12 and the AlGaN layer 14 as shown in FIG.
  • PZT is formed on Pt by a sol-gel method or the like, a line and space structure is formed by a lithography method, PZT is etched using the resist as a mask, and the resist is peeled off. Thereafter, a method of forming a material in which polarization discontinuity occurs in a region where PZT is etched may be used.
  • spin coating or sol-gel method there is also an advantage that the process is simple. When spin coating or sol-gel method is used, different materials can be stacked in the direction perpendicular to the substrate, and n-type / p-type can be stacked in the direction perpendicular to the substrate surface.
  • thermoelectric conversion element that can be stacked with high electric conductivity can be provided.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked.
  • a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ and realizes a high dimensionless figure of merit ZT. .
  • thermoelectric conversion element that further improves the electric conductivity ⁇ is provided by forming both n-type and p-type in one element. Can do.
  • thermoelectric generator can be provided by using the thermoelectric conversion elements according to the first to seventh embodiments. It is also possible to provide a thermoelectric generator capable of increasing the output by connecting a plurality of thermoelectric conversion elements according to the first to seventh embodiments in series.
  • thermoelectric generator 400A An explanatory diagram of the operation principle of the thermoelectric generator 400A according to the basic technology is expressed as shown in FIG. 17A, and the output current I O -output voltage V O characteristic example of the thermoelectric generator 400A at the temperature change ⁇ T is It is expressed as shown in FIG. 17A
  • the thermoelectric generator 400A includes a coupling electrode 30 disposed on the high temperature (temperature T h ) side and an n-side electrode 32 disposed on the low temperature (temperature T c ) side.
  • N-type semiconductor 28 disposed between the p-type semiconductor 26 disposed between the coupling electrode 30 disposed on the high temperature side and the p-side electrode 34 disposed on the low-temperature side, and the n-side electrode 32.
  • a load 36 connected between the p-side electrode 34.
  • the electrons (e) in the n-type semiconductor 28 are conducted in the direction from the coupling electrode 30 disposed on the high temperature side to the n-side electrode 32 disposed on the low temperature side, as indicated by an arrow, and in the p-type semiconductor 26.
  • the holes (h) are conducted in the direction from the coupling electrode 30 disposed on the high temperature side to the p-side electrode 34 disposed on the low temperature side, as indicated by an arrow.
  • the temperature difference ⁇ T T h ⁇ T c .
  • the current I is conducted in the direction indicated by the arrow through the load 36, the n-type semiconductor 28, and the p-type semiconductor 26 connected in series in circuit.
  • the operating point is determined by the intersection of the load characteristic determined by the load 36 and the conduction current I and the TEG 10 output current I O -output voltage V O characteristic example at the temperature change ⁇ T shown in FIG.
  • thermoelectric generator 400A is a schematic configuration example of the thermoelectric generator 400A according to the basic technology, and an example including the heat sink 38 on the low temperature side and the heat exchanger 40 on the high temperature side is expressed as shown in FIG. Further, a high temperature side heat transfer member 44 is disposed between the coupling electrode 30 and the heat exchanger 40, and a low temperature side heat transfer member 42 is disposed between the n side electrode 32 and the p side electrode 34 and the heat sink 38. Also good. By coupling the load 36 between the n-side electrode 32 and the p-side electrode 34 via the wiring 45, the current I is conducted to the load 36 in the direction indicated by the arrow.
  • thermoelectric power generation apparatus 400A is a schematic configuration of the thermoelectric power generation apparatus 400A according to the basic technology, and an example in which a plurality of thermoelectric conversion elements are arranged in series is expressed as shown in FIG.
  • Thermoelectric generator 400A according to the basic technique, as shown in FIG. 19, a high temperature (temperature T h) a plurality of coupling electrodes 30 1 ⁇ 30 2 ⁇ ... ⁇ 30 n and low temperature is disposed in the side (temperature T c) side a plurality of n-side electrodes 32 1, 32 2, ..., 32 a plurality of n-type semiconductor 28 disposed between the n 1-28 2, ..., 28 n arranged in a plurality arranged in a high temperature side a plurality of p-type semiconductor 26 1-disposed between the coupling electrode 30 1 ⁇ 30 2 ⁇ ... ⁇ 30 n and a plurality of p-side electrode 34 1 ⁇ 34 2 ⁇ ...
  • ⁇ 34 n disposed on the low temperature side 26 comprises 2, ..., and 26 n, and a load 36 connected between the n-side electrode 32 n and p-side electrode 34 1.
  • the electrodes (32 1 , 34 2 ), (32 2 , 34 3 ),..., (32 n ⁇ 1 , 34 n ) arranged adjacent to each other on the low temperature side are connected as a common electrode.
  • the temperature difference ⁇ T T h ⁇ T c .
  • the circuit in series connected load 36 ⁇ n-type semiconductor 28 1 ⁇ 28 2 ⁇ ... ⁇ 28 n ⁇ p -type semiconductor 26 1 ⁇ 26 2 ⁇ ... ⁇ 26 n, in the direction indicated by the arrow Current I is conducted.
  • thermoelectric power generation apparatus 400A can increase the withstand voltage of the thermoelectric conversion module by arranging a plurality of TEGs in series. Also, it is possible to increase the amount of current and output by parallelizing the serial arrangement arrangement.
  • thermoelectric conversion devices using the thermoelectric conversion elements according to the first to seventh embodiments can convert the thermal energy accompanying the temperature difference between the first electrode 12 and the second electrode 14 into electrical energy.
  • the electric energy generated by applying a current between the first electrode and the second electrode can be converted into a temperature difference. Therefore, a Peltier device can be provided using the thermoelectric conversion elements according to the first to seventh embodiments.
  • thermoelectric conversion elements capable of producing a high temperature difference by connecting a plurality of thermoelectric conversion elements according to the first to seventh embodiments in series.
  • thermoelectric generator 400 In the thermoelectric generator 400 according to the eighth embodiment, a schematic upper surface configuration is represented as shown in FIG. 20 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 20 (b). Is done.
  • thermoelectric generator 400 includes a plurality of layers having a laminated structure having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.
  • thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the eighth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 20 (a) and 20 (b). and GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 1 C disposed above, AlGaN layer 14 1 a ⁇ 14 1 B ⁇ 14 1 disposed on the GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A ⁇ 14 2 B ⁇ 14 2 C disposed on the substrate.
  • first electrodes 16A, 16B, and 16C and second electrodes 18A, 18B, and 18C that are arranged on the side wall portion of the laminated structure and are in ohmic contact with the 2DEG layer.
  • the first electrodes 16A, 16B, and 16C and the second electrodes 18A, 18B, and 18C are not in ohmic contact with the 2DHG layer at the side wall portion, and are in Schottky contact, for example.
  • the carriers that contribute to the conduction of the thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the eighth embodiment are electrons that conduct the 2DEG layer.
  • thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.
  • thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate.
  • the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity ⁇ can be increased.
  • thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.
  • thermoelectric conversion element having a laminated structure in which they are combined such as AlGaN / GaN / AlInN / GaN /... / Substrate may be applied.
  • thermoelectric power generator capable of increasing output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.
  • thermoelectric generator 400 In the thermoelectric generator 400 according to the ninth embodiment, a schematic top surface configuration is represented as shown in FIG. 21 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 21 (b). Is done.
  • thermoelectric generator 400 includes a plurality of laminated structures having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.
  • Thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the ninth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 21 (a) and 21 (b). and GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 1 C disposed above, AlGaN layer 14 1 a ⁇ 14 1 B ⁇ 14 1 disposed on the GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A ⁇ 14 2 B ⁇ 14 2 C disposed on the substrate.
  • first electrodes 16AE, 16BE, and 16CE and the second electrodes 18AE, 18BE, and 18CE that are disposed on the side wall portion of the stacked structure and are in ohmic contact with the 2DEG layer on the side wall portion, and the first electrode that is in ohmic contact with the 2DHG layer on the side wall portion.
  • Electrodes 16AH, 16BH, and 16CH and second electrodes 18AH, 18BH, and 18CH are provided. For this reason, carriers that contribute to the conduction of the thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric generator 400 according to the ninth embodiment are electrons that conduct the 2DEG layer and holes that conduct the 2DHG. .
  • a coupling electrode 30BC that couples 16CHs and a main electrode 32C coupled to the second electrodes 18CE and 18CH are provided.
  • thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.
  • thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate.
  • the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity ⁇ can be increased.
  • thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.
  • thermoelectric conversion element having a laminated structure in which they are combined such as AlGaN / GaN / AlInN / GaN /... / Substrate may be applied.
  • thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the ninth embodiment can form both the 2DEG layer and the 2DHG layer, and can contribute to both conduction. Therefore, both p-type and n-type thermoelectric conversion elements can be formed with one element.
  • thermoelectric power generator capable of increasing output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.
  • thermoelectric generator 400 In the thermoelectric generator 400 according to the tenth embodiment, a schematic upper surface configuration is represented as shown in FIG. 22 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 22 (b). Is done.
  • the thermoelectric power generation apparatus 400 includes a plurality of laminated structures having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.
  • thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the tenth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 22 (a) and 22 (b). and GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 1 C disposed above, AlGaN layer 14 1 a ⁇ 14 1 B ⁇ 14 1 disposed on the GaN layer 12 1 a ⁇ 12 1 B ⁇ 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A ⁇ 14 2 B ⁇ 14 2 C disposed on the substrate.
  • first electrodes 16AE and 16CE and the second electrodes 18AE and 18CE that are disposed on the side wall portion of the stacked structure and are in ohmic contact with the 2DEG layer on the side wall portion, the first electrode 16BH and the second electrode that are in ohmic contact with the 2DHG layer on the side wall portion 2 electrodes 18BH.
  • first electrodes 16AE and 16CE and the second electrodes 18AE and 18CE are not in ohmic contact with the 2DHG layer at the side wall portion, and are in Schottky contact, for example.
  • the first electrode 16BH and the second electrode 18BH are not in ohmic contact with the 2DEG layer at the side wall portion, and are in Schottky contact, for example.
  • the carriers that contribute to the conduction of the thermoelectric conversion elements 10A and 10C applied to the thermoelectric power generation apparatus 400 according to the tenth embodiment are electrons that conduct the 2DEG layer, and contribute to the conduction of the thermoelectric conversion element 10B.
  • the carriers to be carried are holes that conduct through the 2DHG layer.
  • a main electrode 32A coupled to the first electrode 16AE, a coupling electrode 30AB coupling the second electrode 18AE and the second electrode 18BH, and a coupling electrode 30BC coupling the first electrode 16BH and the first electrode 16CE And a main electrode 32C coupled to the second electrode 18CE.
  • thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.
  • thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate.
  • the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity ⁇ can be increased.
  • thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.
  • thermoelectric conversion element having a laminated structure in which they are combined such as AlGaN / GaN / AlInN / GaN /... / Substrate may be applied.
  • thermoelectric power generator capable of increasing the output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.
  • the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases can be solved as well as stacked by using the V-shaped recovery phenomenon of the Seebeck coefficient S.
  • the trade-off between the Seebeck coefficient S and the electrical conductivity ⁇ is also solved, and a thermoelectric conversion element that achieves a high dimensionless figure of merit ZT and the thermoelectric conversion element are used.
  • the thermoelectric power generation apparatus that has been provided can be provided.
  • thermoelectric conversion element that further improves electric conductivity ⁇ by forming both n-type and p-type in one element, and this A thermoelectric power generator using a thermoelectric conversion element can be provided.
  • thermoelectric conversion element that can be stacked with high electrical conductivity and A thermoelectric generator and a Peltier device using this thermoelectric conversion element can be provided.
  • the present embodiment includes various embodiments that are not described here.
  • thermoelectric conversion element and thermoelectric power generation apparatus of the present embodiment are applied to an apparatus and system that efficiently supplies energy generated by a thermoelectric conversion element such as a thermoelectric power generation system, and are used in mobile devices, in-vehicle devices, industrial devices, medical devices, and the like. Applicable to a wide range of fields.
  • a thermoelectric conversion element such as a thermoelectric power generation system
  • the Peltier device to which the thermoelectric conversion element according to the present embodiment is applied it is applied to a device and a system that efficiently convert input energy into a temperature difference, such as a mobile device, an in-vehicle device, an industrial device, and a medical device. Applicable to a wide range of fields.
  • thermoelectric generator 300 heat sink 300 ... heater 400A, 400 ... thermoelectric generator ⁇ T ... temperature change (temperature difference) I O ... output current V O ... output voltage ⁇ ... mobility n ... carrier concentration ⁇ ... electrical conductivity S ... Seebeck coefficient ZT ... dimensionless figure of merit ⁇ ... thermal conductivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)

