WO2020029263A1 - 无线通信方法和通信设备 - Google Patents

无线通信方法和通信设备 Download PDF

Info

Publication number
WO2020029263A1
WO2020029263A1 PCT/CN2018/100016 CN2018100016W WO2020029263A1 WO 2020029263 A1 WO2020029263 A1 WO 2020029263A1 CN 2018100016 W CN2018100016 W CN 2018100016W WO 2020029263 A1 WO2020029263 A1 WO 2020029263A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
band
reserved resource
sub
listening
Prior art date
Application number
PCT/CN2018/100016
Other languages
English (en)
French (fr)
Inventor
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PT189289929T priority Critical patent/PT3833077T/pt
Priority to DK18928992.9T priority patent/DK3833077T3/da
Priority to PCT/CN2018/100016 priority patent/WO2020029263A1/zh
Priority to CN202110919560.7A priority patent/CN113645629B/zh
Priority to CN201880096582.4A priority patent/CN112567781A/zh
Priority to EP18928992.9A priority patent/EP3833077B1/en
Priority to ES18928992T priority patent/ES2942013T3/es
Publication of WO2020029263A1 publication Critical patent/WO2020029263A1/zh
Priority to US17/163,715 priority patent/US11902949B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • Embodiments of the present application relate to the field of communication technologies, and in particular, to a wireless communication method and a communication device.
  • NR-U new wireless unlicensed
  • communication equipment uses unlicensed frequency bands and follows the principle of “listen before talk”, that is, before the communication equipment sends signals on channels in unlicensed frequency bands .
  • NR-U systems may coexist with different systems (for example, NR-U systems and Long-Term Evolution Evolution-Licensed-Assisted Access (LTE-LAA) systems or Wireless Fidelity (Wi-Fi)
  • LTE-LAA Long-Term Evolution Evolution-Licensed-Assisted Access
  • Wi-Fi Wireless Fidelity
  • Embodiments of the present application provide a wireless communication method and device, which can avoid interference between communications performed on an unlicensed frequency band and other communications.
  • a wireless communication method including: a first device communicates with a second device through a first frequency domain portion of a first listening bandwidth of an unlicensed band, and the first listening bandwidth includes all The first frequency domain part and the first reserved resource are described, wherein the first reserved resource is located on at least one side of the first listening bandwidth, and the first reserved resource is a guard band.
  • a communication device for performing the method in the first aspect described above.
  • the communication device includes a functional module for performing the method in the first aspect described above.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect.
  • a chip is provided for implementing the method in the first aspect.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes the method as in the first aspect above.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in the first aspect above.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect.
  • a computer program that, when run on a computer, causes the computer to perform the method in the first aspect described above.
  • the first device communicates with the second device through a first frequency domain portion of a first listening bandwidth of an unlicensed frequency band, and the first listening bandwidth includes the first frequency domain portion and the first A reserved resource, wherein the first reserved resource is located on at least one side of the first listening bandwidth, and the first reserved resource is a guard band, because at least one side of a first frequency domain part that performs communication Having reserved resources as guard bands can prevent communications in the first frequency domain from interfering with other communications. Specifically, it can prevent signal transmission on the listening bandwidth of the NR-U system from interfering with other systems on adjacent channels (such as Wi-Fi or LTE-LAA systems) to better achieve system coexistence on unlicensed frequency bands.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a relationship between multiple listening bandwidths according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another wireless communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a relationship between multiple listening bandwidths according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between multiple listening bandwidths according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the first device mentioned below may be a terminal device, and the second device may be a network device at this time; or the first device mentioned below may be a network device, and the second device may be a terminal device at this time.
  • the first device and the second device may both be terminal devices, which are not specifically limited in this embodiment of the present application.
  • a first device communicates with a second device through a first frequency domain portion of a first listening bandwidth of an unlicensed frequency band, and the first listening bandwidth includes the first frequency domain portion and a first pre- A reserved resource, wherein the first reserved resource is located on at least one side of the first listening bandwidth, and the first reserved resource is a guard band.
  • the first reserved resource may be a first listening bandwidth or a guard band of a first frequency domain part, and even if the first reserved resource belongs to another listening bandwidth, it may not be used as Other listening bandwidths or guard bands in the frequency domain portion included in the other listening bandwidths.
  • the listening bandwidth (for example, the first listening bandwidth, the second listening bandwidth, or the third listening bandwidth, etc.) mentioned in the embodiments of the present application may be a subband or a broadband.
  • the subband is the minimum bandwidth unit capable of performing channel monitoring
  • the size of the broadband is an integer multiple of the subband.
  • the broadband may be the same size as the carrier bandwidth.
  • the size of the subband may be 20 MHz, and the size of the broadband may be 20 MHz, 40 MHz, 60 MHz, 80 MHz, or 100 MHz.
  • the size of a subband may be 512 MHz
  • the size of a broadband may be 512 MHz, 1024 MHz, or 2048 MHz.
  • the network device may configure a frequency domain reference point (absoluteFrequencyPointA (ie, Common Resource Block (CRB) 0) for the terminal device).
  • Subcarrier 0) one or more carriers (for example, multiple carriers can be used in Carrier Aggregation (CA) scenarios), the subcarrier spacing (SCS) of each carrier, and the start of each carrier Position (offsetToCarrier, the distance between the first available subcarrier on each carrier and the reference point in the frequency domain, the unit of which can be a Physical Resource Block (PRB) determined according to the SCS), and the bandwidth of each carrier ( carrierBandwidth, the unit is a parameter such as PRB determined according to SCS.
  • the terminal device can determine the frequency domain position and bandwidth of the carrier to be used according to the configuration of the network device.
  • the network device may configure multiple listening bandwidths for the same terminal device, the multiple listening bandwidths may be used for the terminal device to communicate with the network device, and the multiple listening bandwidths may be Used for communication of different services between terminal equipment and network equipment, or communication at different times, or communication under different channel conditions (for example, when the channel is busy, a small listening bandwidth can be selected for communication , When the channel is relatively free, you can choose a larger listening bandwidth for communication).
  • the network device may configure different listening bandwidths for different terminal devices.
  • a terminal device with a large demand for service data transmission can be configured with a large listening bandwidth
  • a terminal device with a small demand for service data transmission can be configured with a small listening bandwidth.
  • the frequency domain part (for example, the first frequency domain part, the second frequency domain part, or the third frequency domain part, etc.) mentioned in the embodiments of the present application may be used for communication between the first device and the second device, However, it does not mean that all resources in the frequency domain part must be occupied during communication, and may specifically depend on actual transmission conditions. For example, a network device may allocate some resources in the frequency domain part according to the amount of data actually transmitted. Communication between the first device and the second device.
  • the frequency domain part mentioned in the embodiment of the present application may be equal to a bandwidth part (Bandwidth Part, BWP) on the corresponding listening bandwidth, or may be smaller than the BWP.
  • BWP Bandwidth Part
  • the BWP mentioned in the embodiment of the present application may include an integer number of consecutive frequency domain resource units.
  • the frequency domain resource unit may optionally be a PRB, or of course other frequency domain resource units.
  • an integer number of subcarriers may be used as the frequency domain resource unit, which is not specifically limited in this embodiment of the present application.
  • the BWP mentioned in the embodiment of this application is smaller than the listening bandwidth.
  • the BWP mentioned in the embodiment of the present application may be an uplink BWP or a downlink BWP, and the uplink BWP and the downlink BWP may be the same or different.
  • the frequency domain part used for communication and the reserved resources used as the guard band mentioned in the embodiments of the present application may correspond to the uplink and may also correspond to the downlink.
  • the frequency domain part and / or reserved resources corresponding to the uplink may be the same or different from the frequency domain part and / or reserved resources corresponding to the downlink.
  • the frequency domain part may occupy a certain percentage of the listening bandwidth to meet the bandwidth occupation requirements.
  • the frequency domain portion can occupy at least 80% of the listening bandwidth.
  • the frequency domain part may occupy at least 70% of the listening bandwidth.
  • the first device or the second device may select from the BWP based on at least one of the size of the first listening bandwidth, the subcarrier interval of the first listening bandwidth, and the frequency domain position of the first listening bandwidth.
  • a start position, a length, and / or an end position of a first BWP is determined in the set, where the first BWP belongs to the first listening bandwidth and includes the first frequency domain part.
  • Both ends (the first device and the second device), which are both parties of the communication, can determine the start position, length, and / or end position of the first BWP based on the above principles.
  • At least one of the following listening bandwidths corresponding to different BWPs in the BWP set may be different: the size of the listening bandwidth, the frequency domain position of the listening bandwidth, and the subcarrier interval of the listening bandwidth.
  • the frequency domain position of the listening bandwidth mentioned here may be the absolute frequency domain position of the listening bandwidth, or the frequency domain position mentioned here may also be the position of the listening bandwidth in the carrier bandwidth.
  • the listening bandwidth set may include at least one of ⁇ 20 MHz, 40 MHz, 60 MHz, 80 MHz, 100 MHz ⁇ .
  • the BWP set may also be related to the maximum bandwidth of the system carrier.
  • the number of BWP configurations included in the BWP set may be determined based on the maximum bandwidth of the system carrier.
  • the network device (which may be the first device or the second device) may determine (can be selected from the BWP set according to the above principles, or may be determined based on other methods) the starting position and length of the first BWP And / or the end position, etc., and indicating the start position, length, and / or end position of the first BWP to the terminal device, the terminal device may determine the first BWP based on the instruction of the terminal device, and thus may be based on the first BWP determines the first frequency domain part.
  • the network device may configure one or more BWP (optionally up to 4 BWP) for the terminal device on the carrier.
  • each BWP may be configured with a Cyclic Prefix (CP) type, BCS SCS, and BWP.
  • CP Cyclic Prefix
  • BCS SCS Cyclic Prefix
  • BWP Frequency domain position and bandwidth size (the resource indicator value can be used), for example, assuming that the carrier's bandwidth is 275 PRBs, starting from the starting position of the carrier, the PRB determined by its corresponding SCS is the unit, The value ranges from 0 to 37949). That is, the configuration of the BWP in the NR system can be any starting position within a carrier and any length not greater than the number of PRBs included in the carrier bandwidth.
  • the network device side can support a single carrier with a large bandwidth.
  • the resources included in the BWP can be determined according to factors such as the available subcarrier wave interval, processing complexity (for example, the maximum number of subcarriers does not exceed 3300), and the minimum guardband reservation. Number of blocks (Resource Blocks, RB). As an example, under different bandwidths and subcarrier intervals, the number of RBs included may be shown in Tables 1 and 2 below.
  • Table 1 shows the number of RBs included in the BWP under different subcarrier intervals and bandwidths in the FR1 frequency domain range (below 6GHz);
  • Table 2 shows the FR2 frequency domain range (above 6GHz), The number of RBs included in the BWP under different subcarrier intervals and bandwidths.
  • the network device may be configured with BWPs of multiple sizes and / or locations.
  • the BWP included may be a BWP that is coincident with the listening bandwidth center, and may be a BWP that is not coincident with the listening bandwidth center.
  • the network device may be configured with frequency domain portions of multiple sizes and / or locations for the same BWP with the same listening bandwidth.
  • all resources can be used for communication (the frequency domain part can be the entire BWP), or some resources (in this case, the frequency domain part can be part of the BWP resources) for communication.
  • Which frequency domain part is specifically selected may be determined according to a specific situation, for example, according to a service requirement between a network device and a terminal device.
  • the network device may configure one or more frequency domain parts for each listening bandwidth (the positions and / or sizes between the multiple frequency domain parts may be different).
  • the same terminal device can only correspond to one frequency domain part.
  • the frequency domain parts used can be the same or different.
  • the same terminal device may determine a frequency domain section from the multiple frequency domain sections and communicate with the network device. For example, the terminal device may select a frequency based on current service requirements. The domain part, or the terminal device may determine the frequency domain part based on the indication of the network device.
  • the reserved resources for example, the first reserved resource, the second reserved resource, or the third reserved resource, etc.
  • the guard bands mentioned in the embodiments of the present application may be located in the frequency domain of the listening bandwidth to which they belong. At least one side of the part may not be used to transmit any data or signals, and at this time, interference between different bandwidths or different systems can be avoided.
  • the reserved resources are located on at least one side of the frequency domain part of the listening bandwidth to which it belongs means that It is located on one side or both sides of the frequency domain part (for example, as shown in FIG. 3, the reserved resources are located on both sides of the frequency domain part that can be used for data transmission).
  • it can be determined according to the requirements for anti-interference of adjacent frequency bands on both sides and the requirements for communication performance. For example, if the adjacent bands on one side are not high in anti-interference requirements, you can have a guard band only on the other side. If the connected bands on both sides have high requirements on anti-interference, you can have protection on both sides. frequency band.
  • the first reserved resource that is a guard band of the first listening bandwidth may include a first sub-band, where the first sub-band may be located in the first listening bandwidth. Low-frequency side.
  • the size of the first sub-band may be determined based on at least one of the following:
  • the RF index requirements the size of the first listening bandwidth, the subcarrier interval of the first frequency domain portion, the size of the first frequency domain portion, the location of the first subband, the first detection A position of the listening bandwidth, and a second sub-band included in the first reserved resource and located on a high frequency side of the first listening bandwidth.
  • the above-mentioned RF index requirement may be a requirement for the size of the first sub-band, which can be understood as a threshold, and the size of the first sub-band needs to exceed the threshold.
  • the size of the first sub-band may be positively related to the size of the first listening bandwidth.
  • the size of the first sub-band may be positively related to the size of the sub-carrier interval of the first listening bandwidth.
  • the position of the first sub-band may affect the size of the first sub-band. For example, since the first sub-band is on the low frequency side, when the communication anti-interference requirements of the resources adjacent to the low-frequency side are not high, the size of the first sub-band may be smaller.
  • the frequency domain position of the first listening bandwidth may affect the size of the first sub-band, for example, the relative position of the first listening bandwidth in the entire system bandwidth may affect the size of the first sub-band.
  • the first sub-band is a sideband on the low frequency side of the carrier bandwidth to which the first listening bandwidth belongs
  • the carrier bandwidth includes multiple listening bandwidths, and at least two of the multiple listening bandwidths
  • the listening bandwidth includes a sideband on the low frequency side of the carrier bandwidth
  • the size of the first sub-band may be determined according to a maximum value that meets the radio frequency index requirements of the at least two listening bandwidths. Further optionally, the sizes of the reserved resources on the low frequency side of the at least two listening bandwidths are the same.
  • the second sub-band included in the first reserved resource and located on the high-frequency side of the first listening bandwidth may affect the size of the first sub-band, for example, the second sub-band and the first sub-band
  • the frequency band requirements are the same, or the ratio between the second sub-band and the first sub-band is a preset value.
  • the first reserved resource includes a second sub-band, and the second sub-band is located on a high-frequency side of the first listening bandwidth.
  • the size of the second sub-band is determined based on at least one of the following:
  • the RF index requirements the size of the first listening bandwidth, the subcarrier interval of the first frequency domain part, the size of the first frequency domain part, the position of the second subband, the first detection A position of a listening bandwidth, a first sub-band included in the first reserved resource and located on a low frequency side of the first listening bandwidth.
  • the above-mentioned radio frequency index requirement may be a requirement of the size of the second sub-band, which can be understood as a threshold, and the size of the second sub-band needs to exceed the threshold.
  • the size of the second sub-band may be positively related to the size of the first listening bandwidth.
  • the size of the second sub-band may be positively related to the size of the sub-carrier interval of the first listening bandwidth.
  • the position of the second sub-band may affect the size of the first sub-band.
  • the size of the second sub-band may be smaller.
