WO2016165624A1 - 终端侧、基站侧设备,终端设备,基站和无线通信方法 - Google Patents

终端侧、基站侧设备,终端设备,基站和无线通信方法 Download PDF

Info

Publication number
WO2016165624A1
WO2016165624A1 PCT/CN2016/079241 CN2016079241W WO2016165624A1 WO 2016165624 A1 WO2016165624 A1 WO 2016165624A1 CN 2016079241 W CN2016079241 W CN 2016079241W WO 2016165624 A1 WO2016165624 A1 WO 2016165624A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
subset
cell
base station
target cell
Prior art date
Application number
PCT/CN2016/079241
Other languages
English (en)
French (fr)
Inventor
魏宇欣
Original Assignee
索尼公司
魏宇欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 魏宇欣 filed Critical 索尼公司
Priority to CA2981190A priority Critical patent/CA2981190A1/en
Priority to JP2017550219A priority patent/JP6673364B2/ja
Priority to EP16779599.6A priority patent/EP3285521B1/en
Priority to US15/553,439 priority patent/US10348435B2/en
Publication of WO2016165624A1 publication Critical patent/WO2016165624A1/zh
Priority to US16/420,224 priority patent/US10903926B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present disclosure relates generally to the field of wireless communications. More particularly, it relates to a terminal side device, a terminal device, a base station side device, a base station, and a wireless communication method used therein in a wireless communication system.
  • LTE Long Term Evolution
  • the user equipment must go through the process of cell search, cell system information, random access, etc. to access the LTE network.
  • the main purposes of cell search are: (1) obtaining frequency and symbol synchronization with the cell; (2) acquiring system frame timing, that is, the starting position of the downlink frame; and (3) determining the physical layer cell identifier (PCI) of the cell.
  • PCI physical layer cell identifier
  • the UE not only needs to perform cell search at boot time.
  • the UE In order to support mobility, the UE continuously searches for neighbor cells, obtains synchronization, and estimates the reception quality of the cell signal, thereby determining whether to perform handover or cell reselection.
  • unlicensed bands are valued by more and more operators, and is considered as a supplement to existing LTE licensed bands to improve the quality of service for users.
  • the signal of the cell may be evasive to some extent due to the use of other high priority systems (such as radar), or Other systems, such as WiFi, can only be used for a fixed period of time after negotiation. If the cell search and synchronization consumes too long, it will be detrimental to the initial access of the UE and cell reselection and handover, thereby limiting the use of unlicensed frequency band cells. Thus, the UE is required to be able to quickly search and synchronize unlicensed band cells.
  • a device on a terminal side in a wireless communication system includes: a search unit configured to search for a target cell using a synchronization signal sequence corresponding to a target frequency range to be searched; and a synchronization unit configured to synchronize based on a synchronization signal detected by the search unit, such that The device synchronizes to the target cell.
  • the search unit searches for the target cell by using the synchronization signal sequence in the first subset of the synchronization signal sequence set, wherein the first subset is the real son of the synchronization signal sequence set. set.
  • a wireless communication method used by a device on a terminal side includes: searching for a target cell using a synchronization signal sequence corresponding to a target frequency range to be searched; and synchronizing based on the searched synchronization signal to synchronize the device to the target cell.
  • the target cell is searched by using a synchronization signal sequence in the first subset of the synchronization signal sequence set, wherein the first subset is a true subset of the synchronization signal sequence set.
  • a device on a base station side in a wireless communication system includes: an identifier group determining unit configured to determine a physical layer cell identifier group of the target cell, wherein the physical layer cell identifier group is related to a frequency range of the target cell; the secondary synchronization signal sequence generating unit is configured to be based on a physical layer The cell identity group generates a secondary synchronization signal sequence for the secondary synchronization signal of the target cell.
  • the physical layer cell identifier group is the first subset from the physical layer cell identifier group set, and the first subset is the real part of the physical layer cell identifier group set. set.
  • a wireless communication method used in a device on a base station side includes: determining a physical layer cell identifier group of the target cell, where the physical layer cell identifier group is related to a frequency range of the target cell; and generating, according to the physical layer cell identifier group, a secondary synchronization signal sequence for the secondary synchronization signal of the target cell.
  • the physical layer cell identifier group is only the first subset from the physical layer cell identifier group set, and the first subset is the physical layer cell identifier group set. True subset.
  • a wireless terminal device capable of communicating with a base station on a first carrier.
  • the apparatus includes: a communication unit configured to receive a synchronization signal transmitted by a base station on a second carrier different from the first carrier; and a synchronization unit configured to synchronize the secondary synchronization signal and the secondary synchronization signal sequence in the synchronization signal The sequence in the first subset of the collection is matched to A secondary synchronization signal, wherein the first subset is a true subset of the secondary synchronization signal sequence set.
  • a base station in a wireless communication system capable of communicating with a wireless communication terminal on a first carrier.
  • the base station includes a communication unit configured to transmit a synchronization signal including a secondary synchronization signal on a second carrier different from the first carrier.
  • the secondary synchronization signal is selected from a first subset of the secondary synchronization signal sequence set, and the first subset is a true subset of the secondary synchronization signal sequence set.
  • the number of synchronization signal sequence matches in the cell search process is reduced, and the time during which the UE synchronizes to the target cell is greatly shortened.
  • FIG. 1 is a block diagram showing the structure of a device on a terminal side in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a structural block diagram illustrating a device on a terminal side in a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a wireless communication method used by a device on a terminal side according to an embodiment of the present disclosure.
  • FIG. 4 is a structural block diagram illustrating a device on a base station side in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram illustrating a device on a base station side in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating a wireless communication method used in a device on a base station side according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram illustrating a wireless terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a sequence diagram illustrating a synchronization process of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 9 is a sequence diagram illustrating a synchronization process of a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 10 is a block diagram illustrating an exemplary structure of a computer capable of implementing the present invention.
  • FIG. 11 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the disclosed technology may be applied.
  • FIG. 12 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the disclosed technology may be applied.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a smartphone to which the disclosed technology can be applied.
  • LTE defines two types of downlink synchronization signals: three primary synchronization signals (PSS) and 168 secondary synchronization signals (SSS).
  • PSS primary synchronization signals
  • SSS secondary synchronization signals
  • a combination of a primary synchronization signal and a secondary synchronization signal defines a total of 504 different PCIs, and each PCI corresponds to a particular downlink reference signal sequence.
  • the 168 secondary synchronization signals are respectively identified as 168 cell identification groups, and the three primary synchronization signals are respectively identified as three cell identifiers.
  • the primary synchronization signal and the secondary synchronization signal together determine the PCI of the cell.
  • the UE In order to demodulate the PCI of the cell, the UE needs to match the possible primary synchronization signal and the secondary synchronization signal one by one.
  • the present disclosure proposes a novel technical solution for performing target cell by using a synchronization signal sequence in a specific true subset of the synchronization signal sequence set in the existing communication protocol. Search to shorten possible UE access times. For example, the particular true subset can be determined based on the target frequency range to be searched.
  • the device 100 is, for example but not limited to, a mobile terminal device such as a mobile phone, a notebook computer, and the like, or a component (such as a chip) or device or the like used in such a mobile terminal device.
  • a mobile terminal device such as a mobile phone, a notebook computer, and the like
  • a component such as a chip
  • the device 100 includes a search unit 101 and a synchronization unit 102.
  • the search unit 101 is configured to search the target cell using a synchronization signal sequence corresponding to the target frequency range to be searched. For example, in a case where the target frequency range belongs to the first frequency range, the search unit 101 may search for the target cell using the synchronization signal sequence of the first subset corresponding to the first frequency range of the synchronization signal sequence set.
  • the first subset is a true subset of the set of synchronization signal sequences.
  • the set of synchronization signal sequences is, for example but not limited to, a set of synchronization signal sequences specified in existing communication protocols.
  • the correspondence between the target frequency range and the first subset may be preset, and may be preset in the UE (for example, written in the boot file of the UE), or notified to the UE by the base station.
  • the apparatus 100 may further include a determining unit (not shown) for determining whether the target frequency range belongs to the first frequency range.
  • the first frequency range may be an unlicensed band range of the wireless communication system
  • the target cell to be searched for is an unlicensed spectrum access cell.
  • the set of synchronization signal sequences is, for example but not limited to, a set of synchronization signal sequences used by the communication device in the wireless communication system to communicate using carriers on the licensed frequency band. Since the wireless communication system in which the device 100 is located can only utilize the unlicensed frequency band resources exponentially, and the idle resources may be fleeting, the solution of the present invention is particularly suitable for discovering cells operating on unlicensed frequency bands. , shorten the time of cell discovery and achieve the effect of improving resource utilization.
  • an unlicensed frequency band may be further divided into a plurality of sub-frequency ranges, such as a sub-frequency range coexisting with WiFi/radar and a normal unlicensed sub-frequency range.
  • the first frequency range may correspond to one of a plurality of sub-frequency ranges, for example, a set of synchronization signal sequences over the entire unlicensed band, and a fast search using the synchronization signal sequence contained in the true subset.
  • the access time requirement on the sub-frequency range where the different systems coexist is more strict than the normal sub-frequency range.
  • the true subset of the synchronization signal sequence corresponding to the sub-frequency range in which the different systems coexist can be set to be more normal than The authorized sub-frequency range is small, thereby further accelerating the cell discovery process.
  • the synchronization unit 102 is configured to synchronize based on the synchronization signal detected by the search unit 101 to synchronize the device 100 to the target cell. Due to the use of the true subset, the number of matches that the UE may perform during the search process of the target cell will be significantly reduced, thereby shortening the synchronization time between the UE and the target cell.
  • the primary synchronization signal is matched up to three times. Since the secondary synchronization signals are located in different frames, each secondary synchronization signal has 168 possibilities, and the secondary synchronization signal can be matched up to 168 times. Therefore, it can be seen that in the scheme of adopting the true subset in the synchronization signal sequence as a candidate to be matched synchronization signal set, the secondary synchronization signal has a large optimization space.
  • the synchronization signal sequence described above may be a secondary synchronization signal sequence.
  • the search unit 101 can be configured to decode the secondary synchronization signal of the target cell with a secondary synchronization signal sequence corresponding to, for example, a target frequency range of the unlicensed frequency band.
  • LAA-LTE carrier-assisted LTE-assisted auxiliary access
  • its secondary synchronization signal can be defined to use only a certain subset of existing standards. For example, only 56 of the 168 base sequences are used. Thereby, the number of times that the UE separately performs autocorrelation (matching) on the secondary synchronization signal sequence is reduced, thereby greatly reducing the synchronization time.
  • device 100 may also include a communication interface (not shown).
  • the communication interface can be configured to obtain a command to search for the target cell through the first cell on the licensed band, and the indication information of the first subset.
  • the communication interface may receive signaling including a command to search for the target cell and indication information of the first subset by the first cell on the licensed band.
  • the signaling may be, for example, broadcast signaling or RRC signaling.
  • the secondary synchronization signal may be divided according to the value of the PCI mode 6.
  • Base sequence (168 in the existing standard)
  • the sequence used by the secondary synchronization signal is divided into 6 subsets, as an alternative to the first subset, and each subset is assigned a corresponding number as the first subset Instructions.
  • the subsets may also be divided according to the order of the group IDs. For example, the base sequence of the secondary synchronization signal is divided into three subsets.
  • the communication interface of the device 100 may also be configured to acquire an indication related to the updated synchronization signal sequence through the target cell.
  • the communication interface of the device 100 may also obtain an indication related to the updated synchronization signal sequence through the target cell after the device 100 accesses the target cell, in other words, the synchronization signal sequence obtained and updated through the unlicensed frequency band in this example. Relevant instructions.
  • the device 200 may include a search unit 201, a synchronization unit 202, a detection unit 203, and a notification unit 204.
  • the same functions and structures that the search unit 201 and the synchronization unit 202 have with the search unit 101 and the synchronization unit 102 described in connection with FIG. 1 are not described redundantly herein.
  • the same terms (such as “first subset", “first frequency range”, etc.) mean the same meaning as the previous embodiment.
  • the detecting unit 203 can detect whether the interference of the reference signal received by the device 200 over the first frequency range is excessive due to the use of the first subset. For example, without limitation, it may be determined whether the interference is excessive by detecting a reference signal received quality (RSRQ) signal or the like. For example, but not limited to, when it is determined by the detection of the RSRQ that there is strong interference, the time during which the strong interference persists can be further determined, and when it exceeds the predetermined time threshold, it can be determined that the device 200 is at the first frequency due to the use of the first subset. The reference signal received over the range is too large. In the case where excessive interference is detected, the notification unit 204 may notify the base station of its serving cell or target cell of the detection result.
  • RSRQ reference signal received quality
  • the current serving cell of the device 200 eg, the serving cell on the licensed band
  • the target cell on the unlicensed band are co-base stations, and in other examples, the serving cell and the target cell may be different.
  • the base station entity management, the notification unit 204 may notify the serving cell base station of the detection result, and then transmit the X2 signaling to the base station of the target cell by the serving cell base station.
  • the device 200 may directly access the target cell.
  • the detection result is reported to the base station of the target cell.
  • the set of synchronization signal sequences may include a plurality of true subsets for cell search for the first frequency range.
  • the searching unit 201 may detect an indication of the second subset of the serving cell/target cell that is reselected from the plurality of true subsets in response to the excessive interference notification sent by the notification unit 204, and the synchronization retransmitted by the base station of the target cell signal. Needless to say, the second subset of reselection is different from the first subset.
  • the search unit 201 can decode the retransmitted synchronization signal using the second subset according to the indication of the second subset.
  • the base station of the target cell may also reselect the additional synchronization signal sequence from the first subset in response to the excessively large notification issued by the notification unit 204 without reselecting the subset.
  • the sequence of the macro cell and the small cell may be first used for matching to speed up the synchronization as much as possible.
  • the search unit 201 may first search using the secondary synchronization signal of the cell in which the device 200 previously camped as the synchronization signal sequence.
  • the first subset of synchronization signal sequences may correspond to a synchronization signal sequence of a serving cell on a current or previously licensed frequency band.
  • the search unit 201 may acquire an indication regarding the first subset according to radio resource control (RRC) configuration information from the currently serving base station.
  • RRC radio resource control
  • the set of synchronization signal sequences may include a plurality of true subsets for cell search for the first frequency range, and the sequence numbers of the first subset are included in the RRC configuration information.
  • the search unit 201 cannot search for the target cell using all sequences in the first subset, the search can be performed using the sequence in the third subset.