Abstract

熱電変換素子(10)は、材料層(12)と、材料層(12)に接触して配置された材料層(14)と、材料層(12)および材料層(14)と電気的に接続された電極(161・162)と、材料層(12・14)に電気的に接続され、電極(161・162)と離間して形成された電極(181・182)とを備え、材料層(12・14)界面には、材料層(12・14)間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、電極(161・162)および電極(181・182)は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、材料層(12・14)界面における電気分極の差は、電気伝導層のゼーベック係数Sが還元フェルミエネルギーζの増加に応じて増加する。ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供する。

Description

熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置
 本実施の形態は、熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置に関する。
 近年、地球規模での環境問題や資源問題から省エネ化やエネルギー利用の効率化は、人類の生活において重要な課題となっている。その全てのエネルギーは最終的には熱に変わることを考えると、熱として捨てられていたエネルギーを再利用できる熱電発電は、究極のエネルギーリサイクルと言える。そのため、熱電変換の性能を上げる技術開発や研究が進められている。
 ここで、わずかに、BiTe系材料を用いた熱電変換素子が産業化されている(例えば、特許文献1参照。)。BiTe系における性能の向上の例として、材料における熱伝導率κを小さくする手法が多く用いられている(例えば、非特許文献1参照。)。ここでは、材料中の多結晶のグレインサイズを小さくすることにより、フォノン散乱を増やすことで、熱の伝わりを小さくしている技術が報告されている。
 その他、スクッテルダイト化合物(例えば、非特許文献2参照)や層状マテリアル(例えば、非特許文献3および非特許文献4参照)を用いた材料開発も行われているが、特性が悪いか若しくは特性が良くても作製が困難であり、まだ基礎研究段階の報告などのために産業化には至っていない。
 一般的なBiTe系熱電変換素子は、レアメタルであるTeを含有し、Teは単体で毒性を有することが知られている。また、BiTeが動作できる一般的な使用温度は200℃程度までと低く、さらに高温での使用には適さない。また、大きなサイズの結晶を作ることが困難であるため、高温側と低温側の距離が近く、温度差を付けにくいという課題もある。また熱電変換素子はn型材料とp型材料の2種類を組み合わせて作られるため、それぞれの材料における熱膨張係数が同程度である必要がある。
 その他には、HicksとDresselhausによって提唱された『構造の次元を小さくする』ことで無次元性能指数ZTの向上を図る報告が非特許文献5に開示されている。これは構造の低次元化によってフォノン散乱を増大させ、熱伝導率を低減させる手法である。同様に、一次元構造を有するナノワイヤなどが開示されている(例えば、非特許文献6参照。)。しかし、ナノワイヤは、フォノン散乱増大による熱伝導率低減効果により特性は飛躍的に向上するものの、それ自体のハンドリングが難しく、デバイス化には向いていない。
 産業化しやすい低次元構造からのアプローチには、コントロールしやすい二次元構造からのアプローチがある。二次元構造における熱伝導率κの低減のアプローチは、量子井戸構造のPbTe/PbEuTe(非特許文献5)や超格子構造のBi2Te3/Sb2Te3(非特許文献7)、PbSeTe/PbTe(非特許文献8)、GaN/AlN/AlGaN(非特許文献9)などが開示されている。また、バルクGaNのゼーベック係数は、非特許文献10に開示されている。
特開平03-16281号公報 特開2009-117430号公報
Bed Poudel et al.,"High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science 320,634(2008). B.C.Sales et al.,"Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials", Science 272,1325(1996). Li-Dong Zhao et al.,"Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", Nature 508,373(2014). S.Ishiwata et al.,"Extremely high electron mobility in a phonon-glass semimetal", Nature Mater.12,512(2013). L.D.Hicks et al.,"Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit", Phys.Rev.B 53,R10493(1996). Allon I. Hochbaum et al.,"Enhanced thermoelectric performance of rough silicon nanowires",Nature 451,163(2007). Rama Venkatasubramanian et al.,"Thin-film thermoelectric devices with high room-temperature figures of merit",Nature413,597(2001). T.C.Harman et al.,"Quantum Dot Superlattice Thermoelectric Materials and Devices",Science 297,2229(2002). Alexander Sztein et al.,"Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties",Appl. Phys.Lett.104,042106(2014). B. Kucukgok, B. Wang, A. G. Melton, N. Lu, I. T. Ferguson, "Comparison of thermoelectric properties of GaN and ZnO samples",Phys.Stat. Sol.C11, No.3-4,894-897 (2014).
 しかし、これらの低次元系材料でもTeが使われている、若しくは効率が低いなどの課題がある。
 一方で、Hicksと Dresselhausによって提唱された構造の次元を小さくした際に起きるもう一つの現象としてゼーベック係数Sの増大が非特許文献5などに開示されている。これは、電子を量子井戸ポテンシャルに閉じ込めることで、電子の状態密度が離散的になり、バルク状態よりもゼーベック係数Sが大きくなる現象である。しかし、この量子井戸におけるゼーベック係数Sは、バルクの同じキャリア濃度におけるゼーベック係数Sと比べると増大はしているものの、キャリア濃度が増えるに従い、ゼーベック係数Sが小さくなるトレードオフの関係は変わらない。
 このトレードオフを打開する手法として、SrTiO3を用いた熱電変換素子が特許文献2に開示されている。これは、SrTiO3上に12CaO・7Al23などからなる絶縁膜を形成し、金属-絶縁物-半導体(MISFET:Metal-Insulator-Semiconductor Field Effect Transistor)のようにゲートバイアスを印加し、キャリアを誘起することで2次元電子ガス(2DEG:Two Dimensional Electron Gas)層を形成させている。SrTiO3の2DEGにおいては、100MV・cm-1以上という高い電界をかけることで、1014cm-2後半という非常に高い密度の電子を約2nmという膜厚に閉じ込めることで、ゼーベック係数SのV字回復が起こると開示されている。非特許文献5.7、8、9においては、ゼーベック係数SのV字回復は開示されていない。
 バルク材料での、ゼーベック係数Sと電気伝導率σはキャリア濃度に対して、トレードオフの関係にある。そのため、電気伝導率σを上げるためにキャリア濃度nを増やすとゼーベック係数Sが小さくなる。逆にゼーベック係数Sを大きくしようとするとキャリア濃度nを下げなければならず、結果的に電気伝導率σが低くなってしまう課題がある。
 それを打開するための手法として、SrTiO3にゲートバイアスを印加することで形成した2DEGにおいてキャリア濃度の増加(印加バイアスを増やす)に伴い、ゼーベック係数SがV字回復することが特許文献2に開示されている。しかしながら、このゲート構造を有したSrTiO3の材料系では、積層することが非常に困難なために、電気伝導率σを高くできずに、ゼーベック係数Sと電気伝導率σのトレードオフを解決できない課題がある。
 本実施の形態は、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびその製造方法、およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供する。
 本実施の形態の一態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が還元フェルミエネルギーの増加に応じて増加するような関係に設定されている熱電変換素子が提供される。
 本実施の形態の他の態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されている熱電変換素子が提供される。
 本実施の形態の他の態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層の無次元性能指数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されている熱電変換素子が提供される。
 本実施の形態の他の態様によれば、上記の熱電変換素子を備える熱電発電装置が提供される。
 本実施の形態の他の態様によれば、上記の熱電変換素子を備えるペルチェ装置が提供される。
 本実施の形態の他の態様によれば、第1材料層と第2材料層を形成する基板を準備する工程と、前記第1材料層と前記第2材料層を形成する基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程とを有する熱電変換素子の製造方法が提供される。
 本実施の形態の他の態様によれば、第1材料層と第2材料層を形成する基板を準備する工程と、前記第1材料層と前記第2材料層を形成する基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程とを有する熱電変換素子の製造方法が提供される。