  • the frequency domain position of the first listening bandwidth may affect the size of the second subband, for example, the position of the first listening bandwidth in the entire system bandwidth may affect the size of the second subband.
  • the second sub-band is a sideband on the high frequency side of the carrier bandwidth to which the first listening bandwidth belongs
  • the carrier bandwidth includes multiple listening bandwidths, and at least two of the multiple listening bandwidths
  • the listening bandwidth includes a sideband on the high-frequency side of the carrier bandwidth
  • the size of the second sub-band can be determined according to a maximum value that meets the radio frequency index requirements of the at least two listening bandwidths.
  • the sizes of the reserved resources on the high-frequency side of the at least two listening bandwidths are the same.
  • the first sub-band included in the first reserved resource and located on the low-frequency side of the first listening bandwidth may affect the size of the second sub-band, for example, the second sub-band and the first sub-band
  • the requirements are the same, or the ratio between the second subband and the first subband is a preset value or the like.
  • the first subband and the second subband may be included at the same time. At this time, the first subband and the second subband may be the same or different. . Or, for the first reserved resource, it may consist of only the first sub-band, or may consist of only the second sub-band.
  • guard bands of the same size may be configured, or guard bands of different sizes may be configured.
  • Tables 3 and 4 show the minimum guard bands that should be reserved under different listening bandwidths.
  • Table 1 shows the size of the minimum guard band that should be reserved in the FR1 frequency band under different subcarrier intervals and listening bandwidths.
  • Table 2 shows the minimum guard band size that should be reserved under the FR2 frequency band under different subcarrier intervals and listening bandwidths.
  • the multiple listening bandwidths can be used for different terminal devices, respectively, or the same terminal device can use different listening bandwidths at different times or service requirements.
  • the relationship between the listening bandwidth is described by taking the available listening bandwidth of the system including the first listening bandwidth and the second listening bandwidth, or including the first listening bandwidth and the third listening bandwidth as examples.
  • the third sub-band of the first reserved resource of the first listening bandwidth belongs to the second listening bandwidth of the unlicensed frequency band
  • the second listening bandwidth includes the second A frequency domain part and a second reserved resource, wherein the second frequency domain part can be used for wireless communication transmission, the second reserved resource is located on at least one side of the second listening bandwidth, and the second The reserved resource is a guard band, and at least part of the reserved resource of the second reserved resource and the third sub-band does not overlap.
  • the second reserved resource as the guard band refers to that the second reserved resource can be used as the guard band of the second listening bandwidth or the second frequency domain part.
  • the second reserved resource that is a guard band of the second listening bandwidth is located on at least one side of the second listening bandwidth, which means that it can be located on one side of the second listening bandwidth or on both sides, specifically on one side or two If it is located on one side, whether it is on the high-frequency side or the low-frequency side, it can be determined according to the actual situation. For example, it can be based on the anti-interference requirements of the adjacent frequency domain resources of the second listening bandwidth and the requirements on the communication performance.
  • the method for determining the size of the second reserved resource on the high frequency side of the listening bandwidth or on the low frequency side of the listening bandwidth can be determined by referring to the description of the first reserved resource. For brevity, here No longer.
  • the third sub-band may be a part of the first reserved resources of the first listening bandwidth, among the resources belonging to the second listening bandwidth of the unlicensed frequency band.
  • the third sub-band may include at least part of the reserved resources of the first reserved resource, for example, may include all the reserved resources of the first reserved resource, or include the first sub-band of the first reserved resource, or include the first A second sub-band in a reserved resource. At least some of the reserved resources of the second reserved resource and the third sub-band do not overlap.
  • the 40MHz listening bandwidth may include 20MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz and the reserved resources on 40MHz. No overlap, the reserved resources on the left of 20MHz overlap with the reserved resources on the left of 40MHz.
  • the 60MHz listening bandwidth may include 20MHz and 40MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz and 40MHz do not overlap with the reserved resources of 60MHz, 20MHz And the reserved resource on the left side of 40MHz overlaps with the reserved resource on the left side of 60MHz.
  • the 80MHz listening bandwidth can include 20MHz, 40MHz, and 60MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz, 40MHz, and 60MHz and the reserved resources of 80MHz. No overlap, the reserved resources on the left of 20MHz, 40MHz, and 60MHz overlap with the reserved resources on the left of 80MHz.
  • the 100MHz listening bandwidth may include 20MHz, 40MHz, 60MHz, and 80MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz, 40MHz, 60MHz, and 80MHz and 100MHz Reserved resources do not overlap, the reserved resources on the left of 20MHz, 40MHz, 60MHz, and 80MHz overlap with the reserved resources on the left of 100MHz.
  • the first frequency domain portion of the first listening bandwidth may also have at least partially overlapping resources with the second frequency domain portion of the second listening bandwidth.
  • the listening bandwidth can be used, that is, it can be used to transmit data.
  • the frequency domain part of 20MHz all belongs to 40MHz, then the frequency domain part of 20MHz and the listening bandwidth of 40MHz can be used for data transmission.
  • the frequency domain part of 40 MHz all belongs to 60 MHz.
  • the frequency domain part of 40 MHz and the listening bandwidth of 60 MHz can be used for data transmission.
  • the frequency domain part of 60MHz all belongs to 80MHz, then the frequency domain part of 60MHz and the listening bandwidth of 80MHz can be used for data transmission.
  • the frequency domain part of 80MHz all belongs to 100MHz, then the frequency domain part of 80MHz and the listening bandwidth of 100MHz can be used for data transmission.
  • the part of the third sub-band of the first reserved resource that belongs to the second frequency domain and does not belong to the second reserved resource may be used to transmit data or may not be used to transmit data.
  • the reserved resource on the right side of 20 MHz may or may not be used for data transmission.
  • the reserved resources on the right side of 20MHz and 40MHz can be used for data transmission or not.
  • the reserved resources on the right of 20MHz, 40MHz, and 60MHz can be used for data transmission or not.
  • the reserved resources on the right side of 20MHz, 40MHz, 60MHz, and 80MHz can be used for data transmission or not.
  • the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource; and / or,
  • the division of the resource block group RBG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource; and / or,
  • the division of the precoding resource block group PRG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource.
  • the second frequency domain part may include a continuous integer number of frequency domain units in the frequency domain.
  • the second frequency domain part may be a continuous integer number of PRBs in the frequency domain.
  • the size of the second frequency domain portion may be the entire BWP.
  • the second frequency domain part includes a part in the third sub-band that does not belong to the second reserved resource, which can be understood as: a part in the third sub-band that does not belong to the second reserved resource can be used for data transmission.
  • the division of the RBG in the second frequency domain part includes the part of the third sub-band that does not belong to the second reserved resource. It can be understood that the part of the third sub-band that does not belong to the second reserved resource may be RBG resources are allocated to transmit the required data.
  • the division of the PRG in the second frequency domain part includes the part of the third sub-band that does not belong to the second reserved resource. It can be understood that the third sub-band does not belong to the second reserved resource.
  • Part of the data can be transmitted in the PRG transmission mode.
  • the PRG transmission method may be: a terminal device or a network device may assume that the precoding matrix or beam direction used for signal transmission on the same PRG is the same.
  • the second frequency domain portion does not include a portion of the third sub-band that does not belong to the second reserved resource; and / or,
  • the division of the resource block group RBG in the second frequency domain part does not include a part of the third subband that does not belong to the second reserved resource; and / or,
  • the division of the precoding resource block group PRG in the second frequency domain portion does not include a portion of the third subband that does not belong to the second reserved resource.
  • the sum of the second frequency domain part and the part in the third sub-band that does not belong to the second reserved resource may include a continuous integer number of frequency domain units in the frequency domain.
  • the second frequency domain part and the first The sum of the parts of the three sub-bands that do not belong to the second reserved resource may be the entire BWP.
  • the second frequency domain part does not include the part in the third sub-band that does not belong to the second reserved resource, which can be understood as: the part in the third sub-band that does not belong to the second reserved resource is not used for data transmission.
  • the division of the RBG in the second frequency domain part does not include the part of the third sub-band that does not belong to the second reserved resource. It can be understood that the part of the third sub-band that does not belong to the second reserved resource cannot RBG resource allocation is used to transmit data and so on.
  • the division of the PRG in the second frequency domain part includes the part of the third sub-band that does not belong to the second reserved resource. It can be understood that the third sub-band does not belong to the second reserved resource. Some cannot transmit the required data in PRG transmission.
  • the first device is a terminal device
  • the second device is a network device
  • the first device receives the first instruction information sent by the second device, where:
  • the first indication information is used to determine whether the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the first indication information is used to determine whether the division of the RBG in the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the first indication information is used to determine whether the division of the PRG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource.
  • the first indication information may be used to indicate whether the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource, and / or, the second frequency domain Whether the division of the RBG in the portion includes the portion of the third sub-band that does not belong to the second reserved resource, and / or whether the division of the PRG in the second frequency domain portion includes the third sub-band The part of the frequency band that does not belong to the second reserved resource.
  • the first indication information may indicate the above-mentioned case of Yes
  • the first indication information carries a bit having a value of 0
  • the first indication information may indicate the above-mentioned No Happening.
  • the first indication information is sent (that is, the first indication information field appears or the first indication information related parameter is configured), the above-mentioned case of yes may be indicated, and if the first indication information is not transmitted, the above-mentioned case of no may be indicated.
  • the first device is a network device and the second device is a terminal device
  • the method further includes: the first device sends a second instruction to the second device Information, of which
  • the second indication information is used to determine whether the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource; and / or,
  • the second indication information is used to determine whether the division of the RBG in the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the second indication information is used to determine whether the division of the PRG in the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource.
  • the second indication information may be used to indicate whether the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource, and / or, the second frequency domain Whether the division of the RBG in the portion includes the portion of the third sub-band that does not belong to the second reserved resource, and / or whether the division of the PRG in the second frequency domain portion includes the third sub-band The part of the frequency band that does not belong to the second reserved resource. For example, when the second indication information carries a bit having a value of 1, the second indication information may indicate the above-mentioned case of Yes, and when the second indication information carries a bit having a value of 0, the second indication information may indicate the above-mentioned No Happening.
  • the second indication information is sent (that is, the first indication information field appears or the first indication information related parameter is configured)
  • the above-mentioned case of yes may be indicated, and if the second indication information is not transmitted, the above-mentioned case of no may be indicated.
  • whether the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource, and / or, the second frequency domain part Whether the division of the resource block group RBG in the second sub-band includes a portion of the third subband that does not belong to the second reserved resource, and / or, the division of the precoding resource block group PRG in the second frequency domain portion Whether to include a portion of the third sub-band that does not belong to the second reserved resource may be determined according to a specific situation, for example, it may be based on a demand for a resource amount between communication between a terminal device and a network device.
  • the first device may be a device that actively initiates communication, that is, the first device may be a device that performs channel monitoring. If the channel usage right is obtained through channel monitoring, the first device may actively initiate communication with the first device. Communication between two devices; or the first device may be a device that initiates communication inactively, that is, the first device does not need to perform channel monitoring, and the first device may perform blind detection of signals on an unlicensed frequency band to achieve Communication with the second device.
  • the first device is a device for channel listening.
  • the first device can listen to the first listening bandwidth and obtain the use of the first listening bandwidth.
  • the first frequency domain part included in the first listening bandwidth can be used to communicate with the second device.
  • the first device may listen to a bandwidth of 40 MHz. If the interception is successful and the usage right of the 40 MHz bandwidth is obtained, the resources in the 40 MHz bandwidth may be used to perform the second device.
  • the first device performs channel listening on the first listening bandwidth, and may use the first listening bandwidth as a whole to perform channel listening, and may also divide the first listening bandwidth into two or more parts and perform the channel separately. Interception, this application is not limited to this.
  • the first device is a device for channel listening, and at this time, the first device may listen to the second listening bandwidth (for example, in the method shown in FIG. 4 310). If the right to use the second listening bandwidth is not obtained, but the right to use the first listening bandwidth that is part of the second listening bandwidth is obtained, the first frequency included in the first listening bandwidth may be used.
  • the domain part communicates with the second device (for example, 320 in the method shown in FIG. 4). If the use right of the second listening bandwidth is obtained, the second frequency domain part included in the second listening bandwidth can be used to communicate with the second device (for example, method 330 shown in FIG. 4).
  • the second listening bandwidth may include multiple sub-listening bandwidths
  • the first device may listen to multiple sub-listening bandwidths. If multiple sub-listening bandwidths are successfully intercepted, the multiple sub-listening bandwidths may be used. Resources in the bandwidth (that is, the second listening bandwidth); if part of the multiple listening bandwidths (for example, the first listening bandwidth) of multiple sub-listening bandwidths are successfully intercepted, the partial listening bandwidth can be used To communicate with resources.
  • the first device can listen to the two 20MHzs that make up the 40MHz at the same time. If both 20MHzs are successfully listening, they can use the resources in the 40MHz to perform the second device. Communication; if there is only one 20MHz interception success, the one 20MHz resource can be used to communicate with the second device.
  • the fourth sub-band of the third reserved resource of the third listening bandwidth of the unlicensed frequency band belongs to the first listening bandwidth
  • the third listening bandwidth includes a third frequency domain portion and the third reserved resource.
  • the third frequency domain portion can be used for wireless communication transmission, and the third reserved resource is located in the third detection bandwidth.
  • At least one side of the listening bandwidth, the third reserved resource is a guard band, and at least part of the frequency domain resources of the first reserved resource and the fourth sub-band do not overlap.
  • the third reserved resource as a guard band refers to that the third reserved resource can be used as a guard band of a third listening bandwidth or a third frequency domain portion.
  • the third reserved resource is located on at least one side of the third listening bandwidth, which means that it can be located on one side of the third listening bandwidth or on both sides, specifically on one side or on both sides.
  • the side or the low-frequency side may be determined according to an actual situation, for example, based on an anti-interference requirement of an adjacent frequency domain resource of the third listening bandwidth and a requirement on communication performance.
  • the method for determining the size of the sub-band on the high-frequency side of the listening bandwidth or the sub-band on the low-frequency side of the listening bandwidth can refer to the description of the first reserved resource. For simplicity, here No longer.
  • the fourth sub-band may be a part of the third reserved resources of the third listening bandwidth, among the resources belonging to the first listening bandwidth of the unlicensed frequency band.
  • the fourth sub-band may include at least part of the reserved resources of the third reserved resource, for example, may include all the reserved resources of the third reserved resource, or include the high-frequency side sub-band in the third reserved resource, or Including the low frequency side subband in the first reserved resource. At least part of the frequency domain resources of the first reserved resource and the fourth sub-band do not overlap.
  • the 40MHz listening bandwidth may include 20MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz and the reserved resources on 40MHz. No overlap, the reserved resources on the left of 20MHz overlap with the reserved resources on the left of 40MHz.