  • the third subset referred to herein is one of a plurality of true subsets for cell search for the first frequency range and is different from the first subset.
  • FIG. 3 is a flowchart illustrating a wireless communication method used by a device on a terminal side according to an embodiment of the present disclosure.
  • the target cell is searched using a synchronization signal sequence corresponding to the target frequency range to be searched. For example, in the case where the target frequency range belongs to the first frequency range, the target cell is searched using the synchronization signal sequence in the first subset of the synchronization signal sequence set.
  • the first subset is a true subset of the set of synchronization signal sequences.
  • step S302 synchronization is performed based on the searched synchronization signal to synchronize the device to the target cell.
  • the specific implementations and modifications involved in the steps in FIG. 3 are the same as those described in connection with FIG. 1 and FIG. 2, and are not described herein again.
  • the device 400 includes an identification group determining unit 401 and a secondary synchronization signal sequence generating unit 402.
  • the identification group determining unit 401 is configured to determine a physical layer cell identification group of the target cell.
  • the identifier group determining unit 401 may determine the physical layer cell identifier group according to the frequency range of the target cell. For example, if the frequency range of the target cell belongs to the first frequency range, the physical layer cell identity group is determined as the first subset of the true subset from the physical layer cell identity group set as the physical layer cell identity group set. .
  • the identity group determining unit 401 can autonomously determine a physical layer cell identity group of the target cell according to the frequency range of the target cell.
  • the identifier group determining unit 401 may determine the physical layer cell identifier group of the target cell according to the frequency range of the target cell according to the configuration of the operator through the operation management and maintenance (OAM).
  • device 400 may also include a determining unit for determining whether the frequency range of the target cell belongs to the first frequency range.
  • the secondary synchronization signal sequence generation unit 402 is configured to generate a secondary synchronization signal sequence for the secondary synchronization signal of the target cell based on the physical layer cell identification group determined by the identification group determination unit 401.
  • the secondary synchronization signal SSS may use a Zadoff-Chu sequence of length 63 (with a DC subcarrier (DC subcarrier) in the middle, so the length of the transmission is actually 62), plus the additional reserved for the boundary.
  • the five subcarriers of the guard band form an SSS occupying 72 subcarriers (excluding DC). Whether frequency division multiplexed (FDD) or time division multiplexed (TDD), SSS is transmitted on subframes 0 and 5.
  • FDD frequency division multiplexed
  • TDD time division multiplexed
  • the design of SSS has its own special features.
  • the values of two SSSs (SSS 1 and SSS 2 are located in subframe 0 and subframe 5, respectively) are derived from a set of 168 selectable values, for example, a true subset of elements of 56) (see the table of standard 36.211). 6.11.2.1-1, SSS and SSS in the range 1 2 are different, thus allowing a UE receives only the SSS timing system detects the 10ms frame (i.e., where the subframe position 0). The reason for this is that during the cell search process, the UE searches for multiple cells, and the searched time window may not be sufficient for the UE to detect more than one SSS.
  • the first range of frequencies may be an unlicensed range of frequency bands of the wireless communication system.
  • the target cell may be an unlicensed spectrum access cell.
  • the first frequency range can also be other frequency ranges that need to speed up the synchronization process. For example, in a scenario where there is a dense small cell deployment, if the UE moves at a high speed, it is also required to quickly access the small cell. Thus, the frequency range of the small cell can be used as the first frequency range, thereby speeding up the synchronization process.
  • FIG. 5 is a structural block diagram illustrating a device 500 on the base station side in a wireless communication system according to an embodiment of the present disclosure.
  • the device 500 includes an identification group determining unit 501, a secondary synchronization signal sequence generating unit 502, a communication unit 503, and an information updating unit 504.
  • the functions and structures of the identification group determining unit 501 and the secondary synchronization signal sequence generating unit 502 which are the same as the identification group determining unit 401 and the secondary synchronization signal sequence generating unit 402 described in connection with FIG. 4 are not described herein again.
  • the device 500 may send the secondary synchronization signal on the unlicensed frequency band corresponding to the target cell via the communication unit 503. .
  • the device on the UE side detects that the interference of the reference signal received by the UE side device on the first frequency range is excessive due to the use of the first subset, and the detection indicating excessive interference is indicated.
  • the communication unit 503 of the base station side device 500 can also receive the notification that the interference is excessive.
  • the current serving cell of the device on the UE side (for example, the serving cell on the licensed frequency band) and the target cell on the unlicensed frequency band are common base stations, and in other examples, the serving cell and the target cell may Managed by different base station entities, the detection result can be notified to the serving cell base station, and then transmitted by the serving cell base station through X2 signaling.
  • the device on the UE side may directly report the detection result to the base station of the target cell after accessing the target cell.
  • the identification group determining unit 501 may re-determine as the true subset of the physical layer cell identification group set and the second subset different from the first subset as Physical layer cell identification group.
  • the secondary synchronization signal sequence generation unit 502 can then regenerate the secondary synchronization signal sequence based on the second subset.
  • the information updating unit 504 may generate system broadcast information including the indication information about the second subset to be transmitted through the target cell.
  • the information update unit 504 may also generate system broadcast information including indication information about the second subset to be transmitted on the licensed frequency band.
  • the communication unit 503 can also notify the indication information of the second subset to other base station side devices in the wireless communication system, such as devices on the neighbor base station side. Specific examples will be described in detail below.
  • the device 400 (500) on the base station side may acquire a subset of the physical layer cell identification group of the neighboring cell of the target cell, and in the case of performing radio resource management involving the neighboring cell on the terminal device of the local cell, The radio resource control signaling is generated to notify the terminal side device of the neighbor cell identification group subset.
  • the communication unit of the device 400 (500) on the base station side may also report an excessive interference event to the core network through the S1 interface in response to the reception of the excessive interference notification, and acquire and update from the core network. Information about the cell identity group.
  • FIG. 6 is a flowchart illustrating a wireless communication method used in a device on a base station side according to an embodiment of the present disclosure.
  • a physical layer cell identification group of the target cell is determined.
  • the physical layer cell identification group is related to the frequency range of the target cell. For example, in a case where the frequency range of the target cell belongs to the first frequency range, the physical layer cell identifier group is only the first subset from the physical layer cell identifier group set, and the first subset is the physical layer cell identifier group. The true subset of the collection.
  • a secondary synchronization signal sequence for the secondary synchronization signal of the target cell is generated based on the physical layer cell identity group.
  • the specific implementations and modifications involved in the steps in FIG. 6 are the same as those described in connection with FIG. 4 and FIG. 5, and are not described herein again.
  • FIG. 7 is a structural block diagram illustrating a wireless terminal device 700 according to an embodiment of the present disclosure.
  • the wireless terminal device 700 is capable of communicating with the base station on the first carrier.
  • the first carrier can be a carrier on a licensed band.
  • the wireless terminal device 700 may include a communication unit 701 and a synchronization unit 702.
  • the communication unit 701 can receive a synchronization signal transmitted by the base station on a second carrier different from the first carrier.
  • the second carrier can be a carrier on an unlicensed band.
  • the synchronization unit 702 may be the first by combining the secondary synchronization signal and the secondary synchronization signal sequence in the synchronization signal The sequences in the subset are matched to determine the secondary synchronization signal.
  • the first subset is a true subset of the set of secondary synchronization signal sequences.
  • the set of secondary synchronization signal sequences may be a set of secondary synchronization signal sequences used by the wireless terminal device to communicate using the first carrier.
  • a base station in a wireless communication system is capable of communicating with the wireless communication terminal on the first carrier.
  • the base station includes a communication unit.
  • the communication unit can be configured to transmit a synchronization signal including a secondary synchronization signal on a second carrier different from the first carrier.
  • the secondary synchronization signal may be selected from the first subset of the true subset as a set of secondary synchronization signal sequences.
  • the first carrier may be a carrier signal on a licensed band and the second carrier may be a carrier signal on an unlicensed band.
  • the set of secondary synchronization signal sequences may be, for example, a set of secondary synchronization signal sequences used by the base station to communicate using the first carrier.
  • FIGS. 8 and 9 Please note that although the scenarios of unlicensed spectrum access assisted by LTE are described in FIG. 8 and FIG. 9, those skilled in the art can use the corresponding scheme in a separate unlicensed network by routine labor. (ie no LTE-assisted network).
  • FIG. 8 is a sequence diagram illustrating a synchronization process of a wireless communication system according to an embodiment of the present disclosure.
  • Figure 8 shows a scenario of unlicensed spectrum access with LTE assistance.
  • all cells and user equipment use the same fixed subset of the set of synchronization signal sequences as the first subset.
  • the UE communicates with the serving base station on the primary component carrier (in this embodiment, the licensed band).
  • the base station transmits a command on the primary component carrier to the UE to switch to the secondary component carrier (in this embodiment, the unlicensed band) for communication.
  • the UE switches to receiving broadcast information on the secondary component carrier in response to the command.
  • the broadcast information carries a fixed subset of the first subset of synchronization signal sequences.
  • the UE matches with the synchronization sequence signal in the received broadcast information using, for example, a fixed subset of pre-existing boot files. Since a fixed subset is used, it is inevitable to determine the secondary synchronization signal, the primary synchronization signal, and even the physical identity of the cell accessing the unlicensed frequency band. Then, at time T85, the UE synchronizes with the cell operating in the unlicensed band, and then performs normal communication. In this embodiment, since each secondary cell uses a fixed subset (true subset) of the synchronization signal sequence, the serving base station operating in the unlicensed frequency band does not need to notify the other base station of the subset.
  • the same fixed subset of the set of synchronization signal sequences is used as the first subset compared to all cells and user equipment.
  • a respective fixed subset may be used in each cell.
  • the UE first matches the synchronization signal in the broadcast information using the default subset. When the default subset cannot match, then other subsets are randomly changed for matching.
  • the UE may first use the same primary synchronization signal as the communication on the previous primary component carrier and The secondary sync signal is matched as a default subset.
  • FIG. 9 is a sequence diagram illustrating a synchronization process of a wireless communication system according to another embodiment of the present disclosure.
  • Figure 9 shows a scenario of unlicensed spectrum access assisted by LTE.
  • all cells first use a unified default subset of the set of synchronization signal sequences as the first subset.
  • the UE communicates with the serving base station on the primary component carrier (in this embodiment, the licensed band).
  • the base station transmits a command on the primary component carrier to the UE to switch to the secondary component carrier (in this embodiment, the unlicensed band) for communication.
  • the UE switches to receiving broadcast information on the secondary component carrier in response to the command.
  • the broadcast information carries a fixed subset of the first subset of synchronization signal sequences.
  • the UE matches the synchronization sequence signal in the received broadcast information using, for example, a default subset of pre-existing boot files (preferably the same subset as the default subset of cells).
  • the UE synchronizes with the cell operating in the unlicensed band, and then performs normal communication.
  • the UE detects whether the interference of the reference signal received by the UE on the unlicensed band is too large due to the use of a true subset of the synchronization sequence signal. If the interference is too large, the UE notifies the cell base station of the detection result indicating that the interference is excessive at time T97.
  • the notification can optionally be sent on a primary component carrier (authorized band) or a secondary component carrier (unlicensed band).
  • the base station replaces another true subset in response to receipt of the notification, or selects a signal sequence (e.g., a secondary synchronization signal sequence) based on the set of atoms.
  • the reselected subset or sequence is then transmitted to the UE and other base stations, respectively, at times T99 and T910.
  • T99 and T910 may be the same time or different times.
  • the invention has been described above with reference to flowchart illustrations and/or block diagrams of methods and apparatus in accordance with embodiments of the invention.
  • the computer program instructions can be provided to a general purpose computer, a special purpose computer, or a processor of other programmable data processing apparatus to produce a machine that causes the execution of the instructions by a computer or other programmable data processing apparatus. / or the device/function device specified in the box in the block diagram.
  • the computer program instructions may also be stored in a computer readable medium that can instruct a computer or other programmable data processing apparatus to operate in a particular manner, such that instructions stored in the computer readable medium produce an implementation flow diagram and/or The manufacture of the instruction means of the function/operation specified in the box in the block diagram.
  • the computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable data processing device to produce a computer-implemented process for use in a computer or other programmable device
  • the instructions executed on the implementation provide implementation The process of the functions/operations specified in the blocks in the flowcharts and/or block diagrams.
  • each block of the flowchart or block diagrams can represent a module, a program segment, or a portion of code that includes one or more logic for implementing the specified.
  • Functional executable instructions can also occur in a different order than that illustrated in the drawings. For example, two successively represented blocks may in fact be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or operation. Or it can be implemented by a combination of dedicated hardware and computer instructions.
  • FIG. 10 is a block diagram illustrating an exemplary structure of a computer capable of implementing the present invention.
  • a central processing unit (CPU) 1001 executes various processes in accordance with a program stored in a read only memory (ROM) 1002 or a program loaded from a storage portion 1008 to a random access memory (RAM) 1003.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1001 executes various processes is also stored as needed.
  • the CPU 1001, the ROM 1002, and the RAM 1003 are connected to each other via a bus 1004.
  • Input/output interface 1005 is also coupled to bus 1004.
  • the following components are connected to the input/output interface 1005: an input portion 1006 including a keyboard, a mouse, etc.; an output portion 1007 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 1008 , including a hard disk or the like; and a communication portion 1009 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1009 performs communication processing via a network such as the Internet.
  • the drive 1010 is also connected to the input/output interface 1005 as needed.
  • a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1010 as needed, so that a computer program read therefrom is installed into the storage portion 1008 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 1011.
  • such a storage medium is not limited to the removable medium 1011 shown in FIG. 10 in which a program is stored and distributed separately from the method to provide a program to a user.
  • the detachable medium 1011 include a magnetic disk, an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), a magneto-optical disk (including a mini disk (MD)), and a semiconductor memory.
  • the storage medium may be a ROM 1002, a hard disk included in the storage portion 1008, or the like, in which Programs are distributed to users along with the methods that contain them.
  • a base station may be implemented, for example, as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • the above-mentioned main body for controlling wireless communication may also be a processing device of a baseband cloud, such as a server, with the development of C-RAN (Centralized, Cooperative, Cloud RAN).
  • C-RAN Centralized, Cooperative, Cloud RAN
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the user equipment may be implemented, for example, as a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a smart wearable device, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or Intelligent vehicles, vehicle terminals (such as car navigation devices).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • a base station according to the present disclosure may be implemented by a macro base station or a small cell base station.