 本実施の形態によれば、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびその製造方法、およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供することができる。
第1の実施の形態に係る熱電変換素子の模式的断面構造と、2DEG近傍における計算されたエネルギーバンド図。 第1の実施の形態に係る熱電変換素子において、シート電子濃度n(cm-2)および電子の移動度μ(cm2-1-1)を評価するためのホール効果測定用デバイス構成の模式的鳥瞰構造図。 第1の実施の形態に係る熱電変換素子において、Alモル分率Xを変化させたサンプルについて、測定されたシートキャリア濃度n(cm-2)、計算された2DEG層の厚さt2D、計算されたキャリア濃度n(cm-3)を示す図。 第1の実施の形態に係る熱電変換素子において、2DEG層におけるキャリア移動度μおよび電気伝導率σと、キャリア濃度nとの関係を示す図。 第1の実施の形態に係る熱電変換素子をヒートシンク・ヒータ間に配置し、ゼーベック係数Sの測定系を説明する模式的鳥瞰構造図。 第1の実施の形態に係る熱電変換素子において、図3に示されるサンプルD5についての熱電変換特性を示す図。 第1の実施の形態に係る熱電変換素子において、ゼーベック係数Sの絶対値|S|を計算するためのパラメータおよび絶対値|S|の計算結果。 第1の実施の形態に係る熱電変換素子において、ゼーベック係数Sとキャリア濃度nとの関係を示す図。 第1の実施の形態に係る熱電変換素子において、無次元性能指数ZTとキャリア濃度nとの関係を示す図。 (a)第2の実施の形態に係る熱電変換素子の模式的断面構造図、(b)第2の実施の形態の変形例に係る熱電変換素子の模式的断面構造図。 第3の実施の形態に係る熱電変換素子の模式的断面構造図。 第4の実施の形態に係る熱電変換素子の模式的断面構造図。 第5の実施の形態に係る熱電変換素子の模式的断面構造図。 第6の実施の形態に係る熱電変換素子の模式的断面構造図。 第7の実施の形態に係る熱電変換素子の模式的断面構造図。 第7の実施の形態に係る熱電変換素子の製造方法であって、(a)サファイア基板を準備する工程を示す模式的断面構造図、(b)サファイア基板上にGaN層を形成する工程を示す模式的断面構造図、(c)GaN層をエッチングする工程を示す模式的断面構造図、(d)サファイア基板上にAlGaN層を形成する工程を示す模式的断面構造図。 (a)基本技術に係る熱電発電装置の動作原理の説明図、(b)温度変化ΔTにおける熱電発電装置の電流電圧特性。 基本技術に係る熱電発電装置の模式的構成図(低温側にヒートシンク、高温側に熱交換器を備える例)。 基本技術に係る熱電発電装置の模式的構成図(複数の熱電発電装置を直列に配置した例)。 第8の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。 第9の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。 第10の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。
 次に、図面を参照して、本実施の形態を説明する。以下において、同じブロックまたは要素には同じ符号を付して説明の重複を避け、説明を簡略にする。図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の配置などを下記のものに特定するものでない。この実施の形態は、請求の範囲において、種々の変更を加えることができる。
 [第1の実施の形態]
 第1の実施の形態に係る熱電変換素子10の模式的断面構造と、2DEG層近傍における計算されたエネルギーバンド図は、図1に示すように表される。
 また、第1の実施の形態に係る熱電変換素子10において、シート電子濃度n(cm-2)および電子の移動度μ(cm2-1-1)を評価するためのホール効果測定用デバイス構成の模式的鳥瞰構造は、図2に示すように表される。
 第1の実施の形態に係る熱電変換素子10は、図1~図2に示すように、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備える。
 ここで、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層のゼーベック係数Sが還元フェルミエネルギーζの増加に応じて増加するような関係に設定されている。
 第1の実施の形態に係る熱電変換素子10は、第1電極161・162および第2電極間181・182の温度差に伴う熱エネルギーを電気エネルギーに変換可能であり、また、第1電極161・162および第2電極181・182間に電流を印加することによる電気エネルギーを温度差に変換可能である。
 ここで、第1電極161・162および第2電極間181・182の温度差は、例えば、図5に示すように、熱電変換素子10をヒートシンク200・ヒータ300間に配置することによって得ることができる。
 ここで、第2材料層14は、半導体を備えていても良い。
 また、第1材料層12はGaN層を備え、第2材料層14はAlGaN層を備えていても良い。
 また、第1材料層12は、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)を備え、第2材料層14は第1材料層12と組成が異なるAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)を備えていても良い。
 また、第2材料層14はNを含まない材料で形成されていても良い。
 また、第1材料層12は、強誘電体を備えていても良い。
 また、第1材料層12と第2材料層14とによる単位構造体が形成される基板を備え、第1材料層12と第2材料層14の単位構造体は、第1材料層12と第2材料層14との界面と基板の表面とが平行になるように複数層に亘って積層されていても良い。
 また、第1材料層12と第2材料層14とによる単位構造体が形成される基板を備え、第1材料層12と第2材料層14の単位構造体は、第1材料層12と第2材料層14との界面と基板の表面とが垂直になるように複数層に亘って形成されていても良い。
 また、第1材料層12と第2材料層14の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が第1材料層12と第2材料層14に挟まれているという単位構造が繰り返し積層されていても良い。
 また、第1材料層12と第2材料層14を形成する基板は、シリコンを含有していても良い。
 また、第1材料層12と第2材料層14を形成する基板は、サファイアを含有していても良い。
 また、第1電極161・162および第2電極181・182は、電気伝導層に接して形成されていても良い。
 また、第1電極161・162および第2電極181・182は、電気伝導層にオーミック接触されていても良い。
 また、第1電極161・162および第2電極181・182は、第2材料層14に接続されていても良い。
 また、第1電極161・162および第2電極181・182は、同一材料から構成されていても良い。
 また、第1の実施の形態に係る熱電変換素子10は、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備え、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層のゼーベック係数Sが電気伝導層のキャリア濃度nの増加に応じて増加するような関係に設定されていても良い。
 本実施の形態の他の態様によれば、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備え、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層の無次元性能指数ZTが電気伝導層のキャリア濃度nの増加に応じて増加するような関係に設定されていても良い。
 また、第1の実施の形態に係る熱電変換素子10において、電気伝導を主として担う電気伝導層は、2DEG層若しくは2次元正孔ガス(2DHG:Two Dimensional Hole Gas)層、若しくは2DEG層と2DHG層の両方を備えていても良い。
 また、第1の実施の形態に係る熱電変換素子10において、第1電極161・162および第2電極181・182は、同一材料構成の電極であって、電気伝導を主として担う層にオーミック接触している。
 また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14は、互いに電気分極が異なり、第1材料層12と第2材料層14との界面において、電気分極不連続を備えていても良い。
 また、第1の実施の形態に係る熱電変換素子10において、第2材料層14内の電気分極は、図1に示すように、自発分極PSPとピエゾ電界に伴うピエゾ分極PPEとの和(PSP+PPE)で表され、第1材料層12内の電気分極は、自発分極PSPで表され、電気分極不連続を備えている。
 また、第1の実施の形態に係る熱電変換素子10において、熱電変換素子10のゼーベック係数Sは、熱電変換素子10が保持するキャリア濃度の増加に呼応して増加する性能を備えていても良い。
 また、第1の実施の形態に係る熱電変換素子10において、熱電変換素子10のゼーベック係数Sは、2DEG層や2DHG層などの電気伝導を担う層のキャリア濃度nの増加に呼応して増加する性能を備えていても良い。
 また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14は、2DEG層若しくは2DHG層の伝導度変調を目的とするドーピングが実施されていなくても良い。
 また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が第1材料層12と第2材料層14に挟まれているという単位構造が繰り返し積層化されていても良い。
 第1の実施の形態に係る熱電変換素子10においては、ゼーベック係数Sとキャリア濃度nのトレードオフ、およびゼーベック係数Sと電気伝導率σのトレードオフを打ち破る方法として、これまでにない新しいコンセプトである、積層化が可能な分極材料における分極不連続により二次元電気伝導層を形成する。分極材料の分極量を高くすることで、二次元電気伝導層のキャリア濃度を増加させ、それによってゼーベック係数SのV字回復現象を起させることができる。結果として、ゼーベック係数Sと電気伝導率σのトレードオフを解消することができる。
 (熱電変換素子の性能)
 熱電変換素子の無次元性能指数ZTは、

  ZT=S2σ/κ・T                  (1)

で表される。
ここで、Sはゼーベック係数、σは電気伝導率、κは熱伝導率を表す。
 また、一般的に用いられるn型のバルク材料におけるゼーベック係数Sは、

  S=8π2κB 2T/3eh2・m*・(π/3n)2/3      (2)

で、表される。ただし、κB はボルツマン定数、Tは絶対温度、eは電子の電荷素量、hはプランク定数、m*は電子の有効質量、nはキャリア濃度である。
 また、電気伝導率σは、

  σ=neμ                      (3)