  • the 60MHz listening bandwidth may include 20MHz and 40MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz and 40MHz do not overlap with the reserved resources of 60MHz, 20MHz And the reserved resource on the left side of 40MHz overlaps with the reserved resource on the left side of 60MHz.
  • the 80MHz listening bandwidth can include 20MHz, 40MHz, and 60MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz, 40MHz, and 60MHz and the reserved resources of 80MHz. No overlap, the reserved resources on the left of 20MHz, 40MHz, and 60MHz overlap with the reserved resources on the left of 80MHz.
  • the 100MHz listening bandwidth may include 20MHz, 40MHz, 60MHz, and 80MHz reserved resources on both sides, and the reserved resources on the right side of 20MHz, 40MHz, 60MHz, and 80MHz and 100MHz Reserved resources do not overlap, the reserved resources on the left of 20MHz, 40MHz, 60MHz, and 80MHz overlap with the reserved resources on the left of 100MHz.
  • the first frequency domain portion of the first listening bandwidth may also have at least partially overlapping resources with the third frequency domain portion of the third listening bandwidth.
  • a listening bandwidth can be available, that is, it can be used to transmit data.
  • the frequency domain part of 20MHz all belongs to 40MHz, then the frequency domain part of 20MHz and the listening bandwidth of 40MHz can be used for data transmission.
  • the frequency domain part of 40 MHz all belongs to 60 MHz.
  • the frequency domain part of 40 MHz and the listening bandwidth of 60 MHz can be used for data transmission.
  • the frequency domain part of 60MHz all belongs to 80MHz, then the frequency domain part of 60MHz and the listening bandwidth of 80MHz can be used for data transmission.
  • the frequency domain part of 80MHz all belongs to 100MHz, then the frequency domain part of 80MHz and the listening bandwidth of 100MHz can be used for data transmission.
  • the part of the fourth sub-band of the third reserved resource that belongs to the first frequency domain but does not belong to the first reserved resource may be used to transmit data or may not be used to transmit data.
  • the reserved resource on the right side of 20 MHz may or may not be used for data transmission.
  • the reserved resources on the right side of 20MHz and 40MHz can be used for data transmission or not.
  • the reserved resources on the right of 20MHz, 40MHz, and 60MHz can be used for data transmission or not.
  • the reserved resources on the right side of 20MHz, 40MHz, 60MHz, and 80MHz can be used for data transmission or not.
  • the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the resource block group RBG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the precoding resource block group PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the first frequency domain part includes a continuous number of frequency domain units in the frequency domain.
  • the first frequency domain part does not include a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the resource block group RBG in the first frequency domain part does not include a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the precoding resource block group PRG in the first frequency domain portion does not include a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the first device is a terminal device
  • the second device is a network device
  • the first device receives third instruction information sent by the second device, where:
  • the third indication information is used to determine whether the first frequency domain part includes a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the third indication information is used to determine whether the division of the RBG in the first frequency domain part includes a part of the fourth subband that does not belong to the first reserved resource; and / or,
  • the third indication information is used to determine whether the division of the PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the third indication information may be used to indicate whether the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource, and / or, the first frequency domain Whether the division of the RBG in the part includes the part of the fourth sub-band that does not belong to the first reserved resource, and / or whether the division of the PRG in the first frequency domain part includes the fourth sub-band The part of the frequency band that does not belong to the first reserved resource.
  • the third indication information may indicate the case of Yes
  • the third indication information carries a bit having a value of 0
  • the third indication information may indicate the aforementioned No. happening.
  • the third indication information is sent (that is, the third indication information field appears or the third indication information related parameter is configured), the above-mentioned case of yes may be indicated; if the third indication information is not transmitted, the above-mentioned case of no may be indicated.
  • the first device is a network device and the second device is a terminal device
  • the method further includes: the first device sends a fourth instruction to the second device Information, of which
  • the fourth indication information is used to determine whether the first frequency domain portion includes a portion of the fourth subband that does not belong to the first reserved resource; and / or,
  • the fourth indication information is used to determine whether the division of the RBG in the first frequency domain part includes a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the fourth indication information is used to determine whether the division of the PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the fourth indication information may be used to indicate whether the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource, and / or, the first frequency domain Whether the division of the RBG in the part includes the part of the fourth sub-band that does not belong to the first reserved resource, and / or whether the division of the PRG in the first frequency domain part includes the fourth sub-band The part of the frequency band that does not belong to the first reserved resource.
  • the fourth indication information may indicate the above-mentioned case of yes
  • the fourth indication information carries a bit of value 0
  • the fourth indication information may indicate the aforementioned no Happening.
  • the fourth indication information is sent (that is, the fourth indication information field appears or the fourth indication information related parameter is configured), the above-mentioned case of yes may be indicated; if the fourth indication information is not transmitted, the above-mentioned case of no may be indicated.
  • whether the first frequency domain portion includes a portion of the fourth subband that does not belong to the first reserved resource, and / or, the first frequency domain portion Whether the division of the resource block group RBG in comprises the portion of the fourth subband that does not belong to the first reserved resource, and / or, the division of the precoding resource block group PRG in the first frequency domain portion Whether to include a portion of the fourth sub-band that does not belong to the first reserved resource may be determined according to a specific situation, for example, it may be based on a demand for a resource amount between communication between a terminal device and a network device.
  • the third listening bandwidth is a true subset of the first listening bandwidth; a channel is listened on the first listening bandwidth; and the third detecting bandwidth is obtained
  • the first device communicates with the second device through the third frequency domain part.
  • FIG. 3 is only an implementation manner in the embodiment of the present application. There can also be other positional relationships.
  • each of the two listening bandwidths has a part of the frequency domain resources overlapping with another listening bandwidth.
  • the overlapping part may include part of the reserved resources and part of the resources in the frequency domain. .
  • each of the two listening bandwidths has only a part of the reserved resources that overlap with the reserved resources of the other listening bandwidth.
  • the multiple other listening bandwidths may be The reserved resources belong to the frequency domain portion of the listening bandwidth (or the RBG or PRG division that participates in the frequency domain portion of the listening bandwidth), or may be the reserved resources of part of the multiple other listening bandwidths.
  • the frequency domain part that belongs to the listening bandwidth or the division of the RBG or PRG that participates in the frequency domain part of the listening bandwidth).
  • the first device is a network device
  • the second device is a terminal device
  • the first device sends fifth indication information to the second device
  • the fifth The indication information is used to determine at least one of the following: a frequency domain location of the first frequency domain portion, a frequency domain location of the first reserved resource, and a frequency domain location of a BWP to which the first frequency domain portion belongs.
  • the first device is a terminal device
  • the second device is a network device
  • the first device receives sixth instruction information sent by the second device
  • the first device receives sixth instruction information sent by the second device
  • the six indication information is used to determine at least one of the following: a frequency domain position of the first frequency domain part, a frequency domain position of the first reserved resource, and a frequency domain of a BWP to which the first frequency domain part belongs. position.
  • the first device communicates with the second device through the first frequency domain portion of the first listening bandwidth of the unlicensed frequency band, and the first listening bandwidth includes the first frequency domain.
  • the first reserved resource wherein the first reserved resource is located on at least one side of the first listening bandwidth, and the first reserved resource is a guard band, due to the first frequency domain part of the communication
  • At least one side has reserved resources as a guard band, which can prevent the communication in the first frequency domain from causing interference to other communications. Specifically, it can prevent the signal transmission of the NR-U system on the listening bandwidth from interfering with adjacent channels. Signal transmission in different systems (such as Wi-Fi or LTE-LAA systems), so as to better achieve system coexistence in unlicensed frequency bands.
  • FIG. 7 is a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 may include a communication unit 410.
  • the communication device 400 may be referred to as a first device, which may communicate with a second device.
  • the communication unit 410 is configured to communicate with a second device through a first frequency domain part of a first listening bandwidth of an unlicensed frequency band, where the first listening bandwidth includes the first frequency domain part and the first The reserved resource, wherein the first reserved resource is located on at least one side of the first listening bandwidth, and the first reserved resource is a guard band.
  • the first reserved resource includes a first sub-band, and the first sub-band is located on a low-frequency side of the first listening bandwidth.
  • the size of the first sub-band is determined based on at least one of the following:
  • the size of the first listening bandwidth the subcarrier interval of the first frequency domain portion, the size of the first frequency domain portion, the location of the first subband, the first detection A position of a listening bandwidth, and a size of a second sub-band included in the first reserved resource and located on a high frequency side of the first listening bandwidth.
  • the first reserved resource includes a second sub-band, and the second sub-band is located on a high-frequency side of the first listening bandwidth.
  • the size of the second sub-band is determined based on at least one of the following:
  • the RF index requirements the size of the first listening bandwidth, the subcarrier interval of the first frequency domain part, the size of the first frequency domain part, the position of the second subband, the first detection The position of the listening bandwidth, and the size of the first sub-band included in the first reserved resource and located on the low frequency side of the first listening bandwidth.
  • the third sub-band of the first reserved resource belongs to a second listening bandwidth of the unlicensed frequency band
  • the second listening bandwidth includes a second frequency domain part and A second reserved resource, wherein the second frequency domain part can be used for wireless communication transmission, the second reserved resource is located on at least one side of the second listening bandwidth, and the second reserved resource is protection Frequency band, at least part of the frequency domain resources of the second reserved resource and the third sub-band do not overlap.
  • the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource; and / or,
  • the division of the resource block group RBG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource; and / or,
  • the division of the precoding resource block group PRG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource.
  • the second frequency domain part includes a continuous number of frequency domain units in the frequency domain.
  • the second frequency domain portion does not include a portion of the third subband that does not belong to the second reserved resource; and / or,
  • the division of the resource block group RBG in the second frequency domain part does not include a part of the third subband that does not belong to the second reserved resource; and / or,
  • the division of the precoding resource block group PRG in the second frequency domain portion does not include a portion of the third subband that does not belong to the second reserved resource.
  • the first device is a terminal device
  • the second device is a network device
  • the communication unit 410 is further configured to:
  • the first indication information is used to determine whether the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the first indication information is used to determine whether the division of the RBG in the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the first indication information is used to determine whether the division of the PRG in the second frequency domain portion includes a portion of the third sub-band that does not belong to the second reserved resource.
  • the first device is a network device
  • the second device is a terminal device
  • the communication unit 410 is further configured to send second instruction information to the second device, among them
  • the second indication information is used to determine whether the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource; and / or,
  • the second indication information is used to determine whether the division of the RBG in the second frequency domain part includes a part of the third subband that does not belong to the second reserved resource; and / or,
  • the second indication information is used to determine whether the division of the PRG in the second frequency domain portion includes a portion of the third subband that does not belong to the second reserved resource.
  • the first listening bandwidth is a true subset of the second listening bandwidth; the communication unit 410 is further configured to:
  • the communication unit 410 is further configured to:
  • the first device communicates with a second device through the first frequency domain part.
  • the fourth sub-band of the third reserved resource of the third listening bandwidth of the unlicensed frequency band belongs to the first listening bandwidth
  • the third listening bandwidth includes a third frequency domain portion and the third reserved resource.
  • the third frequency domain portion can be used for wireless communication transmission, and the third reserved resource is located in the third detection bandwidth.
  • At least one side of the listening bandwidth, the third reserved resource is a guard band, and at least part of the frequency domain resources of the first reserved resource and the fourth sub-band do not overlap.
  • the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the resource block group RBG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the precoding resource block group PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the first frequency domain part includes a continuous number of frequency domain units in the frequency domain.
  • the first frequency domain part does not include a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the resource block group RBG in the first frequency domain part does not include a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the division of the precoding resource block group PRG in the first frequency domain portion does not include a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the first device is a terminal device
  • the second device is a network device
  • the communication unit 410 is further configured to:
  • the third indication information is used to determine whether the first frequency domain part includes a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the third indication information is used to determine whether the division of the RBG in the first frequency domain part includes a part of the fourth subband that does not belong to the first reserved resource; and / or,
  • the third indication information is used to determine whether the division of the PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the first device is a network device
  • the second device is a terminal device
  • the communication unit 410 is further configured to:
  • the fourth indication information is used to determine whether the first frequency domain portion includes a portion of the fourth subband that does not belong to the first reserved resource; and / or,
  • the fourth indication information is used to determine whether the division of the RBG in the first frequency domain part includes a part of the fourth sub-band that does not belong to the first reserved resource; and / or,
  • the fourth indication information is used to determine whether the division of the PRG in the first frequency domain portion includes a portion of the fourth sub-band that does not belong to the first reserved resource.
  • the third listening bandwidth is a true subset of the first listening bandwidth; the communication unit 410 is further configured to:
  • the device 400 further includes a processing unit 420, configured to:
  • the first device is a network device
  • the second device is a terminal device
  • the communication unit 410 is further configured to:
  • the fifth indication information is used to determine at least one of: a frequency domain position of the first frequency domain part, and a frequency domain of the first frequency domain resource The position and the frequency domain position of the BWP to which the first frequency domain part belongs.
  • the first device is a terminal device
  • the second device is a network device
  • the communication unit 410 is further configured to:
  • Receiving sixth indication information sent by the second device where the sixth indication information is used to determine at least one of: a frequency domain position of the first frequency domain part, and a frequency of the first frequency domain resource A domain position and a frequency domain position of a BWP to which the first frequency domain part belongs.
  • the communication device 400 may correspond to the first device (which may be a terminal device or a network device) in the method embodiment, and may be used to implement various methods of the method embodiment of the present application. For simplicity, in This will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 8 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the first device in each method in the embodiments of the present application. More details.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 9 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the first device in the embodiments of the present application, and the chip may implement the corresponding process implemented by the first device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法和通信设备,可以避免非授权频段上进行的通信与其他通信相互之间造成干扰。该方法包括:第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。