  • the macro base station and the small cell base station can be implemented using the eNBs shown in FIGS. 11 and 12.
  • the eNB 1100 includes one or more antennas 1110 and a base station device 1120.
  • the base station device 1120 and each antenna 1110 may be connected to each other via an RF cable.
  • Each of the antennas 1110 includes a single or multiple antenna elements such as a plurality of antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1120 to transmit and receive wireless signals.
  • the eNB 1100 may include a plurality of antennas 1110.
  • multiple antennas 1110 can be compatible with multiple frequency bands used by eNB 1100.
  • FIG. 11 illustrates an example in which the eNB 1100 includes a plurality of antennas 1110, the eNB 1100 may also include a single antenna 1110.
  • the base station device 1120 includes a controller 1121, a memory 1122, a network interface 1123, and a wireless communication interface 1125.
  • the controller 1121 can be, for example, a CPU or a DSP, and operates the higher of the base station device 1120. Various functions of the layer. For example, controller 1121 generates data packets based on data in signals processed by wireless communication interface 1125 and communicates the generated packets via network interface 1123. The controller 1121 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1121 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1122 includes a RAM and a ROM, and stores programs executed by the controller 1121 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1123 is a communication interface for connecting base station device 1120 to core network 1124. Controller 1121 can communicate with a core network node or another eNB via network interface 1123. In this case, the eNB 1100 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1123 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 1123 is a wireless communication interface, the network interface 1123 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1125.
  • the wireless communication interface 1125 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1100 via the antenna 1110.
  • Wireless communication interface 1125 can generally include, for example, baseband (BB) processor 1126 and RF circuitry 1127.
  • the BB processor 1126 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1126 may have some or all of the above described logic functions.
  • the BB processor 1126 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1126 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 1120. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1127 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1110.
  • the wireless communication interface 1125 can include a plurality of BB processors 1126.
  • multiple BB processors 1126 may be compatible with multiple frequency bands used by eNB 1100.
  • the wireless communication interface 1125 can include a plurality of RF circuits 1127.
  • multiple RF circuits 1127 can be compatible with multiple antenna elements.
  • FIG. 11 illustrates an example in which the wireless communication interface 1125 includes a plurality of BB processors 1126 and a plurality of RF circuits 1127, the wireless communication interface 1125 may also include a single BB processor 1126 or a single RF circuit 1127.
  • FIG. 12 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the disclosed technology may be applied.
  • the eNB 1200 includes one or more antennas 1210, base station devices 1220, and RRHs 1230.
  • the RRH 1230 and each antenna 1210 may be connected to each other via an RF cable.
  • the base station device 1220 and the RRH 1230 may be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1230 to transmit and receive wireless signals.
  • the eNB 1200 can include multiple antennas 1210.
  • multiple antennas 1210 can be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 illustrates an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, a wireless communication interface 1225, and a connection interface 1227.
  • the controller 1221, the memory 1222, and the network interface 1223 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG.
  • Network interface 1223 is used to connect base station device 1220 to core network 1224.
  • the wireless communication interface 1225 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in sectors corresponding to the RRH 1230 via the RRH 1230 and the antenna 1210.
  • Wireless communication interface 1225 may typically include, for example, BB processor 1226.
  • the BB processor 1226 is identical to the BB processor 1126 described with reference to FIG. 11 except that the BB processor 1226 is connected to the RF circuit 1234 of the RRH 1230 via the connection interface 1227.
  • the wireless communication interface 1225 can include a plurality of BB processors 1226.
  • multiple BB processors 1226 can be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 illustrates an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226, the wireless communication interface 1225 may also include a single BB processor 1226.
  • connection interface 1227 is an interface for connecting the base station device 1220 (wireless communication interface 1225) to the RRH 1230.
  • the connection interface 1227 may also be a communication module for connecting the base station device 1220 (wireless communication interface 1225) to the communication in the above-described high speed line of the RRH 1230.
  • the RRH 1230 includes a connection interface 1231 and a wireless communication interface 1233.
  • connection interface 1231 is an interface for connecting the RRH 1230 (wireless communication interface 1233) to the base station device 1220.
  • the connection interface 1231 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1233 transmits and receives wireless signals via the antenna 1210.
  • Wireless communication interface 1233 may typically include, for example, RF circuitry 1234.
  • the RF circuit 1234 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1210.
  • Figure 12 the wireless communication interface 1233 can include a plurality of RF circuits 1234.
  • multiple RF circuits 1234 can support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1233 includes a plurality of RF circuits 1234, the wireless communication interface 1233 may also include a single RF circuit 1234.
  • the communication unit described by FIG. 5 may be implemented by a combination of the wireless communication interface 1125 and the antenna 1110 of the eNB 1100 or the network interface 1123, or may be implemented by the eNB 1200.
  • the radio communication interface 1225 of the RRH 1230 and the base station device 1220 is implemented together by a connection interface between them.
  • the identification group determining unit 401/501, the secondary synchronization signal sequence generating unit 402/502, and the information updating unit 504 may be implemented by the controller 1121 or the controller 1221.
  • the communication device may be implemented as a smart phone.
  • a smart phone can turn on the wifi hotspot function as a wifi access device.
  • the wifi connection between the smartphone and other smart terminals utilizes unlicensed spectrum resources.
  • the use of unlicensed spectrum by the smartphone is managed directly by, for example, the spectrum manager.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a smartphone 1300 to which the disclosed technology can be applied.
  • the smart phone 1300 includes a processor 1301, a memory 1302, a storage device 1303, an external connection interface 1304, an imaging device 1306, a sensor 1307, a microphone 1308, an input device 1309, a display device 1310, a speaker 1311, a wireless communication interface 1312, and one or more An antenna switch 1315, one or more antennas 1316, a bus 1317, a battery 1318, and an auxiliary controller 1319.
  • the processor 1301 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smart phone 1300.
  • the memory 1302 includes a RAM and a ROM, and stores data and programs executed by the processor 1301.
  • the storage device 1303 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1304 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1300.
  • USB universal serial bus
  • the image pickup device 1306 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1307 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1308 converts the sound input to the smartphone 1300 into an audio signal.
  • the input device 1309 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1310, and receives an operation or information input from a user.
  • the display device 1310 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1300.
  • the speaker 1311 converts the audio signal output from the smartphone 1300 into sound.
  • the wireless communication interface 1312 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1312 may generally include, for example, BB processor 1313 and RF circuitry 1314.
  • the BB processor 1313 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1314 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1316.
  • the wireless communication interface 1312 can be a chip module on which the BB processor 1313 and the RF circuit 1314 are integrated. As shown in FIG.
  • the wireless communication interface 1312 can include a plurality of BB processors 1313 and a plurality of RF circuits 1314.
  • FIG. 13 illustrates an example in which the wireless communication interface 1312 includes a plurality of BB processors 1313 and a plurality of RF circuits 1314, the wireless communication interface 1312 may also include a single BB processor 1313 or a single RF circuit 1314.
  • wireless communication interface 1312 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1312 can include a BB processor 1313 and an RF circuit 1314 for each wireless communication scheme.
  • Each of the antenna switches 1315 switches the connection destination of the antenna 1316 between a plurality of circuits included in the wireless communication interface 1312, such as circuits for different wireless communication schemes.
  • Each of the antennas 1316 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1312 to transmit and receive wireless signals.
  • smart phone 1300 can include multiple antennas 1316.
  • FIG. 13 shows an example in which the smartphone 1300 includes a plurality of antennas 1316, the smartphone 1300 may also include a single antenna 1316.
  • smart phone 1300 can include an antenna 1316 for each wireless communication scheme.
  • the antenna switch 1315 can be omitted from the configuration of the smartphone 1300.
  • the bus 1317 stores the processor 1301, the memory 1302, the storage device 1303, the external connection interface 1304, the imaging device 1306, the sensor 1307, the microphone 1308, the input device 1309, the display device 1310, the speaker 1311, the wireless communication interface 1312, and the auxiliary controller 1319 with each other. connection.
  • Battery 1318 provides power to various blocks of smart phone 1300 shown in FIG. 13 via feeders, which are shown partially as dashed lines in the figure.
  • the secondary controller 1319 operates the minimum required function of the smartphone 1300, for example, in a sleep mode.
  • the search unit 101/201, the synchronization unit 102/202, and the detection unit 203 can be implemented by the processor 1301. Further, for example, the notification unit 204 and the communication unit 701 may be connected to the antenna by the wireless communication interface 1312 or the wireless communication interface 1312. The combination of 1316 is achieved.
  • a device on a terminal side in a wireless communication system comprising:
  • a search unit configured to search for a target cell using a synchronization signal sequence corresponding to a target frequency range to be searched
  • a synchronization unit configured to synchronize based on a synchronization signal detected by the search unit to synchronize the device to the target cell
  • the search unit searches for the target cell by using the synchronization signal sequence in the first subset of the synchronization signal sequence set, wherein the first subset is the real son of the synchronization signal sequence set. set.
  • the first frequency range is an unlicensed frequency band range of the wireless communication system
  • the target cell is an unlicensed spectrum access cell
  • the synchronization signal sequence is a secondary synchronization signal sequence
  • the search unit is configured to use the secondary synchronization signal sequence corresponding to the target frequency range to the target cell
  • the sync signal is decoded.
  • the device on the terminal side according to any one of the items 1 to 4, further comprising: a communication interface configured to acquire a command for searching for the target cell and the first subset by using the first cell on the licensed frequency band Instructions.
  • the device on the terminal side according to any one of claims 1 to 4, wherein the device further comprises a communication interface configured to acquire an indication related to the updated synchronization signal sequence by the target cell after the device accesses the target cell .
  • a detecting unit configured to detect whether interference of a reference signal received by the device over the first frequency range is excessive due to the use of the first subset
  • the notifying unit is configured to notify the base station of the target cell of the detection result if the interference is detected to be excessive.
  • the set of synchronization signal sequences includes a plurality of true subsets for cell search for the first frequency range, and the search unit detects an indication of the second subset of base stations of the target cell that are reselected from the plurality of true subsets in response to the excessively large interference notification, and a synchronization signal retransmitted by a base station of the target cell, wherein the second subset is different from the first subset;
  • the search unit decodes the resent sync signal using the second subset according to the indication.
  • the search unit first uses the secondary synchronization signal of the cell in which the device previously camped as the synchronization.
  • the signal sequence is used for searching.
  • the search unit acquires an indication regarding the first subset according to the radio resource control configuration information from the base station.
  • the device on the terminal side according to any one of the items 1 to 12, wherein, in a case where the target cell cannot be searched using all the sequences in the first subset, the search unit performs the search using the sequence in the third subset,
  • the third subset is one of a plurality of true subsets for the cell search of the first frequency range and is different from the first subset.
  • a method of wireless communication used by a device on a terminal side comprising:
  • the target cell is searched by using a synchronization signal sequence in the first subset of the synchronization signal sequence set, wherein the first subset is a true subset of the synchronization signal sequence set.
  • a device on a base station side in a wireless communication system comprising:
  • An identifier group determining unit configured to determine a physical layer cell identifier group of the target cell, where the physical layer cell identifier group is related to a frequency range of the target cell;
  • a secondary synchronization signal sequence generating unit configured to generate a secondary synchronization signal sequence for the secondary synchronization signal of the target cell based on the physical layer cell identity group
  • the physical layer cell identifier group is the first subset from the physical layer cell identifier group set, and the first subset is the real part of the physical layer cell identifier group set. set.
  • the first frequency range is an unlicensed frequency band range of the wireless communication system
  • the target cell is an unlicensed spectrum access cell.
  • the device on the base station side of scheme 16 further comprising a communication unit configured to transmit a secondary synchronization signal on an unlicensed frequency band corresponding to the target cell.
  • a communication unit configured to receive a notification from the terminal that the interference of the reference signal received by the terminal due to the use of the first subset is excessive
  • the identifier group determining unit re-determines the second subset of the physical layer cell identifier group set as the physical layer cell identifier group, and the second subset is the true subset of the physical layer cell identifier group and the first The subset is different, and the secondary synchronization signal sequence generation unit regenerates the secondary synchronization signal sequence based on the second subset.
  • the information update unit is configured to generate system broadcast information including indication information about the second subset to be transmitted through the target cell.
  • the information update unit is configured to generate system broadcast information including indication information about the second subset to be transmitted on the licensed frequency band.
  • the base station side device according to any one of aspects 18 to 20, wherein the communication unit is further configured To notify the other base station side devices in the wireless communication system of the indication information of the second subset.
  • the device on the base station side acquires a subset of the physical layer cell identifier group of the neighboring cell of the target cell, and in the case of performing radio resource management involving the neighboring cell on the terminal device of the local cell, generating radio resource control signaling to identify the neighbor cell
  • the subset of the group is notified to the terminal side device.
  • a method of wireless communication for use in a device on a base station side comprising:
  • Determining a physical layer cell identifier group of the target cell where the physical layer cell identifier group is related to a frequency range of the target cell;
  • the physical layer cell identifier group is only the first subset from the physical layer cell identifier group set, and the first subset is the physical layer cell identifier group set. True subset.
  • a wireless terminal device capable of communicating with a base station on a first carrier, comprising:
  • a communication unit configured to receive a synchronization signal transmitted by the base station on a second carrier different from the first carrier
  • a synchronization unit configured to determine a secondary synchronization signal by matching a secondary synchronization signal in the synchronization signal with a sequence in a first subset of the secondary synchronization signal sequence set, wherein the first subset is a true subset of the secondary synchronization signal sequence set set.
  • a base station in a wireless communication system capable of communicating with a wireless communication terminal on a first carrier, the base station comprising:
  • a communication unit configured to transmit a synchronization signal including a secondary synchronization signal on a second carrier different from the first carrier
  • the secondary synchronization signal is selected from a first subset of the secondary synchronization signal sequence set, and the first subset is a true subset of the secondary synchronization signal sequence set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种终端、基站侧设备,终端设备,基站和无线通信方法。无线通信系统中终端侧的设备包括:搜索单元,被配置为采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及同步单元,被配置为基于搜索单元检测到的同步信号进行同步,以使得设备同步至目标小区,其中,在目标频率范围属于第一频率范围的情况下,搜索单元采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索,其中,第一子集为同步信号序列集合的真子集。根据本公开的技术减小了小区搜索过程中的同步信号序列匹配次数,缩短了用户设备同步到目标小区的时间。