 で表される。ただし、μは電子の移動度である。
 熱電変換素子は、ゼーベック係数Sと電気伝導率σが、キャリア濃度nに対してトレードオフの関係にあることが上記の式(1)、式(2)から明らかである。つまり、キャリア濃度nが増えると、ゼーベック係数Sは小さくなることを意味している。また、キャリア濃度nは、熱伝導率κにも影響を及ぼすことから、一般的に熱電変換素子においては、1018~1019(cm-3)のキャリア濃度において最も性能が良くなるとされている。
 本実施の形態に係る熱電変換素子においては、分極効果によって誘導される電子の閉じ込め効果によって、相対的に大きなキャリア濃度nにおいて、ゼーベック係数Sが増大するのみならず、ゼーベック係数Sとキャリア濃度nとの間のトレードオフ関係が破れ、V字回復特性を得ることができる。また、キャリアの増加は、ゲートバイアスによって誘起されるのではなく、分極効果の変化によって、実現されている。
 ゼーベック係数Sとキャリア濃度nとの間のV字回復特性は、第1の実施の形態に係る熱電変換素子における電気的分極不連続構成による典型的な特徴である。
 第1の実施の形態に係る熱電変換素子においては、分極不連続構造を採用し、その結果、ヘテロ接合界面に現れる2DEG構造(若しくは2DHG構造)を分極不連続構造として採用している。しかも、この2DEG構造(若しくは2DHG構造)による分極不連続構成では、不純物ドーピングもゲートバイアスによるキリア誘起も必要としない。
 このような意図的なアンドープのマルチレイヤー構造によって、イオン化不純物散乱を低減することができるのみならず、キャリア移動度μの増大および電気伝導率σの増大を図ることができる。さらに、相対的に非常に薄い2DEG層(若しくは2DHG層)を除き、大部分のデバイス領域を、熱伝導率κの相対的に低い、熱伝導阻止領域とすることができる。
 さらに、第1の実施の形態に係る熱電変換素子は、2DEGヘテロ接合(若しくは2DHGヘテロ接合)の単位構造を容易に拡張し、多層構造に積層化可能であり、相対的に非常に薄い2DEG層に伴う低電気伝導特性を補うことができる。
 したがって、分極不連続構成を備える本実施の形態に係る熱電変換素子は、無次元性能指数ZTを増大すると同時に高電気伝導率σおよび低熱伝導率κ性能を達成することができる。
 したがって、第1の実施の形態に係る熱電変換素子は、優れた熱電変換性能と製造の容易さを併せ持つことができる。
 (材料および形成方法)
 AlXGa1-XN/GaN(0.2<=X<=0.4)は、サファイア基板100上に形成されたGaNテンプレート11上に減圧有機金属気相エピタキシャル成長法(MOCVD:Metal Organic Vapor Phased Epitaxy)を用いて形成した。ここで、成長時の圧力は、例えば、約76Torr、成長温度は、例えば、約1333Kである。
 Gaの形成材料としては、トリメチルガリウム(TMG:Trimethylgallium )、Alの形成材料としては、トリメチルアルミニウム(TMAl:Trimethylaluminum)、Nの形成材料としては、アンモニア(NH3)を用いた。
 (0001)面サファイア基板100上にGaN成長核を形成後、GaNテンプレート11は、厚さ約2μmに形成されている。
 GaNテンプレート11上には、意図的にアンドープのAlXGa1-XN/GaN(0.2<=X<=0.4)ヘテロ構造が形成されている。ここで、結晶成長は、0.23μmol/分の固定されたアンモニアフローで、水素雰囲気中で実施されている。
 GaN成長のためのTMGのフローレートは、32.7μmol/分である。AlXGa1-XN/GaNエピタキシャル成長層のAlモル分率Xは、1.62μmol/分の固定されたTMAlフローで、TMGのフローレートを11.3μmol/分から5.78μmol/分に減少させることによって、適用可能である。
 AlXGa1-XN層14およびGaN層12の厚さは、例えば、それぞれ約30nmおよび約1μmである。
 X線散乱の逆格子空間マッピングにより、Alモル分率Xを求めた。
 また、van der Pauw構成のホール効果測定用として、第1電極161・162と第2電極181・182をAlXGa1-XN層14上に電子ビーム蒸着法により形成後、AlXGa1-XN/GaNヘテロ接合界面の2DEG層にオーミックコンタクトを取るために、例えば、約823K、約10分間アニールする。第1電極161・162と第2電極181・182は、Al/Ti構造(TiとTi上に形成されたAlの2層構造)を有する。ここで、Ti層の厚さは、約20nm、Al層の厚さは、約400nmである。結果として、図2に示すように、四角形状にパター二ング配置された円形の第1電極161・162と第2電極181・182がAlXGa1-XN層14上に形成される。
 次に、リソグラフィー技術と、Cl2とSiCl4の混合ガスを用いた誘導結合プラズマ(ICP:Inductively-Coupled Plasma)エッチング法により、図2に示すように、約3mm×3mm形状にAlXGa1-XN/GaNヘテロ接合からなるメサ形状をGaNテンプレート11上に形成する。Cl2とSiCl4のフローレートは、それぞれ15sccm(standard cubic centimeter)および5sccmである。13.56MHzのAC電力50Wがサンプルに供給され、また、50Wの電力がICPエッチング装置に供給されている。
 実験に用いた全てのサンプルで、エッチング深さは、例えば、約300nmとした。
 室温にてホール効果測定を実施し、シートキャリア濃度n(cm-2)、および電子の移動度μ(cm2-1-1)を測定した。
 (電子の移動度μ(cm2-1-1)、シートキャリア濃度n(cm-2)、キャリア濃度n(cm-3)、電気伝導率σ)
 第1の実施の形態に係る熱電変換素子10において、Alモル分率Xを変化させたサンプルについて、測定されたシートキャリア濃度n(cm-2)、計算された2DEG層の厚さt2D、計算されたキャリア濃度n(cm-3)は、図3に示すように表される。ここで、計算されたキャリア濃度n(cm-3)は測定されたシートキャリア濃度n(cm-2)を計算された2DEG層の厚さt2Dで割った値に等しい。
 図3において、Alモル分率X=0.2のサンプルはA1~A5に対応し、X=0.3のサンプルはB1~B3に対応し、X=0.35のサンプルはC1~C6に対応し、X=0.4のサンプルはD1~D6に対応しており、各々の測定されたシートキャリア濃度n(cm-2)と、計算された2DEG層の厚さt2Dにより、キャリア濃度n(cm-3)が得られている。
 2DEG層の厚さt2Dを求めるために、特定のAlモル分率Xを有するサンプルに対して、300Kで外部バイアス電圧が0Vの条件において、AlXGa1-XN/GaN系システムのエネルギーバンド図をシミュレーションにより求めた。ここでは、ティーキャッド(TCAD:Technology Computer Aided Design)をシミュレータとして適用した。
 次に、図1のバンド構造に示すように、GaN層12における伝導帯ECより上側にフェルミレベルEFが存在するバンド領域幅によって2DEG層の厚さt2Dを決定した。
 シミュレーションに用いたサンプルは、厚さ30nmのAlXGa1-XN層14と厚さ1μmのGaN層12とを備え、AlXGa1-XN層14・GaN層12の各層のキャリア濃度nは、1・0×1016(cm-3)とした。また、TCADシミュレーションにおいて、簡単化のため電子のトラップレベルは考慮していない。もっとも簡単な場合を考慮するべきであることと、AlXGa1-XN/GaN系システムの欠陥の物理現象は、未だ複雑なためである。
 電気伝導率σ(Scm-1)を(2)式を用いて求めた。
 これらの計算された2DEG層の厚さt2Dは、図3に示すように、Al0.2Ga0.8Nの5.7nm~Al0.4Ga0.6Nの7.0nmの連続的範囲に表されている。これらの値は、キャリア濃度nを計算する上で用いられている。
 (キャリア移動度μおよび電気伝導率σとキャリア濃度nとの関係)
 第1の実施の形態に係る熱電変換素子10において、2DEG層におけるキャリア移動度μ(cm2-1-1)および電気伝導率σ(Scm-1)と、キャリア濃度n(cm-3)との関係は、図4に示すように表される。
 (ゼーベック係数Sの測定)
 ホール効果測定後、図3に示されたサンプルについて、第1の実施の形態に係る熱電変換素子10の面内ゼーベック係数Sを室温状態において測定した。
 第1の実施の形態に係る熱電変換素子10をヒートシンク200・ヒータ300間に配置し、ゼーベック係数Sの測定系を説明する模式的鳥瞰構造は、図5に示すように表される。
 第1の実施の形態に係る熱電変換素子10は、図5に示すように、特定の温度差を発生可能なように、ヒートシンク200・ヒータ300間に配置されている。
 電圧プローブ22A・22Bと直径約150μmのタイプK熱電対24A・24Bを用いて、第1の実施の形態に係る熱電変換素子10の熱電特性を測定した。
 タイプK熱電対24A・24Bによって、ヒートシンク200側・ヒータ300側のサンプル温度を測定した。
 ヒータ300の温度は、直流電圧源によって制御可能である。直流電圧源の出力電圧は、5Vステップで0V~30Vまで階段状に増加可能である。
 第1の実施の形態に係る熱電変換素子10の低温側は、自然空冷されていても良い。
 ゼーベック係数Sの測定は、温度の安定化のために、十分な時間間隔を経た後に、実行された。
 (サンプルD5についての熱電変換特性)
 第1の実施の形態に係る熱電変換素子10において、図3に示されるサンプルD5についての熱電変換特性は、図6に示すように表される。図6には、ゼーベック係数Sの測定結果が示されている。図6において、“Applied voltage (current)”は、直流電圧源の出力電圧(電流)を示している。Thigh(K)およびTlow(K)は、それぞれヒータ300側およびヒートシンク200側の測定温度を示す。
 ΔT(K)は、Thigh(K)-Tlow(K)に等しい。ΔV(μV)は、タイプK熱電対24A・24Bによって検出された測定電圧の差電圧を示す。
 ゼーベック係数S(μV・K-1)は、ΔV/ΔTに等しい。
 (ゼーベック係数Sの理論計算)
 第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sの絶対値|S|を計算するためのパラメータおよび絶対値|S|の計算結果は、図7に示すように表される。
 GaNのエネルギーギャップ(禁制帯幅)内におけるすべての電子のエネルギーレベルを考慮することができるならば、特定のAlモル分率Xによって、一義的にキャリア濃度nを決定することができる。しかしながら、図3に示される特定のAlモル分率Xによって得られるキャリア濃度nに比較して、実験的に得られるキャリア濃度nの値は、無視できない変位分を含んでいる。このことは、実験には、例えば、転位や、表面状態などの様々なファクタが含まれていることを意味している。したがって、直接的にキャリア濃度を計算することは、非現実的である。
 したがって、ゼーベック係数Sの絶対値|S|とキャリア濃度nの関係を求めた図7において、特定のAlモル分率X(=0.2、0.3、0.4)に対しては、図3に示される実験的なキャリア濃度nの平均化された値(nバー)を用い、特定のAlモル分率X(=0.25、および0.35)に対しては、実験的なキャリア濃度nの平均化された値(nバー)の線形近似によって計算した。
 (ゼーベック係数Sとキャリア濃度nとの関係)
 第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sとキャリア濃度nとの関係は、図8に示すように表される。図8においては、ゼーベック係数Sの絶対値|S|とキャリア濃度nとの関係が示されている。ここで、図8において、|S|2DEGは、実験に用いたAlGaN/GaN系サンプルに対するゼーベック係数Sの絶対値を表す。また、|S|film-GaNは、比較例として、非特許文献10に掲載されたバルクGaNのゼーベック係数Sの絶対値を表す。
 図8に示すように、ゼーベック係数Sの絶対値|S|2DEGの値は、図8に示されるキャリア濃度nの範囲において、|S|film-GaNの値よりも実質的に大きい。このゼーベック係数Sの絶対値|S|2DEGの増大傾向は、物理理論上フェルミレベルEF近傍における電子の準位密度(DOS:density of states)のエネルギー微分値の量子サイズ効果による増大として説明される。すなわち、S∝[dDOS(E)/dE]E-EFが成立している。
 薄膜GaNの量子サイズ効果は、約20nm-約30nm以下の厚さにおいて生じるものとされており、実験に適用された第1の実施の形態に係る熱電変換素子10のサンプルでは、厚さt2Dは、十分にこの範囲に含まれている。
 第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sは、図8に示すように、キャリア濃度nが約3.5×1019cm-3よりも大きな値で、キャリア濃度nの増加にも関わらず、170(μV・K-1)から300(μV・K-1)まで増加するというV字回復特性を示している。
 第1の実施の形態に係る熱電変換素子10においては、図1に示すような三角形状のポテンシャル内に閉じ込められた2DEGによって、ゼーベック係数Sの絶対値|S|2DEGのキャリア濃度nの増加に伴う増大傾向が生じている。
 (理論解析)
 量子井戸(QW)に閉じ込められた電子のi番目のサブバンドのゼーベック係数Siは、