Description

无线通信方法和通信设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种无线通信方法和通信设备。
背景技术
在新无线非授权(New Radio unlicensed,NR-U)系统中,通信设备利用非授权频段,遵循“先听后说”的原则进行通信,即通信设备在非授权频段的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频段的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。
由于NR-U系统可能和异系统共存(例如,NR-U系统和长期演进授权辅助接入(Long Term Evolution Licensed-Assisted Access,LTE-LAA)系统或无线保真(Wireless Fidelity,Wi-Fi)系统共享相同的频谱或使用相邻的频谱),NR-U系统的通信可能对异系统的信道侦听以及信号的传输造成影响。
发明内容
本申请实施例提供一种无线通信方法和设备,可以避免非授权频段上进行的通信与其他通信相互之间造成干扰。
第一方面,提供了一种无线通信方法,包括:第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。
第二方面,提供了一种通信设备,用于执行上述第一方面中的方法。
具体地,该通信设备包括用于执行上述第一方面中的方法的功能模块。
第三方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的方法。
通过上述技术方案,第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带,由于进行通信的第一频域部分的至少一侧具有作为保护频带的预留资源,可以避免第一频域部分进行的通信对其他通信造成干扰,具体地,可以避免NR-U系统在侦听带宽上的信号传输干扰相邻信道上异系统(例如Wi-Fi或LTE-LAA系统)的信号传输,从而更好地实现非授权频段上的系统共存。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种无线通信方法的示意性图。
图3是根据本申请实施例的多种侦听带宽之间的关系的示意性图。
图4是本申请实施例提供的另一种无线通信方法的示意性图。
图5是根据本申请实施例的多种侦听带宽之间的关系的示意性图。
图6是根据本申请实施例的多种侦听带宽之间的关系的示意性图。
图7是根据本申请实施例的通信设备的示意性框图。
图8是根据本申请实施例的通信设备的示意性框图。
图9是本申请实施例提供的一种芯片的示意性框图。
图10是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是根据本申请实施例的无线通信方法200的示意性流程图。
可选地,以下提到的第一设备可以是终端设备,此时第二设备可以为网络设备;或者,以下提到的第一设备可以是网络设备,此时第二设备可以为终端设备。当然,第一设备和第二设备也可以均为终端 设备,本申请实施例对此不作具体限定。
在210中,第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。
可选地,在本申请实施例中,第一预留资源可以为第一侦听带宽或第一频域部分的保护频带,即使第一预留资源属于其他的侦听带宽,也可以不作为其他的侦听带宽或者该其他的侦听带宽包括的频域部分的保护频带。
可选地,本申请实施例提到的侦听带宽(例如,第一侦听带宽、第二侦听带宽或第三侦听带宽等)可以为子带或宽带。
其中,子带为能进行信道侦听的最小带宽单位,宽带的大小为子带的整数倍。作为示例,宽带可以和载波带宽的大小相同。
例如,在5GHz的非授权频段上,子带的大小可以为20MHz,宽带的大小可以为20MHz,40MHz,60MHz,80MHz或100MHz等。
又例如,在高频的非授权频段上,子带的大小可以为512MHz,宽带的大小可以为512MHz,1024MHz,或2048MHz等。
在NR系统中,网络设备(可以为本申请中的第一设备,也可以为第二设备)可以为终端设备配置频域参考点(absoluteFrequencyPointA(即公共资源块(Common Resource Block,CRB)0的子载波0)),1个或多个载波(例如多个载波可以用于载波聚合(Carrier Aggregation,CA)的场景),各个载波的子载波间隔(subcarrier spacing,SCS),各个载波的起始位置(offsetToCarrier,各个载波上第一个可用的子载波与频域参考点之间的距离,其单位可以是根据SCS确定的物理资源块(Physical Resource Block,PRB)),各个载波的带宽大小(carrierBandwidth,单位是根据SCS确定的PRB)等参数。终端设备根据网络设备的配置,可以确定待使用的载波的频域位置和带宽大小。
可选地,在本申请实施例中,网络设备可以为同一终端设备配置多个侦听带宽,该多个侦听带宽可以用于该终端设备与网络设备进行通信,该多个侦听带宽可以分别用于终端设备与网络设备之间的不同的业务的通信,或者不同时间的通信,或者不同的信道情况下的通信(例如,在信道较为繁忙的时候,可以选择小的侦听带宽进行通信,在信道较为空闲的时候,可以选择较大的侦听带宽进行通信)。
可选地,在本申请实施例中,网络设备可以为不同的终端设备配置不同的侦听带宽。例如,可以对业务数据传输需求量大的终端设备配置较大的侦听带宽,而对于业务数据传输需求量小的终端设备可以配置较小的侦听带宽。
可选地,本申请实施例提到的频域部分(例如,第一频域部分、第二频域部分或第三频域部分等)可以用于第一设备与第二设备之间通信,但是并不代表着在通信时必须占用该频域部分的全部资源,具体可以根据实际的传输情况而定,例如,网络设备可以根据实际传输的数据量分配该频域部分中的部分资源用于第一设备与第二设备之间通信。
其中,本申请实施例提到的频域部分可以等于相应的侦听带宽上的带宽部分(Bandwidth Part,BWP),也可以小于BWP。本申请实施例提到的BWP可以包括整数个连续的频域资源单元。其中,该频域资源单元可选地可以为PRB,当然也可以是其他频域资源单元,例如也可以将整数个子载波作为频域资源单元等,本申请实施例对此不做具体限定。本申请实施例提到的BWP小于侦听带宽。
应理解,本申请实施例提到的BWP可以为上行BWP,也可以是下行BWP,上行BWP与下行BWP可以相同也可以不相同。
同样地,本申请实施例提到的用于通信的频域部分和用于作为保护频带的预留资源可以对应于上行,也可以对应于下行。上行对应的频域部分和/或预留资源可以与下行对应的频域部分和/或预留资源相同或不相同。
可选地,在本申请实施例中,对于上行而言,频域部分可以占用侦听带宽的一定百分比以满足带宽占用要求。例如,在5GHz频段上,频域部分可以占用侦听带宽的至少80%。又例如,在60GHz频段上,频域部分可以占用侦听带宽的至少70%。
第一设备或第二设备可以基于所述第一侦听带宽的大小、所述第一侦听带宽的子载波间隔和所述第一侦听带宽的频域位置中的至少一种,从BWP集合中确定第一BWP的起始位置、长度和/或终止位置,其中,所述第一BWP属于所述第一侦听带宽且包括所述第一频域部分。
作为通信双方的两端(第一设备和第二设备)均可以基于以上原则确定第一BWP的起始位置、长度和/或终止位置等。
在本申请实施中,BWP集合中的不同的BWP所对应的侦听带宽的以下中的至少一种可以不同:侦听带宽的大小、侦听带宽的频域位置和侦听带宽的子载波间隔。
此处提到的侦听带宽的频域位置可以是侦听带宽的绝对频域位置,或者,此处提到的频域位置也可以是侦听带宽在载波带宽中的位置。
可选地,6GHz频段以下,侦听带宽集合可以包括{20MHz、40MHz、60MHz、80MHz、100MHz}中的至少一种。
可选地,BWP集合也可以是与系统载波的最大带宽相关的,例如,该BWP集合所包括的BWP配置的数量可以基于系统载波的最大带宽确定的。
可选地,网络设备(可以为第一设备,也可以为第二设备)可以确定(可以依据以上原则从BWP集合中选择,也可以基于其他的方式确定)第一BWP的起始位置、长度和/或终止位置等,并将该第一BWP的起始位置、长度和/或终止位置等指示给终端设备,则终端设备可以基于终端设备的指示确定第一BWP,并从而可以基于第一BWP确定第一频域部分。
可选地,网络设备可以在载波上为终端设备配置一个或多个BWP(BWP可选地最多4个),具体可以配置各个BWP的循环前缀(Cyclic Prefix,CP)类型、BWP的SCS、BWP的频域位置和带宽大小(可以通过资源指示符值(resource indicator value),例如假设载波的带宽大小为275个PRB,从该载波的起始位置开始根据其对应的SCS确定的PRB为单位,取值范围为0到37949)。即NR系统中BWP的配置可以是一个载波内的任意起始位置和不大于该载波带宽包括的PRB个数的任意长度。
具体地,网络设备侧可以支持单载波大带宽,可以根据可采用的子载波波间隔、处理复杂度(例如最大子载波数不超过3300)、最小保护带预留等因素,确定BWP包括的资源块(Resource Block,RB)的数量。作为示例,在不同带宽和子载波间隔下,包括的RB个数可以如下表1和表2所示。
其中,表1示出了在FR1频域范围(6GHz以下)内,不同的子载波间隔和带宽下,BWP包括的RB的数量;表2示出了在FR2频域范围(6GHz以上)内,不同的子载波间隔和带宽下,BWP包括的RB的数量。
表1
Figure PCTCN2018100016-appb-000001
表2
Figure PCTCN2018100016-appb-000002
可选地,在本申请实施例中,针对同一侦听带宽,网络设备可以配置多种大小和/或位置的BWP。例如,对于一个侦听带宽而言,其包括的BWP可以为与该侦听带宽中心重合的BWP,以及可以为与该侦听带宽中心不重合的BWP。
可选地,在本申请实施例中,同一侦听带宽的同一BWP,网络设备可以配置多种大小和/或位置的频域部分。例如,对于一个BWP而言,其可以全部的资源用于通信(频域部分可以为整个BWP),或者部分的资源(此时,频域部分可以为BWP的部分资源)用于通信。具体选择哪种频域部分,可以根据具体情况而定,例如,可以根据网络设备与终端设备之间的业务需求。
可选地,在本申请实施例中,网络设备可以针对每个侦听带宽配置一个或多个频域部分(多个频域部分之间的位置和/或大小可以不相同)。在配置多个频域部分时,同一终端设备只能对应一个频域部分,不同的终端设备在使用相同的侦听带宽时,所使用的频域部分可以相同,也可以不相同。或者,在配置多个频域部分时,同一终端设备可以从该多个频域部分中确定一个频域部分并进行与网络设备之间的通信,例如,终端设备可以基于当前的业务需求选择频域部分,或者,终端设备可以基于网络设备的指示确定频域部分。
可选地,本申请实施例提到的作为保护频带的预留资源(例如,第一预留资源、第二预留资源或第三预留资源等)可以位于所属的侦听带宽的频域部分的至少一侧,可以不用于传输任何的数据或信号,此时可以避免不同的带宽或不同的系统之间的干扰。
应理解,本申请实施例中,预留资源(例如,第一预留资源、第二预留资源或第三预留资源)位于所属的侦听带宽的频域部分的至少一侧意味着可以位于频域部分的一侧,也可以位于两侧(例如,如图 3所示,预留资源位于了可用于数据传输的频域部分的两侧)。至于位于一侧还是两侧可以根据对两侧的相邻频带对抗干扰的要求和对通信性能的要求而定。例如,如果某一侧的相邻频带对抗干扰的要求不高,则可以只在另一侧具有保护频带,如果两侧的相连频带均对抗干扰的要求较高,则可以在两侧均具有保护频带。
可选地,在本申请实施例中,作为第一侦听带宽的保护频带的第一预留资源可以包括第一子频带,其中,所述第一子频带可以位于所述第一侦听带宽的低频侧。
其中,所述第一子频带的大小是可以基于以下至少一种确定的:
射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第一子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的高频侧的第二子频带。
以上提到的射频指标需求可以是对第一子频带的大小的要求,可以理解为一个阈值,需要第一子频带的大小超过该阈值。
可选地,第一子频带的大小可以与第一侦听带宽的大小是正相关的。
可选地,第一子频带的大小可以与第一侦听带宽的子载波间隔的大小是正相关的。
可选地,第一子频带的位置可以影响第一子频带的大小。例如,由于第一子频带处于低频侧,当与低频侧相邻的资源进行的通信对抗干扰要求不高时,则第一子频带的大小可以较小。
可选地,第一侦听带宽的频域位置可以影响第一子频带的大小,例如,第一侦听带宽在整个系统带宽的相对位置等可以影响第一子频带的大小。
可选地,当第一子频带为第一侦听带宽所属的载波带宽的低频侧的边带时,如果该载波带宽包括多个侦听带宽,且该多个侦听带宽中至少两个侦听带宽包括该载波带宽的低频侧的边带,那么第一子频带的大小可以根据满足该至少两个侦听带宽的射频指标需求的最大值来确定。进一步可选地,该至少两个侦听带宽的低频侧的预留资源的大小相同。
可选地,所述第一预留资源包括的且位于所述第一侦听带宽的高频侧的第二子频带可以影响第一子频带的大小,例如,第二子频带与第一子频带要求是相同的,或第二子频带与第一子频带之间的比例是预设值等。
可选地,所述第一预留资源包括第二子频带,所述第二子频带位于所述第一侦听带宽的高频侧。
其中,所述第二子频带的大小是基于以下至少一种确定的:
射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第二子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的低频侧的第一子频带。
以上提到的射频指标需求可以是第二子频带的大小的要求,可以理解为一个阈值,需要第二子频带的大小超过该阈值。
可选地,第二子频带的大小可以与第一侦听带宽的大小是正相关的。
可选地,第二子频带的大小可以与第一侦听带宽的子载波间隔的大小是正相关的。
可选地,第二子频带的位置可以影响第一子频带的大小。例如,由于第二子频带处于高频侧,当与高频侧相邻的资源进行的通信对抗干扰要求不高时,则第二子频带的大小可以较小。
可选地,第一侦听带宽的频域位置可以影响第二子频带的大小,例如,第一侦听带宽在整个系统带宽的位置等可以影响第二子频带的大小。
可选地,当第二子频带为第一侦听带宽所属的载波带宽的高频侧的边带时,如果该载波带宽包括多个侦听带宽,且该多个侦听带宽中至少两个侦听带宽包括该载波带宽的高频侧的边带,那么第二子频带的大小可以根据满足该至少两个侦听带宽的射频指标需求的最大值来确定。进一步可选地,该至少两个侦听带宽的高频侧的预留资源的大小相同。
可选地,所述第一预留资源包括的且位于所述第一侦听带宽的低频侧的第一子频带可以影响第二子频带的大小,例如,第二子频带与第一子频带要求是相同的,或第二子频带与第一子频带之间的比例是预设值等。
应理解,在本申请实施例中,对于第一预留资源而言,可以同时包括第一子频带和第二子频带,此时第一子频带与第二子频带可以相同,也可以不相同。或者,对于第一预留资源而言,可以仅由第一子频带组成,也可以仅由第二子频带组成。
可选地,在本申请实施例中,在存在多个侦听带宽的情况下,针对不同的侦听带宽,可以配置相同大小的保护频带,也可以配置大小不同的保护频带。
作为示例,以下表3和4示出了在不同的侦听带宽下应预留的最小保护带。其中,表1示出了在FR1频带下,在不同的子载波间隔和侦听带宽下应预留的最小保护频带的大小。表2示出了在FR2频 带下,在不同的子载波间隔和侦听带宽下应预留的最小保护频带的大小。
表3
Figure PCTCN2018100016-appb-000003
表4
SCS(KHz) 50MHz 100MHz 200MHz 400MHz