Description

终端侧、基站侧设备,终端设备,基站和无线通信方法 技术领域
本公开一般地涉及无线通信领域。尤其涉及一种无线通信系统中的终端侧的设备、终端设备、基站侧的设备、基站,以及在它们中使用的无线通信方法。
背景技术
用户对高速数据传输的需求日益增长,LTE(长期演进)成为最具竞争力的无线传输技术之一。用户设备(UE)要接入LTE网络必须经过小区搜索、获取小区系统信息、随机接入等过程。小区搜索的主要目的是:(1)与小区取得频率和符号同步;(2)获取系统帧定时,即下行帧的起始位置;(3)确定小区的物理层小区标识(PCI)。UE不仅需要在开机时进行小区搜索。为了支持移动性,UE会不停地搜索邻居小区、取得同步并估计该小区信号的接收质量,从而决定是否进行切换或小区重选。
随着数据传输的需求不断增长,增加传输带宽以及提高频谱利用率成为提高系统整体性能的关键。在此背景下,未授权频段的使用被越来越多的运营商所重视,并且考虑将其作为现有LTE授权频段的补充以提高用户的服务质量。
由于未授权频段小区的通信是与其它系统共存,共同使用频谱资源,从某种程度上而言,该小区的信号可能由于其它高优先级系统(诸如雷达)的使用而必须进行避让,或者与其它系统(诸如WiFi)经过协商只能使用一个固定时段。如果小区搜索和同步消耗时间过长,将不利于UE的初始接入以及小区重选、切换,进而限制对未授权频段小区的使用。因而,要求UE能够快速地对未授权频段小区进行搜索和同步。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并 不意图确定本公开的关键或重要部分,也不意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本公开的一个方面,提供一种无线通信系统中终端侧的设备。该设备包括:搜索单元,被配置为采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及同步单元,被配置为基于搜索单元检测到的同步信号进行同步,以使得设备同步至目标小区。其中,在目标频率范围属于第一频率范围的情况下,搜索单元采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索,其中,第一子集为同步信号序列集合的真子集。
根据本公开的另一个方面,提供一种由终端侧的设备使用的无线通信方法。该方法包括:采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及基于搜索到的同步信号进行同步,以使得设备同步至目标小区。其中,在目标频率范围属于第一频率范围的情况下,采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索,其中,第一子集为同步信号序列集合的真子集。
根据本公开的另一个方面,提供一种无线通信系统中的基站侧的设备。该设备包括:标识组确定单元,被配置为确定目标小区的物理层小区标识组,其中,物理层小区标识组与目标小区的频率范围有关;辅同步信号序列生成单元,被配置为基于物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列。其中,在目标小区的频率范围属于第一频率范围的情况下,物理层小区标识组是来自物理层小区标识组集合中的第一子集,第一子集为物理层小区标识组集合的真子集。
根据本公开的另一个方面,提供一种在基站侧的设备中使用的无线通信方法。该方法包括:确定目标小区的物理层小区标识组,其中,物理层小区标识组与目标小区的频率范围有关;基于物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列。其中,在目标小区的频率范围属于第一频率范围的情况下,物理层小区标识组是仅来自物理层小区标识组集合中的第一子集,第一子集为物理层小区标识组集合的真子集。
根据本公开的另一个方面,提供一种能够在第一载波上与基站通信的无线终端设备。该设备包括:通信单元,被配置为在不同于第一载波的第二载波上接收由基站发出的同步信号;以及同步单元,被配置为通过将同步信号中的辅同步信号与辅同步信号序列集合的第一子集中的序列进行匹配来确 定辅同步信号,其中,第一子集是辅同步信号序列集合的真子集。
根据本公开的另一个方面,提供一种能够在第一载波上与无线通信终端通信的无线通信系统中的基站。该基站包括:通信单元,被配置为在不同于第一载波的第二载波上发送包括辅同步信号的同步信号。其中,辅同步信号选自辅同步信号序列集合的第一子集,第一子集是辅同步信号序列集合的真子集。
根据本公开的各方面,减小了小区搜索过程中的同步信号序列匹配次数,大大缩短了UE同步到目标小区使用的时间。
附图说明
参照下面结合附图对本公开的实施例的说明,会更加容易地理解本公开的以上和其它目的、特点和优点。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。在附图中不必依照比例绘制出单元的尺寸和相对位置。
图1是例示根据本公开实施例的无线通信系统中终端侧的设备的结构框图。
图2是例示根据本公开另一个实施例的无线通信系统中的终端侧的设备的结构框图。
图3是例示根据本公开实施例的由终端侧的设备使用的无线通信方法的流程图。
图4是例示根据本公开实施例的无线通信系统中的基站侧的设备的结构框图。
图5是例示根据本公开实施例的无线通信系统中的基站侧的设备的结构框图。
图6是例示根据本公开实施例的在基站侧的设备中使用的无线通信方法的流程图。
图7是例示根据本公开实施例的无线终端设备的结构框图。
图8是例示根据本公开实施例的无线通信系统的同步过程的时序图。
图9是例示根据本公开另一实施例的无线通信系统的同步过程的时序图。
图10是例示能够实现本发明的计算机的示例性结构的框图。
图11是例示可以应用本公开技术的eNB的示意性配置的第一示例的框图。
图12是例示可以应用本公开技术的eNB的示意性配置的第二示例的框图。
图13是例示可以应用本公开技术的智能电话的示意性配置的框图。
具体实施方式
在下文中将结合附图对本公开的示例性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施例的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施例的决定,以便实现开发人员的具体目标。例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施例的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是:为了避免因不必要的细节而模糊了本公开,在附图中仅示出了与根据本公开的方案密切相关的装置结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
为了支持小区搜索,LTE定义了2种下行同步信号:3个主同步信号(PSS)和168个辅同步信号(SSS)。因而在LTE中主同步信号和辅同步信号的组合一共定义了504个不同的PCI,且每个PCI对应特定的下行参考信号序列。168个辅同步信号分别被标识为168个小区标识组,3个主同步信号分别被标识为3个小区标识。主同步信号和辅同步信号共同决定小区的PCI。当基站决定了小区标识组以及小区标识后(PCI=3*小区标识组+小区标识),也就确定了所发送的主同步信号和辅同步信号的发送序列。UE搜索到这些信号后,分别按照所有的可能组合对信号进行相关解调,确定该基站所使用的小区标识组以及小区标识。
UE为了解调出小区的PCI,需要逐个匹配可能的主同步信号和辅同步信号。为了提高UE与小区同步的速度,缩短接入时间,本公开提出一种新型的技术方案,通过采用现有通信协议中规定的同步信号序列集合的特定真子集中的同步信号序列来对目标小区进行搜索,来缩短可能的UE接入时间。例如,可以根据待搜索的目标频率范围来确定该特定真子集。
图1是例示根据本公开实施例的无线通信系统中终端侧的设备100的结构框图。设备100例如但不限于诸如手机、笔记本电脑等移动终端设备,以及在这种移动终端设备中、或者结合这种移动终端设备使用的部件(诸如芯片)或装置等。
设备100包括搜索单元101和同步单元102。搜索单元101被配置为采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索。例如,在目标频率范围属于第一频率范围的情况下,搜索单元101可以采用同步信号序列集合的、与第一频率范围相对应的第一子集中的同步信号序列对目标小区进行搜索。这里,第一子集是同步信号序列集合的真子集。这里,同步信号序列集合例如但不限于现有通信协议中规定的同步信号序列集合。目标频率范围与第一子集间的对应关系可以是预先设定好的,并可以预设在UE中(例如写入UE的开机文件中),或者由基站通知给UE。在一个实施例中,设备100还可以包括确定单元(未示出),用于确定目标频率范围是否属于第一频率范围。
在一个实施例中,第一频率范围可以是无线通信系统的未授权频段范围,而待搜索的目标小区为未授权频谱接入小区。在该实施例中,同步信号序列集合例如但不限于是该无线通信系统中的通信设备利用授权频段上的载波通信时使用的同步信号序列集合。由于设备100所在的无线通信系统通常仅能对未授权频段资源进行机会性地利用,其中空闲的资源可能稍纵即逝,因而本发明的方案尤其适合于对未授权频段上工作的小区进行发现,缩短小区发现的时间并达到提高资源利用率的效果。可选地,可以进一步将例如未授权频段划分为多个子频率范围,例如与WiFi/雷达共存的子频率范围以及普通的未授权子频率范围。第一频率范围则可对应于多个子频率范围中之一,同步信号序列集合例如是整个未授权频段上的同步信号序列集合,利用其真子集包含的同步信号序列进行快速搜索。有异系统共存的子频率范围上的接入时间要求比普通的子频率范围更加严格,在这个示例中,可以将有异系统共存的子频率范围对应的同步信号序列真子集设置的比普通未授权子频率范围小,从而进一步加快小区发现过程。
同步单元102被配置为基于搜索单元101检测到的同步信号进行同步,以使得设备100同步至目标小区。由于真子集的使用,UE对目标小区的搜索过程中可能执行的匹配次数将显著减小,进而缩短了UE与目标小区的同步时间。
在下文中,为了描述简便,仅以举例的方式结合未授权频段小区的接入 来描述根据本公开的设备和方法。但是,本领域技术人员可以理解:根据本公开的设备和方法也适用于诸如授权频段等任何其它需要加快同步过程的频率范围的小区的接入,同样可以获得缩短同步时间的效果。例如,在有密集小小区部署的场景下,高速移动的UE也需要快速接入小小区。因而,可以以小小区的频段范围作为第一频率范围,从而加快同步过程。
在现行定义的同步信号中,由于主同步信号有3种可能,对主同步信号的匹配最多为3次。而由于辅同步信号位于不同的帧采用的序列不同,每个辅同步信号又有168种可能性,对辅同步信号的匹配最多可达168次。因此,可见:在通过采用同步信号序列中的真子集作为候选的待匹配同步信号集的方案中,辅同步信号具有较大的优化空间。因而,在一个实施例中,上面描述的同步信号序列可以是辅同步信号序列。搜索单元101可以被配置为采用与例如未授权频段的目标频率范围相对应的辅同步信号序列对目标小区的辅同步信号进行解码。
关于对未授权频段的使用,当前业界普遍达成的共识是在授权频段的辅助下使用未授权频段,即载波聚合方式的利用LTE的授权辅助接入(LAA-LTE)。对于LAA-LTE小区,在一个实施例中,可以定义其辅同步信号仅使用现有标准的某个子集。例如,仅使用168个基序列中的56个基序列。从而减少UE分别对该辅同步信号序列进行自相关(匹配)的次数,从而大大减少同步时间。
在一个实施例中,设备100还可以包括通信接口(未示出)。该通信接口可以被配置为通过授权频段上的第一小区获取对目标小区进行搜索的命令,以及第一子集的指示信息。例如,该通信接口可以通过授权频段上的第一小区接收包括对目标小区进行搜索的命令以及第一子集的指示信息的信令。该信令例如可以是广播信令,也可以是RRC信令。
以在LAA-LTE场景下,通过使用辅同步信号序列集合的与未授权频段对应的真子集作为同步信号序列对目标小区进行搜索为例,可以例如根据PCI模6的值来划分辅同步信号的基序列(现有标准中为168个),将辅同步信号使用的序列划分为6个子集,作为第一子集的备选,并给每个子集分配相应的编号,作为第一子集的指示信息。在另外的示例中,也可以根据组ID的顺序来划分子集。例如,将辅同步信号的基序列划分为3个子集。
在例如上述LAA-LTE场景下,在设备100接入到目标小区后,设备100的通信接口还可以被配置为通过目标小区获取与更新的同步信号序列有关的指示。在例如不需要授权载波辅助的、利用未授权频段的通信的场景下, 设备100的通信接口也可以在设备100接入到目标小区后,通过目标小区获取与更新的同步信号序列有关的指示,换言之,在此示例中亦可通过非授权频段获取与更新的同步信号序列有关的指示。
图2是例示根据本公开另一个实施例的无线通信系统中的终端侧的设备200的结构框图。设备200可以包括搜索单元201、同步单元202、检测单元203以及通知单元204。搜索单元201与同步单元202所具有的、与结合图1描述的搜索单元101与同步单元102的相同的功能和结构这里不做冗余描述。在本实施例以及下面的其它实施例中,相同的术语(诸如“第一子集”、“第一频率范围”等)表示与前述实施例相同的含义。
检测单元203可以检测是否由于使用第一子集而导致由设备200在第一频率范围上接收的参考信号的干扰过大。例如但不限于,可以通过检测参考信号接收质量(RSRQ)信号等来确定干扰是否过大。例如但不限于,当通过检测RSRQ确定存在强干扰时,可以进一步确定强干扰持续的时间,当其超过预定时间阈值时,则可以确定由于使用第一子集而导致由设备200在第一频率范围上接收的参考信号干扰过大。在检测到干扰过大的情况下,通知单元204可以将检测结果通知给其服务小区或目标小区的基站。需注意,在一些示例中,设备200的当前服务小区(例如授权频段上的服务小区)与非授权频段上的目标小区是共基站的,在另一些示例中,服务小区与目标小区可以由不同的基站实体管理,通知单元204可以将检测结果通知给服务小区基站,再由服务小区基站通过X2信令传输给目标小区的基站,在又一些示例中,设备200可以在接入目标小区以后直接报告检测结果给目标小区的基站。
同步信号序列集合可以包括用于第一频率范围的小区搜索的多个真子集。搜索单元201可以检测服务小区/目标小区的基站响应于由通知单元204发出的干扰过大的通知从多个真子集中重新选择的第二子集的指示,以及由目标小区的基站重新发送的同步信号。毋需说,重新选择的第二子集与第一子集不同。搜索单元201可以根据第二子集的指示使用第二子集对重新发送的同步信号进行解码。
可选择地,目标小区的基站也可以响应于由通知单元204发出的干扰过大的通知而从第一子集中重新选择另外的同步信号序列,而不对子集进行重新选择。
在LAA-LTE场景下,由于LAA-LTE的目标小区通常都和宏小区以及小小区部署于不同的频段,因此,在实际部署中非常有可能使用相同的PSS 和SSS。所以,在对LAA-LTE小区进行同步的时候,为了确定其使用的具体PSS/SSS的使用序列,可以首先使用宏小区以及小小区的序列进行匹配,以尽可能的加快同步速度。作为示例,在设备200执行LTE辅助下的未授权频谱接入时,搜索单元201可以首先使用设备200先前驻留的小区的辅同步信号作为同步信号序列来进行搜索。可以理解,第一子集包含的同步信号序列可对应于当前或先前授权频段上的服务小区的同步信号序列。该技术内容和下面要描述的技术内容对于结合图1描述的设备100同样适用。
在设备200需要进行小区间切换的情况下,搜索单元201可以根据来自当前服务的基站的无线资源控制(RRC)配置信息获取关于第一子集的指示。同步信号序列集合可以包括用于第一频率范围的小区搜索的多个真子集,而第一子集的序号被包括在RRC配置信息中。
如果搜索单元201使用第一子集中的所有序列都不能搜索到目标小区,则可以使用第三子集中的序列执行搜索。这里说的第三子集是用于第一频率范围的小区搜索的多个真子集中之一,并且与第一子集不同。
图3是例示根据本公开实施例的由终端侧的设备使用的无线通信方法的流程图。在步骤S301中,采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索。例如,在目标频率范围属于第一频率范围的情况下,采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索。这里,第一子集为同步信号序列集合的真子集。在步骤S302中,基于搜索到的同步信号进行同步,以使得设备同步至目标小区。图3中各步骤所涉及的具体实施方式和变形与结合图1和图2描述的相同,这里不再赘述。