  Si=κB/e・[2Fji *)/F0i *)―ζi *]        (4)

で表される。ここで、Fjは、以下の(5)式で与えられるフェルミ・ディラック分布関数を含む不定積分である。

  Fjj *)=∫0 jdX/[exp(x-ζj *)+1]     (5)

 ここで、ζi *=(EF-Ei)/kBTであり、ζi *は、量子化されたi番目のサブバンドのエネルギーEiに対する還元フェルミエネルギーを表す。
 ここで、すべての電子がエネルギーレベルE0(量子化サブバンドの最小エネルギー)に存在すると仮定し、i=0と設定する。また、(4)式および(5)式を得るための理論的な前提条件は、理論的なゼーベック係数(Calculated |S|2DEG)を計算するために適用可能であると仮定する。ここで、第2の仮定は、電子散乱機構の単純化の仮定を含んでいる。極性光学(PO:Polar Optical)フォノン散乱と音響(AC:Acoustic)フォノン散乱は、GaN中における電子の主要な散乱機構である。
 POフォノン散乱の逆緩和時間1/τは、電子のエネルギーの代わりに摂動強度の関数として表される。一方、(5)式に現れるxjは、逆緩和時間1/τの電子のエネルギーの関数として展開される級数のj番目の累乗項として表される。このことは、(5)式がPOフォノンの効果を取り扱うものではなく、ゼーベック係数S理論計算では、ACフォノン散乱のみを取り扱うことを意味する。
 (4)式中の還元フェルミエネルギーζi *は、キャリア濃度nに関係するファクタであり、散乱機構には影響されない。各々のAlXGa1-XN/GaNサンプルの“EF-Ei”は、TCADシミュレーションによって計算される。計算されたゼーベック係数:Calculated |S|2DEGは、図8において、○プロットの破線で表されている。また、図8の横軸では、平均化されたキャリア濃度nバーがキャリア濃度nとして用いられている。
 図8において、計算されたゼーベック係数:Calculated |S|2DEGとキャリア濃度nとの関係は、約2×1019cm-3以上のキャリア濃度nに対して定性的に再現化可能である。ここで、約2×1019cm-3のキャリア濃度nの値は、Al0.2Ga0.8N/GaNサンプルの平均化されたキャリア濃度バーnに対応している。
 (5)式の関数Fji *)は、非縮退型半導体におけるフェルミ・ディラック積分に対する漸近的な拡張を用いて、exp(ζi *)で近似可能であり、(4)式の“F11 *)/F01 *)”は、1に固定可能である。また、“EF-E0”は、上記のt2Dを計算した条件と同じ条件の下に、TCADシミュレーションによって計算可能である。結果として、(4)式を用いて、ゼーベック係数Sの絶対値|S|を計算することができる。
 一般的に熱電変換素子の性能は、材料選択によって制限される。すなわち、バルク材料の熱電特性は、材料に依存したファクタ、すなわち電気伝導率σとゼーベック係数Sによって理論的に決定される。(2)式および(3)式に示すように、キャリア濃度nを増加すると、電気伝導率σは増加するものの、ゼーベック係数Sが減少するという材料に依存するトレードオフ関係が共通に存在する。
 しかしながら、第1の実施の形態に係る熱電変換素子10においては、図8の●プロットで示すように、AlGaN/GaNヘテロ構造界面の2DEG層のキャリア濃度nが相対的に高い領域において、キャリア濃度nを増加すると、電気伝導率σは増加するものの、ゼーベック係数Sが減少するという特性が消滅し、V字回復する特性が得られている。
 第1の実施の形態に係る熱電変換素子10においては、図8に示すように、ゼーベック係数Sは、キャリア濃度nの値が約3.5×1019cm-3以上において、キャリア濃度nを増加すると、ゼーベック係数Sが減少するという特性が消滅し、V字回復する特性が得られている。
 (無次元性能指数ZTとキャリア濃度nとの関係)
 第1の実施の形態に係る熱電変換素子10において、300Kにおける無次元性能指数ZTとキャリア濃度nとの関係は、図9に示すように表される。ここで、GaNの熱伝導率κ=120W・m-1・K-1が維持されるものと仮定している。第1の実施の形態に係る熱電変換素子10において、AlGaN/GaNヘテロ構造は、意図的にアンドープであり、厚さ10nm以下の2DEG層を除くデバイスの大部分の領域は、実質的に電子に対するバルク材料と同等であるためである。2DEG層の厚さt2Dは、計算によって得ることができる。
 図9に示すように、300Kにおける最も高い無次元性能指数ZTの値は、キャリア濃度n=6.5×1019cm-3において、0.141として得られている。バルクGaNの無次元性能指数ZTの値は、0.002である。したがって、第1の実施の形態に係る熱電変換素子10において、300Kにおける無次元性能指数ZTは、70倍の改善効果が得られている。
 (V字回復特性)
 分極量やキャリア濃度nで記載するとGaN系材料だけの値になってしまうので、他の材料系での適用も考慮し、理論的な特徴を記載する。
 分極差がある材料間の2DEG層において、量子効果が起こることで、そのエネルギーバンドにおいてフェルミエネルギーがその量子準位の基底準位よりも高くなり、かつゼーベック係数Siを表す下記の(6)式における、還元フェルミエネルギーζi *がフェルミ・ディラック分布関数から計算される値(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)よりも大きくなる場合に、つまり(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)が負の値になるときゼーベック係数のV字回復が起こる。Aは、キャリア散乱の緩和時間に関連する式τ(E/kBT)=τ0(E/kBT)Aに適用される値である。

  Si=kB/e・[(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)-ζi *]
                              (6)