60 1210 2450 4930 N.A
120 1900 2420 4900 9860
可选地,在本申请实施例中,在系统中,可以存在多种大小的侦听带宽。其中,该多种侦听带宽可以分别用于不同的终端设备,或者相同的终端设备在不同的时间或业务需求下采用不同的侦听带宽。以下以系统的可用侦听带宽包括第一侦听带宽和第二侦听带宽,或者包括第一侦听带宽和第三侦听带宽为例进行说明侦听带宽之间的关系。
可选地,在本申请实施例中,第一侦听带宽的第一预留资源的第三子频带属于所述非授权频段的第二侦听带宽,所述第二侦听带宽包括第二频域部分和第二预留资源,其中,所述第二频域部分可用于无线通信传输,所述第二预留资源位于所述第二侦听带宽的至少一侧,所述第二预留资源为保护频带,所述第二预留资源和所述第三子频带至少有部分预留资源不重叠。
其中,与第一预留资源类似,第二预留资源作为保护频带是指该第二预留资源可以作为第二侦听带宽或第二频域部分的保护频带。
作为第二侦听带宽的保护频带的第二预留资源位于第二侦听带宽的至少一侧意味着可以位于第二侦听带宽的一侧,也可以位于两侧,具体位于一侧还是两侧,如果位于一侧是位于高频侧还是低频侧可以根据实际情况而定,例如可以基于该第二侦听带宽的相邻频域资源的抗干扰需求和对通信性能的要求等。
其中,第二预留资源的位于侦听带宽的高频侧的子频带或位于侦听带宽的低频侧的子频带的大小的确定方式可以参照第一预留资源的描述,为了简洁,在此不再赘述。
第三子频带可以是第一侦听带宽的第一预留资源中属于所述非授权频段的第二侦听带宽的资源中的部分资源。
第三子频带可以包括第一预留资源的至少部分预留资源,例如,可以包括第一预留资源的全部预留资源,或者包括第一预留资源中的第一子频带,或者包括第一预留资源中的第二子频带。所述第二预留资源和所述第三子频带至少有部分预留资源不重叠。
例如,如图3所示,对于40MHz的侦听带宽而言,该40MHz的侦听带宽可以包括20MHz的位于两侧的预留资源,且20MHz的右侧的预留资源与40MHz的预留资源不重叠,20MHz的左侧的预留资源与40MHz的左侧的预留资源重叠。对于60MHz的侦听带宽而言,该60MHz的侦听带宽可以包括20MHz和40MHz的位于两侧的预留资源,且20MHz和40MHz的右侧的预留资源与60MHz的预留资源不重叠,20MHz和40MHz的左侧的预留资源与60MHz的左侧的预留资源重叠。对于80MHz的侦听带宽而言,该80MHz的侦听带宽可以包括20MHz、40MHz和60MHz的位于两侧的预留资源,且20MHz、40MHz和60MHz的右侧的预留资源与80MHz的预留资源不重叠,20MHz、40MHz和60MHz的左侧的预留资源与80MHz的左侧的预留资源重叠。对于100MHz的侦听带宽而言,该100MHz的侦听带宽可以包括20MHz、40MHz、60MHz和80MHz的位于两侧的预留资源,且20MHz、40MHz、60MHz和80MHz的右侧的预留资源与100MHz的预留资源不重叠,20MHz、40MHz、60MHz和80MHz的左侧的预留资源与100MHz的左侧的预留资源重叠。
应理解,除了第一预留资源之外,第一侦听带宽的第一频域部分也可以与第二侦听带宽的第二频域部分有至少部分重叠的资源,这些重叠的资源对于第二侦听带宽而言可以是可用的,也即可以用来传输数据。
例如,如图3所示,对于40MHz的侦听带宽而言,20MHz的频域部分全部属于40MHz,则该20MHz的频域部分而对40MHz的侦听带宽而言,是可以用于进行数据传输的。对于60MHz的侦听带宽而言,40MHz的频域部分全部属于60MHz,则该40MHz的频域部分而对60MHz的侦听带宽而言,是可以用于进行数据传输的。对于80MHz的侦听带宽而言,60MHz的频域部分全部属于80MHz,则该60MHz的频域部分而对80MHz的侦听带宽而言,是可以用于进行数据传输的。对于100MHz的侦听带宽而言,80MHz的频域部分全部属于100MHz,则该80MHz的频域部分而对100MHz的侦听带宽而言,是可以 用于进行数据传输的。
而对于第一预留资源的第三子频带中属于第二频域部分而不属于第二预留资源的部分可以用来传输数据,也可以不用来传输数据。
例如,如图3所示,对于40MHz的侦听带宽而言,20MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于60MHz的侦听带宽而言,20MHz和40MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于80MHz的侦听带宽而言,20MHz、40MHz和60MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于100MHz的侦听带宽而言,20MHz、40MHz、60MHz和80MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。
在一种实现方式中,所述第二频域部分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的资源块组RBG的划分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的预编码资源块组PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分。
在该种实现方式中,第二频域部分可以包括频域连续的整数个频域单元,例如,该第二频域部分可以为频域连续的整数个PRB。或者,第二频域部分的大小可以为整个BWP。
其中,所述第二频域部分包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分可以用来进行数据传输。
在第二频域部分中的RBG的划分包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分可以以RBG资源分配的方式来传输需要的数据等。
类似地,在第二频域部分中的PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分可以以PRG传输方式来传输需要的数据等。其中,PRG传输方式可以为:终端设备或网络设备可以假设同一个PRG上的信号传输使用的预编码矩阵或波束方向相同。
在另一种实现方式中:所述第二频域部分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的资源块组RBG的划分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的预编码资源块组PRG的划分不包括所述第三子频带中不属于所述第二预留资源的部分。
在该种实现方式中,第二频域部分与第三子频带中不属于第二预留资源的部分之和可以包括频域连续的整数个频域单元,例如,第二频域部分与第三子频带中不属于第二预留资源的部分之和可以为整个BWP。
其中,所述第二频域部分不包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分不用来进行数据传输。
在第二频域部分中的RBG的划分不包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分不能以RBG资源分配的方式用来传输数据等。
类似地,在第二频域部分中的PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分可以理解为:第三子频带中不属于第二预留资源的部分不能以PRG传输方式来传输需要的数据等。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一设备接收所述第二设备发送的第一指示信息,其中,
所述第一指示信息用于确定所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第一指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第一指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
例如,第一指示信息可以用于指示:所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。例如,在第一指示信息携带取值为1的比特时,第一指示信息可以指示上述是的情况,在第一指示信息携带取值为0的比特时,第一指示信息可以指示上述否的情况。
再例如,如果发送第一指示信息(即第一指示信息域出现或配置第一指示信息相关参数),可以指示上述是的情况,如果不发送第一指示信息,可以指示上述否的情况。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述方法还包括:所述第一设备向所述第二设备发送第二指示信息,其中,
所述第二指示信息用于确定所述第二频域部分中是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
例如,第二指示信息可以用于指示:所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。例如,在第二指示信息携带取值为1的比特时,第二指示信息可以指示上述是的情况,在第二指示信息携带取值为0的比特时,第二指示信息可以指示上述否的情况。
再例如,如果发送第二指示信息(即第一指示信息域出现或配置第一指示信息相关参数),可以指示上述是的情况,如果不发送第二指示信息,可以指示上述否的情况。
可选地,在本申请实施例中,所述第二频域部分是否包括所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的资源块组RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分,和/或,所述第二频域部分中的预编码资源块组PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分,可以根据具体情况而定,例如,可以基于终端设备与网络设备之间的通信对资源量的需求。
可选地,该第一设备可以是主动发起通信的设备,也就是说,第一设备可以是进行信道侦听的设备,如果通过信道侦听获得了信道的使用权,则可以主动发起与第二设备之间的通信;或者第一设备可以是非主动发起通信的设备,也就是说,第一设备无需进行信道侦听,该第一设备可以在非授权频段上进行信号的盲检测,以实现与第二设备之间的通信。
可选地,在本申请实施例中,假设第一设备是用于信道侦听的设备,此时第一设备可以对第一侦听带宽进行侦听,在获得了第一侦听带宽的使用权之后,则可以利用第一侦听带宽包括的第一频域部分与第二设备进行通信。
例如,第一设备可以对40MHz的带宽进行侦听,如果侦听成功,获得了该40MHz的带宽的使用权,则可以利用该40MHz的带宽中的资源与第二设备进行。
应理解,第一设备对第一侦听带宽进行信道侦听,可以将第一侦听带宽作为一个整体进行信道侦听,也可以将第一侦听带宽分成两个或多个部分分别进行信道侦听,本申请对此并不限定。
可选地,在本申请实施例中,假设第一设备是用于信道侦听的设备,此时第一设备可以对第二侦听带宽进行侦听(例如,图4所示的方法中的310),如果没有获得第二侦听带宽的使用权而是获得了作为第二侦听带宽的部分带宽的第一侦听带宽的使用权,则可以利用第一侦听带宽包括的第一频域部分与第二设备进行通信(例如,如图4所示的方法中的320)。如果获得了第二侦听带宽的使用权,则可以利用第二侦听带宽包括的第二频域部分与第二设备进行通信(例如,如图4所示的方法330)。
可选地,第二侦听带宽可以包括多个子侦听带宽,第一设备可以对多个子侦听带宽进行侦听,如果多个子侦听带宽均侦听成功,则可以利用该多个子侦听带宽(也即第二侦听带宽)中的资源进行通信;如果多个子侦听带宽中的部分子侦听带宽(例如,第一侦听带宽)侦听成功,可以利用该部分子侦听带宽中的资源进行通信。
例如,第二侦听带宽为40MHz,则第一设备可以对组成该40MHz的两个20MHz进行同时侦听,如果两个20MHz均侦听成功,则可以利用该40MHz中的资源与第二设备进行通信;如果仅存在一个20MHz侦听成功,则可以利用该一个20MHz的资源与第二设备进行通信。
可选地,在本申请实施例中,所述非授权频段的第三侦听带宽的第三预留资源的第四子频带属于所述第一侦听带宽;
其中,所述第三侦听带宽包括第三频域部分和所述第三预留资源,所述第三频域部分可用于无线通信传输,所述第三预留资源位于所述第三侦听带宽的至少一侧,所述第三预留资源为保护频带,所述第一预留资源和所述第四子频带至少有部分频域资源不重叠。
其中,与第一预留资源或第二预留资源类似,第三预留资源作为保护频带是指该第三预留资源可以作为第三侦听带宽或第三频域部分的保护频带。
第三预留资源位于第三侦听带宽的至少一侧意味着可以位于第三侦听带宽的一侧,也可以位于两侧,具体位于一侧还是两侧,如果位于一侧是位于高频侧还是低频侧可以根据实际情况而定,例如可以基于该第三侦听带宽的相邻频域资源的抗干扰需求和对通信性能的要求等。
其中,第三预留资源的位于侦听带宽的高频侧的子频带或位于侦听带宽的低频侧的子频带的大小的确定方式可以参照第一预留资源的描述,为了简洁,在此不再赘述。
第四子频带可以是第三侦听带宽的第三预留资源中属于所述非授权频段的第一侦听带宽的资源中的部分资源。
第四子频带可以包括第三预留资源的至少部分预留资源,例如,可以包括第三预留资源的全部预留资源,或者包括第三预留资源中的高频侧的子频带,或者包括第一预留资源中的低频侧的子频带。所述第一预留资源和所述第四子频带至少有部分频域资源不重叠。
例如,如图3所示,对于40MHz的侦听带宽而言,该40MHz的侦听带宽可以包括20MHz的位于两侧的预留资源,且20MHz的右侧的预留资源与40MHz的预留资源不重叠,20MHz的左侧的预留资源与40MHz的左侧的预留资源重叠。对于60MHz的侦听带宽而言,该60MHz的侦听带宽可以包括20MHz和40MHz的位于两侧的预留资源,且20MHz和40MHz的右侧的预留资源与60MHz的预留资源不重叠,20MHz和40MHz的左侧的预留资源与60MHz的左侧的预留资源重叠。对于80MHz的侦听带宽而言,该80MHz的侦听带宽可以包括20MHz、40MHz和60MHz的位于两侧的预留资源,且20MHz、40MHz和60MHz的右侧的预留资源与80MHz的预留资源不重叠,20MHz、40MHz和60MHz的左侧的预留资源与80MHz的左侧的预留资源重叠。对于100MHz的侦听带宽而言,该100MHz的侦听带宽可以包括20MHz、40MHz、60MHz和80MHz的位于两侧的预留资源,且20MHz、40MHz、60MHz和80MHz的右侧的预留资源与100MHz的预留资源不重叠,20MHz、40MHz、60MHz和80MHz的左侧的预留资源与100MHz的左侧的预留资源重叠。
应理解,除了第三预留资源之外,第一侦听带宽的第一频域部分也可以与第三侦听带宽的第三频域部分有至少部分重叠的资源,这些重叠的资源对于第一侦听带宽而言可以是可用的,也即可以用来传输数据。
例如,如图3所示,对于40MHz的侦听带宽而言,20MHz的频域部分全部属于40MHz,则该20MHz的频域部分而对40MHz的侦听带宽而言,是可以用于进行数据传输的。对于60MHz的侦听带宽而言,40MHz的频域部分全部属于60MHz,则该40MHz的频域部分而对60MHz的侦听带宽而言,是可以用于进行数据传输的。对于80MHz的侦听带宽而言,60MHz的频域部分全部属于80MHz,则该60MHz的频域部分而对80MHz的侦听带宽而言,是可以用于进行数据传输的。对于100MHz的侦听带宽而言,80MHz的频域部分全部属于100MHz,则该80MHz的频域部分而对100MHz的侦听带宽而言,是可以用于进行数据传输的。