下面结合图4来描述根据本公开实施例的无线通信系统中的基站侧的设备400。设备400包括标识组确定单元401和辅同步信号序列生成单元402。标识组确定单元401被配置为确定目标小区的物理层小区标识组。具体地,标识组确定单元401可以依据目标小区的频率范围来确定物理层小区标识组。例如,在目标小区的频率范围属于第一频率范围的情况下,将物理层小区标识组确定为来自物理层小区标识组集合中的、作为物理层小区标识组集合的真子集的第一子集。在一个示例中,标识组确定单元401可以自主地依据目标小区的频率范围来确定目标小区的物理层小区标识组。可选择地,标识组确定单元401可以根据运营商通过运营管理与维护(OAM)进行的配置来依据目标小区的频率范围确定目标小区的物理层小区标识组。在一个示例中,设备400还可以包括用于确定目标小区的频率范围是否属于第一频率范围的确定单元。
辅同步信号序列生成单元402被配置为基于由标识组确定单元401确定的物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列。在一个实施例中,辅同步信号SSS可以使用长度为63的Zadoff-Chu序列(中间有直流子载波(DC子载波),所以实际上传输的长度为62),加上边界额外预留的用作保护频段的5个子载波,形成了占据中心72个子载波(不包含DC)的SSS。无论是频分复用(FDD)还是时分复用(TDD),SSS都在子帧0和5上传输。在LTE中,SSS的设计有其特别之处。例如,2个SSS(SSS1和SSS2分别位于子帧0和子帧5)的值来源于168个可选值的集合的例如,元素个数为56的真子集),(参见标准36.211的表6.11.2.1-1,
Figure PCTCN2016079241-appb-000001
SSS1的取值范围与SSS2是不同的,因此允许UE只接收一个SSS就检测出系统帧10ms的定时(即子帧0所在的位置)。这样做的原因在于:小区搜索过程中,UE会搜索多个小区,搜索的时间窗可能不足以让UE检测超过一个SSS。
在一个实施例中,第一频率范围可以是无线通信系统的未授权频段范围。目标小区可以是未授权频谱接入小区。毋须说明,第一频率范围也可以是其它需要加快同步过程的频率范围。例如,在有密集小小区部署的场景下,如果UE高速移动,则也需要快速接入小小区。因而,可以以该小小区的频段范围作为第一频率范围,从而加快同步过程。
图5是例示根据本公开实施例的无线通信系统中的基站侧的设备500的结构框图。设备500包括:标识组确定单元501、辅同步信号序列生成单元502、通信单元503和信息更新单元504。标识组确定单元501和辅同步信号序列生成单元502所具有的、与结合图4描述的标识组确定单元401和辅同步信号序列生成单元402相同的功能和结构这里不再赘述。
在第一频率范围是无线通信系统的未授权频段范围,且目标小区为未授权频谱接入小区的实施例中,设备500可以经由通信单元503在目标小区对应的未授权频段上发送辅同步信号。
此外,在一个示例中,在UE侧的设备检测到由于使用第一子集而导致由该UE侧设备在第一频率范围上接收的参考信号的干扰过大,且将指示干扰过大的检测结果通知给目标小区的基站时,基站侧设备500的通信单元503还可以接收该干扰过大的通知。需注意,在一些示例中,UE侧的设备的当前服务小区(例如授权频段上的服务小区)与非授权频段上的目标小区是共基站的,在另一些示例中,服务小区与目标小区可以由不同的基站实体管理,可以将检测结果通知给服务小区基站,再由服务小区基站通过X2信令传输 给目标小区的基站,在又一些示例中,UE侧的设备可以在接入目标小区以后直接报告检测结果给目标小区的基站。在通信单元503接收到该通知的情况下,响应于通知的接收,标识组确定单元501可以重新确定作为物理层小区标识组集合的真子集、且与第一子集不同的第二子集作为物理层小区标识组。然后,辅同步信号序列生成单元502可以基于第二子集重新生成辅同步信号序列。当标识组确定单元501重新确定第二子集作为物理层小区标识组时,信息更新单元504可以生成包括待通过目标小区发送的、有关第二子集的指示信息的系统广播信息。可选择地,信息更新单元504也可以生成包括待在授权频段上发送的、有关第二子集的指示信息的系统广播信息。
在另外的示例中,通信单元503还可以将第二子集的指示信息通知给无线通信系统中的其它基站侧设备,诸如邻居基站侧的设备。具体示例将在下文中详细描述。
在一个实施例中,基站侧的设备400(500)可以获取目标小区的相邻小区的物理层小区标识组子集,并且在对本小区终端侧设备进行涉及邻小区的无线资源管理的情况下,生成无线资源控制信令以将邻小区标识组子集通知给终端侧设备。
在另外一个实施例中,基站侧的设备400(500)的通信单元还可以响应于干扰过大的通知的接收,通过S1接口向核心网报告干扰过大的事件,并从核心网获取与更新的小区标识组有关的信息。
图6是例示根据本公开实施例的在基站侧的设备中使用的无线通信方法的流程图。在步骤S601中,确定目标小区的物理层小区标识组。该物理层小区标识组与目标小区的频率范围有关。例如,在目标小区的频率范围属于第一频率范围的情况下,物理层小区标识组是仅来自物理层小区标识组集合中的第一子集,且该第一子集为物理层小区标识组集合的真子集。在步骤S602中,基于物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列。图6中各步骤所涉及的具体实施方式和变形与结合图4和图5描述的相同,这里不再赘述。
图7是例示根据本公开实施例的无线终端设备700的结构框图。无线终端设备700能够在第一载波上与基站通信。在一个示例中,第一载波可以是授权频段上的载波。无线终端设备700可以包括通信单元701和同步单元702。通信单元701可以在不同于所述第一载波的第二载波上接收由基站发出的同步信号。在一个示例中,第二载波可以是非授权频段上的载波。同步单元702可以通过将同步信号中的辅同步信号与辅同步信号序列集合的第一 子集中的序列进行匹配来确定辅同步信号。这里,第一子集是辅同步信号序列集合的真子集。在一个实施例中,辅同步信号序列集合可以是无线终端设备利用第一载波通信时使用的辅同步信号序列集合。
根据本公开的实施例,还提供一种的无线通信系统中的基站。该基站能够在第一载波上与无线通信终端通信。该基站包括通信单元。该通信单元可以被配置为在不同于第一载波的第二载波上发送包括辅同步信号的同步信号。这里,辅同步信号可以选自作为辅同步信号序列集合的真子集的第一子集。在一个实施例中,第一载波可以是授权频段上的载波信号,而第二载波可以是非授权频段上的载波信号。辅同步信号序列集合例如可以是基站利用第一载波进行通信时使用的辅同步信号序列集合。
在下文中,将结合图8和图9描述根据本公开的具体实施例。请注意:虽然在图8和图9中以LTE辅助下的未授权频谱接入的情景为例进行了描述,但本领域技术人员可以通过常规性劳动将相应的方案使用在单独的非授权网络(即无LTE辅助的网络)中。
图8是例示根据本公开实施例的无线通信系统的同步过程的时序图。图8示出LTE辅助下的未授权频谱接入的情景。在该实施例中,全部小区和用户设备都使用同步信号序列集合的同一固定子集作为第一子集。在时间T81,UE与服务基站在主分量载波(在该实施例中为授权频段)上进行通信。在时间T82,基站在主分量载波上向UE发送令其切换到辅分量载波(在该实施例中为未授权频段)上进行通信的命令。在时间T83,UE响应于该命令切换为接收辅分量载波上的广播信息。该广播信息携带有同步信号序列集合的作为第一子集的固定子集。在时间T84,UE使用例如预存在开机文件中的固定子集与接收到的广播信息中的同步序列信号进行匹配。由于使用的是固定子集,则必然能够确定出在未授权频段上接入的小区的辅同步信号、主同步信号,乃至物理标识。则在时间T85,UE与工作在未授权频段的小区取得同步,并进而进行正常通信。在该实施例中,因为各辅小区使用的是同步信号序列的固定子集(真子集),因而,工作在未授权频段的服务基站不需要将该子集通知给其它基站。
同样参考图8,相比于全部小区和用户设备都使用同步信号序列集合的同一固定子集作为第一子集,代替地,也可以在每一个小区中使用各自固定的子集。则,在时间T84,UE首先使用默认子集与广播信息中的同步信号进行匹配。当默认子集无法匹配时,再随机更换其它子集进行匹配。在一个例子中,UE可以首先使用与先前主分量载波上的通信相同的主同步信号和 辅同步信号作为默认子集进行匹配。
图9是例示根据本公开另一实施例的无线通信系统的同步过程的时序图。图9示出LTE辅助下的未授权频谱接入的情景。在该实施例中,全部小区首先使用同步信号序列集合的统一默认子集作为第一子集。在时间T91,UE与服务基站在主分量载波(在该实施例中为授权频段)上进行通信。在时间T92,基站在主分量载波上向UE发送令其切换到辅分量载波(在该实施例中为未授权频段)上进行通信的命令。在时间T93,UE响应于该命令切换为接收辅分量载波上的广播信息。该广播信息携带有同步信号序列集合的作为第一子集的固定子集。在时间T94,UE使用例如预存在开机文件中的默认子集(优选是与各小区的默认子集相同的子集)与接收到的广播信息中的同步序列信号进行匹配。在时间T95,UE与工作在未授权频段的小区取得同步,并进而进行正常通信。
在时间T96,UE检测是否由于使用同步序列信号的真子集而导致由UE在该未授权频段上接收的参考信号的干扰过大。如果干扰过大,则在时间T97UE将指示干扰过大的检测结果通知给小区基站。该通知可选地可以在主分量载波(授权频段)或者辅分量载波(未授权频段)上进行发送。在时间T98,基站响应于该通知的接收更换另一个真子集,或者在原子集的基础上选择一个信号序列(例如辅同步信号序列)。然后,在时间T99和T910分别将该重新选择的子集或序列发送给UE和其它基站。这里,T99和T910可以是相同的时刻,也可以是不同的时刻。
以上参照按照本发明实施例的方法、设备的流程图和/或框图描述本发明。流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得通过计算机或其它可编程数据处理装置执行的这些指令,产生实现流程图和/或框图中的方框中规定的功能/操作的装置。
也可以把这些计算机程序指令存储在能指令计算机或其它可编程数据处理装置以特定方式工作的计算机可读介质中,这样,存储在计算机可读介质中的指令产生一个包括实现流程图和/或框图中的方框中规定的功能/操作的指令装置(instruction means)的制造品。
也可以把计算机程序指令加载到计算机或其它可编程数据处理装置上,使得在计算机或其它可编程数据处理装置上执行一系列操作步骤,以产生计算机实现的过程,从而在计算机或其它可编程装置上执行的指令就提供实现 流程图和/或框图中的方框中规定的功能/操作的过程。
应当明白,附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
图10是例示能够实现本发明的计算机的示例性结构的框图。在图10中,中央处理单元(CPU)1001根据只读存储器(ROM)1002中存储的程序或从存储部分1008加载到随机存取存储器(RAM)1003的程序执行各种处理。在RAM 1003中,也根据需要存储当CPU 1001执行各种处理时所需的数据。
CPU 1001、ROM 1002和RAM 1003经由总线1004彼此连接。输入/输出接口1005也连接到总线1004。
下述部件连接到输入/输出接口1005:输入部分1006,包括键盘、鼠标等;输出部分1007,包括显示器,诸如阴极射线管(CRT)、液晶显示器(LCD)等,以及扬声器等;存储部分1008,包括硬盘等;以及通信部分1009,包括网络接口卡诸如LAN卡、调制解调器等。通信部分1009经由网络诸如因特网执行通信处理。
根据需要,驱动器1010也连接到输入/输出接口1005。可拆卸介质1011诸如磁盘、光盘、磁光盘、半导体存储器等根据需要被安装在驱动器1010上,使得从中读出的计算机程序根据需要被安装到存储部分1008中。
在通过软件实现上述步骤和处理的情况下,从网络诸如因特网或存储介质诸如可拆卸介质1011安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图10所示的其中存储有程序、与方法相分离地分发以向用户提供程序的可拆卸介质1011。可拆卸介质1011的例子包含磁盘、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD))和半导体存储器。或者,存储介质可以是ROM 1002、存储部分1008中包含的硬盘等,其中存有 程序,并且与包含它们的方法一起被分发给用户。
根据本公开的基站例如可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其它类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。其中,随着C-RAN(Centralized,Cooperative,Cloud RAN)的发展,上述的控制无线通信的主体也可以是基带云端的处理设备例如服务器。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
根据本公开的用户设备例如可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、智能穿戴设备、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者智能车辆、车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下文中,将结合图11至图13举例说明基站和用户设备的应用示例。
在特定场景下,例如上文中描述的根据本公开的基站可以由宏基站或小小区基站来实现。宏基站和小小区基站可以使用图11和图12中示出的eNB来实现。
图11是例示可以应用本公开技术的eNB的示意性配置的第一示例的框图。eNB 1100包括一个或多个天线1110以及基站设备1120。基站设备1120和每个天线1110可以经由RF线缆彼此连接。
天线1110中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1120发送和接收无线信号。如图11所示,eNB 1100可以包括多个天线1110。例如,多个天线1110可以与eNB 1100使用的多个频带兼容。虽然图11示出其中eNB1100包括多个天线1110的示例,但是eNB 1100也可以包括单个天线1110。
基站设备1120包括控制器1121、存储器1122、网络接口1123以及无线通信接口1125。
控制器1121可以为例如CPU或DSP,并且操作基站设备1120的较高 层的各种功能。例如,控制器1121根据由无线通信接口1125处理的信号中的数据来生成数据分组,并经由网络接口1123来传递所生成的分组。控制器1121可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1121可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。
存储器1122包括RAM和ROM,并且存储由控制器1121执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1123为用于将基站设备1120连接至核心网1124的通信接口。控制器1121可以经由网络接口1123而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1100与核心网节点或其它eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1123还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1123为无线通信接口,则与由无线通信接口1125使用的频带相比,网络接口1123可以使用较高频带用于无线通信。