 ここで、(4)式および(5)式の関係が同様に成立している。
 また、2DEG層の場合には、ζi *=(EF-Ei)/kBTであり、2DHG層の場合には、ζi *=-(EF-Ei)/kBTとなる。(6)式のeも正孔となるので、正の値となる。
 量子効果は、有効質量などによって決定するエキシトンのボーア半径の2倍程度で起こるとされている。GaNの場合、20nm-30nm以下で量子効果が起こるとされている。例えば、AlGaN/GaN系での2DEGでは、Alモル分率Xが0.2以上でキャリア濃度が2×1019cm-3以上である必要がある。
 第1の実施の形態に係る熱電変換素子10は、フィルム積層化構造による形成が容易であり、また、低熱伝導率κを有する超格子構造若しくはフォノン結晶を適用可能である。
 したがって、第1の実施の形態によれば、上記V字回復性能を示す電気的分極不連続構造と低熱伝導率κを有する超格子構造若しくはフォノン結晶を融合させて、相対的に高い無次元性能指数ZTを有する熱電変換素子を提供することができる。
 第1の実施の形態によれば、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第1の実施の形態によれば、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第1の実施の形態によれば、また、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第2の実施の形態]
 (一つの電気伝導層を有する構造)
 第2の実施の形態に係る熱電変換素子10の模式的断面構造は、図10(a)に示すように表され、第2の実施の形態の変形例に係る熱電変換素子10の模式的断面構造は、図10(b)に示すように表される。
 第2の実施の形態に係る熱電変換素子10は、図10(a)に示すように、基板100と、基板100上に配置されたGaN層12と、GaN層12上に配置され、GaN層12と分極不連続がおきるAlGaN層14と、GaN層12とAlGaN層14との界面に形成される2DEG層と、2DEG層と側面より接触する第1電極16・第2電極18とを備える。
 ここで、基板100は、サファイア基板であっても良い。
 また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。
 第2の実施の形態の変形例に係る熱電変換素子10は、図10(b)に示すように、基板100と、基板100上に配置されたGaN層12と、GaN層12上に配置され、GaN層12と分極不連続がおきるAlGaN層14と、GaN層12とAlGaN層14との界面に形成される2DEG層と、AlGaN層14上に配置される第1電極16・第2電極18とを備える。同様に、基板100は、サファイア基板であっても良い。また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。
 例として、サファイア基板100上にAlGaN層14/GaN層12からなる構造を作製し、Ti/Al/Ni/Auなどの第1電極16・第2電極18を形成し、シンターすることによりオーミックを形成する。
 必要であれば、その後、素子分離を行うことが可能である。
 AlGaN層14の代わりにAlN層やAlInN層などを用いてもよい。
 また、分極材料として、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。
 第2の実施の形態においても第1の実施の形態と同様に、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第2の実施の形態においても第1の実施の形態と同様に、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第2の実施の形態においても第1の実施の形態と同様に、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第3の実施の形態]
 (一つの電気伝導層を有する構造で分極材料が連続しているもの)
 第3の実施の形態に係る熱電変換素子10の模式的断面構造は、図11に示すように表される。
 第3の実施の形態に係る熱電変換素子10は、図11に示すように、シリコン基板8と、シリコン基板8上に配置されたAlN層13と、シリコン基板8とAlN層13との界面に形成される2DEG層と、AlN層13上に配置されたAlGaN層14とを備える。ここで、図示は省略されているが、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。或いは、AlGaN層14上に配置される第1電極16・第2電極8とを備えていても良い。
 例として、シリコン基板8上にAlGaN層14/GaN層12のような分極材料が連続で形成されている構造で、AlGaN層14/GaN層12界面では電気伝導を主に担う層はできないが、AlN層13/Si界面に2DEG層が形成されている。
 尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。
 また、第1の実施の形態の変形例(図10(b))と同様に、AlGaN層14上に配置される第1電極16・第2電極18とを備えていても良い。
 例として、シリコン基板8上にAlGaN層14/AlN層13からなる構造を作製し、Ti/Al/Ni/Auなどの第1電極16・第2電極18を形成し、シンターすることによりオーミックを形成する。
 必要であれば、その後、素子分離を行うことが可能である。
 AlGaN層14の代わりにAlInN層などを用いてもよい。
 また、分極材料として、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。つまり分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。
 第3の実施の形態においても第1の実施の形態と同様に、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第3の実施の形態においても第1の実施の形態と同様に、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第3の実施の形態においても第1の実施の形態と同様に、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第4の実施の形態]
 (二つの以上の電気伝導層を有する積層構造)
 第4の実施の形態に係る熱電変換素子10の模式的断面構造は、図12に示すように表される。
 第4の実施の形態に係る熱電変換素子10においては、図12に示すように、GaN層とAlGaN層のペアが多層化されている。
 第4の実施の形態に係る熱電変換素子10は、図12に示すように、GaN層121と、GaN層121上に配置されるAlGaN層141と、AlGaN層141上に配置されるGaN層122と、GaN層122上に配置されるAlGaN層142と、AlGaN層142上に配置されるGaN層123と、GaN層123上に配置されるAlGaN層143と、AlGaN層143上に配置されるGaN層124と、GaN層124上に配置されるAlGaN層144とを備える。
 ここで、GaN層121・AlGaN層141の界面には2DEG層が形成され、AlGaN層141とGaN層122との界面には2次元ホールガス(2DHG:Two Dimensional Hole Gas)層が形成される。
 同様に、GaN層122とAlGaN層142との界面、GaN層123とAlGaN層143との界面、GaN層124とAlGaN層144との界面には2DEG層が形成される。
 同様に、AlGaN層142とGaN層123との界面、AlGaN層143とGaN層124との界面には2DHG層が形成される。ここで、図示は、省略されているが、GaN層121は、サファイア基板などの基板上に形成される。
 尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16E・第2電極18Eとを備えていても良い。また、2DHG層と側面より接触する第1電極16H・第2電極18Hとを備えていても良い。
 例として、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。
 また、積層構造の場合、2DEG層と2DHG層の両方を形成可能であるために、一素子でp型・n型両方の熱電変換素子を形成することもできる。
 分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を形成することもできる。
 また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を形成することもできる。
 その他にも、使用する材料によってはスピンコートやゾルゲル法などで積層構造を形成することもできる。
 第4の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第4の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第4実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第5の実施の形態]
 第5の実施の形態に係る熱電変換素子10の模式的断面構造は、図13に示すように表される。
 第5の実施の形態に係る熱電変換素子10は、図13に示すように、GaN層121と、GaN層121上に配置されるAlGaN層141と、AlGaN層141上に配置されるGaN層122と、GaN層122上に配置されるAlGaN層142と、AlGaN層142上に配置されるGaN層123と、GaN層123上に配置されるAlGaN層143と、AlGaN層143上に配置されるGaN層124と、GaN層124上に配置されるAlGaN層144とを備える。
 ここで、GaN層121・AlGaN層141の界面には2DEG層が形成される。同様に、GaN層122とAlGaN層142との界面、GaN層123とAlGaN層143との界面、GaN層124とAlGaN層144との界面には2DEG層が形成される。
 尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。
 一方、AlGaN層142とGaN層123との界面、AlGaN層143とGaN層124との界面には2DHG層は形成されていない。ここで、図示は、省略されているが、GaN層121は、サファイア基板などの基板上に形成される。
 第5の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第5の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第5実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第6の実施の形態]
 第6の実施の形態に係る熱電変換素子10の模式的断面構造は、図14に示すように表される。
 第6の実施の形態に係る熱電変換素子10は、図14に示すように、第1分極材料P1層201と、第1分極材料P1層201上に配置された第2材料B層20Bと、第2材料B層20B層20B上に配置された第3材料A層20Aと、第3材料A層20A上に配置された第2分極材料P2層202と、第1分極材料P1層201と第2材料B層20Bとの界面に形成された2DHG層と、第3材料A層20Aと第2分極材料P2層202との界面に形成された2DEG層とを備える。
 第1分極材料P1層201、第2分極材料P2層202は、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。また、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。
 また、第2材料B層20B・第3材料A層20Aは、AlGaN層・GaN層を用いても良い。
 また、第1分極材料P1層201・第2材料B層20Bは、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。
 同様に、第3材料A層20A・第2分極材料P2層202は、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。
 尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16E・第2電極18Eを備えていても良い。また、2DHG層と側面より接触する第1電極16H・第2電極18Hを備えていても良い。
 第6の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第6の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第6実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 [第7の実施の形態]
 (横型積層構造)
 第1~第6の実施の形態に係る熱電変換素子では、主に基板上に基板に垂直方向に積層する構造を備えている。しかしながら、必ずしも基板に垂直方向に積層する構造に限定されなくても良い。
 第7の実施の形態に係る熱電変換素子の模式的断面構造は、図15に示すように表される。
 第7の実施の形態に係る熱電変換素子は、図15に示すように、基板100と、基板100上にパターン形成されたGaN層12と、GaN層12間の基板100上に配置され、GaN層12と分極不連続がおきる材料層(14)とを備える。
 ここで、基板100は、サファイア基板であっても良い。
 また、GaN層12と分極不連続がおきる材料層(14)は、AlGaN層14であっても良い。この場合、GaN層12とAlGaN層14との界面には、2DEG層が形成されていても良い。
 また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。
 (熱電変換素子の製造方法)
 第7の実施の形態に係る熱電変換素子の製造方法であって、サファイア基板100を準備する工程を示す模式的断面構造は、図16(a)に示すように表され、サファイア基板100上にGaN層12を形成する工程を示す模式的断面構造は、図16(b)に示すように表され、GaN層12をエッチングする工程を示す模式的断面構造は、図16(c)に示すように表され、GaN層12に挟まれたサファイア基板上にAlGaN層14を形成する工程を示す模式的断面構造は、図16(d)に示すように表される。
 第7の実施の形態に係る熱電変換素子の製造方法は、第1材料層12と第2材料層14を形成する基板100を準備する工程と、第1材料層12と第2材料層14を形成する基板100上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層とAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程とを有していても良い。
 また、第7の実施の形態に係る熱電変換素子の製造方法は、第1材料層12と第2材料層14を形成する基板100を準備する工程と、第1材料層12と第2材料層14を形成する基板100上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層とAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程とを有していても良い。
 以下、図16(a)~図16(d)を参照して、第7の実施の形態に係る熱電変換素子の製造方法を説明する。
 (a)まず、図16(a)に示すように、サファイア基板100を準備する。
 (b)次に、図16(b)に示すように、サファイア基板100上にGaN層12を形成する。
 (c)次に、リソグラフィー法により、例えばラインアンドスペースのパターンを多数形成する。
 (d)次に、図16(c)に示すように、レジストやSiO2などをマスクとしてGaN層のエッチングを行う。
 (e)次に、形成したストライプパターンに垂直に、かつサファイア基板100に水平な方向に対して、GaN層12と分極不連続がおきる材料をエッチングした領域に形成する。例えば、図16(d)に示すように、m面GaN層12上にAlGaN層14を形成しても良い。結果として、図16(d)に示すように、m面GaN層12と、AlGaN層14との界面には、2DEG層が複数形成可能である。