而对于第三预留资源的第四子频带中属于第一频域部分而不属于第一预留资源的部分可以用来传输数据,也可以不用来传输数据。
例如,如图3所示,对于40MHz的侦听带宽而言,20MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于60MHz的侦听带宽而言,20MHz和40MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于80MHz的侦听带宽而言,20MHz、40MHz和60MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。对于100MHz的侦听带宽而言,20MHz、40MHz、60MHz和80MHz的右侧的预留资源可以用于数据传输,也可以不用于数据传输。
在一种实现方式中,所述第一频域部分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的资源块组RBG的划分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的预编码资源块组PRG的划分包括所述第四子频带中不属于所述第一预留资源的部分。
在该种实现方式中,所述第一频域部分包括频域连续的整数个频域单元。
在另一种实现方式中,所述第一频域部分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的资源块组RBG的划分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的预编码资源块组PRG的划分不包括所述第四子频带中不属于所述第一预留资源的部分。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一设备 接收所述第二设备发送的第三指示信息,其中,
所述第三指示信息用于确定所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第三指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第三指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
例如,第三指示信息可以用于指示:所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。例如,在第三指示信息携带取值为1的比特时,第三指示信息可以指示上述是的情况,在第三指示信息携带取值为0的比特时,第三指示信息可以指示上述否的情况。
再例如,如果发送第三指示信息(即第三指示信息域出现或配置第三指示信息相关参数),可以指示上述是的情况,如果不发送第三指示信息,可以指示上述否的情况。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述方法还包括:所述第一设备向所述第二设备发送第四指示信息,其中,
所述第四指示信息用于确定所述第一频域部分中是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第四指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第四指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
例如,第四指示信息可以用于指示:所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。例如,在第四指示信息携带取值为1的比特时,第四指示信息可以指示上述是的情况,在第四指示信息携带取值为0的比特时,第四指示信息可以指示上述否的情况。
再例如,如果发送第四指示信息(即第四指示信息域出现或配置第四指示信息相关参数),可以指示上述是的情况,如果不发送第四指示信息,可以指示上述否的情况。
可选地,在本申请实施例中,所述第一频域部分是否包括所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的资源块组RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分,和/或,所述第一频域部分中的预编码资源块组PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分,可以根据具体情况而定,例如,可以基于终端设备与网络设备之间的通信对资源量的需求。
可选地,在本申请实施例中,所述第三侦听带宽是所述第一侦听带宽的真子集;在所述第一侦听带宽上侦听信道;在获得所述第三侦听带宽的信道使用权且没有获得所述第一侦听带宽的信道使用权的情况下,所述第一设备通过所述第三频域部分与所述第二设备进行通信。
应理解,以上结合图3示出了多个侦听带宽之间的位置关系,但是图3仅仅是本申请实施例中的一种实现方式,本申请实施例中,多个侦听带宽之间还可以存在其他的位置关系。
例如,如图5所示,两个侦听带宽中每个侦听带宽分别具有部分的频域资源与另一侦听带宽重叠,重叠部分可以包括部分预留资源和部分频域部分中的资源。
再例如,如图6所示,两个侦听带宽中每个侦听带宽分别仅具有部分的预留资源与另一侦听带宽的预留资源重叠。
应理解,在本申请实施例中,在多个其他侦听带宽的预留资源属于某一侦听带宽且与该侦听带宽的预留资源不重叠时,可以是该多个其他侦听带宽的预留资源均属于该侦听带宽的频域部分(或者参与该侦听带宽的频域部分的RBG或PRG的划分),也可以是该多个其他侦听带宽的部分带宽的预留资源属于该侦听带宽的频域部分(或者参与该侦听带宽的频域部分的RBG或PRG的划分)。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一设备向所述第二设备发送第五指示信息,所述第五指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一预留资源的频域位置和所述第一频域部分所属的BWP的频域位置。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一设备接收所述第二设备发送的第六指示信息,所述第六指示信息用于确定以下中的至少一种:所述第一频域 部分的频域位置、所述第一预留资源的频域位置和所述第一频域部分所属的BWP的频域位置。
因此,在本申请实施例中,第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带,由于进行通信的第一频域部分的至少一侧具有作为保护频带的预留资源,可以避免第一频域部分进行的通信对其他通信造成干扰,具体地,可以避免NR-U系统在侦听带宽上的信号传输干扰相邻信道上异系统(例如Wi-Fi或LTE-LAA系统)的信号传输,从而更好地实现非授权频段上的系统共存。
图7是根据本申请实施例的通信设备400的示意性框图。该通信设备400可以包括通信单元410。该通信设备400可以称为第一设备,其可以与第二设备进行通信。
其中,通信单元410,用于通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。
可选地,在本申请实施例中,所述第一预留资源包括第一子频带,所述第一子频带位于所述第一侦听带宽的低频侧。
可选地,在本申请实施例中,所述第一子频带的大小是基于以下至少一种确定的:
射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第一子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的高频侧的第二子频带的大小。
可选地,在本申请实施例中,所述第一预留资源包括第二子频带,所述第二子频带位于所述第一侦听带宽的高频侧。
可选地,在本申请实施例中,所述第二子频带的大小是基于以下至少一种确定的:
射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第二子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的低频侧的第一子频带的大小。
可选地,在本申请实施例中,所述第一预留资源的第三子频带属于所述非授权频段的第二侦听带宽,所述第二侦听带宽包括第二频域部分和第二预留资源,其中,所述第二频域部分可用于无线通信传输,所述第二预留资源位于所述第二侦听带宽的至少一侧,所述第二预留资源为保护频带,所述第二预留资源和所述第三子频带至少有部分频域资源不重叠。
可选地,在本申请实施例中,所述第二频域部分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的资源块组RBG的划分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的预编码资源块组PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分。
可选地,在本申请实施例中,所述第二频域部分包括频域连续的整数个频域单元。
可选地,在本申请实施例中,所述第二频域部分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的资源块组RBG的划分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二频域部分中的预编码资源块组PRG的划分不包括所述第三子频带中不属于所述第二预留资源的部分。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述通信单元410进一步用于:
接收所述第二设备发送的第一指示信息,其中,
所述第一指示信息用于确定所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第一指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第一指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元410进一步用于:向所述第二设备发送第二指示信息,其中,
所述第二指示信息用于确定所述第二频域部分中是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
所述第二指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
可选地,在本申请实施例中,所述第一侦听带宽是所述第二侦听带宽的真子集;所述通信单元410进一步用于:
在所述第二侦听带宽上侦听信道;
在获得所述第一侦听带宽的信道使用权且没有获得所述第二侦听带宽的信道使用权的情况下,通过所述第一频域部分与所述第二设备进行通信。
可选地,在本申请实施例中,所述通信单元410进一步用于:
在所述第一侦听带宽上侦听信道;
在获得所述第一侦听带宽的信道使用权的情况下,所述第一设备通过所述第一频域部分与第二设备进行通信。
可选地,在本申请实施例中,所述非授权频段的第三侦听带宽的第三预留资源的第四子频带属于所述第一侦听带宽;
其中,所述第三侦听带宽包括第三频域部分和所述第三预留资源,所述第三频域部分可用于无线通信传输,所述第三预留资源位于所述第三侦听带宽的至少一侧,所述第三预留资源为保护频带,所述第一预留资源和所述第四子频带至少有部分频域资源不重叠。
可选地,在本申请实施例中,所述第一频域部分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的资源块组RBG的划分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的预编码资源块组PRG的划分包括所述第四子频带中不属于所述第一预留资源的部分。
可选地,在本申请实施例中,所述第一频域部分包括频域连续的整数个频域单元。
可选地,在本申请实施例中,所述第一频域部分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的资源块组RBG的划分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第一频域部分中的预编码资源块组PRG的划分不包括所述第四子频带中不属于所述第一预留资源的部分。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述通信单元410进一步用于:
接收所述第二设备发送的第三指示信息,其中,
所述第三指示信息用于确定所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第三指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第三指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元410进一步用于:
向所述第二设备发送第四指示信息,其中,
所述第四指示信息用于确定所述第一频域部分中是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第四指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
所述第四指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
可选地,在本申请实施例中,所述第三侦听带宽是所述第一侦听带宽的真子集;所述通信单元410 进一步用于:
在所述第一侦听带宽上侦听信道;
在获得所述第三侦听带宽的信道使用权且没有获得所述第一侦听带宽的信道使用权的情况下,通过所述第三频域部分与所述第二设备进行通信。
可选地,在本申请实施例中,该设备400还包括处理单元420,用于:
基于所述第一侦听带宽的大小、所述第一侦听带宽的子载波间隔和所述第一侦听带宽的频域位置中的至少一种,从带宽部分BWP集合中确定第一BWP的起始位置和/或所述第一BWP的长度,其中,所述第一BWP属于所述第一侦听带宽且包括所述第一频域部分。
可选地,在本申请实施例中,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元410进一步用于:
向所述第二设备发送第五指示信息,所述第五指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
可选地,在本申请实施例中,所述第一设备为终端设备,所述第二设备为网络设备,所述通信单元410进一步用于:
接收所述第二设备发送的第六指示信息,所述第六指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
应理解,该通信设备400可以对应于方法实施例中的第一设备(可以为终端设备,也可以为网络设备),可以用于实现本申请的方法实施例的各种方法,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备600示意性结构图。图8所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图8所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统900的示意性框图。如图10所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处 理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需 要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (51)