无线通信接口1125支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1110来提供到位于eNB 1100的小区中的终端的无线连接。无线通信接口1125通常可以包括例如基带(BB)处理器1126和RF电路1127。BB处理器1126可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1121,BB处理器1126可以具有上述逻辑功能的一部分或全部。BB处理器1126可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1126的功能改变。该模块可以为插入到基站设备1120的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1127可以包括例如混频器、滤波器和放大器,并且经由天线1110来传送和接收无线信号。
如图11所示,无线通信接口1125可以包括多个BB处理器1126。例如,多个BB处理器1126可以与eNB 1100使用的多个频带兼容。如图11所示,无线通信接口1125可以包括多个RF电路1127。例如,多个RF电路1127可以与多个天线元件兼容。虽然图11示出其中无线通信接口1125包括多个BB处理器1126和多个RF电路1127的示例,但是无线通信接口1125也可以包括单个BB处理器1126或单个RF电路1127。
图12是例示可以应用本公开技术的eNB的示意性配置的第二示例的框图。eNB 1200包括一个或多个天线1210、基站设备1220和RRH 1230。RRH1230和每个天线1210可以经由RF线缆而彼此连接。基站设备1220和RRH1230可以经由诸如光纤线缆的高速线路而彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1230发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223、无线通信接口1225以及连接接口1227。控制器1221、存储器1222和网络接口1223与参照图12描述的控制器1221、存储器1222和网络接口1223相同。网络接口1223用于将基站设备1220连接至核心网1224。
无线通信接口1225支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1230和天线1210来提供到位于与RRH 1230对应的扇区中的终端的无线通信。无线通信接口1225通常可以包括例如BB处理器1226。除了BB处理器1226经由连接接口1227连接到RRH 1230的RF电路1234之外,BB处理器1226与参照图11描述的BB处理器1126相同。如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226的示例,但是无线通信接口1225也可以包括单个BB处理器1226。
连接接口1227为用于将基站设备1220(无线通信接口1225)连接至RRH 1230的接口。连接接口1227还可以为用于将基站设备1220(无线通信接口1225)连接至RRH 1230的上述高速线路中的通信的通信模块。
RRH 1230包括连接接口1231和无线通信接口1233。
连接接口1231为用于将RRH 1230(无线通信接口1233)连接至基站设备1220的接口。连接接口1231还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1233经由天线1210来传送和接收无线信号。无线通信接口1233通常可以包括例如RF电路1234。RF电路1234可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。如图12 所示,无线通信接口1233可以包括多个RF电路1234。例如,多个RF电路1234可以支持多个天线元件。虽然图12示出其中无线通信接口1233包括多个RF电路1234的示例,但是无线通信接口1233也可以包括单个RF电路1234。
在图11和图12所示的eNB 1100和eNB 1200中,由图5描述的通信单元可以由eNB 1100的无线通信接口1125和天线1110的组合或者网络接口1123来实现,或者可以由eNB 1200的RRH 1230与基站设备1220的无线通信接口1225通过它们之间的连接接口来共同实现。例如标识组确定单元401/501、辅同步信号序列生成单元402/502,以及信息更新单元504可以由控制器1121或控制器1221来实现。
上文中描述的根据本公开实施例的通信设备可以实现为智能电话。例如,智能电话可以开启wifi热点功能而作为wifi接入设备。在该智能电话与其它智能终端之间的wifi连接利用非授权频谱资源。由例如频谱管理器直接管理智能电话对非授权频谱的使用。
图13是例示可以应用本公开技术的智能电话1300的示意性配置的框图。智能电话1300包括处理器1301、存储器1302、存储装置1303、外部连接接口1304、摄像装置1306、传感器1307、麦克风1308、输入装置1309、显示装置1310、扬声器1311、无线通信接口1312、一个或多个天线开关1315、一个或多个天线1316、总线1317、电池1318以及辅助控制器1319。
处理器1301可以为例如CPU或片上系统(SoC),并且控制智能电话1300的应用层和另外层的功能。存储器1302包括RAM和ROM,并且存储数据和由处理器1301执行的程序。存储装置1303可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1304为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1300的接口。
摄像装置1306包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1307可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1308将输入到智能电话1300的声音转换为音频信号。输入装置1309包括例如被配置为检测显示装置1310的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1310包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1300的输出图像。扬声器1311将从智能电话1300输出的音频信号转换为声音。
无线通信接口1312支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1312通常可以包括例如BB处理器1313和RF电路1314。BB处理器1313可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1314可以包括例如混频器、滤波器和放大器,并且经由天线1316来传送和接收无线信号。无线通信接口1312可以为其上集成有BB处理器1313和RF电路1314的一个芯片模块。如图13所示,无线通信接口1312可以包括多个BB处理器1313和多个RF电路1314。虽然图13示出其中无线通信接口1312包括多个BB处理器1313和多个RF电路1314的示例,但是无线通信接口1312也可以包括单个BB处理器1313或单个RF电路1314。
此外,除了蜂窝通信方案之外,无线通信接口1312可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1312可以包括针对每种无线通信方案的BB处理器1313和RF电路1314。
天线开关1315中的每一个在包括在无线通信接口1312中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1316的连接目的地。
天线1316中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1312传送和接收无线信号。如图13所示,智能电话1300可以包括多个天线1316。虽然图13示出其中智能电话1300包括多个天线1316的示例,但是智能电话1300也可以包括单个天线1316。
此外,智能电话1300可以包括针对每种无线通信方案的天线1316。在此情况下,天线开关1315可以从智能电话1300的配置中省略。
总线1317将处理器1301、存储器1302、存储装置1303、外部连接接口1304、摄像装置1306、传感器1307、麦克风1308、输入装置1309、显示装置1310、扬声器1311、无线通信接口1312以及辅助控制器1319彼此连接。电池1318经由馈线向图13所示的智能电话1300的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1319例如在睡眠模式下操作智能电话1300的最小必需功能。
在图13所示的智能电话1300中,例如搜索单元101/201、同步单元102/202、检测单元203可以由处理器1301来实现。此外,例如通知单元204和通信单元701可以由无线通信接口1312、或者无线通信接口1312与天线 1316的结合来实现。
可以理解,本文中所用的术语,仅仅是为了描述特定的实施例,而不意图限定本发明。本文中所用的单数形式的“一”和“该”,旨在也包括复数形式,除非上下文中明确地另行指出。还要知道,“包含”一词在本说明书中使用时,说明存在所指出的特征、整体、步骤、操作、单元和/或组件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、单元和/或组件,以及/或者它们的组合。
在前面的说明书中参照特定实施例描述了本发明。然而本领域的普通技术人员理解,在不偏离如权利要求书限定的本发明的范围的前提下可以进行各种修改和改变。
根据本公开的技术还可以以下面的实施例来实现。
1.一种无线通信系统中终端侧的设备,包括:
搜索单元,被配置为采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及
同步单元,被配置为基于搜索单元检测到的同步信号进行同步,以使得设备同步至目标小区,
其中,在目标频率范围属于第一频率范围的情况下,搜索单元采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索,其中,第一子集为同步信号序列集合的真子集。
2.根据方案1的终端侧的设备,其中,第一频率范围为无线通信系统的未授权频段范围,目标小区为未授权频谱接入小区。
3.根据方案2的终端侧的设备,其中,同步信号序列集合是设备利用授权频段上的载波通信时使用的同步信号序列集合。
4.根据方案1至3中任一项的终端侧的设备,其中,同步信号序列为辅同步信号序列,搜索单元被配置为采用与目标频率范围相对应的辅同步信号序列对目标小区的辅同步信号进行解码。
5.根据方案1至4中任一项的终端侧的设备,还包括:通信接口,通信接口被配置为通过授权频段上的第一小区获取对目标小区进行搜索的命令以及第一子集的指示信息。
6.根据方案5的终端侧的设备,其中,通信接口通过第一小区接收包括命令以及指示信息的高层信令。
7.根据方案1至4中任一项的终端侧的设备,其中,设备还包括通信接口,被配置为在设备接入至目标小区后,通过目标小区获取与更新的同步信号序列有关的指示。
8.根据方案1至7中任一项的终端侧的设备,还包括:
检测单元,被配置为检测是否由于使用第一子集而导致由设备在第一频率范围上接收的参考信号的干扰过大;以及
通知单元,被配置为在检测到干扰过大的情况下,将检测结果通知给目标小区的基站。
9.根据方案8的终端侧的设备,其中,
同步信号序列集合包括用于第一频率范围的小区搜索的多个真子集,搜索单元检测目标小区的基站响应于干扰过大的通知从多个真子集中重新选择的第二子集的指示,以及由目标小区的基站重新发送的同步信号,其中,第二子集与第一子集不同;以及
搜索单元根据指示使用第二子集对重新发送的同步信号进行解码。
10.根据方案1至9中任一项的终端侧的设备,其中,在设备执行长期演进辅助下的未授权频谱接入时,搜索单元首先使用设备先前驻留的小区的辅同步信号作为同步信号序列来进行搜索。
11.根据方案1至9中任一项的终端侧的设备,其中,在设备需要进行小区间切换的情况下,搜索单元根据来自基站的无线资源控制配置信息获取关于第一子集的指示。
12.根据方案11的终端侧的设备,其中,同步信号序列集合包括用于第一频率范围的小区搜索的多个真子集,第一子集的序号被包括在无线资源控制配置信息中。
13.根据方案1至12中任一项的终端侧的设备,其中,在使用第一子集中的所有序列都不能搜索到目标小区的情况下,搜索单元使用第三子集中的序列执行搜索,第三子集是用于第一频率范围的小区搜索的多个真子集中之一且与第一子集不同。
14.一种由终端侧的设备使用的无线通信方法,包括:
采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及
基于搜索到的同步信号进行同步,以使得设备同步至目标小区,
其中,在目标频率范围属于第一频率范围的情况下,采用同步信号序列集合的第一子集中的同步信号序列对目标小区进行搜索,其中,第一子集为同步信号序列集合的真子集。
15.一种无线通信系统中的基站侧的设备,包括:
标识组确定单元,被配置为确定目标小区的物理层小区标识组,其中,物理层小区标识组与目标小区的频率范围有关;
辅同步信号序列生成单元,被配置为基于物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列,
其中,在目标小区的频率范围属于第一频率范围的情况下,物理层小区标识组是来自物理层小区标识组集合中的第一子集,第一子集为物理层小区标识组集合的真子集。
16.根据方案15的基站侧的设备,其中,第一频率范围为无线通信系统的未授权频段范围,目标小区为未授权频谱接入小区。
17.根据方案16的基站侧的设备,还包括通信单元,通信单元被配置为在目标小区对应的未授权频段上发送辅同步信号。
18.根据方案16的基站侧的设备,还包括:
通信单元,被配置为接收来自终端的关于由于使用第一子集导致终端接收的参考信号的干扰过大的通知;
其中,响应于通知的接收,标识组确定单元重新确定物理层小区标识组集合中的第二子集作为物理层小区标识组,第二子集是物理层小区标识组的真子集并与第一子集不同,并且辅同步信号序列生成单元基于第二子集重新生成辅同步信号序列。
19.根据方案18的基站侧的设备,还包括:
信息更新单元,被配置为生成包括待通过目标小区发送的、有关第二子集的指示信息的系统广播信息。
20.根据方案18的基站侧的设备,还包括:
信息更新单元,被配置为生成包括待在授权频段上发送的、有关第二子集的指示信息的系统广播信息。
21.根据方案18至20中任一项的基站侧的设备,通信单元还被配置 为将第二子集的指示信息通知给无线通信系统中的其它基站侧设备。
22.根据方案15至21中任一项的基站侧的设备,其中,
基站侧的设备获取目标小区的相邻小区的物理层小区标识组子集,并且在对本小区终端侧设备进行涉及邻小区的无线资源管理的情况下,生成无线资源控制信令以将邻小区标识组子集通知给终端侧设备。
23.根据方案18的基站侧的设备,其中通信单元还被配置为响应于通知的接收,通过S1接口向核心网报告干扰过大的事件,并从核心网获取与更新的小区标识组有关的信息。
24.一种在基站侧的设备中使用的无线通信方法,包括:
确定目标小区的物理层小区标识组,其中,物理层小区标识组与目标小区的频率范围有关;
基于物理层小区标识组生成用于目标小区的辅同步信号的辅同步信号序列,
其中,在目标小区的频率范围属于第一频率范围的情况下,物理层小区标识组是仅来自物理层小区标识组集合中的第一子集,第一子集为物理层小区标识组集合的真子集。
25.一种无线终端设备,能够在第一载波上与基站通信,包括:
通信单元,被配置为在不同于第一载波的第二载波上接收由基站发出的同步信号;以及
同步单元,被配置为通过将同步信号中的辅同步信号与辅同步信号序列集合的第一子集中的序列进行匹配来确定辅同步信号,其中,第一子集是辅同步信号序列集合的真子集。
26.一种无线通信系统中的基站,能够在第一载波上与无线通信终端通信,基站包括:
通信单元,被配置为在不同于第一载波的第二载波上发送包括辅同步信号的同步信号;
其中,辅同步信号选自辅同步信号序列集合的第一子集,第一子集是辅同步信号序列集合的真子集。