 その他にも、Pt上にゾルゲル法などでPZTを形成し、ラインアンドスペースの構造をリソグラフィー法で形成し、レジストをマスクとしてPZTのエッチングを行い、レジストを剥離する。その後、PZTをエッチングした領域に分極不連続がおきる材料を形成する手法などを用いても良い。スピンコートやゾルゲル法の場合、プロセス行程が簡単であるというメリットもある。スピンコートやゾルゲル法などを利用した場合は、異種材料を基板垂直方向に積層していくことも可能であり、基板面垂直方向に対して、n型/p型と積層することもできる。
 第7の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。
 第7の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。
 第7実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。
 (熱電変換装置)
 第1~第7の実施の形態に係る熱電変換素子を用いて、熱電発電装置を提供することができる。また、第1~第7の実施の形態に係る熱電変換素子を複数個直列に接続し、高出力化可能な熱電発電装置を提供することも可能である。
 基本技術に係る熱電発電装置400Aの動作原理の説明図は、図17(a)に示すように表され、温度変化ΔTにおける熱電発電装置400Aの出力電流IO―出力電圧VO特性例は、図17(b)に示すように表される。
 基本技術に係る熱電発電装置400Aは、図17(a)に示すように、高温(温度Th)側に配置される結合電極30と低温(温度Tc)側に配置されるn側電極32との間に配置されたn型半導体28と、高温側に配置される結合電極30と低温側に配置されるp側電極34との間に配置されたp型半導体26と、n側電極32とp側電極34との間に接続される負荷36とを備える。n型半導体28中の電子(e)は、矢印で示すように、高温側に配置される結合電極30から低温側に配置されるn側電極32の方向に導通され、p型半導体26中の正孔(h)は、矢印で示すように、高温側に配置される結合電極30から低温側に配置されるp側電極34の方向に導通される。温度差ΔT=Th―Tcで表される。結果として、回路的に直列接続される負荷36・n型半導体28・p型半導体26には、矢印で示された方向に電流Iが導通する。負荷36と導通電流Iによって決まる負荷特性と、図17(b)に示された温度変化ΔTにおけるTEG10の出力電流IO―出力電圧VO特性例との交差点によって、動作点が決定される。
 基本技術に係る熱電発電装置400Aの模式的構成例であって、低温側にヒートシンク38、高温側に熱交換器40を備える例は、図18に示すように表される。さらに、結合電極30と熱交換器40との間に高温側伝熱部材44を配置し、n側電極32・p側電極34とヒートシンク38との間に低温側伝熱部材42を配置しても良い。n側電極32とp側電極34との間に配線45を介して負荷36を結合することで、負荷36には、矢印で示された方向に電流Iが導通する。
 基本技術に係る熱電発電装置400Aの模式的構成であって、複数の熱電変換素子を直列に配置した例は、図19に示すように表される。
 基本技術に係る熱電発電装置400Aは、図19に示すように、高温(温度Th)側に配置される複数の結合電極301・302・…・30nと低温(温度Tc)側に配置される複数のn側電極321・322・…・32nとの間に配置された複数のn型半導体281・282・…・28nと、高温側に配置される複数の結合電極301・302・…・30nと低温側に配置される複数のp側電極341・342・…・34nとの間に配置された複数のp型半導体261・262・…・26nと、n側電極32nとp側電極341との間に接続される負荷36とを備える。低温側の互いに隣接配置される電極(321・342)・(322・343)・…・(32n-1・34n)は、共通電極として接続されている。温度差ΔT=Th―Tcで表される。結果として、回路的に直列接続される負荷36・n型半導体281・282・…・28n・p型半導体261・262・…・26nには、矢印で示された方向に電流Iが導通する。
 基本技術に係る熱電発電装置400Aは、図19に示すように、複数のTEGを直列化配置することによって、熱電変換モジュールの高耐圧化を図ることができる。また、直列化配置構成を並列化して、大電流量・高出力化を図ることも可能である。
 (ペルチェ装置)
 第1~第7の実施の形態に係る熱電変換素子を用いた熱電変換装置は、第1電極12および第2電極14間の温度差に伴う熱エネルギーを電気エネルギーに変換可能であるが、一方、第1電極および第2電極間に電流を印加することによる電気エネルギーを温度差に変換可能である。したがって、第1~第7の実施の形態に係る熱電変換素子を用いて、ペルチェ装置を提供することができる。
 また、第1~第7の実施の形態に係る熱電変換素子を複数個直列接続し、高温度差を生じさせることが可能なペルチェ装置を提供することも可能である。
 [第8の実施の形態]
 第8の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図20(a)に示すように表され、模式的鳥瞰構成は、図20(b)に示すように表される。
 第8の実施の形態に係る熱電発電装置400は、図20(a)・図20(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。
 第8の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図20(a)・図20(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。
 また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。
 また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16A・16B・16Cおよび第2電極18A・18B・18Cとを備える。ここで、第1電極16A・16B・16Cおよび第2電極18A・18B・18Cは、2DHG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。このため、第8の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cの導通に寄与するキャリアは、2DEG層を導通する電子である。
 また、第1電極16Aと結合される主電極32Aと、第2電極18A・18B間を結合する結合電極30ABと、第1電極16B・16C間を結合する結合電極30BCと、第2電極18Cと結合される主電極32Cとを備える。
 図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16A・16B・16Cを例えばCOLD SIDE、第2電極18A・18B・18Cを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。
 複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。
 分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。
 また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。
 また、第8の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。
 [第9の実施の形態]
 第9の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図21(a)に示すように表され、模式的鳥瞰構成は、図21(b)に示すように表される。
 第9の実施の形態に係る熱電発電装置400は、図21(a)・図21(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。
 第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図21(a)・図21(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。
 また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。
 また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16AE・16BE・16CEおよび第2電極18AE・18BE・18CEと、2DHG層と側壁部でオーミック接触する第1電極16AH・16BH・16CHおよび第2電極18AH・18BH・18CHとを備える。このため、第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cの導通に寄与するキャリアは、2DEG層を導通する電子・2DHGを導通する正孔である。
 また、第1電極16AE・16AHと結合される主電極32Aと、第2電極18AE・18AHと第2電極18BE・18BH間を結合する結合電極30ABと、第1電極16BE・16BHと第1電極16CE・16CH間を結合する結合電極30BCと、第2電極18CE・18CHと結合される主電極32Cとを備える。
 図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16AE・16AH・16BE・16BH・16CE・16CHを例えばCOLD SIDE、第2電極18AE・18AH・18BE・18BH・18CE・18CHを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。
 複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。
 分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。
 また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。
 また、第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、2DEG層と2DHG層の両方を形成可能であり、かつ両者を導通に寄与させることができるため、一素子でp型・n型両方の熱電変換素子を形成可能である。
 また、第9の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。
 [第10の実施の形態]
 第10の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図22(a)に示すように表され、模式的鳥瞰構成は、図22(b)に示すように表される。
 第10の実施の形態に係る熱電発電装置400は、図22(a)・図22(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。
 第10の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図22(a)・図22(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。
 また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。
 また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16AE・16CEおよび第2電極18AE・18CEと、2DHG層と側壁部でオーミック接触する第1電極16BHおよび第2電極18BHとを備える。ここで、第1電極16AE・16CEおよび第2電極18AE・18CEは、2DHG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。第1電極16BHおよび第2電極18BHは、2DEG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。
 このため、第10の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10Cの導通に寄与するキャリアは、2DEG層を導通する電子であり、熱電変換素子10Bの導通に寄与するキャリアは、2DHG層を導通する正孔である。
 また、第1電極16AEと結合される主電極32Aと、第2電極18AEと第2電極18BH間を結合する結合電極30ABと、第1電極16BHと第1電極16CE間を結合する結合電極30BCと、第2電極18CEと結合される主電極32Cとを備える。
 図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16AE・16BH・16CEを例えばCOLD SIDE、第2電極18AE・18BH・18CEを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。
 複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。
 分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。
 また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。
 また、第10の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。
 本実施の形態によれば、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子およびこの熱電変換素子を用いた熱電発電装置を提供することができる。
 本実施の形態によれば、また、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子およびこの熱電変換素子を用いた熱電発電装置を提供することができる。
 以上説明したように、本実施の形態によれば、キャリア濃度とゼーベック係数のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供することができる。
 [その他の実施の形態]
 上記のように、実施の形態について記載したが、この開示の一部をなす論述および図面は例示的なものであり、この実施の形態を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
 このように、本実施の形態はここでは記載していない様々な実施の形態などを含む。
 本実施の形態の熱電変換素子および熱電発電装置は、熱電発電システムなど熱電変換素子により発電したエネルギーを効率よく供給する装置およびシステムに適用され、モバイル機器、車載機器、産業機器、医療機器などの幅広い分野に適用可能である。また、本実施の形態に係る熱電変換素子を適用したペルチェ装置においては、投入したエネルギーを効率良く温度差に変換する装置およびシステムに適用され、モバイル機器、車載機器、産業機器、医療機器などの幅広い分野に適用可能である。
8…シリコン基板
10、10A、10B、10C…熱電変換素子
11…GaNテンプレート
12、121、122、123、124…第1材料層(GaN層)
13…AlN層
14、141、142、143、144、14A、14B、14C…第2材料層(AlGaN層)
16、161、162、16A、16B、16C、16AE、16BE、16CE、16AH、16BH、16CH…電極(COLD SIDE)
18、181、182、18A、18B、18C、18AE、18BE、18CE、18AH、18BH、18CH…電極(HOT SIDE)
201、202…分極材料層
20A、20B…材料層
22、22A、22B…電圧プローブ
24、24A、24B…熱電対
26、261、262、…、26n…p型半導体
28、281、282、…、28n…n型半導体
30、30AB、30BC…結合電極
32、321、322、…、32n…n側電極
32A、32C…主電極
34、341、342、…、34n…p側電極
36…負荷
38…ヒートシンク
40…熱交換器  
42、44……伝熱部材
45…配線
100…サファイア基板
200…ヒートシンク
300…ヒータ
400A、400…熱電発電装置
ΔT…温度変化(温度差)
O…出力電流
O…出力電圧
μ…移動度
n…キャリア濃度
σ…電気伝導率
S…ゼーベック係数
ZT…無次元性能指数
κ…熱伝導率