  1. 一种无线通信方法,其特征在于,包括:
    第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预留资源包括第一子频带,所述第一子频带位于所述第一侦听带宽的低频侧。
  3. 根据权利要求2所述的方法,其特征在于,所述第一子频带的大小是基于以下至少一种确定的:
    射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第一子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的高频侧的第二子频带的大小。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一预留资源包括第二子频带,所述第二子频带位于所述第一侦听带宽的高频侧。
  5. 根据权利要求4所述的方法,其特征在于,所述第二子频带的大小是基于以下至少一种确定的:
    射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第二子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的低频侧的第一子频带的大小。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一预留资源的第三子频带属于所述非授权频段的第二侦听带宽,所述第二侦听带宽包括第二频域部分和第二预留资源,其中,所述第二频域部分可用于无线通信传输,所述第二预留资源位于所述第二侦听带宽的至少一侧,所述第二预留资源为保护频带,所述第二预留资源和所述第三子频带至少有部分频域资源不重叠。
  7. 根据权利要求6所述的方法,其特征在于,所述第二频域部分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的资源块组RBG的划分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的预编码资源块组PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分。
  8. 根据权利要求7所述的方法,其特征在于,所述第二频域部分包括频域连续的整数个频域单元。
  9. 根据权利要求6所述的方法,其特征在于,所述第二频域部分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的资源块组RBG的划分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的预编码资源块组PRG的划分不包括所述第三子频带中不属于所述第二预留资源的部分。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述方法还包括:所述第一设备接收所述第二设备发送的第一指示信息,其中,
    所述第一指示信息用于确定所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第一指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第一指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
  11. 根据权利要求6至9中任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述方法还包括:所述第一设备向所述第二设备发送第二指示信息,其中,
    所述第二指示信息用于确定所述第二频域部分中是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
  12. 根据权利要求6至11中任一项所述的方法,其特征在于,所述第一侦听带宽是所述第二侦听 带宽的真子集;所述方法还包括:
    在所述第二侦听带宽上侦听信道;
    所述第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,包括:
    在获得所述第一侦听带宽的信道使用权且没有获得所述第二侦听带宽的信道使用权的情况下,所述第一设备通过所述第一频域部分与所述第二设备进行通信。
  13. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一侦听带宽上侦听信道;
    所述第一设备通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,包括:
    在获得所述第一侦听带宽的信道使用权的情况下,所述第一设备通过所述第一频域部分与第二设备进行通信。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述非授权频段的第三侦听带宽的第三预留资源的第四子频带属于所述第一侦听带宽;
    其中,所述第三侦听带宽包括第三频域部分和所述第三预留资源,所述第三频域部分可用于无线通信传输,所述第三预留资源位于所述第三侦听带宽的至少一侧,所述第三预留资源为保护频带,所述第一预留资源和所述第四子频带至少有部分频域资源不重叠。
  15. 根据权利要求14所述的方法,其特征在于,所述第一频域部分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的资源块组RBG的划分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的预编码资源块组PRG的划分包括所述第四子频带中不属于所述第一预留资源的部分。
  16. 根据权利要求15所述的方法,其特征在于,所述第一频域部分包括频域连续的整数个频域单元。
  17. 根据权利要求14所述的方法,其特征在于,所述第一频域部分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的资源块组RBG的划分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的预编码资源块组PRG的划分不包括所述第四子频带中不属于所述第一预留资源的部分。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述方法还包括:所述第一设备接收所述第二设备发送的第三指示信息,其中,
    所述第三指示信息用于确定所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第三指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第三指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
  19. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述方法还包括:所述第一设备向所述第二设备发送第四指示信息,其中,
    所述第四指示信息用于确定所述第一频域部分中是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第四指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第四指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第三侦听带宽是所述第一侦听带宽的真子集;所述方法还包括:
    在所述第一侦听带宽上侦听信道;
    在获得所述第三侦听带宽的信道使用权且没有获得所述第一侦听带宽的信道使用权的情况下,所述第一设备通过所述第三频域部分与所述第二设备进行通信。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述方法还包括:
    基于所述第一侦听带宽的大小、所述第一侦听带宽的子载波间隔和所述第一侦听带宽的频域位置中 的至少一种,从带宽部分BWP集合中确定第一BWP的起始位置和/或所述第一BWP的长度,其中,所述第一BWP属于所述第一侦听带宽且包括所述第一频域部分。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述方法还包括:
    所述第一设备向所述第二设备发送第五指示信息,所述第五指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
  23. 根据权利要求1至22中任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述方法还包括:
    所述第一设备接收所述第二设备发送的第六指示信息,所述第六指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
  24. 一种通信设备,其特征在于,所述通信设备为第一设备,所述通信设备包括:
    通信单元,用于通过非授权频段的第一侦听带宽中的第一频域部分与第二设备进行通信,所述第一侦听带宽包括所述第一频域部分和第一预留资源,其中,所述第一预留资源位于所述第一侦听带宽的至少一侧,所述第一预留资源为保护频带。
  25. 根据权利要求24所述的设备,其特征在于,所述第一预留资源包括第一子频带,所述第一子频带位于所述第一侦听带宽的低频侧。
  26. 根据权利要求25所述的设备,其特征在于,所述第一子频带的大小是基于以下至少一种确定的:
    射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第一子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的高频侧的第二子频带的大小。
  27. 根据权利要求24至26中任一项所述的设备,其特征在于,所述第一预留资源包括第二子频带,所述第二子频带位于所述第一侦听带宽的高频侧。
  28. 根据权利要求27所述的设备,其特征在于,所述第二子频带的大小是基于以下至少一种确定的:
    射频指标需求、所述第一侦听带宽的大小、所述第一频域部分的子载波间隔、所述第一频域部分的大小、所述第二子频带的位置、所述第一侦听带宽的位置、所述第一预留资源包括的且位于所述第一侦听带宽的低频侧的第一子频带的大小。
  29. 根据权利要求24至28中任一项所述的设备,其特征在于,所述第一预留资源的第三子频带属于所述非授权频段的第二侦听带宽,所述第二侦听带宽包括第二频域部分和第二预留资源,其中,所述第二频域部分可用于无线通信传输,所述第二预留资源位于所述第二侦听带宽的至少一侧,所述第二预留资源为保护频带,所述第二预留资源和所述第三子频带至少有部分频域资源不重叠。
  30. 根据权利要求29所述的设备,其特征在于,所述第二频域部分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的资源块组RBG的划分包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的预编码资源块组PRG的划分包括所述第三子频带中不属于所述第二预留资源的部分。
  31. 根据权利要求30所述的设备,其特征在于,所述第二频域部分包括频域连续的整数个频域单元。
  32. 根据权利要求29所述的设备,其特征在于,所述第二频域部分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的资源块组RBG的划分不包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二频域部分中的预编码资源块组PRG的划分不包括所述第三子频带中不属于所述第二预留资源的部分。
  33. 根据权利要求29至32中任一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述通信单元进一步用于:
    接收所述第二设备发送的第一指示信息,其中,
    所述第一指示信息用于确定所述第二频域部分中是否包所述第三子频带中不属于所述第二预留资 源的部分;和/或,
    所述第一指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第一指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
  34. 根据权利要求29至32中任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元进一步用于:向所述第二设备发送第二指示信息,其中,
    所述第二指示信息用于确定所述第二频域部分中是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二指示信息用于确定所述第二频域部分中的RBG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分;和/或,
    所述第二指示信息用于确定所述第二频域部分中的PRG的划分是否包括所述第三子频带中不属于所述第二预留资源的部分。
  35. 根据权利要求29至34中任一项所述的设备,其特征在于,所述第一侦听带宽是所述第二侦听带宽的真子集;所述通信单元进一步用于:
    在所述第二侦听带宽上侦听信道;
    在获得所述第一侦听带宽的信道使用权且没有获得所述第二侦听带宽的信道使用权的情况下,通过所述第一频域部分与所述第二设备进行通信。
  36. 根据权利要求24至34中任一项所述的设备,其特征在于,所述通信单元进一步用于:
    在所述第一侦听带宽上侦听信道;
    在获得所述第一侦听带宽的信道使用权的情况下,所述第一设备通过所述第一频域部分与第二设备进行通信。
  37. 根据权利要求24至36中任一项所述的设备,其特征在于,所述非授权频段的第三侦听带宽的第三预留资源的第四子频带属于所述第一侦听带宽;
    其中,所述第三侦听带宽包括第三频域部分和所述第三预留资源,所述第三频域部分可用于无线通信传输,所述第三预留资源位于所述第三侦听带宽的至少一侧,所述第三预留资源为保护频带,所述第一预留资源和所述第四子频带至少有部分频域资源不重叠。
  38. 根据权利要求37所述的设备,其特征在于,所述第一频域部分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的资源块组RBG的划分包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的预编码资源块组PRG的划分包括所述第四子频带中不属于所述第一预留资源的部分。
  39. 根据权利要求38所述的设备,其特征在于,所述第一频域部分包括频域连续的整数个频域单元。
  40. 根据权利要求37所述的设备,其特征在于,所述第一频域部分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的资源块组RBG的划分不包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第一频域部分中的预编码资源块组PRG的划分不包括所述第四子频带中不属于所述第一预留资源的部分。
  41. 根据权利要求37至40中任一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述设备还包括:
    接收所述第二设备发送的第三指示信息,其中,
    所述第三指示信息用于确定所述第一频域部分中是否包所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第三指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第三指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
  42. 根据权利要求37至40中任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元进一步用于:
    向所述第二设备发送第四指示信息,其中,
    所述第四指示信息用于确定所述第一频域部分中是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第四指示信息用于确定所述第一频域部分中的RBG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分;和/或,
    所述第四指示信息用于确定所述第一频域部分中的PRG的划分是否包括所述第四子频带中不属于所述第一预留资源的部分。
  43. 根据权利要求37至42中任一项所述的设备,其特征在于,所述第三侦听带宽是所述第一侦听带宽的真子集;所述通信单元进一步用于:
    在所述第一侦听带宽上侦听信道;
    在获得所述第三侦听带宽的信道使用权且没有获得所述第一侦听带宽的信道使用权的情况下,通过所述第三频域部分与所述第二设备进行通信。
  44. 根据权利要求24至43中任一项所述的设备,其特征在于,还包括处理单元,用于:
    基于所述第一侦听带宽的大小、所述第一侦听带宽的子载波间隔和所述第一侦听带宽的频域位置中的至少一种,从带宽部分BWP集合中确定第一BWP的起始位置和/或所述第一BWP的长度,其中,所述第一BWP属于所述第一侦听带宽且包括所述第一频域部分。
  45. 根据权利要求24至44中任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述通信单元进一步用于:
    向所述第二设备发送第五指示信息,所述第五指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
  46. 根据权利要求24至45中任一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述通信单元进一步用于:
    接收所述第二设备发送的第六指示信息,所述第六指示信息用于确定以下中的至少一种:所述第一频域部分的频域位置、所述第一频域资源的频域位置和所述第一频域部分所属的BWP的频域位置。
  47. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  49. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
PCT/CN2018/100016 2018-08-10 2018-08-10 无线通信方法和通信设备 WO2020029263A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PT189289929T PT3833077T (pt) 2018-08-10 2018-08-10 Método de comunicação sem fios e dispositivo de comunicação
DK18928992.9T DK3833077T3 (da) 2018-08-10 2018-08-10 Fremgangsmåde til trådløs kommunikation og kommunikationsindretning
PCT/CN2018/100016 WO2020029263A1 (zh) 2018-08-10 2018-08-10 无线通信方法和通信设备
CN202110919560.7A CN113645629B (zh) 2018-08-10 2018-08-10 无线通信方法和通信设备
CN201880096582.4A CN112567781A (zh) 2018-08-10 2018-08-10 无线通信方法和通信设备
EP18928992.9A EP3833077B1 (en) 2018-08-10 2018-08-10 Wireless communication method and communication device
ES18928992T ES2942013T3 (es) 2018-08-10 2018-08-10 Método de comunicación inalámbrica y dispositivo de comunicación
US17/163,715 US11902949B2 (en) 2018-08-10 2021-02-01 Wireless communication method and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100016 WO2020029263A1 (zh) 2018-08-10 2018-08-10 无线通信方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/163,715 Continuation US11902949B2 (en) 2018-08-10 2021-02-01 Wireless communication method and communication device