Claims (26)

  1. 一种无线通信系统中终端侧的设备,包括:
    搜索单元,被配置为采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及
    同步单元,被配置为基于所述搜索单元检测到的同步信号进行同步,以使得所述设备同步至所述目标小区,
    其中,在所述目标频率范围属于第一频率范围的情况下,所述搜索单元采用同步信号序列集合的第一子集中的同步信号序列对所述目标小区进行搜索,其中,所述第一子集为所述同步信号序列集合的真子集。
  2. 根据权利要求1所述的终端侧的设备,其中,所述第一频率范围为所述无线通信系统的未授权频段范围,所述目标小区为未授权频谱接入小区。
  3. 根据权利要求2所述的终端侧的设备,其中,所述同步信号序列集合是所述设备利用授权频段上的载波通信时使用的同步信号序列集合。
  4. 根据权利要求1至3中任一项所述的终端侧的设备,其中,所述同步信号序列为辅同步信号序列,所述搜索单元被配置为采用与所述目标频率范围相对应的辅同步信号序列对所述目标小区的辅同步信号进行解码。
  5. 根据权利要求1至4中任一项所述的终端侧的设备,其中,所述终端侧的设备为用户设备,还包括:通信接口,所述通信接口被配置为通过授权频段上的第一小区获取对所述目标小区进行搜索的命令以及所述第一子集的指示信息。
  6. 根据权利要求5所述的终端侧的设备,其中,所述通信接口通过所述第一小区接收包括所述命令以及所述指示信息的信令。
  7. 根据权利要求1至4中任一项所述的终端侧的设备,其中,其中,所述终端侧的设备为用户设备,所述设备还包括通信接口,被配置为在所述设备接入至所述目标小区后,通过所述目标小区获取与更新的同步信号序列有关的指示。
  8. 根据权利要求1至7中任一项所述的终端侧的设备,还包括:
    检测单元,被配置为检测是否由于使用所述第一子集而导致由所述设备在所述第一频率范围上接收的参考信号的干扰过大;以及
    通知单元,被配置为在检测到所述干扰过大的情况下,将检测结果通知给所述目标小区的基站。
  9. 根据权利要求8所述的终端侧的设备,其中,
    所述同步信号序列集合包括用于所述第一频率范围的小区搜索的多个真子集,所述搜索单元检测所述目标小区的基站响应于所述干扰过大的通知从所述多个真子集中重新选择的第二子集的指示,以及由所述目标小区的基站重新发送的同步信号,其中,所述第二子集与所述第一子集不同;以及
    所述搜索单元根据所述指示使用所述第二子集对所述重新发送的同步信号进行解码。
  10. 根据权利要求1至9中任一项所述的终端侧的设备,其中,在所述设备执行长期演进辅助下的未授权频谱接入时,所述搜索单元首先使用所述设备先前驻留的小区的辅同步信号作为所述同步信号序列来进行搜索。
  11. 根据权利要求1至9中任一项所述的终端侧的设备,其中,在所述设备需要进行小区间切换的情况下,所述搜索单元根据来自基站的无线资源控制配置信息获取关于所述第一子集的指示。
  12. 根据权利要求11所述的终端侧的设备,其中,所述同步信号序列集合包括用于所述第一频率范围的小区搜索的多个真子集,所述第一子集的序号被包括在所述无线资源控制配置信息中。
  13. 根据权利要求1至12中任一项所述的终端侧的设备,其中,在使用所述第一子集中的所有序列都不能搜索到所述目标小区的情况下,所述搜索单元使用第三子集中的序列执行所述搜索,所述第三子集是用于所述第一频率范围的小区搜索的多个真子集中之一且与所述第一子集不同。
  14. 一种由终端侧的设备使用的无线通信方法,包括:
    采用与待搜索的目标频率范围相对应的同步信号序列对目标小区进行搜索;以及
    基于搜索到的同步信号进行同步,以使得所述设备同步至所述目标小 区,
    其中,在所述目标频率范围属于第一频率范围的情况下,采用同步信号序列集合的第一子集中的同步信号序列对所述目标小区进行搜索,其中,所述第一子集为所述同步信号序列集合的真子集。
  15. 一种无线通信系统中的基站侧的设备,包括:
    标识组确定单元,被配置为确定目标小区的物理层小区标识组,其中,所述物理层小区标识组与所述目标小区的频率范围有关;
    辅同步信号序列生成单元,被配置为基于所述物理层小区标识组生成用于所述目标小区的辅同步信号的辅同步信号序列,
    其中,在所述目标小区的频率范围属于第一频率范围的情况下,所述物理层小区标识组是来自物理层小区标识组集合中的第一子集,所述第一子集为物理层小区标识组集合的真子集。
  16. 根据权利要求15所述的基站侧的设备,其中,所述第一频率范围为所述无线通信系统的未授权频段范围,所述目标小区为未授权频谱接入小区。
  17. 根据权利要求16所述的基站侧的设备,其中,所述基站侧的设备为eNB,还包括通信单元,所述通信单元被配置为在所述目标小区对应的未授权频段上发送所述辅同步信号。
  18. 根据权利要求16所述的基站侧的设备,其中,所述基站侧的设备为eNB,还包括:
    通信单元,被配置为接收来自终端的关于由于使用所述第一子集导致所述终端接收的参考信号的干扰过大的通知;
    其中,响应于所述通知的接收,所述标识组确定单元重新确定所述物理层小区标识组集合中的第二子集作为所述物理层小区标识组,所述第二子集是所述物理层小区标识组的真子集并与所述第一子集不同,并且所述辅同步信号序列生成单元基于所述第二子集重新生成所述辅同步信号序列。
  19. 根据权利要求18所述的基站侧的设备,还包括:
    信息更新单元,被配置为生成包括待通过所述目标小区发送的、有关所述第二子集的指示信息的系统广播信息。
  20. 根据权利要求18所述的基站侧的设备,还包括:
    信息更新单元,被配置为生成包括待在授权频段上发送的、有关所述第二子集的指示信息的系统广播信息。
  21. 根据权利要求18至20中任一项所述的基站侧的设备,所述通信单元还被配置为将所述第二子集的指示信息通知给所述无线通信系统中的其它基站侧设备。
  22. 根据权利要求15至21中任一项所述的基站侧的设备,其中,
    所述基站侧的设备获取所述目标小区的相邻小区的物理层小区标识组子集,并且在对本小区终端侧设备进行涉及所述邻小区的无线资源管理的情况下,生成无线资源控制信令以将邻小区标识组子集通知给所述终端侧设备。
  23. 根据权利要求18所述的基站侧的设备,其中所述通信单元还被配置为响应于所述通知的接收,通过S1接口向核心网报告所述干扰过大的事件,并从所述核心网获取与更新的小区标识组有关的信息。
  24. 一种在基站侧的设备中使用的无线通信方法,包括:
    确定目标小区的物理层小区标识组,其中,所述物理层小区标识组与所述目标小区的频率范围有关;
    基于所述物理层小区标识组生成用于所述目标小区的辅同步信号的辅同步信号序列,
    其中,在所述目标小区的频率范围属于第一频率范围的情况下,所述物理层小区标识组是仅来自物理层小区标识组集合中的第一子集,所述第一子集为物理层小区标识组集合的真子集。
  25. 一种无线终端设备,能够在第一载波上与基站通信,包括:
    通信单元,被配置为在不同于所述第一载波的第二载波上接收由基站发出的同步信号;以及
    同步单元,被配置为通过将所述同步信号中的辅同步信号与辅同步信号序列集合的第一子集中的序列进行匹配来确定所述辅同步信号,其中,所述第一子集是辅同步信号序列集合的真子集。
  26. 一种无线通信系统中的基站,能够在第一载波上与无线通信终端通信,所述基站包括:
    通信单元,被配置为在不同于所述第一载波的第二载波上发送包括辅同步信号的同步信号;
    其中,所述辅同步信号选自辅同步信号序列集合的第一子集,所述第一子集是辅同步信号序列集合的真子集。
PCT/CN2016/079241 2015-04-17 2016-04-14 终端侧、基站侧设备,终端设备,基站和无线通信方法 WO2016165624A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2981190A CA2981190A1 (en) 2015-04-17 2016-04-14 Terminal side and base station side device, terminal device, base station, and wireless communication method
JP2017550219A JP6673364B2 (ja) 2015-04-17 2016-04-14 端末側の装置、基地局側の装置、端末装置、基地局、及び無線通信方法
EP16779599.6A EP3285521B1 (en) 2015-04-17 2016-04-14 Synchronization between terminal and target cell
US15/553,439 US10348435B2 (en) 2015-04-17 2016-04-14 Terminal side and base station side device, terminal device, base station, and wireless communication method
US16/420,224 US10903926B2 (en) 2015-04-17 2019-05-23 Terminal side and base station side device, terminal device, base station, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510184481.0 2015-04-17
CN201510184481.0A CN106034345B (zh) 2015-04-17 2015-04-17 终端侧、基站侧设备,终端设备,基站和无线通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/553,439 A-371-Of-International US10348435B2 (en) 2015-04-17 2016-04-14 Terminal side and base station side device, terminal device, base station, and wireless communication method
US16/420,224 Continuation US10903926B2 (en) 2015-04-17 2019-05-23 Terminal side and base station side device, terminal device, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2016165624A1 true WO2016165624A1 (zh) 2016-10-20