Claims (25)

  1.  第1材料層と、
     前記第1材料層に接触して配置された第2材料層と、
     前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
     前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と
     を備え、
     前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
     前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
     前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が還元フェルミエネルギーの増加に応じて増加するような関係に設定されていることを特徴とする熱電変換素子。
  2.  前記第2材料層は、半導体を備えることを特徴とする請求項1に記載の熱電変換素子。
  3.  前記第1材料層はGaN層を備え、前記第2材料層はAlGaN層を備えることを特徴とする請求項1または2に記載の熱電変換素子。
  4.  前記第1材料層は、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)を備え、
     前記第2材料層は前記第1材料層と組成が異なるAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)を備えることを特徴とする請求項3に記載の熱電変換素子。
  5.  前記第2材料層はNを含まないことを特徴とする請求項2に記載の熱電変換素子。
  6.  前記第1材料層は、強誘電体を備えることを特徴とする請求項1または2に記載の熱電変換素子。
  7.  前記電気伝導層は、2次元電子ガス層若しくは2次元正孔ガス層、若しくは2次元電子ガス層と2次元正孔ガス層の両方を備えることを特徴とする請求項1~6のいずれか1項に記載の熱電変換素子。
  8.  前記第1材料層と前記第2材料層とは、2次元電子ガス層若しくは2次元正孔ガス層の伝導度変調を目的とするドーピングが行われていないことを特徴とする請求項1~7のいずれか1項に記載の熱電変換素子。
  9.  前記第1材料層と前記第2材料層とによる単位構造体が形成される基板を備え、
     前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが平行になるように複数層に亘って積層されていることを特徴とする請求項1~8のいずれか1項に記載の熱電変換素子。
  10.  前記第1材料層と前記第2材料層とによる単位構造体が形成される基板を備え、
     前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されていることを特徴とする請求項1~8のいずれか1項に記載の熱電変換素子。
  11.  前記第1材料層と前記第2材料層の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が前記第1材料層と前記第2材料層に挟まれているという単位構造が繰り返し積層されていることを特徴とする請求項1~10のいずれか1項に記載の熱電変換素子。
  12.  前記第1材料層と前記第2材料層を形成する基板は、シリコンを含有していることを特徴とする請求項9~11のいずれか1項に記載の熱電変換素子。
  13.  前記第1材料層と前記第2材料層を形成する基板は、サファイアを含有していることを特徴とする請求項9~11のいずれか1項に記載の熱電変換素子。
  14.  前記第1電極および前記第2電極は、前記電気伝導層に接して形成されていることを特徴とする請求項1~11のいずれか1項に記載の熱電変換素子。
  15.  前記第1電極および前記第2電極は、前記電気伝導層にオーミック接触されていることを特徴とする請求項1~11のいずれか1項に記載の熱電変換素子。
  16.  前記第1電極および前記第2電極は、前記第2材料層に接続されていることを特徴とする請求項1~11のいずれか1項に記載の熱電変換素子。
  17.  前記第1電極および前記第2電極とは、同一材料から構成されていることを特徴とする請求項1~11のいずれか1項に記載の熱電変換素子。
  18.  第1材料層と、
     前記第1材料層に接触して配置された第2材料層と、
     前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
     前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と
     を備え、
     前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
     前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
     前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されていることを特徴とする熱電変換素子。
  19.  第1材料層と、
     前記第1材料層に接触して配置された第2材料層と、
     前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
     前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と
     を備え
     前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
     前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
     前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層の無次元性能指数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されていることを特徴とする熱電変換素子。
  20.  請求項1~19のいずれか1項に記載の熱電変換素子を備えることを特徴とする熱電発電装置。
  21.  前記熱電変換素子を複数個直列に接続したことを特徴とする請求項20に記載の熱電発電装置。
  22.  請求項1~19のいずれか1項に記載の熱電変換素子を備えることを特徴とするペルチェ装置。
  23.  前記熱電変換素子を複数個直列に接続したことを特徴とする請求項22に記載のペルチェ装置。
  24.  第1材料層と第2材料層を形成する基板を準備する工程と、
     前記第1材料層と前記第2材料層を形成する基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、
     前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、
     前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程と
     を有することを特徴とする熱電変換素子の製造方法。
  25.  第1材料層と第2材料層を形成する基板を準備する工程と、
     前記第1材料層と前記第2材料層を形成する基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、
     前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、
     前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程と
     を有することを特徴とする熱電変換素子の製造方法。
PCT/JP2016/051215 2015-04-16 2016-01-18 熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置 WO2016166997A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015083899A JP6609109B2 (ja) 2015-04-16 2015-04-16 熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置
JP2015-083899 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016166997A1 true WO2016166997A1 (ja) 2016-10-20

Family

ID=57126740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051215 WO2016166997A1 (ja) 2015-04-16 2016-01-18 熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置

Country Status (2)

Country Link
JP (1) JP6609109B2 (ja)
WO (1) WO2016166997A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065306A1 (ja) * 2015-10-16 2017-04-20 学校法人東京理科大学 半導体材料、導電性層にキャリアを生じさせる方法、熱電変換素子、及びスイッチング素子
JP6957420B2 (ja) * 2018-07-18 2021-11-02 株式会社東芝 発電素子、発電モジュール、発電装置及び発電システム
US11038048B2 (en) * 2019-10-01 2021-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Gallium nitride-on-silicon devices
WO2022055248A1 (ko) * 2020-09-08 2022-03-17 한양대학교에리카산학협력단 열전 복합체 및 그 제조방법, 그리고 열전 복합체를 포함하는 열전 소자 및 반도체 소자
KR102508546B1 (ko) * 2020-09-08 2023-03-09 한양대학교 에리카산학협력단 2차원 전자 가스 및 2차원 정공 가스 기반의 열전 소자, 및 그 제조방법
KR102597072B1 (ko) * 2020-09-08 2023-11-01 한양대학교 에리카산학협력단 이성분계 산화물 2deg 및 2dhg 열전 소자 기반 능동 냉각 장치 및 그 제조방법
WO2024010483A1 (ru) * 2022-07-06 2024-01-11 Общество С Ограниченной Ответственностью "Технология Твердотельного Охлаждения" Твердотельное охлаждающее устройство

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117430A (ja) * 2007-11-02 2009-05-28 Toyota Central R&D Labs Inc 熱電素子
JP2010153748A (ja) * 2008-12-26 2010-07-08 Sanken Electric Co Ltd 電界効果半導体装置の製造方法
JP2010238699A (ja) * 2009-03-30 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP2011071356A (ja) * 2009-09-26 2011-04-07 Sanken Electric Co Ltd 半導体装置
JP2014511032A (ja) * 2011-03-04 2014-05-01 トランスフォーム インコーポレーテッド 半導体デバイスの電極構造
JP2014103400A (ja) * 2009-08-07 2014-06-05 Ngk Insulators Ltd 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子
US20140318592A1 (en) * 2011-12-21 2014-10-30 The Regents Of The University Of California Enhancement of thermoelectric properties through polarization engineering

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672734B2 (ja) * 2010-03-25 2015-02-18 富士通株式会社 半導体装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117430A (ja) * 2007-11-02 2009-05-28 Toyota Central R&D Labs Inc 熱電素子
JP2010153748A (ja) * 2008-12-26 2010-07-08 Sanken Electric Co Ltd 電界効果半導体装置の製造方法
JP2010238699A (ja) * 2009-03-30 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP2014103400A (ja) * 2009-08-07 2014-06-05 Ngk Insulators Ltd 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子
JP2011071356A (ja) * 2009-09-26 2011-04-07 Sanken Electric Co Ltd 半導体装置
JP2014511032A (ja) * 2011-03-04 2014-05-01 トランスフォーム インコーポレーテッド 半導体デバイスの電極構造
US20140318592A1 (en) * 2011-12-21 2014-10-30 The Regents Of The University Of California Enhancement of thermoelectric properties through polarization engineering

Also Published As

Publication number Publication date
JP6609109B2 (ja) 2019-11-20
JP2016207708A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6609109B2 (ja) 熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置
Zide et al. Demonstration of electron filtering to increase the Seebeck coefficient in In 0.53 Ga 0.47 As∕ In 0.53 Ga 0.28 Al 0.19 As superlattices
KR101956278B1 (ko) 그래핀 함유 복합 적층체, 이를 포함하는 열전재료, 열전모듈과 열전 장치
KR100933967B1 (ko) 포논 차단 전자 투과 소형 구조물
Lin et al. Thermoelectric properties of superlattice nanowires
US9076925B2 (en) Thermoelectric material, method for producing the same, and thermoelectric conversion module using the same
US6060656A (en) Si/SiGe superlattice structures for use in thermoelectric devices
US20020033188A1 (en) Heterostructure thermionic coolers
WO2009015380A1 (en) Thermoelectric and pyroelectric energy conversion devices
US8772785B2 (en) Semiconductor device, schottky barrier diode, electronic apparatus, and method of producing semiconductor device
JP2001196575A (ja) 半導体装置
Lu et al. Semimetal/semiconductor nanocomposites for thermoelectrics
CN103682073B (zh) 热电元件
US9960249B2 (en) Semiconductor heterobarrier electron device and method of making
JPWO2010073391A1 (ja) 熱電変換素子及びその製造方法並びに電子機器
US8692105B2 (en) III-V nitride-based thermoelectric device
Nagase et al. Thermoelectric enhancement in the two‐dimensional electron gas of AlGaN/GaN heterostructures
US20130180560A1 (en) Nanoscale, ultra-thin films for excellent thermoelectric figure of merit
Dresselhaus et al. Advances in 1D and 2D thermoelectric materials
Mohamed et al. Phonon-assisted reduction of hot spot temperature in AlInN ternaries
Proshchenko et al. Modulation of semiconductor superlattice thermopower through symmetry and strain
RU2788972C2 (ru) Термоэлектрический преобразователь на основе нерегулярной твердотельной сверхрешетки
Feng et al. 2D multifunctional SiAs2/GeAs2 van der Waals heterostructure
Praharaj Indium gallium nitride on silicon heterojunction Schottky barrier solar cell characteristics
Shakouri et al. Solid-state and vacuum thermionic energy conversion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779789

Country of ref document: EP

Kind code of ref document: A1