Publications (1)

Publication Number Publication Date
WO2020029263A1 true WO2020029263A1 (zh) 2020-02-13

Family

ID=69413775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100016 WO2020029263A1 (zh) 2018-08-10 2018-08-10 无线通信方法和通信设备

Country Status (7)

Country Link
US (1) US11902949B2 (zh)
EP (1) EP3833077B1 (zh)
CN (2) CN113645629B (zh)
DK (1) DK3833077T3 (zh)
ES (1) ES2942013T3 (zh)
PT (1) PT3833077T (zh)
WO (1) WO2020029263A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768160A (zh) * 2014-01-03 2015-07-08 上海朗帛通信技术有限公司 一种非授权频谱的调度方法和装置
CN105451237A (zh) * 2014-09-26 2016-03-30 上海贝尔股份有限公司 一种无线资源分配方法
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
WO2016165624A1 (zh) * 2015-04-17 2016-10-20 索尼公司 终端侧、基站侧设备,终端设备,基站和无线通信方法
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021600B2 (en) * 2013-01-02 2018-07-10 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
WO2016081375A1 (en) * 2014-11-17 2016-05-26 Intel IP Corporation Listen before talk (lbt) design for uplink licensed assisted access (laa) operation in unlicensed band
CN104507108B (zh) * 2014-12-19 2019-03-08 宇龙计算机通信科技(深圳)有限公司 信道空闲状态的指示或资源预留方法、系统、终端和基站
CN108366424B (zh) * 2017-01-26 2021-10-26 华为技术有限公司 一种资源分配方法、相关设备及系统
US10945288B2 (en) * 2017-10-23 2021-03-09 Qualcomm Incorporated Reservation and challenge schemes for listen-before-talk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768160A (zh) * 2014-01-03 2015-07-08 上海朗帛通信技术有限公司 一种非授权频谱的调度方法和装置
CN105451237A (zh) * 2014-09-26 2016-03-30 上海贝尔股份有限公司 一种无线资源分配方法
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置
WO2016165624A1 (zh) * 2015-04-17 2016-10-20 索尼公司 终端侧、基站侧设备,终端设备,基站和无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3833077A4 *

Also Published As

Publication number Publication date
EP3833077A1 (en) 2021-06-09
US20210185675A1 (en) 2021-06-17
CN112567781A (zh) 2021-03-26
US11902949B2 (en) 2024-02-13
PT3833077T (pt) 2023-04-11
CN113645629B (zh) 2022-07-29
DK3833077T3 (da) 2023-04-11
EP3833077A4 (en) 2021-07-28
EP3833077B1 (en) 2023-02-08
ES2942013T3 (es) 2023-05-29
CN113645629A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
US11375498B2 (en) Resource pool determination method, and terminal device
TWI716696B (zh) 無線通信方法和設備
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US11910369B2 (en) Uplink transmission method, terminal device and network device
US20210160852A1 (en) Resource configuration method and terminal device
US20210250934A1 (en) Data transmission method and terminal device
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
WO2020001484A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2020001623A1 (zh) 一种确定侧行链路类别的方法、终端设备和网络设备
WO2020186534A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020001183A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
WO2020024271A1 (zh) 资源分配的方法、终端设备和网络设备
US11864159B2 (en) Sidelink communication method, terminal device and network device
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
JP7205557B2 (ja) リソーススケジューリング指示方法及びその装置、通信システム
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020087468A1 (zh) 无线通信方法和设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2021226963A1 (zh) 一种ssb的确定方法及装置、通信设备
WO2020029263A1 (zh) 无线通信方法和通信设备
WO2021073018A1 (zh) 系统信息传输资源的确定、指示方法及装置
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928992

Country of ref document: EP

Effective date: 20210305