Family

ID=57125577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079241 WO2016165624A1 (zh) 2015-04-17 2016-04-14 终端侧、基站侧设备,终端设备,基站和无线通信方法

Country Status (6)

Country Link
US (2) US10348435B2 (zh)
EP (1) EP3285521B1 (zh)
JP (1) JP6673364B2 (zh)
CN (1) CN106034345B (zh)
CA (1) CA2981190A1 (zh)
WO (1) WO2016165624A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029263A1 (zh) * 2018-08-10 2020-02-13 Oppo广东移动通信有限公司 无线通信方法和通信设备
US11417487B2 (en) 2016-09-29 2022-08-16 Qorvo Us, Inc. MEMS RF-switch with near-zero impact landing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289070B (zh) * 2017-01-09 2020-12-11 电信科学技术研究院 一种同步序列的发送方法、同步检测方法及装置
CN108617000B (zh) 2017-01-13 2023-04-07 中兴通讯股份有限公司 信息传输方法及装置
US11368344B2 (en) * 2017-03-15 2022-06-21 Motorola Mobility Llc Method and apparatus having a synchronization signal sequence structure for low complexity cell detection
EP3580969A4 (en) * 2017-05-04 2021-03-10 Telefonaktiebolaget LM Ericsson (publ) METHOD AND DEVICE FOR SIGNAL MEASUREMENT
CN110574430B (zh) 2017-05-04 2021-10-08 苹果公司 用于高移动速度的无线电链路监测和小区搜索技术
US10750476B2 (en) * 2017-07-11 2020-08-18 Qualcomm Incorporated Synchronization signal transmission for mobility
CN111937453B (zh) * 2018-04-02 2024-03-15 株式会社Ntt都科摩 用户装置
DE102019129167A1 (de) 2018-11-28 2020-05-28 Samsung Electronics Co., Ltd. Betriebsverfahren eines Endgeräts in einem Drahtlos-Kommunikationssystem und Endgerät zum Durchführen des Verfahrens
KR20210007354A (ko) 2019-07-11 2021-01-20 삼성전자주식회사 통신 장치의 동작 방법 및 통신 장치에 포함된 신호 처리 장치
CN110708742B (zh) * 2019-11-26 2021-12-24 Oppo(重庆)智能科技有限公司 选取频点的方法、装置、电子设备及介质
US20230136719A1 (en) * 2021-11-03 2023-05-04 Qualcomm Incorporated Excessive interference indication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755388A (zh) * 2007-05-21 2010-06-23 高通股份有限公司 向无线通信系统中的小区分配主同步码序列和辅同步码序列
CN102356671A (zh) * 2011-08-19 2012-02-15 华为技术有限公司 一种通信系统频段搜索的方法和装置
CN102572970A (zh) * 2011-12-21 2012-07-11 华为技术有限公司 在同频邻区中执行小区搜索的方法和装置
CN103686889A (zh) * 2012-08-30 2014-03-26 富士通株式会社 小区搜索方法、装置以及用户设备

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594690B2 (en) * 2000-02-05 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Subcell measurement procedures in a distributed antenna system
BRPI0708790B1 (pt) * 2006-07-25 2019-11-26 Electronics And Telecomunications Res Institute método de comunicação e aparelhos para terminal
US8009661B2 (en) * 2007-01-31 2011-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Cell searching system and method
US8824533B2 (en) * 2008-06-24 2014-09-02 Nokia Siemens Networks Oy Methods, apparatuses, system and related computer program product for cell type detection
CN101406986B (zh) 2008-11-17 2010-12-01 玉溪光明电线电缆有限公司 十字冷焊模具
KR20120042138A (ko) * 2010-10-22 2012-05-03 한국전자통신연구원 이동통신 시스템에서의 셀 탐색 방법
CN102231893B (zh) * 2011-06-21 2013-11-13 北京交通大学 一种lte同步信号检测方法
WO2013065834A1 (ja) * 2011-11-03 2013-05-10 京セラ株式会社 通信制御方法、基地局、及びユーザ端末
WO2013113361A1 (en) * 2012-01-30 2013-08-08 Fujitsu Limited Synchronization signals in a wireless communication system
WO2013125873A1 (ko) * 2012-02-21 2013-08-29 엘지전자 주식회사 무선 통신 시스템에서 초기 접속 방법 및 장치
US20140038616A1 (en) * 2012-07-31 2014-02-06 Richard Charles Burbidge Devices and methods for cellular communication
US9414273B2 (en) * 2012-08-08 2016-08-09 At&T Intellectual Property I, L.P. Inbound handover for macrocell-to-femtocell call transfer
US10154483B2 (en) * 2012-09-12 2018-12-11 Qualcomm Incorporated Coverage enhancement techniques for machine type communication devices in a wireless network
CN103686836B (zh) * 2012-09-19 2018-11-16 中兴通讯股份有限公司 一种认知无线电系统中的切换控制方法及装置
GB2509161B (en) * 2012-12-21 2018-09-26 Sony Corp Telecommunications apparatus and method
JP2014143608A (ja) * 2013-01-24 2014-08-07 Ntt Docomo Inc 無線通信システム、無線通信方法、無線基地局及びユーザ端末
US9706480B2 (en) * 2013-03-27 2017-07-11 Intel Deutschland Gmbh Method for determining cell identification information
US20160037407A1 (en) * 2013-04-08 2016-02-04 Telefonaktiebolaget L M Ericsson (Publ) Radio Network Node, a Base Station and Methods Therein
US9750044B2 (en) * 2013-05-10 2017-08-29 Qualcomm Incorporated Methods and apparatus for network synchronization
US9185640B2 (en) * 2013-07-08 2015-11-10 Intel Mobile Communications GmbH Method and related mobile device for searching for a mobile network
CN110557236B (zh) * 2014-01-07 2022-08-05 瑞典爱立信有限公司 用于使无线装置能够在非许可谱中与无线电网络节点进行通信的方法和设备
CN115190574A (zh) * 2014-03-19 2022-10-14 交互数字专利控股公司 Wtru及由wtru执行的方法
US9386505B2 (en) * 2014-04-15 2016-07-05 Sharp Laboratories Of America, Inc. Systems and methods for secondary cell ID selection
KR20150123679A (ko) * 2014-04-24 2015-11-04 한양대학교 산학협력단 디스커버리 신호의 송수신 방법 및 장치
JP2015211292A (ja) * 2014-04-24 2015-11-24 富士通株式会社 システム、基地局および端末
CN105101389B (zh) * 2014-05-08 2020-04-03 索尼公司 无线通信系统中的方法和装置
CN105409301B (zh) * 2014-07-04 2019-07-19 华为技术有限公司 Lte同步方法和相关设备及系统
KR102040624B1 (ko) * 2014-08-07 2019-11-27 엘지전자 주식회사 디스커버리 신호 수신 방법 및 사용자기기와, 디스커버리 신호 전송 방법 및 기지국
KR101875255B1 (ko) * 2014-08-07 2018-07-06 주식회사 케이티 캐리어 병합 구성 방법 및 그 장치
CN104301273B (zh) * 2014-08-25 2020-03-10 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
EP3826390A1 (en) * 2014-09-12 2021-05-26 NEC Corporation Radio station, radio terminal, and method therefor
WO2016056869A1 (ko) * 2014-10-10 2016-04-14 삼성전자 주식회사 무선 통신 시스템에서 셀 설정 방법 및 장치
US10306478B2 (en) * 2014-11-06 2019-05-28 Nec Corporation Radio terminal, radio station, and method thereof
WO2016089146A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 셀 선택 방법 및 이를 위한 장치
CN112636864A (zh) * 2015-11-05 2021-04-09 苹果公司 用于授权辅助接入的同步信号

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755388A (zh) * 2007-05-21 2010-06-23 高通股份有限公司 向无线通信系统中的小区分配主同步码序列和辅同步码序列
CN102356671A (zh) * 2011-08-19 2012-02-15 华为技术有限公司 一种通信系统频段搜索的方法和装置
CN102572970A (zh) * 2011-12-21 2012-07-11 华为技术有限公司 在同频邻区中执行小区搜索的方法和装置
CN103686889A (zh) * 2012-08-30 2014-03-26 富士通株式会社 小区搜索方法、装置以及用户设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417487B2 (en) 2016-09-29 2022-08-16 Qorvo Us, Inc. MEMS RF-switch with near-zero impact landing
WO2020029263A1 (zh) * 2018-08-10 2020-02-13 Oppo广东移动通信有限公司 无线通信方法和通信设备

Also Published As

Publication number Publication date
CN106034345B (zh) 2021-02-09
US10348435B2 (en) 2019-07-09
EP3285521A1 (en) 2018-02-21
EP3285521A4 (en) 2019-07-10
US20190280796A1 (en) 2019-09-12
JP6673364B2 (ja) 2020-03-25
EP3285521B1 (en) 2021-02-24
CA2981190A1 (en) 2016-10-20
CN106034345A (zh) 2016-10-19
JP2018514990A (ja) 2018-06-07
US10903926B2 (en) 2021-01-26
US20180248640A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2016165624A1 (zh) 终端侧、基站侧设备,终端设备,基站和无线通信方法
US9681372B2 (en) Terminal device and information processing apparatus
TWI729984B (zh) 終端裝置及藉由屬於不同蜂巢式系統的終端裝置來控制裝置間通信的方法
JP2023078319A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
JP6648130B2 (ja) 免許不要無線周波数スペクトル帯域を通じた同期信号の送信および受信
CN106303900B (zh) 无线通信设备和无线通信方法
US9942743B2 (en) User terminal and base station for a device to device proximity service
CN114269017A (zh) 电子设备以及无线通信方法
CN105704724B (zh) 用于支持认知无线电的无线通信系统的控制设备和方法
WO2020088353A1 (zh) 电子装置、无线通信方法和计算机可读介质
US20220094501A1 (en) Terminal device, base station device, method, and recording medium
US9241301B2 (en) Wireless communication system, wireless communication method, mobile station device, and base station device
US20170207889A1 (en) Device
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN109075833B (zh) 通信控制装置、终端装置、方法和程序
WO2018233600A1 (en) FLEXIBLE RADIO ACCESS NETWORK NODE IDENTIFIER
WO2019041375A1 (zh) 电子装置、无线通信方法和计算机可读介质
JP2019165481A (ja) 装置及び方法
CN115767642A (zh) 小区重选方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15553439

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017550219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2981190

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE